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Abstract: If the billions of oligodendrocytes (OLs) populating the central nervous system (CNS)
of patients could express their feelings, they would undoubtedly tell gene therapists about their
frustration with the other neural cell populations, neurons, microglia, or astrocytes, which have been
the favorite targets of gene transfer experiments. This review questions why OLs have been left
out of most gene therapy attempts. The first explanation is that the pathogenic role of OLs is still
discussed in most CNS diseases. Another reason is that the so-called ubiquitous CAG, CBA, CBh, or
CMV promoters—widely used in gene therapy studies—are unable or poorly able to activate the
transcription of episomal transgene copies brought by adeno-associated virus (AAV) vectors in OLs.
Accordingly, transgene expression in OLs has either not been found or not been evaluated in most
gene therapy studies in rodents or non-human primates. The aims of the current review are to give
OLs their rightful place among the neural cells that future gene therapy could target and to encourage
researchers to test the effect of OL transduction in various CNS diseases.
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1. Introduction

Gene therapy encompasses four basic approaches. Three of these apply to diseases
caused by a single gene: (i) replacing a defective gene by a functional one; (ii) silencing
a mutated gene whose gain of function is toxic to cells; and (iii) correcting an abnormal
gene sequence in diseased cells. The fourth approach, gene addition, aims to transfer an
opportunistic gene not physiologically expressed in target cells to counteract a pathogenic
mechanism. Gene transfer currently holds out major hope for the future treatment of
certain debilitating diseases of the CNS [1–11]. This is the case for common diseases, such
as Parkinson’s disease (PD) or Alzheimer’s disease (AD), as well as less frequent or rare
diseases, sometimes involving only a single case [12].

While neurons and astrocytes are most often targeted, several reasons may explain why
OLs have been left out of most attempts in CNS gene therapy. First, the role of OLs in many
diseases is just beginning to emerge, as discussed in Section 3. Another explanation is that
most gene therapy studies have used adeno-associated virus (AAV) vectors equipped with
CAG, CBA, CBh, and CMV promoters. Although considered ubiquitous, these promoters
do not activate transgene expression within OLs for unknown biological reasons, unless
high doses of a vector are administered [13]. Indeed, in almost all gene therapy studies
in rodents or non-human primates (NHPs) using such promoters, OL transduction was
either absent [14–16], not mentioned [15,17,18], or apparently discordant, as discussed in
Section 5.1. Based on these observations, OLs have sometimes been wrongly considered
resistant to AAV gene therapy.
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This review focuses on AAV vectors, which are at the forefront of advances in gene
therapy in CNS diseases. More generally, AAV vectors have become the leading gene
therapy platform, the basis of hundreds of clinical trials, and a multi-billion dollar indus-
try [19–26], leading to a robust therapeutic pipeline [27,28]. This review will not discuss
the enormous potential of gene-editing technology [29], as its application to CNS diseases
is only emerging.

2. A Brief Overview of Oligodendrocyte Functions

The 17.4 million OLs represent 20% of the cells populating the adult mouse brain [30].
In the human brain, the total number of neocortical OLs is 21–29 billion [31], with nearly
5 billion in the corpus callosum [32]. The number of OLs increases linearly from 7 to 28 bil-
lion during the first three years of life, totaling two-thirds of the adult OL population [33].
Although heterogeneous [34–40] and becoming regionally diverse with age [38], the OL
population is remarkably stable in humans, with an annual exchange of only 1/300 OLs,
constant from 5 years of age, a 100-fold lower renewal rate compared to mice [32]. This ex-
tremely low OL turnover rate is favorable to AAV gene therapy because it allows transgene
copies to persist durably in these rarely dividing cells. A major role of OLs is the synthesis
of myelin and enwrapment of axons with myelin sheaths. OL turnover contributes mini-
mally to myelin modulation in human white matter, which is mainly carried out by mature
OLs [32]. A single OL myelinates 20–60 axons [41] and the energetic demand for this process
of myelination in early life is enormous. OLs meet this internal demand through glucose
and fatty acid oxidation [42] performed in numerous mitochondria [43] that diminish once
myelination is completed. Myelin sheaths continue to turn over in adult life to maintain the
balance between myelin synthesis and degradation [44]. Activity-regulated myelination
appears to play a major role in tuning the function of neural networks and maladaptive
myelination could contribute to disease mechanisms by promoting pathological patterns of
neuronal activity [45].

The other prominent role of OLs is the supply of energy substrates—lactate, glucose,
ketones—to axons through myelinic channels [46] to feed oxidative axon metabolism [47–49]
that neurons cannot ensure. Throughout the whole lifespan, long axons require an abundant
and steady supply of metabolites from external sources to maintain signal transduction.
Both large axonal tracts that run in the optic nerve or motor or sensory tracts of the spinal
cord and small caliber axons are vulnerable to energy deprivation [47]. OLs and axons
also have a reciprocal signaling relationship in which OLs receive cues from axons that
direct their myelination, and OLs subsequently shape axonal structure and conduction.
OLs detect fast axonal spiking through K+ signaling, making acute metabolic coupling
possible and adjusting the axon–OL metabolic unit to meet axonal demand [50]. In turn,
metabolically active OLs contribute to information processing in addition to speeding up
conduction velocity [51]. Neuronal activity causes the axonal release of glutamate, induc-
ing NMDA receptor signaling in OLs, which leads to surface expression of the glucose
transporter GLUT1 and an increased glycolytic flux that increases the supply of pyruvate
and lactate to axons via monocarboxylate transporters (MCT) [47]. Glutamate also stimu-
lates glucose uptake from OLs to axons [52], the release of OL exosomes and the transfer
of SIRT2 to the axonal compartment, where deacetylase stimulates mitochondrial ATP
generation [47]. A high content of peroxisomes provides OLs with an energy source from
fatty acid β-oxidation [42] and with essential neuroprotection against axon degeneration
and neuroinflammation [53].

Besides their close structural and functional interactions with axons, OLs have nu-
merous interactions with other glial cells. Indeed, O initiate crosstalking with astrocytes
via direct cell–cell contact as well as via secreted cytokines, chemokines, exosomes, and
signaling molecules [54,55]. OLs also crosstalk with microglia, have immune functions, ex-
press a wide variety of innate immune receptors, and produce and respond to chemokines
and cytokines that modulate immune responses of the CNS [56]. Indeed, OLs interact with
neighboring immune cells by expressing cytokines (IL-1b, IL-17A, CCL2), chemokines (C-
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X-C motif chemokine ligands, CXCL-1, CXCL10, CXCL12), antigen-presenting molecules
(MHC-I, II), complement and complement receptor molecules (C1, C1q, C3) and com-
plement regulatory molecules (CD46, CD55) [57–60]. OLs also express the chemokine
receptors CXCR1, CXCR2, CXCR3 and CXCR4 [61–63]. Through these multiple effectors
and pathways, OLs contribute to protecting CNS homeostasis and neuronal integrity from
neuroinflammation, demyelination, and degeneration [60,64–66]. Crosstalks also exist
between OLs and cerebral endothelium [67].

3. Contribution of Oligodendrocytes to CNS Diseases

Since CNS diseases are numerous and diverse, this review will illustrate Ols’ contribu-
tion with some examples. These examples include defects in single Mendelian genes known
to cause pathology through loss-of-function (Canavan disease, X-linked adrenoleukodys-
trophy, X-ALD, spinal muscular atrophy, SMA) or gain-of-function (Huntington’s disease,
HD) that affect cell types where the function of the normal gene product is physiologically
important. In another broader category of non-Mendelian CNS diseases, the dysfunction or
loss of distinct neuronal populations is due to a combination of multigenic predisposition
and yet unknown environmental factors. This is the case for sporadic PD, multiple sys-
tem atrophy (MSA), AD, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS),
while psychiatric diseases are grouped in a distinct category of CNS disorders for which
the molecular/cellular substratum remains unknown. This review will also briefly cite
hypoxic–ischemic disorders occurring in premature newborns and old adults, as well as
traumatic spinal cord injury.

We still do not know in which cell type(s) the primary mechanisms that cause a specific
CNS disease are initiated. For most diseases, this question remains unanswered, even
when the causal defect is known, as in monogenic disorders. The date of onset of the
deleterious processes at the cellular level is also unknown. As astonishing as it seems,
although PD, AS, and HD are thought of as late-onset diseases, they might instead be
considered neurodevelopmental disorders with an early embryonic onset [68].

Given the complexity of the brain microenvironment, it is not easy to implicate OLs in
the pathophysiology of most neurodegenerative diseases (NDDs). It is even more difficult,
however, to exonerate them, given their close interactions with axons and other glial cells
across the various stages of CNS development and aging. Indeed, OL dysfunctions can
alter axon myelination in early life, deprive neuro-axonal metabolism of precious energy
substrates in the mature brain, or disturb the multiple crosstalks of OLs with other glial
cells over the whole life.

The current review focuses on some CNS disorders involving or possibly involving
OLs in the development of their shared [69] or specific pathology. Stricto sensu, a primary
oligodendrogliopathy, describes a disease caused by a dysfunction of OLs.

Canavan disease (CD), due to homozygous mutations of aspartoacylase (ASPA), is to
our knowledge the only primary oligodendrogliopathy where the primum movens of
the pathology is undisputably located in OLs. Indeed, N-acetylaspartate (NAA), one of
the most abundant molecules in the CNS, is synthesized in neurons and hydrolyzed by
ASPA in normal OLs [70]. ASPA deficiency thus leads to a direct OL dysfunction inducing
NAA accumulation, lack of myelin, and spongiform changes in deep brain structures
and cerebellum.

OLs are suspected to contribute to or to aggravate disease mechanisms for many
NDDs [71–75], which can also be considered as oligodendrogliopathies.

MSA is the most obvious example of such diseases [76,77] and the one for which the
term oligodendrogliopathy was first used [78]. The pathognomonic feature of MSA is the
accumulation of insoluble protein aggregates mainly consisting of α-synuclein (α-syn) in
brain OLs [79–81], which leads to severe neuronal loss [74,82,83]. It is not known whether
this accumulation is primary or results from a transfer from neurons, where aggregates are
also observed in smaller numbers [84,85]. Forced overexpression of α-synuclein in OLs
using transgenesis (mice) [86–93] or viral transfer (NHP) [94,95] under the control of a MBP,



Cells 2024, 13, 1973 4 of 35

PLP or CNP promoter produces diseases that share features with human MSA [96–98].
Inoculation of brain homogenates from MSA patients to animals triggers the accumulation
of protein aggregates in neurons and OLs [99–101]. Cytokine profiling in brain tissue from
patients showed that pro-inflammatory pathways are upregulated [102]. Whether primary
or secondary, the accumulation of aggregates in OLs is associated with the localization of
lesions and clinical symptomatology of MSA [103–105].

Synuclein-rich protein aggregates are also observed in OLs in PD [106,107] and in
various sporadic and genetic tauopathies [74]. OL aggregates are also present in AD [74],
ALS [74], and fronto-temporal degeneration linked to TDP43 proteinopathy [74]. Aggre-
gates could impair the myelination of axons, the transfer of energy substrates to neurons
and axons, and the interactions of OLs with astrocytes.

Other CNS diseases have also been associated with OL disorders.
In X-ALD, the cause of pathology is the impairment of very long chain fatty acid

(VLCFA) transport into peroxisomes due to mutations in the ABCD1 gene, which encodes
the ALDP. Pathology is thus suspected to affect cell types whose peroxisomes cannot
transport VLCFAs, notably the peroxisome-rich OLs. Spinal cord axons are affected, notably
the spinocerebellar and corticospinal tracts [108], leading to Adrenomyeloneuropathy
(AMN, the adult form of X-ALD). Inflammation and demyelination can occur in other
patients, leading to the devastating cerebral form of X-ALD (CCALD). The same ABCD1
gene defect can lead to AMN or CCALD, a yet unsolved mystery.

Spinocerebellar ataxia (SCA) (SCA3 being the most common) are also diseases of
spinocerebellar tracts and/or cerebellar degeneration [109]. SCA are associated with
OL signatures [110].

Hereditary spastic paraplegias (HSPs) are heterogeneous group of rare axonopathies.
More than fifty Mendelian genes have been identified, but the causality remains unknown
in over 30% of cases, even more so for sporadic cases [111,112]. HSPs result from genetic
alterations causing dysfunction of the long axons in the corticospinal tract and posterior
columns of the spinal cord. Given the close interactions of OLs with the long and vulner-
able axons of these tracts, transducing spinal cord OLs with metabolic transgenes could
contribute to improving axonal health.

In PD, only a few studies have investigated changes in OLs [74,113]. Yet such studies
would be important since OLs show specific molecular signatures in PD patients, includ-
ing pathways implicated in inflammation and myelination [114]. Actually, sporadic PD
continues to face multiple knowledge gaps and many pathological mechanisms remain to
be identified [115].

In Alzheimer’s disease (AD), degeneration of white matter and demyelination appear to
be important features, supporting a pathogenic relationship between OL dysfunction and
AD hallmarks [74,116–123].

In Huntington’s disease (HD), huntingtin overexpression can affect a variety of cells
including OLs [124,125]. Mutant huntingtin is expressed in OLs, reducing myelin gene
expression and causing an age-dependent demyelination and symptoms in HD mice [126].
Several studies suggest that dysfunction of mature OLs is involved in HD through early
myelin pathology [124,126–130].

In ALS, OL abnormalities were reported in patients and rodent models [131–134], pos-
sibly leading to impaired trophic support to axons and weakening the already vulnerable
motor neurons [135].

In MS, pathological processes including neuroinflammation and energy failure
cause dysfunction and apoptosis of OLs, leading to demyelination and neurodegenera-
tion [122,136–140].

The two main phenotypes of hereditary optic neuropathies, dominant optic atrophy and
Leber optic neuropathy, appear to involve mitochondrial dysfunction in retinal ganglion
cells and their axons (newman, biousse carelli). The metabolic support by OLs to the large
axonal tracts that run in parallel in the optic nerve is critical [42,47]. Demyelinating optic
neuritis is an inflammatory optic neuropathy [141].
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In several psychiatric disorders, a significant involvement of OLs is suspected [142,143],
notably in autism [144–148] and depression [149–151]. It is noteworthy in this respect
that dysfunction of OLs resulting from CHD8 haploinsufficiency gives rise to autistic
phenotypes in humans and mice [152].

In perinatal diffuse white matter injury (periventricular leukomalacia, hypoxic–ischemic
encephalopathy), the most common type of brain injury in preterm infants, a multifactorial
interplay of events causes OL death, leading to failure of myelination in the developing
white matter [153]. Mature OLs are relatively preserved following inflammatory and/or
hypoxic–ischemic damage, compared with late-stage OL progenitors (OPCs) [153].

Brain ischemia–reperfusion injury affects OLs through oxidative stress, inflammation,
mitochondrial dysfunction and excitotoxicity, generating demyelination, axonal function
and survival [154,155].

Vascular dementia (VaD) involves a variety of neuronal and vascular lesions, leading to
oxidative stress, inflammatory damage and demyelination, and it is closely associated with
OL dysfunction [156].

Traumatic spinal cord injury triggers OL necrosis and apoptosis, with apoptosis continu-
ing at the chronic stages of evolution. Loss of OLs causes demyelination and impairs axon
function and survival [157,158].

4. General Principles of Gene Therapy for CNS Diseases

The main mechanisms underlying CNS diseases involve metabolic dysfunction, de-
fective myelination, neuroinflammation, neuronal or axonal death. These deleterious
mechanisms operate at a local or more general level of the brain or spinal cord and can act
alone or combine their effects at different stages of disease evolution. Their endpoint is
neuron pathology in different functionally and spatially defined CNS regions, such as the
striatum, substantia nigra, or hippocampus, or in a more diffuse process affecting various
zones simultaneously or successively.

Gene therapy holds promise for treating severe disorders by delivering a cargo of
therapeutic genetic material to specific cell types. As previously pointed out, this review
focuses almost exclusively on AAV vectors [159,160]. General information about AAV
gene therapy can be found in a number of excellent reviews [1,10,22,29,161–165]. More
specifically, AAV vectors have emerged as prominent tools for transferring genes to the
CNS [4,9,22–24,26,166]. Successful transduction by AAV vectors is contingent on many
key steps such as cell surface receptor binding, endocytic uptake, endosomal escape,
nuclear entry, capsid uncoating, genome release, second strand synthesis and subsequent
transcription and translation [162,167–169]. Within the last ten years, the number of trials
using rAAV vectors for deliver therapeutic genes to the CNS has grown rapidly.

During the neonatal period, several intravenously delivered (iv) AAV serotypes can
cross the BBB and reach neural cells in the CNS of rodents, non-human primates (NHPs),
and humans [13–15,18]. At later ages, the iv route cannot achieve a significant transgene
expression in the adult CNS, unless a high vector dose is administered [170–173], exposing
liver cells to a heavy load of capsids and transgene copies [174–178]. AAV vectors can
alternatively be delivered directly to the CNS using intraCSF injections into cerebral ventri-
cles (intracerebroventricular, icv), cisterna magna (icm), or intravertebral lumbar puncture
for intrathecal (it) administration. Vectors can also be administered with stereotaxic intra-
parenchymal injections directly into the hippocampus, thalamus, cortex, or striatum [179].
When injected into the striatum for example, the spread of an AAV vector expression
extends over 1–2 mm [180]. The capsid serotype and age of the animal affect the spread of
the vector from the injection site into distinct regions of the brain or spinal cord [181].

The timing of vector administration is another factor that can greatly impact the effi-
cacy of gene therapy. For example, preclinical and clinical studies of SMA gene therapy
have led to better therapeutic efficacy in younger patients [182]. Unfortunately, the precise
translation of the optimal treatment timing from animal models to patients is often chal-
lenging, due to differences in disease mechanisms, CNS development, and lifespan across
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species. A particular and rare case is that of diseases that are identified near birth thanks to
neonatal screening, opening the door to a preventive effect of gene therapy for diseases
that manifest later in life, such as AMN.

The AAV capsid should be able to reach and transduce targeted neural cells. The
serotype can influence its ability to do so. Indeed, capsid composition and structure deter-
mine cell surface receptor binding. The AAV9 capsid serotype, which enters CNS neurons,
astrocytes, OL, and pericytes, has been widely used to target neural cells in rodent or non-
human primate studies [13–15,18,183], as well as in clinical trials for SMA and PD. Capsid
composition can be manipulated by introducing specific mutations to achieve greater
transduction levels, decrease immunogenicity and increase cell specificity [184]. In the
past few years, new neurotropic capsids have emerged [21,184–187], including oligotropic
capsids [95,188–190], which will be discussed in Section 6.1. Since the development of
potent tissue-specific vectors has become an area of critical need, several laboratories have
developed novel recombinant capsid variants [1,4,191–194]. For example, the capsid variant
PHP.B targeting LY6A receptor to carry the vector through the BBB into the brain [187,195]
turned out to have a tropism specific to a mouse strain and lacking in other mouse strains
or NHPs [196]. PHP.B was used as a backbone to derive a new variant, AAV.CAP-B10,
which enabled a robust transduction of neurons in marmoset brain after iv administration
and an interesting de-targeting effect from the liver. Diverse AAV serotypes and variants
with high retrograde and/or anterograde transport properties have been described in the
last few years [197].

The affinity and transduction efficiency of a given AAV variant in different cell types
may vary among species. This is why any novel capsid should be tested in both NHPs and
mice to better predict its translatability to humans. Translation is particularly challenging
when a capsid works in NHPs but not in the mouse disease model.

The choice of a promoter able to activate a therapeutic transgene in specific target
cells is critical. The ubiquitous promoters, such as CAG, CBA, CBh or CMV promoters
widely used in CNS gene therapy, have a robust track record of efficiency. They are active
in neurons and astrocytes but poorly active in OLs. In recent years, cell-specific or cell
tropic promoters have emerged in gene therapy [19,21] to ensure expression in a given cell
type. Such regulatory cassettes need to induce a therapeutic level of transgene expression
without having to use a potentially toxic vector dose. Promoters designed to target specific
subsets of cells have shown success in mouse or primate studies, but to our knowledge, no
clinical trials using such promoters have yet been performed for CNS diseases.

Adverse events resulting from CNS gene therapy are outside the scope of the current
article. For a comprehensive discussion of this topic, refer to an excellent review in the
literature in reference [4].

5. Gene Therapy Targeting CNS Cell Types Other than Oligodendrocytes

In order to delineate a potential place for OLs in the gene therapy of CNS diseases,
this paragraph briefly summarizes the current status of gene transfer experiments targeting
other neural cells.

5.1. Targeted Cells

Neurons are obviously the prominent targets of CNS gene therapy. Since the early
2000s, dozens of preclinical studies in rodent models or NHPs [1–10,26,198–235] and clinical
trials [236,237], too numerous to be all cited here, have focused on neuron transduction by
AAV vectors using neurotropic capsids, most often AAV9, and ubiquitous promoters.

To a lesser extent than neurons, microglia and astrocytes have also been targeted in
gene therapy in a few animal models and clinical trials.

Microglia are actively involved in shaping the brain’s inflammatory response to
stress [238]; thus, they are attractive targets for some CNS diseases. However, they are
difficult to transduce with AAV vectors, notably because of their low affinity for current
capsids, poor activation of the ubiquitous promoters, and active renewal and division
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that dilute episomal transgene copies [239]. Overall, microglial transduction by the cur-
rent AAV vectors equipped with ubiquitous promoters has been largely unsuccessful in
mouse models [14,181,240–259]. New capsids and more cell-specific promoters are likely
to improve transduction [21,252,260], but they will not prevent the mitotic dilution of
transgenes during active microglia divisions. As an alternate option, lentiviral (LV) vectors
that integrate in the host cell nuclear genome have been used to transduce microglia [242].
This can be achieved in vivo with limited success using direct intracerebral LV injections
of lentiviral vectors (LVs). Instead, hematopoietic stem cells (HSCs) from a patient can
be transduced ex vivo and then grafted into this myelo-ablated patient to migrate to his
brain and differentiate into microglia expressing the desired transgene [261]. This auto-
transplantation, pioneered in gene therapy trials for CCALD, has been shown to correct
neuroinflammation and stabilize demyelination for a few years [262,263]. However, the
other ABCD1 mutated cells, neurons, astrocytes, Ols and pericytes remained uncorrected,
and the midterm evolution was devastating in these early attempts [264]. In addition the
use of LV vectors was recently shown to induce leukemia in 7/67 patients [265]. Microglia
can also serve as a vehicle for importing lysosomal enzymes into other brain cells [266].

Astrocytes make up 17–61% of the cells in the human brain depending on the area [267]
and have also been targeted by several gene therapy approaches. These cells contribute
to neurotransmitter cycling, metabolic support of neurons and maintenance of the blood–
brain barrier (BBB) [238,268,269]. The complex physiology of astrocytes includes regu-
lation of glutamate and ion homeostasis, cholesterol and sphingolipid metabolism, and
responses to environmental factors [270]. Astrocytes also contribute to neurotransmit-
ter cycling, metabolic support of neurons and maintenance of the blood–brain barrier
(BBB) [238,268,269] but can loose their supportive functions and become reactive and
neurotoxic in pathological conditions [269]. Astrocyte dysfunction occurs in numerous
neurological diseases such as PD, AD, HD, MS, and neuropsychiatric disorders. Astrocytes
can be transduced by AAV vectors [270–283]. AAV9 vectors equipped with ubiquitous
promoters co-transduce varying proportions of astrocytes and neurons in mouse models
(254–267). A selective transduction of astrocytes can be achieved using astro-specific pro-
moters such as GFAP [284,285]. Diverse AAV serotypes and variants with high retrograde
and/or anterograde transport properties have been described in recent years [197].

Ependymocytes [17] pericytes, or endothelial cells [13,286], have rarely been targeted by
AAV gene therapy. Newly engineered AAV9 variants, AAV9-X1 and AAV9-X1.1, have
shown specificity and efficiency in targeting endothelial cells, with about 95% specificity
across various brain regions in mice, but not in marmosets or rhesus macaques [287].

5.2. Examples of Gene Therapies Based on Neuron or Astrocyte Targeting in CNS Diseases

This section presents a non-exhaustive list of CNS diseases in which gene therapy
has been aimed at transducing neurons and/or astrocytes. This will introduce the later
discussion of an OL-targeting gene therapy approach for the same diseases.

5.2.1. Canavan Disease (CD)

Canavan disease (CD) is a devastating leukodystrophy starting in early life, caused by
mutations in the ASPA gene. Currently, no effective treatment is available. The lack of ASPA
activity in OLs leads to the accumulation of NAA in the brain, disrupting myelin formation
and maintenance. Over the past two decades, several laboratories have attempted gene
therapy of CD in animal models, focusing on the transduction of neurons and/or astrocytes
(Table 1).
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Table 1. AAV gene therapy attempts at targeting neurons or astrocytes in animal models of CD.

Reference Animal
Model Capsid Promoter Gene Cell

Tropism
ROA

(vg/kg) Age Results
(Age)

Matalon,
2003 [288]

AKO
mouse rAAV CMV hASPA ? i-p a M3 ASPA expression

(M6)

Klugmann
2005 [289]

CD rats
tm rats rAAV CBA hASPA Neurons i-p b P22 ASPA expression

Gao
2013 [16]

AKO
mouse AAV9 CBA hASPA Neurons iv P0-20 Motricity ±

(M6)

Gao *
2017 [290]

AKO
mouse AAV9 GFAP hASPA

cod-opt
Astrocytes

not OL iv P1 Motricity, fMRI,
histology

Bannerman
2018 [291] nur7 mouse AAV2-8 U6 Nat8l

shRNA

Neurons
(<1% Astro,

OL)

icv
i-cist P1 Motricity +

Klugmann
2022 [292] AKO Cy5

Dual
U6

Mbp

Nat8l-
shRNA
hASPA

Neurons i-p c M3 Motricity ++
Biochemistry ++

Beard-BB *
2019 [17] Mac. Fasc AAV9 CBA hASPA

cod-opt ? iv
1.8 × 10−14 2.5 yrs 6 weeks later vgc

whole CNS

i-p: intraparenchyma, a striatum, thalamus. b cingulum, internal capsule. c thalamus, striatum, cerebellum; i-cist:
intracisternal, icv: intracerebroventricular. AKO: ASPA knockout. * vector later used in Ph1 trials.

First-generation AAV vectors resulted in incomplete therapeutic outcomes in mouse
models [288,289]. In 2013, Gao’s lab demonstrated that a single iv injection of a rAAV9
vector expressing hASPA achieved partial but unsustained rescue of the severe phenotypes
of CD knockout (KO) mice [293]. In 2017, the same team designed two vectors containing
a codon-optimized hASPA cDNA controlled by either a ubiquitous promoter or a GFAP
promoter, which were delivered intravenously (iv) to AKO pups at P1. Astrocyte-restricted
hASPA expression improved motor function, pathology, and biomarkers [290]. High-
dose iv, but not it or icv, vector administration to adult cynomolgus macaques resulted in
transduction and ASPA expression in deep-brain structures [170]. In 2013, an AAV2-ASPA
vector was injected into six brain sites in 13 patients [294]. In 2023, D. Gessler and G. Gao
reported a 4-year follow up of a unique patient who had received simultaneous iv and icv
injection of an rAAV9-CB6-ASPA vector [295]. Two clinical AAV-ASPA trials are currently
in Phase I/II. In the CANaspire trial (NCT04998396), an AAV9-based codon-optimized
ASPA vector showed a positive impact on biomarkers and MRI results in four patients, as
presented orally at the American Society of Gene and Cell Therapy 2023 Annual Meeting.

5.2.2. Multiple System Atrophy

The objectives of gene therapy for MSA could include diminishing TNFα-mediated
neuroinflammation and its secondary consequences including oxidative stress, glutamate-
related excitotoxicity and neuronal loss. Stimulation of neuronal and glial proliferation,
enhancement of myelination through trophic support and cell replacement therapies could
also be pursued by gene therapy. Although studies in MSA mouse models have identified
effectors of the pathophysiological cascade and unraveled secondary changes caused by
aberrant α-synuclein aggregation [296–298], there have been only few AAV gene therapy
attempts in MSA mouse models [297,299]. One of these attempts involved the LV vectors
delivering the nuclear-related factor 2 (NRF2), the glutamate dehydrogenase 2 (GDH2),
and the excitatory amino acid transporter 2 (EAAT2) genes into the striatum of two mouse
models, resulting in a significant improvement in motor function [300]. A Phase 1 trial
(Regenerate MSA-101) is underway to evaluate the effects of AB-1005 (AAV2-GDNF) in
patients affected by MSA-parkinsonian type (MSA-P) (NCT05167721. GDNF Gene Therapy
for Multiple System Atrophy). This vector delivers glial cell line-derived neurotrophic factor
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(GDNF) directly to the putamen, aiming to preserve dopamine neurotransmission that is
reduced in MSA-P.

5.2.3. Adrenomyeloneuropathy (AMN)

AMN is a « pure » axonopathy caused by ABCD1 mutations that affects the long axons
of the descending and ascending tracts of the spinal cord in mid-adulthood [108]. OLs
provide myelin sheaths and energetic support to these axons. A pioneering gene therapy
attempt utilized an AAV9-CBh-hABCD1 vector in 6-week-old Abcd1−/− mice [301]. Fifteen
days after intravenously injection, this vector had transduced 23% of neurons, 18% of
astrocytes and 7% of OLs, leading to a 12–24% decrease in VLCFA accumulation, but did
not show a clear effect on motor function [301,302]. In another experiment, an rAAV9-CBA-
hABCD1 vector was injected intrathecally, resulting in transduction of neurons, astrocytes
and endothelial cells, but no OLs, in the spinal cord of Abcd1−/− mice [303]. Despite the
absence of clinical improvements in these mice, a clinical trial was launched using injection
of the AAV9-CBA-ABCD1 vector (NCT05394064 sponsored by SwanBio).

5.2.4. Parkinson’s Disease

We will briefly summarize the main gene therapy attempts to illustrate the heterogene-
ity of animal studies in this disease, describe the main transgenes that have been tested, and
analyze the translation of experimental results to patients. The delivery of genes coding for
GDNF [304–307], neurturin [308–310] or CDNF [311] has shown promise in rodent models
of PD. An LV vector carrying GDNF was injected into the striatum and substantia nigra of
young adult rhesus monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) or of non-lesioned aged monkeys. This gene therapy prevented nigrostriatal degen-
eration and was said to induce some local regeneration [312]. AAV-based gene therapies
in mouse or primate models of permanent dopaminergic depletion targeted nigro-striatal
neurons with the aim of improving dopamine synthesis by delivering genes encoding glu-
tamic acid decarboxylase (GAD) [313], aromatic L-amino acid decarboxylase (AADC) [224],
tyrosine hydroxylase (TH) and GTP cyclohydrolase (CH1) carried by separate [314] or
single AAV vectors [315] equipped with Syn1 or CMV promoters [316]. Two LV vectors,
Prosavin [317] and OXB-102 [210,318], were used for improving dopamine synthesis by
delivering AADC, TH and CH1 genes to MPTP-lesioned cynomolgus macaques. Another
gene therapy strategy aimed at transducing striatal D1 medium spiny neurons (MSNs)
was able to modulate dysregulated neural circuitry and improve motricity in mouse and
primate PD models [319].

Fifteen trials based on three strategies have now been conducted including over 400
patients with PD [320], the highest recruitment in the field of CNS gene therapy. The first
strategy is the delivery of genes encoding a neurotrophic factor to nigral dopaminergic
neurons [321]. Another strategy involves modulating basal ganglia outputs by delivering
glutamic acid decarboxylase (GAD) to the subthalamic nucleus [313,322]. The third category
of gene therapy trials for PD is based on the transfer of the AADC gene to enhance conver-
sion of L-Dopa to dopamine by nigro-striatal neurons before the occurrence of neuronal
loss [209,323]. More recently, gene therapy trials tested the ProSavin LV vector [324,325]
and then the optimized OXB-102 LV vector (under the name AXO-Lenti-PD) [318].

Although all of these Phase I trials initially reported encouraging efficacy results,
follow-up studies showed no or modest motor improvements.

5.2.5. AD, HD, ALS, SMA

AAV vectors targeting neurons and or astrocytes have been tested in AD [230,326],
HD [124] and ALS [327–329]. Various transgenes, such as APOE2 [330], nerve growth factor
(NGF) [331,332] or cholesterol-24-hydroxylase [333], have been tested in AD.

In SMA, preclinical studies resulted in one of the few approvals of AAV gene therapy
for human use, with currently positive clinical effects [177,334–336].
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5.3. A Global Overview of Clinical Trials of CNS Gene Therapy

Eighty-seven clinical trials have already used the administration of rAAV vectors
for the treatment of CNS diseases [236,237]. Among the genetic diseases mentioned are
Adrenomyeloneuropathy (AMN), CD, SMA (15% of trials), HD, Giant Axonal Neuropa-
thy, IGHMBP2-Related Diseases, Late Infantile Neuronal Ceroid Lipofuscinosis, Menkes
Syndrome and spastic paraplegia type 50. These disorders are caused by single gene
mutations. Another group of more common non-Mendelian diseases comprises PD (18%
of trials), MSA, AD, Frontotemporal Dementia (FTD) and ALS. Other diseases include
storage disorders and various neurological conditions such as Rett Syndrome and temporal
lobe epilepsy. The main ROAs were intraparenchymal (nearly 50%), notably striatal (38%),
intravenous (23%) and intrathecal (27%). Soon after preclinical studies [337], a 4-year-old
single patient with hereditary spastic paraplegia type 50 (SPG50) received an AAV9-AP4M1
vector intrathecally [12].

It is remarkable that only 1 out of 87 of the cited clinical trials targeted OLs: this
unique trial is NCT04833907 (sponsored by Myrtelle), which uses icv administration of an
Olig001-CBh-ASPA vector.

6. OL as Attractive Targets for CNS Gene Therapy

As long as ubiquitous promoters were used to equip AAV9 vectors, neurons and
astrocytes were abundantly transduced, while the capacity of vectors to transduce OLs
remained in question. For example, high intravenous doses of an AAV9 vector equipped
with a CMV promoter were able to transduce many OLs in the brain and spinal cord of
adult mice and marmoset, together with neurons and astrocytes in adult mice [13]. (Note
that transduction was evaluated only two weeks after vector injection). In contrast, very
high doses of a comparable vector iv injected to mouse neonates at P1 did not transduce
OLs significantly, presumably because OL progenitor cells (OPCs) divide too rapidly at
this age to allow persistence of extra-chromosomal gene copies in the oligodendroglial
lineage [16,338,339]. In cynomolgus macaques, intravenous rAAV9 transduced brain
astrocytes but no OLs [14,15]. OL transduction was not studied after intracerebral injection
to adult mice [24], intracisternal injection to cynomolgus macaques [15] or intraputaminal
injection to two rhesus macaques [18]. Based on these studies, OLs have sometimes been
wrongly considered resistant to AAV gene therapy and were almost completely left behind
in the gene therapy pipeline, for reasons that are no longer justified. Indeed, mature OLs
hold promise not only for the treatment of CNS diseases considered to involve white matter
like CD, X-ALD and MS but also for conditions where pathology of OLs and myelin has
been described, such as PD, AD, ALS, HD and psychiatric diseases. It should be noted that
mature OLs arise only at P7-P10 in mice, opening the door to durable transgene expression.
After this age, the slow turnover of mature OLs allows AAV-carried transgene copies to
persist in mouse OLs [340], and presumably in humans whose OL turnover is even slower.
For NDDs associated with aging in humans and mice, the durability of transgene expression
should be assessed in the long term, while preclinical studies often report transduced cell
counts only 2–3 weeks after vector administration [301,303,341], with few exceptions [340].

6.1. Oligotropic Capsids and Promoters

Oligotropic vectors are those that can transduce a “fair” percentage of OLs, possibly in
association with neurons, astrocytes or microglia, while oligospecific vectors are those that
induce transgene expression exclusively (and abundantly) in OLs (not yet reported). Such
properties are due to vector capsids and promoters. AAV capsids attach to extracellular
glycans (e.g., glycoproteins, glycolipids) prior to cell entry [342,343]. Although OLs syn-
thesize glycans actively for myelin synthesis [344], we have not found information about
the glycan composition of OL membranes in a healthy or diseased brain. We were also
unable to find information on the AAV receptors present on the OL membrane. All natural
AAV capsids do not show primary OL tropism. A small number of natural AAV serotypes
can transduce OLs when equipped with ubiquitous promoters, but the transduction effi-
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ciency is low [345], as for AAV8 or AAV9 carrying a CMV promoter [346,347] or a CBA
promoter [348]. AAVrh10 transduce OLs when equipped with a cytomegalovirus/β-actin
hybrid promoter [349]. The AAV-PHP.B with a CAG promoter allows for widespread
transduction of the mouse CNS including OLs [187]. Capsid engineering has produced
a chimeric capsid capable of transducing both neurons and OLs [348]. Olig001, a variant
rAAV capsid made of a chimeric mixture of AAVs 1, 2, 6, 8 and 9, has over 95% specificity
for OLs [189], following striatal injection into rats when equipped with a CBA promoter.
Following intraparenchymal injection of Olig001-CBh to neonatal and adult nur 7 mice,
90% of transduced cells were OLs [188]. In other experiments, 60–95% of cells transduced
by Olig001-CBh were OLs in the spinal cord, striatum and cortex of healthy rodents [95,189]
and NHPs [95], except in the cerebellum, thalamus or midbrain, where transgene expression
was modest [190].

Few cell-specific promoters have been used for expressing transgenes in OLs [271].
Initial studies used the myelin basic protein (MBP) promoter. A 1.9 kb Mbp promoter was
able to drive GFP expression in OLs in the mouse brain but not in neurons, astrocytes
or microglia [345,350–352]. The stage of development impacts Mbp-driven transgene
expression in OLs. While in P10 and P90 mice, the majority of GFP expression was observed
in OL, the number of transduced OL was only 3% in P0 mice. A similar pattern of OL
transduction was seen when the vector was injected into the brains of P10 mice pups [180].
Different regions of the Mbp promoter have shown various levels of OL expression in the
postnatal and adult CNS [353]. In the striatum of adult mice, the Mbp promoter exhibited
an OL specificity of 91% for rh39 capsids, 87% for cy5 and 78% for AAV 1/2 (78%) [354].
An AAV vector containing the Mbp promoter delivered to the internal capsule of P10
Cx32/Cx47 double-knockout mouse improved myelination and reduced OL apoptosis,
inflammation and astrogliosis [355]. However, while the Mbp promoter targets OLs, its
relatively large size limits its use. The nucleotide sequences of the human and murine MBP
proximal promoter regions are approximately 90% identical [356], thus suggesting that the
proximal human MBP promoter would be active in rodent cells. To our knowledge, no
studies have tested small fragments of the Mbp promoter, particularly those defined in [353]
or [357], or enhancer regulatory sequences known to modulate the transcription of the Mbp
gene [358]. The MBP promoter has also been used to transduce OLs in NHPs [93,359].

Modification of constitutive promoters can shift gene expression from neurons to
OLs [352]. As expected, when an AAV9 vector with a full-length CBA promoter was
infused into rat striatum, 88% of transduced cells were neurons. But unexpectedly, a
truncated CBA promoter, CBh, induced transgene expression in 38% of OLs and 46% of
neurons. Modification of the VP2 region (six-glutamate residue insertion) increased the OL
specificity of the full-length CBA promoter up to 80%.

Another promoter, the promoter of the human myelin-associated glycoprotein (MAG),
exhibited a distinctive capacity to transduce OL. This was the case when using a cy5 AAV
vector injected into the striatum of adult mice [354]. Three constructs placed GFP under the
control of either a 2.2 kb MAG promoter or truncated 1.5 and 0.3 kb fragments. Transgene
GFP expression in OLs represented 98.4% of transduced cells with the 2.2 kb promoter
and 90.7% with the 0.3 kb promoter, so that 65% of OLs were transduced with the 2.2 kb
promoter and 57% with the 0.3 kb promoter. Interested by its small size, we used the
0.3 kb promoter in Abcd1−/− mice, a model of AMN. The AAV9-MAG0.3-ABCD1 vector
was injected iv at P10. Among transduced cells of the cervical spinal cord, 68% were
OLs, so that 50–54% of all OLs expressed hALDP. In cerebellum, 45% of OLs expressed
the transgene, with none in the cerebral cortex. Unexpectedly, 30% of astrocytes also
expressed ALDP, while neurons or microglia showed no expression [340]. A modification
of the MAG promoter sequence demonstrated increased oligotropic expression in vitro in
human oligodendroglioma (HOG) cells in culture when compared with the 0.3 kb promoter
sequence (Figure 1).
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image analysis was performed using ImageJ software (latest v. 1.54, National Institutes of Health, Be-
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Figure 1. HOG cell line transiently transfected with eG FP expressing AAV plasmids under the control
of Synthetic MAG promoter (pAAV. SMAG eG FP), or 0.3 kb MAG promoter. 48 h post-transfection,
eG FP expression was analyzed by immunofluorescence. Scale bar: 50 cm. Fluorescent images were
acquired using a Leica DM6 B fluorescence microscope (Leica, Wetzlar, Germany). Post-acquisition
image analysis was performed using ImageJ software (latest v. 1.54, National Institutes of Health,
Bethesda, MD, USA).

Oligotropic promoters may also replace the promoters currently used in LV vectors to
express therapeutic genes in neurons or astrocytes [360,361].

6.2. Diseases That Could Benefit from Gene Therapy Targeting OLs

Several pathological conditions illustrate the potential of OLs as gene therapy targets.

6.2.1. Genetic Leukodystrophies

Canavan disease (CD). Given that ASPA expression is restricted to white and gray
matter OLs, and OLs are the primary cells affected in CD [362,363], the most logical
therapeutic strategy would be to restore ASPA activity in OLs as early in life as possible,
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using vectors composed of an oligotropic capsid and a promoter capable of expressing the
ASPA transgene in OLs. An OL-targeting approach has been implemented in two mouse
models of CD (Table 2).

Table 2. Oligotropic AAV gene therapy in mouse models of CD.

Lab Animal
Model

AAV
Capsid Promoter Gene Cell

Tropism ROA Age Results
(Age)

Francis *
2016 [188] nur7 mouse Olig001 CBh hASPA OL i-p b

icv
P2-3 CD prevention

(M3)

Von
Jonquieres
2018 [364]

AKO
mouse AAV2 Mbp-WPRE hASPA OL i-p c P30 hASPA in OL

(M6)

b intracingulum and cerebellum c striatum, thalamus, cerebellum; * vector later used in Ph1 trials.

In a third study, the Olig001-CBh-ASPA vector was icv injected at P2 into nur7 mice.
This resulted in 80–90% oligotropism and 6–20% neurotropism in the cerebral cortex,
striatum and spinal cord. Olig001-CBh-ASPA transduced approximatively 25% of OLs in the
cortex, 10% in the striatum and 31% in the spinal cord [190]. It would be interesting to know
the percentage of OLs transduced by this vector in a young baby primate. NCT04833907
(sponsored by Myrtelle) utilized icv administration of an Olig001-CBh-ASPA vector to
target OLs in CD patients [295]. To our knowledge, this is the only clinical trial targeting
OLs. Ongoing and future studies will explore novel vector designs to enhance OL-specific
targeting in CD models. A promising approach under development in our team involves
the use of an AAV9 vector equipped with MAG promoter or MAG promoter variants
(Figure 1).

Several other leukodystrophies could benefit from OL targeting [365] such as Pelizaeus-
Merzbacher like disease (PMLD) [355].

6.2.2. Axonopathies of Spinal Tracts

Adrenomyeloneuropathy (AMN). We have seen above that pioneering gene therapy uti-
lized an AAV9-CBh-hABCD1 vector in Abcd1−/− mice [301], leading to the NCT05394064
clinical trial. Since OLs provide myelin sheaths and energetic support to the long axons
of the descending and ascending tracts of the spinal cord, we developed an alternate
strategy by targeting OLs with the MAG promoter in an AAV9 capsid. Three weeks after
iv injection to Abcd1−/− pups, this vector induced ABCD1 expression in 50–54% of OLs
and 29–32% of astrocytes. This level of expression in astrocytes was unexpected [354].
Our vector prevented AMN motor deficits for up to 24 months of age. Now that AMN
is screened neonatally in a growing number of countries, our results pave the way for
a possible prevention of AMN. Since there is no X-ALD mouse model developing brain
demyelination, we could not estimate whether the transduction of ABCD1 in brain OLs
would possibly help to prevent CCALD.

Spinocerebellar ataxia (SCA) (SCA3 being the most common) are also diseases of
spinocerebellar tracts and/or cerebellar degeneration [109]. SCA are associated with
OL signatures [110]. Restoring myelination [366] or brain cholesterol turnover are two
potential objectives of gene therapy [366,367].

Hereditary spastic paraplegias (HSPs) are a heterogeneous group of rare axonopathies.
More than fifty Mendelian genes have been identified, but causality remains unknown

in over 30% of cases, even more so for sporadic cases [111,112]. HSP results no! it should
be “HSPs result” from genetic alterations causing dysfunction of the long axons in the
corticospinal tract and posterior columns of the spinal cord. Given the close interactions of
OLs with the long and vulnerable axons of these tracts, transducing spinal cord OLs with
metabolic transgenes could contribute to improving axonal health.
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6.2.3. HD and ALS

Huntington’s disease (HD). Targeting OLs is inspired by the demyelination hypothesis
of HD, demonstrating aberrant myelination and changes in OLs in HD brain [368,369].
Other gene therapy approaches targeting OLs in HD could address thiamine [125], choles-
terol [370] or cysteine metabolism [371].

Amyotrophic lateral sclerosis (ALS). Numerous OL functions are disrupted in ALS,
including OL differentiation, myelination trophic and support of axons, which could benefit
from direct gene therapy action on OLs, provided that one finds a relevant transgene to
be tested. In the SOD1G93A mouse model of ALS, an AAV9-MBP-MCT1 vector injected
icv at P10 failed to rescue the pathological phenotype [341]. MCT1 mRNA levels were
increased in spinal cord and brain tissue, but counts of transduced OLs were not performed,
leaving specific OL transductions unknown. The observed lack of effect was unexpected,
particularly because the two-fold increase in MCT1 protein at disease onset was beneficial
in another mutated SOD1 mouse ALS model [372].

6.2.4. Several Non-Mendelian CNS Diseases

Several CNS diseases in the absence of a single gene defect may respond only to a gene
addition strategy. This strategy requires the expression of genes that are not physiologically
present in OLs but can improve neuronal health or inhibit disease mechanisms. The choice
of such a therapeutic transgene is challenging and can be guided by previous experiments
using neurotropic or astrotropic vectors to deliver growth factors or cytokines or enzymes
by transduced OLs. Compared with neurons or astrocytes, OLs might produce higher
amounts of growth factors or cytokines, which could be tested in mouse or NHP models.
An already mentioned difficulty is the need to reach OLs in the spatially defined regions
specifically affected by the diseases [373]. AD and neuropsychiatric diseases are associated
with hypometabolism [374], white matter [375,376] and myelin abnormalities [377]. For this
reason, improving the oligodendroglial oxidative metabolism of OLs could help prevent
irreversible axon degeneration.

Multiple System atrophy (MSA). Prominent mechanisms involve synuclein-associated
protein aggregates that accumulate in OLs. These aggregates are thought to elicit changes
in OL function, such as reduced neurotrophic support and demyelination, leading to
neurodegeneration. To reverse this deleterious cascade, gene therapy should introduce a
therapeutic gene able to support failing cell functions.

Parkinson’s disease (PD). We have previously seen that the neuron-targeted deliv-
ery of genes encoding GDNF, NRTN, BDNF and CDNF could yield positive results in
mouse models. It would be worth testing whether such production could be increased
using OLs instead of neuron transduction. Transduced OLs could also act through their
myelin-independent role in supporting glutamate signaling [378], potentially impacting
neurodegeneration [379]. Mounting evidence suggests that neuron-released protein aggre-
gates are central to microglial activation, which in turn orchestrates neuroinflammatory
processes potentially harmful to neurons [380]. The production of anti-inflammatory cy-
tokines by transduced OLs could be used to inhibit pathomechanisms linked to innate
inflammation [381]. Two ideal objectives of gene therapy in PD would be to reduce the
accumulation of protein aggregates by using OLs to influence the metabolic and internal
milieu of neurons or to improve dopamine synthesis using the transduction of OLs, but
finding transgenes to achieve this goal seems currently out of reach.

Alzheimer’s disease (AD). We previously discussed the deleterious role that OLs seemed
to play in AD. The structural integrity of myelin deteriorates with age, and this deteriora-
tion appears to be exacerbated in AD. A recent study placed myelin defects upstream of
amyloid-β (Aβ) plaque formation [382]. Targeting OLs to counteract mechanisms such as
neuroinflammation [383] or neuronal dysmetabolism in the hippocampus are potential ob-
jectives. Given the pathogenic role of protein aggregates in AD [74], as in PD, it is difficult to
find a gene whose expression in OLs would reduce the accumulation of these aggregates in
affected hippocampal neurons. Increasing the supply of energy fuels to neurons and axons
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could be an objective of gene therapy since AD is associated with an energy deficit [49]. The
reduction in OL MCT1 that occurs with aging may increase the risk of axonal degeneration
in NDDs, including AD [384]. Transducing OLs with the GDNF, BDNF or NGF genes
may provide a local source of these factors that are altered in AD [332,385]. Cholesterol
regulation in OLs could be another target of gene therapy [123]. Since OLs contribute to
Aβ plaque formation in AD through highly expressed amyloidogenic genes, identifying
the mechanisms that slow down Aβ generation in OLs would pave the way for novel
gene therapies [386]. The complement system is a tightly regulated innate immune system
playing a key role in regulating CNS function and development. C5aR1, the receptor of the
C5a complement factor, is expressed by clusters of OLs during the complex cellular phase
of AD initiated by C5aR1-induced secreted mediators [387]. C5aR1 inhibition reduces
plaque load, gliosis and memory deficits in animal models and could thus serve as a target
for gene therapy of OLs [388].

Multiple sclerosis (MS) is another disease that could benefit from OL-targeting gene therapy.
Surprisingly, gene therapy has not been mentioned in recent reviews of innovative

MS treatments or remyelination strategies [389–393], and new attempts have used AAV
vectors in animal models [394], which are poorly representative of the human disease [395].
In active demyelinating lesions, the preserved number of mature OLs suggests a relative
preservation of OLs, in contrast to the significant loss of OLs in the chronic lesions linked
with disease progression [396–398]. This supports that mature OLs could be used as
target cells for gene therapy in the initial stage of relapsing MS. A variety of transgenes
could be tested at this stage to promote OL survival and limit immune-mediated CNS
demyelination [399]. One could, again, try to improve energy metabolism of OLs [137].
Mature OLs have recently been shown to promote remyelination in MS [32,400–403].

Psychiatric diseases
It is not surprising to the reader of this review that OLs were not mentioned in

a recent article dealing with gene therapy of rare psychiatric disorders [404]. Indeed,
few people would postulate that therapeutic approaches of psychiatric diseases, such as
autism, schizophrenia or depression, would one day include gene therapy. However, for
researchers who think that the pathogenesis of psychiatric diseases involves defective
molecular/cellular mechanisms, the idea of targeting brain cells, including OLs, with AAV
vectors may not appear entirely unreasonable [145]. For example, since OLs may participate
in the pathogenesis of depression [149] or schizophrenia [405], targeting these cells could
one day become a novel strategy to treat severe and drug-resistant forms of these diseases.

6.2.5. Genetic Axonopathies

Spinocerebellar ataxia (SCA) are associated with OL signatures [110]. Restoring myelina-
tion [366] or brain cholesterol turnover are two potential objectives of gene therapy [366,367].

Hereditary spastic paraplegias (HSPs)
Given the close interactions of OLs with the long and vulnerable axons of these tracts,

transducing spinal cord OLs with metabolic transgenes could contribute to improving
axonal health.

6.2.6. Hypoxic–Ischemic Diseases

Brain ischemia–reperfusion injury affects OLs through oxidative stress, inflammation,
failure of mitochondrial energy source and excitotoxicity, generating demyelination, ax-
onal function and survival [154,155]. Some of these processes could be targeted by OL
gene therapy.

Vascular dementia (VaD) involves a variety of neuronal and vascular lesions, leading to
oxidative stress, inflammatory damage and demyelination, and it is closely associated with
dysfunction of OLs [156].

White matter damage (WMD) in premature neonates. The fact that the BBB is permeable
to AAV vectors in premature newborns creates an opportunity to use AAV vectors. A gene
therapy, targeting mature OLs in brain regions prone to WMD might reduce or prevent
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white matter lesions [406]. A major challenge in developing proof-of-concept studies is that
no animal model can actually mimic the human situation [407].

6.2.7. Injury of Spinal Cord

Traumatic spinal cord injury triggers OL necrosis and apoptosis, with apoptosis
continuing at the chronic stages of evolution. Loss of OLs causes demyelination and
impairs axon function and survival [157,158]. Two OL populations, MOL2 and MOL5/6,
could be more specific targets of gene therapy [37].

6.2.8. Brain Regeneration Using Neuronal Precursor Cell Grafts

At the advanced stage of PD, AD and HD evolution, neuronal loss occurs in spatially
and functionally defined brain regions. Since the mammalian brain cannot regenerate
neurons, the only possible rescue in this situation is the grafting of neuronal progenitor
cells (NPCs) to repopulate the affected region [408–410]. However, there is a major hurdle
to this approach: the immune rejection of the allogeneic graft and the need for lifelong
pharmacological immunosuppression, which has serious adverse effects. To avoid or alle-
viate immune rejection, research has focused on generating hypo-immune NPCs through
genetic engineering [411,412]. Our group is developing a different strategy using AAV
gene therapy to target the OLs located around and inside the zone of neuronal loss with
a transgene encoding an anti-immuno-inflammatory cytokine to inhibit the allogeneic
rejection of the grafted NPC.

7. Distinctive Challenges of OL-Targeting Gene Therapy

Just because targeting OLs is a new strategy, this does not mean that it will ensure
the success of gene therapy in CNS diseases. The technical and biological challenges
are numerous.

Technically, it will be necessary to develop highly oligotropic capsids and promoters
that strongly express therapeutic transgenes in OLs. Promising examples of both have been
cited in Section 6.1. The technology for creating recombinant capsids capable of prioritizing
the targeting of cell populations is under active development [193]. To our knowledge, OLs
have not yet been included among the tested cell types, but this is likely to occur when
OLs become targets of choice. For the design of promoters activated in OLs, this will be
achieved by manipulating the promoters or other regulatory sequences of myelin synthesis
genes, an example of which is shown in Figure 1.

The biological challenges are more formidable and will rely on OL functions capable
of interfering with the pathophysiological mechanisms of CNS diseases. In several areas,
transducing OLs with AAV vectors may play an original and distinctive role. The first is
the restoration of biochemical pathways specific to OLs. Another one is the synthesis of
myelin and sheath enwrapment for CNS diseases that involve defects in myelination, such
as genetic leukodystrophies, WMD of prematurity, and diseases like AD or HD that show
defects in white matter in their early stages. A third field of action for transduced OLs
is the supply of energy fuels to axons, since axons suffer from an energy deficit in many
diseases such as AD [42] or other NDDs of aging [374]. As alterations in brain cholesterol
homeostasis are linked to neurodegeneration, another metabolic objective could be to
modify OL cholesterol metabolism and local cholesterol load white matter, for example
in MS [413] or HD [370] or SCA [367]. Another approach is to make OL factories of
growth factors, chemokines or cytokines. AAV gene therapy expressing growth factor
genes, in neurons or astrocytes, ultimately had only a limited clinical effect, described in
Section 6. OL transduction might provide stronger local trophic support to neurons through
a more abundant production of growth factors [414]. OL production of anti-inflammatory
cytokines may limit neuroinflammation in MS, AD or other diseases. OL production of anti-
inflammatory cytokines, such as IL10, could also combat rejection of grafted NPCs by the
local immune system [411]. Other major pathophysiological mechanisms will not be easy to
counteract through OL targeting, such as the prion-like propagation of protein aggregates
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in synucleinopathies or the defect in dopamine synthesis in neurons of the nigro-striatal
circuit. There are still many unknowns in the temporal sequence and interactions of the
pathological mechanisms responsible for PD [115], AD [415] or other CNS diseases [416].
Shared alterations in gene expression in OLs across pathologies might indicate pathology-
associated pathways that have not yet been explored in the search for therapies [69]. In
the near future, new pathogenic mechanisms will likely be unraveled at the molecular and
cell level, thanks to the connectome, interactome and metabolome approaches currently
developed in PD [417–424], AD [121,425–429], HD [430] and MS [400]. These studies may
reveal new avenues for OL gene therapy, given the multiple cross-talks between OLs and
neurons, axons, astrocytes, microglia, ependymal and endothelial cells.

In conclusion, OLs deserve to be targets more often for gene therapy in a variety of
CNS disorders, given their distinctive functions and properties (Table 3). This is the case
for diseases caused or aggravated by OL dysfunctions. Therapeutic transgenes expressed
in OLs can replace or silence defective OL genes or counteract pathological mechanisms
occurring in other cells. During the early phase of brain or spinal cord diseases, the multiple
crosstalks of transduced OLs could protect the CNS from defects in myelination, metabolic
failure and neuroinflammation. In advanced stages of CNS diseases, when neuronal
loss has occurred, surviving OLs might still express genes that prepare brain regions for
NPC grafting.

Table 3. Functions and properties that make OLs interesting candidates for AAV-mediated gene
therapy of CNS diseases.

1. Slow turnover that guarantees the durability of expression of therapeutic transgenes;
2. Myelination of axons, myelin maintenance, remyelination of demyelinated lesions;
3. Supply of energetic substrates to neurons/axons;
4. Transfer of signaling molecules to axons;
5. Multiple crosstalks with astrocytes and microglia;
6. Improvement in OL trophicity and survival;
7. Contribution to CNS immune and inflammatory homeostasis;
8. Survival of OL in regions affected by neuronal loss;
9. Capacity to release transgene products in affected regions of the brain;
10. Induction of regional tolerance to neuronal stem cell grafts.
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