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Simple Summary: HER2-positive breast cancer is the most aggressive form of cancer, accounting for
20-25% of all breast cancers, with poor overall survival. HER-targeted drugs (trastuzumab, lapatinib,
and pertuzumab) have improved patient outcomes, but innate/primary and acquired resistance
present substantial clinical challenges. Growing tumors often secrete small RNA sequences (miRNA)
that are stable in the blood, and detecting them can contribute to enhanced treatment plans and
reverse resistance. This study aims to investigate the underlying mechanisms of HER2 drug resistance
through miRNA analysis and target identification. The results from this study contribute to better
treatment of HER2-breast cancer resistance to targeted therapies.

Abstract: Background: HER2-positive breast cancer is an aggressive subtype where innate/acquired
resistance to targeted drugs remains a challenge. This study aims to uncover the underlying mecha-
nisms of HER2 drug resistance through miRNA analysis and target identification. Methods: MiRNA
datasets were systematically retrieved from the GEO database, and differential expression analysis
was conducted for both miRNA and mRNA datasets. Functional analyses were also conducted to
validate the identified miRNAs and assess their clinical relevance. Results: We identified 113 differ-
entially expressed miRNAs (DEMs) and 923 target genes. Validation was performed using external
mRNA datasets, and intersection with significant genes identified 110 overlapping genes associated
with HER2 drug resistance. Further analyses included functional enrichment, construction of a
protein—protein interaction (PPI) network, identification of key hub genes such as BCL2, FOS, and
CXCR4, and assessment of clinical relevance through survival analysis and immunohistochemistry
(IHC) assessments. Conclusions: This integrative approach unveils a complex landscape of HER2
drug resistance in breast cancer, identifying crucial miRNAs, target genes, and significant pathways.
The findings offer novel insights into the mechanisms governing drug resistance and highlight
the potential for enhancing therapeutic strategies. Future studies are necessary for experimental
validation to further explore the complex mechanisms involved.

Keywords: HER2-positive breast cancer; miRNAs; treatment response; HER?2 targeted therapy; drug
resistance; bioinformatics

1. Introduction

Breast cancer is a common lethal cancer in women. A recent report (2010-2019) from
the American Cancer Society revealed a yearly increase of 0.5% in the rate of female breast
cancer incidence [1]. The human epidermal growth factor receptor 2 (HER2)-positive
subtype, which accounts for 20-25% of all breast cancer cases [2,3], has gained substantial
attention owing to its aggressive nature and resistance to treatment. This highly aggressive
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neoplasm is characterized by HER2-mediated activation of oncogenic pathways and is
poorly responsive to cytotoxic chemotherapy [4].

HER2-targeted therapies [5-11], which were designed to target the HER2 receptor,
have achieved significant improvement in managing this subtype. Despite the initial
promise of HER2-targeted therapies, therapeutic resistance presents a daunting challenge,
limiting the effectiveness of these treatments. This resistance significantly impairs patient
prognosis and hampers progression-free survival and overall survival rates [12,13]. This
issue necessitates the need for new treatment strategies with potential targets to overcome
drug resistance.

MiRNAs are small non-coding RNAs known to modulate gene expression at the
post-transcriptional level and regulate many biological processes, including carcinogen-
esis [14,15]. Recent research links miRNAs with the development of drug resistance in
breast cancer. In particular, the abnormal expression of miRNNAs has been investigated
for its role in causing anti-HER?2 therapeutic resistance [16,17]. miRNAs influence resis-
tance to HER2-targeted therapies in breast cancer by regulating key genes involved in
pathways critical for cancer cell survival and proliferation [18]. For instance, miR-21 drives
trastuzumab and chemotherapy resistance by targeting PTEN and PDCD4, thereby activat-
ing the PI3K pathway and supporting processes like epithelial-to-mesenchymal transition
(EMT), which can sustain resistance and invasiveness [19]. Similarly, miR-221 promotes
resistance through the PI3K/AKT pathway by downregulating PTEN, further enhancing
cancer cell proliferation and survival independently of immune signaling [20]. Further
exploration of miRNA-driven mechanisms underlying HER2 drug resistance and potential
biomarkers of drug response can help provide effective options for treatment prognosis
and personalized medicine.

Recent advancements in technologies and high-throughput datasets have catalyzed the
growth of bioinformatics. Computational tools have been intensively exploited to dissect
the role of miRNA in the complex molecular network in cancer [21-23]. It is a common
practice to use microarray analysis of gene expression profiles to identify cancer-related
genes and pathways. With the current availability of the public database [24-26], breast
cancer datasets can easily be retrieved and analyzed. However, the majority of these studies
have been primarily focusing on the identification of gene biomarkers, understanding
cancer subtypes, or exploring chemotherapy resistance mechanisms in breast cancer [27-29].
Despite the potential significance of miRNA biomarkers in drug resistance, limited studies
have focused on studying miRNA biomarkers in the context of targeted therapy resistance
in HER2+ breast cancer. This underscores the need to explore miRNAs regulating drug
resistance in this aggressive breast cancer subtype to improve therapeutic strategies and
enhance treatment outcomes.

In this study, we identified DEMs associated with breast cancer targeted drug resis-
tance using systematic meta-analysis of the miRNA datasets and predicted their target
genes. We validated the target genes with three external mRNA datasets. All datasets were
retrieved from the Gene Expression Omnibus (GEO). Preprocessing and normalization
were performed before further analysis. The significantly differentially expressed genes
(DEGs) associated with HER2 drug resistance in breast cancer were used for further func-
tional and pathway enrichment analysis. Moreover, a protein—protein interaction (PPI)
network was constructed. Furthermore, immunohistochemistry and survival analysis were
employed to evaluate key hub genes.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

In this study, both RNA-sequencing and microarray gene expression profiles were
sourced from the Gene Expression Omnibus (GEO) database (https://www.ncbinlm.
nih.gov/geo/ accessed 22 May 2023) [25], focusing specifically on datasets related to
drug resistance in HER2+ breast cancer. Systematic extraction and retrieval of miRNA
datasets were conducted using the GEOquery package in R. We also conducted exploratory
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analyses to assess sample quality and identify any potential outliers from miRNA datasets.
Results of these exploratory analyses can be found in Supplementary Figure S2. Three
miRNA datasets (GSE47011, GSE197822, and GSE101841) available as of May 2023 and
three validation mRINA datasets (GSE132055, GSE89216, and GSE121105) were utilized
for our bioinformatics analysis. Table 1 details the information on the retrieved datasets.
Substantial missing values were discovered in the GSE47011 expression data, and these
were imputed using the MissForest algorithm, an iterated random forest method [30]. All
miRNA datasets were then log,-transformed, a necessary step to ensure comparability
across datasets and reduce the impact of high-magnitude changes, making the data more
symmetric. These transformed datasets were subsequently used for expression analysis
and microarray meta-analysis.

Table 1. Characteristics of the included datasets.

GSE No. of
Accession Sam- Platform Description Country PMID URL and Access Date
No. ples
miRCURY microSRClr\‘Iaeru;gVicl)f/e din https:/ /www.ncbi.nlm.
GSE47011 6 LNA the development of Chin 24615544  MN-BOV/geo/query/
microRNA ¢ developthent o a acc.cgi?acc=GSE47011
Array trastuzumab resistance accessed on 22 May 2023
using SKBR3 cells
. Determining the
AffymeF e differences in miRNA https:/ /www.ncbi.nlm.
; Multi- expression between Not nih.gov/geo/query/
miRNA  GSE197822 12 species P ‘ Spain ) BOV/ge0/ ueTy
MIiRNA-4 breast cancer cell lines available acc.cgi?acc=GSE197822
Arra (SKBR3 and BT474) and accessed on 22 May 2023
y their resistant pairs.
Affymetrix Screening of https:/ /www.ncbi.nlm.
GeneChip serum-based miRNA . nih.gov/geo/query/
GSE101841 103 miRNA 4.0 signature of patients China 29691399 acc.cgi?acc=GSE101841
Array resistant to trastuzumab accessed on 22 May 2023
RNA-seq of three HER2+ https:/ /www.ncbi.nlm.
[Mlumina breast cancer nih.gov/geo/query/
GSE132055 15 HiSeq 2000  anti-HER2-resistant cell UsA 31420571 acc.cgi?acc=GSE132055
models accessed on 22 May 2023
Identify acquired
resistance mechanisms
Affymetrix to anti-HER?2 antibodies https:/ /www.ncbi.nlm.
Human trastuzumab and Not nih.gov/geo/query/
GSES9216 8 Gene20sT Perfuzumabandtothe  Spain _ ople dcecpitacc=GSES9216
combined
Array accessed on 22 May 2023
mRNA trastuzumab / pertuzumab
or pertuzumab/T-DM1
therapy
RNA sequencing of
BT474 cells treated with
trastuzumab or https:/ /www.ncbi.nlm.
Mumina trastuzumab + nih.gov/geo/query/
i?acc=
GSE121105 21 HiSeq 2000 pertuzumab and USA 31690671 acc.cgi?acc=GSE121105

BT474-derived cells
resistant to trastuzumab
or trastuzumab +
pertuzumab

axxessed on 22 May
2023
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2.2. Differential Expression Analysis and Meta-Analysis

Differential expression analyses were performed on the two groups of samples, resis-
tance and control, in each Gene Expression Omnibus (GEO) dataset, a public functional
genomics data repository. Differentially expressed microRNAs (DEMs) were identified
using the Linear Models for Microarray and RNA-Seq Data (LIMMA) R/Bioconductor
package [31] and DEGs were identified using the GEO2R tool, an interactive web ap-
plication in the GEO database that leverages the LIMMA package to compare different
groups of samples. It allows for the identification of genes differentially expressed across
experimental conditions, specifically resistant and control groups in this study. Each gene’s
expression was calculated based on the false discovery rate using the Benjamini-Hochberg
method (FDR, p < 0.05). Besides the adjusted p-value < 0.05 that has been corrected for
multiple comparisons, a fold change cutoff of log-fold change logFC > 1 was also used as
the primary criterion to interpret DEG results.

The combined effect size (ES) was used in the microarray meta-analysis of the miRNA
datasets. This metric, expressed as the difference between two group means divided by the
standard deviation, enables the comparison of findings across studies. In this context, the
group means are represented by the logFC of miRNA expression between the two groups:
resistance and control.

Variations in logFC values are expected since different experimental conditions and
techniques were used for each dataset. To account for the precision of these logFC estimates,
we calculated the standard error (StdErr) for each dataset by dividing the logFC by the
corresponding t-value, based on the statistical relationship between logFC, StdErr, and
t-value. Calculating StdErr for each dataset allowed us to weigh the effect sizes according
to their precision in the meta-analysis. For the meta-analysis, we applied a random-effect
model, which accommodates inter-study variability and provides a combined effect size
across datasets.

To identify the appropriate model for meta-analysis, we initially assessed the presence
of heterogeneity among the studies using Cochran’s Q test [32]. This test is used to
determine whether the true effect sizes are homogeneous across different studies. A
significant result (p < 0.05) in the Q test indicates heterogeneity, leading us to choose a
random-effect model for our meta-analysis. This model accounts for variations between
studies and is widely accepted in meta-analysis.

Each miRNA was individually assessed, and the resulting effect sizes and p-values
were adjusted for multiple comparisons using the Benjamini-Hochberg method. MiRNAs
with an adjusted p-value of less than 0.05 were considered significantly differentially
expressed. A set of DEMs was thus obtained.

2.3. Prediction of Target Genes for DEMs and Identification of Significant
Drug-Resistance-Associated DEGs

Upon identifying DEMs, this set was further refined to include only those pertaining
to humans, as indicated by the prefix “hsa” in their identifiers. The resulting set was used
for subsequent target prediction analysis.

To predict miRNA targets, we utilized the ‘multiMiR’ R package [33]. This package
integrates information from 14 databases, providing both experimentally validated and
computationally predicted target interactions between miRNAs and mRNAs, along with
their disease and drug associations. For each significant miRNA, validated miRNA-mRNA
interactions from these databases were retrieved. The resulting list of target mRNAs for the
DEMs was saved for subsequent analyses.

Subsequently, we identified significant genes associated with drug resistance in HER2+
breast cancer. This was achieved by intersecting the significant DEGs identified in the
external validation mRNA datasets with the list of DEM target genes.
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2.4. Functional Enrichment Analysis and Protein—Protein Interaction (PPI) Network Construction

Functional annotation and enrichment analysis were conducted with Gene Ontology
(GO) [34] and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [26], using
the ClueGo plugin [35] (version 2.5.10) in Cytoscape [36] (version 3.10.0), and the EnrichR
tool [37]. These analyses helped in examining the associated biological processes, molecular
functions, cellular components, and signaling pathways relevant to significant DEGs. In
the GO analysis, the significance of the enrichments was determined using the Bonferroni
method with a kappa score of 0.96 and a cutoff value of p < 0.05. For KEGG enrichment
analysis, enriched pathways were identified with an adjusted p-value of less than the
0.05 cutoff. Visualization of the results was performed using Cytoscape. Additionally,
to explore potential functional relationships among the proteins encoded by the target
mRNAs, a protein—protein interaction (PPI) network was constructed using the STRING
database [38].

2.5. Validation and Prognostic Evaluation

The biological and clinical relevance of the identified significant genes were further
validated to assess their impact on patient outcomes. To evaluate the impact of these genes
on overall survival, we utilized KMPlotter [39], a tool that integrates survival data from
multiple studies and enables Kaplan—-Meier survival analysis. Additionally, the protein
expression profiles of the significant genes were explored using immunohistochemistry
data available in the Human Protein Atlas [40]. This approach allowed both the genetic and
protein-level implications of the significant genes to be thoroughly assessed, reinforcing
the validity of our findings. Figure 1 illustrates the schematic method of our study.
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Figure 1. Schematic of our study.

3. Results
3.1. Data Selection

We found 64 records from the systematic search of the GEO database up to May
2023 under specific keywords. Based on stringent inclusion criteria, including targeted
drug resistance in HER2+ breast cancer, miRNA expression data availability, and limited
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to human studies, 61 datasets were excluded, leaving us with three miRNA datasets
(GSE47011, GSE197822, and GSE101841) for further analysis. In each dataset, HER2-
targeted drug resistance samples were compared with the control. The data selection
process of the study is illustrated by a PRISMA diagram in Supplementary Figure S1.

3.2. Identification of DEMs and DEGs

In our analysis of multiple datasets, we identified key molecular alterations associated
with HER2-targeted drug resistance in breast cancer. For miRNAs, the meta-analysis of
three miRNA datasets revealed a total of 113 DEMs, including 56 downregulated (yel-
low points in Figure 2A) and 57 upregulated miRNAs (green points in Figure 2A). The
significance threshold was set at an adjusted p-value < 0.05.

A. miRNA: resistant vs control . E. Venn Diagram intersection between
DEMs' target genes and DEGs
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Figure 2. Summary of DEMs and DEGs across multiple datasets. (A) Volcano plot for miRNA meta-
datasets, the result of the meta-analysis. Yellow points indicate downregulated miRNAs, and green
points indicate upregulated miRNAs, with an adjusted p-value < 0.05 as the significance threshold.
(B-D) Volcano plots for mRNA datasets GSE89216 (B), GSE132055 (C), and GSE121105 (D), showing
differential expression analysis. Blue points represent downregulated genes, and red points represent
upregulated genes. In all volcano plots, the Logy-fold differences are plotted on the horizontal
axis, and the —Logl0pvalue differences are plotted on the vertical axis. The significance criteria for
identifying DEGs are an adjusted p-value < 0.05 and an absolute Log,-fold change | Logr FC | > 1.
(E) Venn diagram depicting the intersection between DEM target genes and DEGs, highlighting genes
associated with HER2-targeted drug resistance.

For mRNAs, differential expression analysis was conducted on three validation
datasets. Specifically, the analysis identified 139 DEGs in GSE89216 (Figure 2B), with
67 upregulated (red points) and 72 downregulated genes (blue points). In GSE132055,
565 DEGs were identified, comprising 240 upregulated (red points) and 325 downregulated
genes (blue points) (Figure 2C). The additional dataset GSE121105 was also analyzed with
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905 DEGs and is depicted in Figure 2D. The significance criteria for identifying DEGs were
an adjusted p-value < 0.05 and an absolute Log,-fold change | Log,FC | > 1.

3.3. miRNA Target Prediction and Overlap with DEGs

In this study, we utilized the multiMiR package to predict the target genes of all
identified DEMs. The predicted target genes of DEMs were then overlapped with the DEG
list identified from our mRNA datasets to enhance the biological relevance of the identified
targets. This resulted in 110 genes that were not only differentially expressed in our mRNA
analysis but also predicted to be targeted by one or more of the DEMs. The Venn diagram
in Figure 2E shows the intersection of the DEMs’ target genes and DEGs.

3.4. Integration of Enrichment and PPI Analyses

Enrichment Analysis: We performed GO analysis on the overlapping significant genes
associated with HER2-targeted drug resistance to gain insights into the associated biological
processes, molecular functions, and cellular components. KEGG pathway enrichment
analysis was also performed. Key enriched GO terms and pathways are shown in Figure 3.

Top 10 KEGG Pathway Enrichment Analysis
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Figure 3. Gene Ontology (GO) and KEGG pathway enrichment analysis for significant overlapped
genes associated with HER2-targeted drug resistance. (A) KEGG pathway enrichment analysis
by EnrichR, where the size of each point represents the number of genes in the term, and color
indicates the p-value. The analysis highlights key pathways, structures, and mechanisms potentially
underlying resistance. (B-D) GO analyses for molecular functions (B), cellular components (C),
and biological processes (D), visualized with ClueGO in Cytoscape. In these plots, color represents
different groups, and size corresponds to the number of genes in each term. All terms shown meet a
significance threshold of p < 0.05.

The result from GO analysis showed that terms like cardiac septum development and
endothelium development are critical terms based on the kappa score. Genes including
ankyrin 2 (ANK2), heart development protein with EGF-like domains 1 (HEGI), roundabout
guidance receptor 2 (ROBO?2), slit guidance ligand 2 (SLIT2), T-box transcription factor 1
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(TBX1), and transforming growth factor beta receptor 3 (TGFBR3) were identified within
significant nodes with Bonferroni step-down-corrected p-values.

Several pathways were significantly enriched in the KEGG enrichment analysis, in-
cluding cholinergic synapse, pathways in cancer, and estrogen signaling pathway. Key
genes involved in these pathways such as BCL2 apoptosis regulator (BCL2), Fos Proto-
Oncogene, AP-1 transcription factor subunit (FOS), G protein subunit alpha O1 (GNAOI),
and phospholipase C beta 1 (PLCB1) were identified. In Figure 4, the top 10 enriched KEGG
pathways are illustrated.
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Figure 4. Protein—protein interaction (PPI) network for HER2-targeted drug resistance. This figure
represents the PPI network constructed using STRING, showcasing the interconnectivity among
significant genes associated with HER2 drug resistance in breast cancer. Key hub genes like BCL2
are depicted, along with their connections to other relevant proteins such as FOS, CXCR4, CXCL10,
IL6R, IL6ST, IRS2, DAPK1, and CDH2. Separate clusters involving PLCB1, ADCY1, and GNAOI are
also visualized.

PPI Network Construction: Using STRING, we constructed the PPI network of signifi-
cant overlapped genes associated with HER2-targeted drug resistance illustrated in Figure 4.
The PPI network revealed BCL2 as a central hub, with connections to FOS, C-X-C motif
chemokine receptor 4 (CXCR4), C-X-C motif chemokine ligand 10 (CXCL10), interleukin 6
receptor (IL6R), interleukin 6 cytokine family signal transducer (IL6ST), insulin receptor
substrate 2 (IRS2), death-associated protein kinase 1 (DAPK1), and cadherin 2 (CDH2).
Separate clusters involving PLCBI1, adenylate cyclase 1 (ADCY1), and GNAO1 were also
identified. Additional central nodes in the network, such as ANK2, ankyrin 3 (ANK3), and
CDH2, were observed, hinting at the potential roles in cell adhesion and signaling.

By employing an integrated approach, we identified a set of strong candidate genes
potentially involved in HER2 drug resistance in breast cancer. These hub genes (BCL2,
FOS, CXCR4, CXCL10, PLCB1, ADCY1, and GNAQO1) were part of interconnected pathways
and were often central in the PPI network, suggesting critical roles in underlying their
biological mechanisms of HER2-targeted drug resistance, and deserve further validation.
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Detailed information on the interaction between miRNAs and potential hub genes is shown
in Supplementary Table S1.

3.5. Survival Analysis and Immunohistochemistry of Hub Genes

Survival analysis: We utilized Kaplan-Meier plots to evaluate the impact of hub genes
on overall survival in HER2+ breast cancer. Specifically, the high expression of CXCR4 was
correlated with longer overall survival, with a hazard ratio (HR) of 0.32 (95% CI 0.15-0.69)
and a log-rank p-value of 0.0022. In addition, FOS also exhibited an association with
favorable survival outcomes (HR = 0.53, 95% CI 0.3-0.95; p = 0.0311). Other analyzed genes,
including BCL2, CXCL10, PLCB1, ADCY1, and GNAO]1, did not demonstrate statistically
significant associations with overall survival at the p < 0.05 threshold, although trends were
observed, such as in PLCB1 with an HR of 0.6 (95% CI 0.33-1.09; p = 0.089). The results of
the survival analysis are shown in Figure 5.
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Figure 5. Kaplan-Meier survival plots for hub genes in HER2+ breast cancer. The plots illustrate
the overall survival associated with the expression levels of hub genes BCL2, FOS, CXCR4, CXCL10,
PLCB1, ADCY1, and GNAOIL. Statistically significant associations were found for CXCR4 and FOS,
indicating longer overall survival in patients with high expression of these genes. The hazard ratios
(HRs) and 95% confidence intervals (Cls) are provided in the plot for each gene.

IHC findings: We employed the results from immunohistochemistry (IHC), sourced
from the Human Protein Atlas, to assess the expression patterns of hub genes in normal
and tumor breast tissue. A general increase in staining and intensity was observed in
tumor cells for various hub genes, suggesting the intricate cellular modifications that might
be contributing to tumorigenesis. In particular, the FOS gene demonstrated a noticeable
increase in staining in tumor cells, indicating enhanced expression in the cancerous tissues.
Other genes, such as BCL2, revealed marked differences in staining, while PLCB1, ADCY]1,
and GNAO1 showed more subtle changes. The data for CXCR4 and CXCL10 were not
available from the Human Protein Atlas. The IHC comparison result between normal
and tumor samples for the hub genes is illustrated in Figure 6. Detailed information on
miRNAs regulating these potential hub genes retrieved from miRTarBase can be found in
Supplementary Table S2.
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BCL2 BCL2 apoptosis regulator

FOS Fos proto-oncogene, AP-1
transcription factor subunit
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Figure 6. Inmunohistochemical (IHC) staining comparison of hub genes in normal and tumor breast
tissue. The figure illustrates the differences in staining intensity and patterns for genes including FOS,
BCL2, PLCB1, ADCY1, and GNAOL. A noticeable increase in staining in tumor cells for the FOS gene
emphasizes its enhanced expression in cancerous tissues, while other genes demonstrate marked or
subtle changes. The data for CXCR4 and CXCL10 were not available from the Human Protein Atlas.

4. Discussion

HER2+ breast cancer represents a substantial portion of all breast cancer cases, yet
limited biomarkers are available to predict responses to HER2-targeted therapies. Despite
their potential to enhance treatment efficiency in personalized medicine, few studies have
explored miRNA biomarkers for the HER2+ breast cancer drug response. Standard tech-
niques used in cancer biomarker studies are microarray analysis and data mining [41]. In
HER2-breast cancer drug resistance studies, the minimal overlap observed in identified
miRNA panels reflects the complex biology of regulator miRNA expression in HER+ breast
cancer. Therefore, while valuable, a single microarray dataset might not be able to capture
the entire landscape of this complexity.

Our study tackled this challenge by adopting a comprehensive meta-analysis of
multiple miRNA datasets. We systematically identified and validated significant miRNAs
associated with HER2 drug resistance by integrating data across platforms, testing for
heterogeneity, and applying a random-effect model. We identified significant miRNAs
associated with HER2 drug resistance in breast cancer and predicted their target genes. By
manipulating three external mRNA datasets, we validated those target genes and further
explored the biological significance of these genes with GO and KEGG enrichment analysis.
Next, we constructed a PPI network to identify the most significant hub genes associated
with HER?2 drug resistance. These genes serve as potential key regulators, connecting
various biological functions and pathways. Furthermore, their prognostic value and clinical
relevance were examined through survival analysis and IHC results.

CXCR4 has been identified as a key regulator of metastasis in HER2 breast cancer,
with studies indicating that its inhibition can have a favorable impact on prognosis [42-44].
Interestingly, our analysis has revealed an association between higher CXCR4 expression
and improved overall survival in HER2 breast cancer patients. This discrepancy may
suggest a more complex interaction within the tumor microenvironment, where CXCR4's
impact on survival could be modulated by other factors, including miRNAs and interac-
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tions with other signaling pathways. Furthermore, Lefort et al. [43] showed the potential
benefit in reducing tumor growth and metastasis, especially in trastuzumab-sensitive and
trastuzumab-resistant HER2 breast cancers, by targeting the CXCR4/CXCL12 axis. More-
over, CXCR4’s involvement in drug resistance, particularly in trastuzumab treatment, has
been well documented, reinforcing its critical role in the therapeutic landscape of HER2
breast cancer [45,46]. The complexity of CXCR4's role extends to its regulation by miRNAs.
Validation studies have identified miR-139 as a direct regulator of CXCR4 in various cancers,
including breast cancer [47-49]. Our research further supports this association, highlighting
that miR-139-5p modulates CXCR4 in HER2 breast cancer drug resistance.

The downregulation of the FOS gene has been identified in aggressive breast cancer
subtypes, including basal, HER2-positive, and luminal B cases, with decreased expression
levels correlating with advanced cancer stages [50]. Our study further substantiates previ-
ous findings regarding the positive correlation between FOS expression and overall survival
(OS) in breast cancer [50] and specifically highlights an association between increased FOS
expression and improved survival outcomes in HER2 breast cancer patients. Moreover, we
have identified FOS as a target of hsa-miR-5586-5p. While the role of hsa-miR-5586-5p in
breast cancer remains largely unexplored, existing research has documented its significance
in modulating chemotherapy response in squamous cell carcinomas (SCCs) [51]. Thus,
understanding the molecular mechanisms by which hsa-miR-5586-5p may regulate FOS
expression represents a critical area for further research, with potential implications for
developing targeted therapeutic strategies in HER2+ breast cancer.

Additionally, our study explored the roles of other hub genes, including BCL2, PLCB1,
ADCY1, and GNAO1, within the HER2-positive breast cancer context. Though these genes
did not exhibit statistically significant associations in survival analysis, their inclusion in the
PPI network and differences in staining patterns observed through immunohistochemical
(IHC) staining underscore their potential relevance. The BCL2 gene, while previously
known for its extensive study in breast cancer, especially ER-positive breast cancer [52,53],
and its subtype-specific prognostic role [54], exhibited a marked change in its staining
pattern within HER2-positive breast cancer according to the IHC result. In this specific
context, BCL2 has been identified as a potential therapeutic target to restore sensitivity
to T-DM1 [55]. We have identified BCL2 as the target of hsa-miR-96-5p. Given that hsa-
miR-96 is known as a candidate diagnostic marker in breast cancer [56], its potential role in
regulating BCL2 could be significant in drug resistance within HER2-positive breast cancer.

Besides CXCR4, our study found that hsa-miR-139-5p also regulates GNAO1, CXCL10,
and ADCY1. In the context of HER2-positive breast cancer, CXCL10 emerges as being
particularly significant, implicated in trastuzumab responses through interferon-gamma-
inducible protein 16 (IFI16)-dependent STING signaling. The under-expression of this
pathway, modulated by histone transferase EZH?2, leads to suppressed CXCL10/11 expres-
sion and thereby contributes to trastuzumab resistance [57]. This intricate regulation by
both histone transferase and miRNA exemplifies the complexity of epigenetic mechanisms
governing HER2 breast cancer.

While there is evidence for the potential of enhancing chemotherapy efficacy through
ADCY1 modulation in breast cancer [58], and a correlation has been established between
overexpressed GNAO1 and poor prognosis in gastric cancer [59], there is a conspicuous
lack of studies focusing on the role of these genes in HER2-positive breast cancer drug
resistance. Therefore, further investigation into these genes, as well as the miRNA-mediated
modulation mechanisms that may contribute to resistance to targeted drugs, is necessary.

This study has some limitations. Primarily, the analytical miRNA data were sourced
from public databases, some of which contain limited sample sizes. This constraint po-
tentially affects the robustness of our findings related to miRNA associated with HER2
drug resistance. To enhance reliability and confidence in our results, we complemented the
analysis by utilizing external mRNA datasets to validate the target genes of the significant
miRNAs. Future investigations employing larger, well-curated sample sizes could provide
more definitive insights. In addition, further experimental validation of hub genes identi-
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fied in this study can elucidate the complex epigenetic mechanisms governing HER2 breast
cancer drug resistance and further validate our findings.

5. Conclusions

In this study, we utilized bioinformatics and meta-analysis to identify miRNAs, such as
miR-139-5p, miR-96-5p, and miR-5586-5p, associated with HER2-targeted drug resistance
in breast cancer. By addressing the issue of non-overlapping miRNA panels across studies
and validating our findings using external mRNA datasets, we have provided preliminary
insights into the molecular mechanisms underlying HER2-targeted drug resistance. These
insights may have implications for the development of targeted therapeutic strategies
for patients with HER2+ breast cancer. Although our study lays important groundwork,
further experimental validation is required to fully understand these complex interactions.
Our results reinforce the significant role of miRNAs in shaping the therapeutic landscape
of HER2-positive breast cancer.
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mdpi.com/article/10.3390/ cancers16233962 /s1: Figure S1: Selection method; Figure S2: Exploratory
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