
105Biochem. J. (1976) 159, 105-120
Printed in Great Britain

Subsite Mapping of Enzymes
DEPOLYMERASE COMPUTER MODELLING

By JIMMY D. ALLEN* and JOHN A. THOMA
Department of Chemistry, University ofArkansas, Fayetteville, AR 72701, U.S.A.

(Received 9 March 1976)

We have developed a depolymerase computer model that uses a minimization routine.
The model is designed so that, given experimental bond-cleavage frequencies for oligo-
meric substrates and experimental Michaelis parameters as a function of substrate chain
length, the optimum subsite map is generated. The minimized sum of the weighted-
squared residuals of the experimental and calculated data is used as a criterion of the
goodness-of-fit for the optimized subsite map. The application of the minimization pro-
cedure to subsite mapping is explored through the use of simulated data. A procedure is
developed whereby the minimization model can be used to determine the number of
subsites in the enzymic binding region and to locate the position of the catalytic amino
acids among these subsites. The degree of propagation of experimental variance into the
subsite-binding energies is estimated. The question of whether hydrolytic rate coefficients
are constant or a function of the number of filled subsites is examined.

Several authors have invoked the subsite model to
account for the enzymic properties of depolymerases
such as proteinases (Schechter & Berger, 1967;
Abramowitz et a!., 1967; Morihara & Oka, 1968;
Morihara eta!., 1969; Atlas et al., 1970; Thompson &
Blout, 1970; Coggins et al., 1974), nucleases (Cuatre-
cusas et a!., 1968; Lazarus et al., 1968; Chou &
Singer, 1970; Godefroy, 1970), and carbohydrases
(Chipman & Sharon, 1969; Holler et al., 1974;
Robyt & French, 1963, 1970; Hiromi, 1970; Thoma
eta., 1970, 1971; Nitta et a!., 1971; Kato et al., 1974;
Iwasa et al., 1974; Shibaoka et al., 1974; Rexova-
Benkova, 1973; Thoma and Allen, 1976). The
depolymerase subsite model depicts the substrate-
binding region of the enzyme to be a tandem array of
subsites (Fig. 1). Each subsite is complementary to,
and interacts with, a substrate monomer unit. There
are a number of different ways in which a substrate
oligomercan interact with these subsites. For example,
as depicted in Fig. 1, a tetramer can form eight
positional isomers with a five-subsite enzyme. The
population ofeach positional isomer is dictated by the
energetics of interaction of the substrate monomer
units with their respective subsites.
A substrate oligomer can bind non-productively so

that a susceptible bond does not extend over the
catalytic amino acids of the enzyme; alternatively the
substrate can bind productively so that a susceptible
bond does lie over the catalytic site, in which case the
bond is cleaved. For the tetramer shown in Fig. 1
there are three productive positional isomers (binding-
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mode index IV,4; V,4; and VI,4); the remaining
positional isomers are non-productive. When a
substrate binds productively, the rate of bond
hydrolysis is dictated by the hydrolytic rate coefficient,
k+2. (A complete listing of symbols is given in Table
1.)
The process of quantifying the subsite model is

referred to as subsite mapping. To completely map
the binding region of an enzyme, one must (1)
determine the number of subsites, (2) locate the
position of the catalytic amino acids within the
subsites, (3) determine the subsite-substrate-mono-
mer-unit binding energies and (4) determine the value
ofhydrolytic rate coefficients. The value of the subsite
model will lie in the ability ofa generated subsite map
to quantitatively account for experimentally measur-
able parameters.
Two groups have attempted to place the depoly-

merase subsite model on a quantitative footing by
using the amylase-maltodextrin system (Hiromi,
1970; Nitta et al., 1971; Thoma et al., 1970, 1971).
Hiromi (1970) applied the subsite model to an exo-
amylase, glucoamylase. Subsite mapping for exo-
enzymes is simplified, because there is only one pro-
ductive binding mode for each substrate. Hiromi's
group (Nitta et a!., 1971) extended his development
of the exo-subsite model to an endoamylase. These
authors used qualitative estimates of the relative
rates of bond cleavages in oligomeric substrates, i.e.
bond-cleavage frequencies, together with the chain-
length dependence of Michaelis parameters (Km and
17) to predict a partial subsite map for Aspergillus
oryzae x-amylase. However, as we have shown
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Fig. 1. Positional isomers of naltotetraose on a hypotheticalfive-subsite enzyme

V, Subsiteon theenzyme; t, position of the catalytic site; o, -glucopyranoside unit; 0, reducing D-glucopyranoside unit;
+, reducing radiolabelled D-glucopyranoside residue; -, a-(1--÷4) bond. The broken line is a visual aid to show the position
of bond cleavage. The binding-mode index is a Roman number indicating the subsite holding the reducing unit followed
by an Arabic number indicating the chain length ofthe substrate. When the substrate extends beyond the right ofthe binding
region (VI,4; VII,4; VIII,4) virtual subsites are used to designate the binding mode index. The hydrolytic rate coefficients
are of the form k2,,,. for chain length n in binding model .

(Thoma & Allen, 1976; the following paper, Allen &
Thoma, 1976) there are inherent difficulties in the
approach used by these authors. We (Thoma et
al., 1970, 1971) have approached the endoamylase-
subsite mapping problem differently, using quantita-
tive bond-cleavage frequencies in conjunction with
the chain-length dependence of km and A We have
shown (Thoma & Allen, 1976) why this approach is
preferred.
The present paper describes further improvements

on the techniques used for quantitative subsite
mapping. In our early work we (Thoma et al., 1970)
made a subjective judgement concerning subsite
energy differences used to determine the number of
subsites. Also, since subsite energies were not evalu-
ated by a rigorous statistical analysis, disproportion-
ate error was introduced into certain subsites;
further, weighting factors were not used to take into
account differences in precision of the experimentally
determined parameters.
We report here the development of a computer

simulation of the depolymerase-subsite model. By
using a minimization routine, the computer model is
able to predict a subsite map from experimental
parameters. A statistical procedure is outlined to
evaluate objectively the number of subsites and the
position of the catalytic site. The expenrmental
parameters can be weighted to take into account
differences in experimental variance. Also, the

complete subsite map is evaluated by using all of the
experimentally determined parameters.
By using simulated data both with and without an

approximation ofexperimental scatter, we have exam-
ined the effectiveness ofthe minimization algorithm in
establishing a subsite map. The experimentally
accessible parameters are tested for their ability to
produce a unique subsite map. The propagation of
experimental error into the predicted subsite energies
and the acceleration factor is assessed and the
possibility that the acceleration factor arises as an
artifact of experimental error is discussed. Finally, a
quantitative measure of the overall goodness-of-fit
of a subsite map to experimental data is established.

In developing the subsite model, we (Thoma et al.,
1971) assumed that the hydrolytic coefficients for the
various productive positional isomers were equal, so
that the relative rate of bond cleavage was dependent
only on the population of the respective productive,
positional isomers. However, the experimental
chain-length dependence of Em,n and 1', indicated
that these hydrolytic coefficients were not a constant,
but were a function of the number of filled subsites.
When the approximation was made that filling a
subsite contributed an average of 1.88kJ/rmol to.the
lowering of the activation-energy barrier, the experi-
mental and computed parameters were brought into
acceptable agreement. This energy has been referred
to as 'strain' (Thoma et al., 1971) or the acceleration
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Table 1. Symbols used

A Substrate.
b.c.f. Bond-cleavage frequency.
E Enzyme.
AG Unitary free energy of binding.
AG. Acceleration factor.
i Subsite index.
j Maximum chain length substrate for which

experimental data is available.
K 'Microscopic' dissociation constant.
K' 'Microscopic' association constant.
K, Inhibition constant.
Km Michaelis constant.
Kint. Microscopic dissociation constant for a binding

mode in which the entire binding region is
occupied.

k+j 'Microscopic' association rate constant.
kLI 'Microscopic' dissociation rate constant.
k+2 Hydrolytic rate coefficient.
I Number of real subsites comprising the binding

region of an enzyme.
m Chain-length index for product.
min. Minimum value.
n Chain-length index for substrate.
P Product.
Q Normalized sum ofthe weighted-squared residuals.
R Gas constant.
sim. Simulated data computed from a subsite map.
T Absolute temperature.
V Maximum velocity.
W Weighting factor.

Binding-mode index specifying the real or virtual
subsite occupied by the reducing-end glycosyl
unit.

a Standard error or estimate of standard error.

1 ] Concentration.
Measured or apparent value.
Time derivative.

O a-D-Glucopyranoside unit.
0 Reducing a-D-glucopyranoside unit.
t Reducing radioactively labelled a-D-glucopyrano-

side unit.

factor (Thoma & Allen, 1976). The possibility of the
existence of this acceleration factor has led to con-
siderable discussion in the literature (Iwasa et al.,
1974; Thoma & Allen, 1976), and will need to be
critically re-examined to determine if it is an artifact
of the model or corresponds to an actual physical
phenomenon [see the following paper, Allen &
Thoma (1976)].

Model

Derivations of the equations for subsite mapping
and the underlying assumptions have been presented
previously (Thoma et al., 1970, 1971; Hiromi, 1970;
Nitta et al., 1971; Thoma & Allen, 1976). We will
simply present a synopsis of the equations most
relevant to the subsite-mapping procedures.
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Synopsis ofthe subsite model
The subsite model can best be characterized by

separation ofthe enzymic processes into 'microscopic'
and 'macroscopic' events. The 'microscopic' con-
stants describe the processes associated with one
particular binding mode, i.e. positional isomer, of
the n-mer substrate (see Fig. 1), whereas the 'macro-
scopic' constants describe the net interactions of the
enzyme with the n-mer substrate. For example, each
positional isomer for an n-mer is characterized by a
'microscopic' association constant; and, in addition,
each productive positional isomer is characterized
by a 'microscopic' hydrolytic coefficient. A measured
'macroscopic' association constant for the n-mer will
be some combination of these 'microscopic' associa-
tion constants, and the measured 'macroscopic'
velocity for the n-mer will be some function of the
'microscopic' association constants and 'microscopic'
hydrolytic coefficients. The first step in subsite map-
ping is to derive quantitative relationships for the
'microscopic' constants in terms of the subsite
energies, and then to relate these 'microscopic'
constants to measurable 'macroscopic' parameters.
We will first examine how subsite interactions can be
transformed into 'microscopic' constants.
Each subsite on the enzyme is characterized by a

free energy of binding to a substrate monomer unit.
The free energy of binding for a subsite is assumed to
be unaffected by binding, or absence of binding, at
other subsites. The subsite-binding energies govern
the 'microscopic' association constant for a given
positional isomer of n-mer by the relationship

, AGI±10=-RTlnK',n (1)
1-&-n+1

where AG, is the unitary free energy of binding for
subsite i, lOkJ/mol is the cratic free energy of mixing
(Gurney, 1953), and Ks,,, is the 'microscopic' associa-
tion constant for a substrate of chain length n in
binding mode it For example in Fig. 1 the microscopic
association constant for the tetramer in binding mode
V,4 (KV,4) is exp[-(AG11 + AG,,, + AGjv + Gv + 10)!

The 'microscopic' binding constants can be con-
verted to 'macroscopic' constants by consideration of
the Michaelis scheme for binding and hydrolysis of a
polymeric substrate

k+j.&n k+2, &.x
E+An < > EA n E+Pn-m+Pm (2)

k-l,,n

where E is enzyme, An is a substrate ofchain length n,
k+2,,,n is the 'microscopic' hydrolytic coefficient for
the positional isomer EA&,n,, and Pn-m and Pm are
products of chain length n - m and m from the non-
reducing- and reducing-end of the substrate molecule
respectively. The 'microscopic' Michaelis constant
for the EA,,,, complex in this scheme is K,,= (k-, ,n
+ k+2,4,,,)/k+,,,ft. When k_, >k+2 the inverse of the
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Michaelis constant approximates an association
constant. The 'microscopic' and 'macroscopic' asso-
ciation constants are related by the expression

&=l+n-1 &=i+n-1
I/Km.n= I1/K,n = K,n (3)

,=1 4=1

where I is the number of subsites on the binding region
of the enzyme. Therefore in Fig. 1, the measured
.m,4 will be the inverse of the sum of the eight

'microscopic' association constants as determined
from eqn. (1).
The measured maximum velocity for chain length

n, 1.,, is determined not only by the 'microscopic'
association constants, but also by the 'microscopic'
hydrolytic coefficients. This relationship is expressed
as

E k+2, &,nlRs,n,, = ,-1 ~~~~~(4)[Eo] 21+n-1

I 1

where the numerator of this fraction now contains
only terms for productive positional isomers since
k+2,,,n=0 for the non-productive binding. In Fig. 1,
t for the tetramer will depend on the sum of the
concentration of productive positional isomers
(binding modes IV,4; V,4 and VI,4) times their
respective hydrolytic coefficients divided by the sum
of the concentration of all eight positional isomers.
We see then that the 'macroscopic' parameters
Km., and En are related to the 'microscopic' constants
through eqns. (3) and (4); further, these microscopic
constants are a function of the subsite energies of
binding as described by eqn. (1).
As revealed by Fig. 1, there is another experiment-

ally accessible parameter that will yield information
about the subsites. The three productive binding
modes for tetramer result in products that are charac-
teristic of a particular positional isomer. The relative
rate of formation of each product is proportional to
the population of the positional isomer from which
that product was formed, multiplied by the hydrolytic
rate coefficient for that complex. These relative rates
are called bond-cleavage frequencies.

If in eqn. (2) we label the end monomer unit of the
oligomer so that we only observe product, P., for-
mation, we can express the rate of formation of
product from two adjacent binding modes i and i + 1
as

[P. m] - k+2,..n/K,., (5)
[P.&+i,m+i] k+2., +1.,nKL+1.n

where [P] = d[P]/dt and indicates the binding mode
of the n-mer substrate which gives rise to that
particular product. For example, in Fig. 1, [o 4]!
0o-6-+] = (k+2.V.4/KV,4)/(k+2,VI,4/KVI,4). A similar
expression can be written for the formation of t

from tetramer in binding mode IV,4. Since the
k2.,,. term in the numerator of eqn. (5) goes to zero
for non-productive complexes, bond-cleavage fre-
quencies serve only as a probe of productive com-
plexes.

Substrates that can span the entire binding region
of the enzyme (n > 1) provide a measure of the sum of
the energies of interaction for all of the subsites. All
binding modes in which the subsites are completely
filled have the same dissociation constant, Kint.. We
can write eqn. (3) in terms of K1,a1 by partitioning it
into

1fi =Z2 K! +(n-1+l)( \++ -1 1 (6)

Km,n *.i K&,n \int. 43+iK (6n
The Kint. term accounts for binding modes where the
specificity region is completely filled. For example,
with a five-subsite enzyme (Fig. 1) for the binding of
a hexamer (not illustrated), the first term on the right
hand of eqn. (6) accounts for binding modes I-IV
in which subsites on the right side of the binding
region are vacant; the middle term accounts for
binding modes V and VI, in which all subsites are
occupied, and the last term accounts for binding
modes VII-X, where subsites on the left side of the
binding region are vacant. Eqn. (6) has the form of a
straight line and by plotting (n-1 + 1) against 1/Km,
forn > Iwe obtain a slope of 1/Ki,n
We have developed the relationship of four experi-

mentally accessible parameters: K., V, bond-cleavage
frequencies, and K,.,1. to the subsite free energies.
Subsite mapping now requires the application of
eqns. (1), (3), (4), (5), and (6) to: (1) determine the
number of subsites; (2) determine the position of the
catalytic site; (3) evaluate the free energies of the
individual subsites; (4) determine the hydrolytic
coefficients.

Acceleration factor
As we have shown previously (Thoma et al., 1970;

Thoma & Allen, 1976) bond-cleavage frequencies
(eqn. 5) are the most reliable probe of the number of
subsites and the position of the catalytic site. Bond-
cleavage frequencies also yield information about
subsite-binding energies and the hydrolyticcoefficient.
By solving eqn. (1) for K4,. and substitution into
eqn. (5), on re-arrangement we obtain

.

RTIn [P.ml - AG +1-G,-n+l+RTink+24+l.n
[P&+i,m+l] k+2, t,n

(7)
and hence, bond-cleavage-frequency ratios provide a
measure ofthe difference between two subsite binding
energies plus a function of the ratio of hydrolytic
coefficients. Consider the two productive binding
modes of tetramer (reducing-end labelled o-o-o-t)
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in Fig. 1, V,4 and VI,4, which yield reducing-end
labelled dimer and trimer o-4 and o-o-+ respect-
ively. In this case AG,+1 is AGvl, and since site VI is a
virtual subsite AGvl has a zero free energy of binding.
Therefore eqn. (7) simplifies to

RT1n [o4]=-/KAGn+RTlnk+2V,4 =-A6,1
[0-0-4]+,V,

(8)
where AC is defined as an apparent free energy of
binding and is a function of hydrolytic coefficients as
well as a subsite-binding energy. By using bond-
cleavage frequencies for a series of oligomeric sub-
strates, it is possible to measure A(Y for every subsite
on the enzyme-binding region, with the exception of
the two subsites adjacent to the catalytic site (subsites
III and IV in Fig. 1) which are occupied by every
productive complex. For these apparent energies to
be placed on an absolute scale, bond-cleavage
frequencies for substrates which extend beyond the
end of the binding region must be used.

If the hydrolytic coefficients are equal [e.g. in eqn.
(7), k+2,t,n= k+2,4+1,,] then the apparent binding
energies are equivalent to the true binding energies
(i.e. AGi = AC,). When Thoma et al. (1971) made this
approximation, and used the resulting binding ener-
gies in eqns. (1), (3) and (4) to predict Rm,, and fn,,
the fit between the calculated and experimental
parameters was unacceptable. Further, the variance
was not random (i.e. the residuals were not normally
distributed) as if arising from experimental error, but
was systematic, which is diagnostic of a poor model
(Mannervik & Bairtfai, 1973).
Thoma et al. (1971) found that the experimental

and calculated values could be brought into good
agreement if the approximation was made that bind-
ing ofa substrate monomer unit lowers the activation-
energy barrier by a constant amount. That is, that
k+2,,, is a function ofthe numberofreal filled subsites
for binding mode i. This observation is expressed
mathematically as

&-n+l

k+2, ,noc exp ( AGa11IRT (9)

where AG.,, is the contribution of the ith real subsite
to the acceleration of bond cleavage. Substitution of
eqn. (9) into eqn. (8) gives

AG,, = Adn+ AGa, I (10)
so that Ad, measured bythebond-cleavagefrequencies
must be increased by the factor AG.,,,, the acceleration
factor. By a minimization technique, AG.,, was
approximated as 1.88kJ/mol. It is unlikely that
AG.,, is a constant for each filled subsite, and 1.88
kJ/mol is obviously an average value, which was
found to account for the experimental data (Thoma
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et al., 1971). We re-examine this approximation in the
following paper (Allen & Thoma, 1976).
We have set forth the basic equations necessary for

subsite mapping. In the next section we will show how
these equations can be applied to experimental data
through the use of a computer minimization model,
and in the discussion we will develop the regime for
subsite mapping and assess the errors of the tech-
nique.

Depolymerase computer model
A computer model of a depolymerase enzyme was

developed by using eqns. (1), (3)-(6), and (11). A flow
diagram of the program is given in Fig. 2 and a listing
of the program with sample data is given by Allen
(1975).* On the basis of our experience in subsite
mapping, we have found that three different options
are valuable. These options were incorporated into
thecomputer model as MODI, MOD2 and MOD3. 1.
MODI accepts as input data the number of subsites,
the position of the catalytic site and the subsite
energies; the output gives calculated Kin., V., bond-
cleavage frequencies and K,.,. for the input map.
2. MOD2 accepts the same input information as
MODI in addition to any experimentally measured
Em,,,, V", bond-cleavage frequencies, and Kint.; the
output gives calculated K.,., Vn, bond-cleavage
frequencies and Kl,t. and a comparison of the
computed and experimental parameters by using the
criterion that will be established below. 3. MOD3 is
the heart of the computer model. The input data are
the experimentally determined parameters Km,n, jln,
bond-cleavage frequencies and Ki,,., in addition to
the number of subsites, the position of the catalytic
site and initialized subsite binding energies (see
below). The output gives the optimum subsite ener-
gies consistent with the specified size and position of
the catalytic site. This analysis is performed by using
a minimization routine described below.

Minimization
The process of subsite mapping, from a mathe-

matical standpoint, is a problem of optimization. A
subsite map must be generated that gives an optimum
fit to- the experimentally measured parameters:
Km, P,, bond-cleavage frequencies and Iint..
The first task is to establish a measure of fit of the

model to the experimental data. The difference be-
tween an experimental and computed value (Xj,exptl.
-XJ,calcd.) is the residual. We will use the sum of the
weighted squared residuals as a measure of fit
between experimental and calculated values or

Q = 1 Wi (XJ,exptl.-XJ,calcd.)2
3

(11)

* Additional details and a copy of the program will be
supplied by the author on request.
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MODI Y
READ

1. Title (b)
2. Number of subsites, cleavage site
3. Maximum chain length, chain length

whose V is used to normalize
4. Subsite energies
5. Aceleration factor

CALL CALC ,

PRINT
1. Input values
2. 'Microscopic' constants
3. K,, V
4. Bond-cleavage frequencies

E

END)

110

MAIN

Determines option desired
READ OPTION, (a)

Option 1- calculate parametars for a given subsite map.
Option 2: calculate prameters for a given subsite map and avloute error

between experimental and calculated parameters.

Option 3: optimize subsite energies and/or acceleration factor to obtain
minimum residual error.

MOD2

MOD3

READ d
1. Title (d)
2. Number of subsites, ceavage site
3. Maximum chain length, choin length whose

V i used t normalize
4. $ubaite energies
5. Acceleration factor
6. Experimental Ki,, oof Experimental K,..,
7. Experienantal K,,,, a of Experimrntal K,,,,.
8. Experimental V,,, a of Experimeetal V,
9. Experimnental bondleavage frequency, is of

experimentsl bond-cleavage frequency

CALL CALC 4

CALL ERROR

PRINT
1. Input values
2. 'Microscopic' constants
3. Calculated K,,, and V,,
4. Calculated bond-cleavage frequencies
5. Ratio of calculated and experimental parameters
6. OK,, QV, ,,e Qb.A.
7. Qoa

READ
1. Title
2. Number of subsites
3. Maximum chain length, chain length whose

V is used to normalize
4, Initial subsite energies
5. Initial acceleration factor
6. Experimental K,,,, u of experimental Ki,,
7. Experimental K,,, a of experimental Km,,
8. Experimental V,, a of experimental V,,
9. Experimental bond-cleavage frequency, Q of

exoeritnental bsnd-clavage'frequency
10. Maximum number of iterations allowed
11. Print specifications
12. Estimate of minimum residual error, expeoted

to absolute error, size of increment used to
calculate the derivatives

13. Parameters to use in optimization; subsites
and/or acceleration factor to be optimized

CALL FMCG 5

PRINT
1. Input values
2. Optimized subsites and acceleration factor
3. Microscopic constants
4. Calculated K_ and V
5. Calculated bond-cleavage frequencies
6. Ratio of calculated and experimental values
7. OK-, Ov, OK ine Qt¢.f.
8. 0,,t.t
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CALC DFMCG
IBM Subroutine, conjugate gr

1. Sum binding energies for each binding mode (c) (unconstrained minimization
2. Add cratic free energy variables)

3 Calcuae assciation constants
4. Sum association constants
5. Check for productive binding
6. Calculate hydrolytic rate coefficients
7. Calculate sum of association times rate CALL FUN

Calculate bood-deavage frequencies
9. Calculate K, and V

10. NormaHize V

FUNCT mum

Calculate K_. V, b.c.f., K,,,, by using trial subsite (h) found or
energies and acceleration factor no minimur

\ exists?

CALL CALC

r 1 g No

Calculate residual errors
Adjust values of subsite enm
factor as indicated by the d

CALL ERROR

| Evaluate derivativeL
( involves several calls to CALC and ERROR) r

CALL CALC <

|CALLEERRORRRO

g @ \ No ~~~~~ ~~ERRORT
1. Calculate weighting factors (e)
2. Calculate OK .... Qv,, QKj,eb. .f.

3. Calculate Q,n.,m
j~~~~~ ~~esj

RETURN ETURN

Fig. 2. Depolymerase computer model: flow diagram

The general logic of the depolymerase computer program is presented as a flow diagram; a complete Fortran listing is
available with test input and output data (Allen, 1975). There are three available options: MOD1, MOD2 and MOD3.
MODI is a subroutine that computes Michaelis parameters, Km and V and bond-cleavage frequencies as a function of
substrate-chain length. MODI accomplishes this computation by calling subroutine CALC. MOD2 is a subroutine that
computes Michaelis parameters and bond cleavage frequencies as a function of substrate-chain length and compares these
computed parameters with experimental values by calling subroutine ERROR. MOD3 is the minimization routine.
Minimization of the sum of the squared residuals is accomplished by IBM subroutine DFMCG (IBM, 1970), which calls
suxbroutine FUNCT to calculate Michaelis parameters, bond-cleavage frequencies, and to evaluate the derivative used
in the search for the minimum.
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where j is summed over the experimentally available
data. Wj is the weighting factor, which will serve to
give greater weight to the experimental parameters
that are known with more certainty. The Q value can
be normalized by dividing by j, the number of data
points. Eqn. (11) can be written in terms of the experi-
mentally measurable parameters to give four equa-
tions that establish goodness-of-fit for each individual
model parameter as

J
QKm = I Wkmn (Km,n,expt1. Km,n,calcd.)2 (12)

wherej is the maximum chain length for which experi-
mental Km,n values are available,

Qv= 2 Wvn ( V7n,,xptl. Vn,calcd.)2
n=l

(13)

where j is the maximum-chain-length substrate for
which experimental 'P. values are available,

Qb.c.f.
j n-1
I 2>Wb.c.f.n,, (b.c.f.n,m,expt1. -b.c.f-n,m,calcd.)2 (14)
n=3m=1

where b.c.f.,n, is the bond-cleavage frequency for
chain length n, forming a product of chain length m,
where j is the maximum-chain-length substrate for
which bond-cleavage frequencies are available, and

QKI.t = WNK1t (Kint.exptl.-Kint.calcd.)2 (15)

The weighting factor is defined as the reciprocal of
the experimental variance

Wj = 1fs2 (16)
The goodness-of-fit of the model can be defined in

terms of QK. (eqn. 12), Qv (eqn. 13), Qb.c.f. (eqn. 14),
and QKR,t (eqn. 15). All of the terms can be used to
establish

Qtotal = QKm+ QV+ Qb.c.f. + QKnt. (17)

All of the Q values reported in the present paper have
been normalized by division of Q by the number of
data-point residuals constituting that Q value. In the
present study the maximum chain length examined is
twelve, so that QKm (eqn. 12) is divided by 12, Qv
(eqn. 13) is divided by 10, Qb.c.f. (eqn. 14) is divided
by 65, and Qt.t., is divided by 88. Note that the
normalized Qtotal does not necessarily equal the sum
of the normalized Q values.

IfQ is a measure ofthe goodness-of-fit of the model
then the best fit is established when Q is a minimum,
Qmin., and the resulting map is the optimum map.
Further, the value of Qmin. for a subsite map is a

measure of how well that particular map is able to
account for the experimental data.
Wetested several minimization procedures for their

applicability to the subsite mapping problem. The
various non-linear optimization techniques have
been reviewed by Swann (1969). Two unconstrained

gradient methods of minimization were examined.
1. A method originally proposed by Davidon (1959)
and refined by Fletcher & Powell (1963), which is
available in the IBM Scientific Subroutine Package as
DFMFP (IBM, 1970). 2. Aconjugategradientmethod
proposed by Fletcher & Reeves (1964) available in
the Scientific Subroutine Package as DFMCG
(IBM, 1970). Of these two gradient methods the
conjugate gradient method (DFMCG) gave slightly
more rapid convergence andwas used throughout this
work (Fig. 2). The derivatives were calculated by
means ofan interpolationformula that usesdifferences
(Scarborough, 1962). All minimization calculations
were done in double precision.

Simulation studies

In order to test the capabilities and the limitations
of the computer minimization model, simulated
experimental parameters were used. A flow diagram
of the simulation studies is given in Fig. 3. The
simulated data were generated for two different sub-
site maps using option MOD1 (discussed above).
The subsite maps used to generate this simulated data
will be referred to as parent maps. The subsite map
for Bacillus amyloliquefaciens enzyme reported
previously (Thoma et al., 1971) was used as a basis
for the two parent maps. In order to simulate a
hypothetical enzyme that has a constant hydrolytic
coefficient, the subsite map for B. amyloliquefaciens
enzyme was used, but AGa was constrained at zero.
The subsite binding energies for this present map are
given in Table 2. For a generating parent map with an
acceleration factor, the map of B. amyloliquefaciens
enzyme was used with the reported AGa, 1.88kJ/mol.
The apparent binding energies (i.e. containing the
acceleration factor) for this parent map are listed in
Table 3. For both of these maps, Km.n, V., and bonds
cleavage frequencies were calculated for substrates
up to chain length twelve and a Kinc, for the map was
computed. These generated parameters will be
referred to as simulated data without error (Fig. 3).
To examine the effect of experimental variance on

the minimization procedure, an approximation of
experimental scatter was incorporated into the
simulated data. Program GAUSS in the IBM
Scientific Subroutine Package (IBM, 1970) generates
random numbers that conform to a normal distri-
bution; so that, given a set of numbers and the
expected experimental error in these numbers, the
routine can incorporate experimental scatter into
the numbers. To apply this program it was assumed
that K, for glucose had 20% error and that the
remaining Michaelis parameters (n = 2-12) had 10%
error (Cleland, 1963). Each bond-cleavage frequency
was assumed to have a constant standard error of
0.03. The resulting data are referred to as simulated
data with error (Fig. 3).
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Incorporate approximation
of experimental scatter

(GAUSS)

Fig. 3. Flow diagram ofthe simulation regimefollowed in the simulation studies to test the effectiveness ofthe
depolymerase computer model

Two different parent maps were used. The parent subsite map in Table 2 was used as an enzyme with a constant hydrolytic
rate coefficient (AG. = 0), and the parent subsite map in Table 3 was used as an enzyme with variable hydrolytic coefficients
(AG. > 0). Both parent maps were used in MOD1 of the computer model to calculate Michaelis parameters, Km,, (eqn. 3),
V,. (eqn. 4), bond-cleavage frequencies (b.c.f., eqn. 5) (for n = 1-12) and K1,,. (eqn. 6) to give simulated data without any
experimental scatter. The data were made to approximate more closely experimentally measured parameters by incorpora-
tion of random scatter by using subroutine GAUSS. These simulated parameters were used in MOD3 of the computer
model to regenerate a subsite map. The results are given in Tables 2 and 3.

Results and Discussion

Before the depolymerase computer model can be
applied to experimental data, it must be examined for
its reliability in establishing a subsite map. Various
points must be considered. (1) Can the minimization
model re-establish the parent subsite map with
simulated data? (2) What effect does experimental
variance have on the resulting subsite map? (3) What
effects do the initialized values of subsite energies
have on the minimum reached? (4) What is the most
effective regime to follow in establishing a subsite
map from experimental data? (5) Can the minimiza-
tion model be used to establish the number of subsites
and the position of the catalytic site? (6) What factors
are reflected in the measure of goodness-to-fit,
Qmin. ? (7) Can experimental variance be responsible
for the proposed acceleration factor, AG., or does
AGa reflect a real physical phenomenon? Below we
will explore the application of the computer model to
simulated data and in the following paper (Allen &
Thoma, 1976) we show the application to experi-
mental data.

Vol. 159

Effectiveness ofminimization
The simulated data offer a means of evaluating the

effectiveness of the minimization model in establish-
ing the absolute minimum and consequently the 'best'
subsite map. As will be shown below, an error surface
established by Q may have relative local minima in
addition to the absolute minimum established where
Q has reached its smallest possible value. In contrast
with actual experimental data where the 'true'
subsite map is not known, the subsite map predicted
from the simulated data can be directly compared to
the parent subsite binding energies that were used
to compute the data. As outlined in the Model section
and Fig. 3, the binding energies given In Table 2
(parent map) for a ten-subsite enzyme Without an
acceleration factor (i.e. AG, =0) were used to
generate K,, V", bond-cleavage frequencies, and
Kint. for chain lengths up to twelve. A similar map
with an acceleration factor (Table 3, parent map) was
used to examine the effectiveness of the minimization
model for an enzyme in which the hydrolytic rate
coefficients are not constant, i.e. AGa >0. The
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Table 2. Subsite map for a depolymerase with a constant
hydrolytic coefficient

The parent subsite map was adapted from the map
proposed for B. amyloliquefaciens a-amylase (Thoma
et al., 1971) to test the computer model. ---- indicates
the position of the catalytic site. The true binding energies
AGi, were used with the hydrolytic rate coefficients held
constant (i.e. AGa = 0) as a parent map to generate simu-
lated data with added experimental scatter as outlined in
Fig. 3. The optimized map is the subsite binding energies
predicted when a minimum was reached (Qmln.total) in the
minimization routine (MOD3). Subsites I-V and VIII-X
were initialized at a binding energy of zero and subsites
VI and VII were initialized at 21 and -21 kJ/mol respec-
tively. The Qm.,. values were calculated from eqns. (12)-
(17).

Binding energies (kJ/mol)

Subsite no. Parent map Optimized map
I -3.31 -3.22
II -7.95 -8.41
III 0.59 1.21
IV -2.51 -2.59
V -7.11 -7.15
VI 12.35 12.55

------------------------------------

VII -11.05 -11.42
VIII -5.43 -5.36
IX -2.51 -2.34
X 6.69 6.74

AGa(kJ/mol) 0 0

Normalized sum
of squared residual

error
Qmij. b.c.f.

Km
V
K1nt.
Total

0.9
2.0
0.9
0.1
1.0

Table 3. Subsite mapfora depolymerase with an acceleration
factor

The parent subsite map is the map proposed for B.
amyloliquefaciens a-amylase with an acceleration factor of
1.88 kJ/mol (Thoma etal., 1971).---- shows the position
of the catalytic site. Since the enzyme has an acceleration
factor, apparent subsite binding energies are given that
contain a rate coefficient term (eqn. 8). The optimized
subsite maps were obtained by using the simulated para-
meters, with an approximation of experimental scatter,
generated from the parent map. Qmin. values were obtained
by comparison of simulated parameters with parameters
calculated from the optimized maps (see Fig. 3).

Apparent binding energies (kJ/mol)

Optimized maps

Subsite
no.
I
II
III
IV
V
VI

Parent
map
-5.19
-9.83
-1.30
-4.39
-9.00
10.67

VII -12.93
VIII -7.32
IX -4.39
X 4.81

AGa 1.88
(kJ/mol)

AGa constrained
at zero*
-5.40

-10.17
-1.38
-4.48
-8.83
22.51

-4.52
-7.41
-4.69
4.64
0

AGa allowed
to varyt
-5.10
-9.92
-1.00
-4.18
-8.66
11.59

-12.89
-7.20
-4.27
4.98
1.67

Normalized sum of squared residual
error

Q.,.. b.c.f.
Km
VK10.
vKI,t.
TotalI

0.9
50.2
15.9
0.9
9.3

1.0
1.5
0.6
0.5
1.0

minimization model requires as input data the num-
ber of subsites, the position of the catalytic site, and
initialized subsite-binding energies where the search
for a minimum will begin. The model then establishes
the optimum subsite map within these established
constraints. We show below how the.number of sub-
sites and the position of the catalytic site can be
established from bonddcleavage frequencies; for. the
present we will assume that these values have been
determined. The only remaining variable input is the
initialized subsite-binding energies.

Subsite map with constant hydrolytic coefficients
We will first consider the' cae of a depolymerase

where the hydrolytic coefficients are constant so that
the acoeleration factor has a value of zero. The parent
subsite map is shown in Table 2.

* Subsites I-V and VIII-X were optimized by using
Qb.c.f., and subsites VI and VII were optimized with
(QKm+QV+QKInt.); k+2 was forced to rtmain constant
(i.e. AG, 0).

t All of the subsite energies and AG. were optimized to
obtain Qmln.total.

Minimization with bond-cleavagefrequencies. Bond-
cleavage frequencies offer a mieans of assessing the
apparent binding energies of the subsites with the
exceptioti of the two subsites adjacent to the catalytic
site (subsites VI and VII in Table 2). The binding
energies of these two subsites do not have any
influence on bond-cleavage frequencies. With an
enzyme where the hydrolytic coefficient is constant,
these apparent binding energies are uncomplicated
by the k+2 terms (eqn. 7) and are actual substrate-
monomer-binding energies. When the energies of
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Table 4. Comparison ofMichaelisparameters calculatedfrom a local minimum
The simulated Michaelis parameters were calculated from the parent map in Table 2 and an approximation of experimental
scatter was added. The calculated Michaelis parameters used to compute the ratio under 'Local minimum map' were ob-
tained from the optimized map where subsites VI and VII were established, through a local minimum, at -9.0 and 10.9
kJ/mol respectively. The calculated Michaelis parameters used to compute the ratio under 'Absolute minimum map' were
obtained from the optimized subsite map when an absolute minimum was reached. The map is shown in Table 2 (optimized
map).

Simulated Km/calculated Km Simulated V/calculated V

Substrate chain length
1
2
3
4
5
6
7
8
9
10
11
12

Local minimum
map
0.9
0.5
0.8
1.4
4.9

18.8
10.5
3.4
1.8
1.9
1.8
1.6

Absolute minimum
map
1.6
0.8
1.2
0.9
0.6
0.9
1.1
1.0
0.9
1.0
1.0
0.9

Local minimum
map

0.4
0.4
0.7
3.8

10.4
5.6
2.3
1.4
1.3
1.3
1.0

Absolute minimum
map

1. 0,
1.1
0.8
0.8
0,9
1.0
1.3
1.2
1.2
1.2
1.0

subsites I-V and VII-X were initialized at OkJ/mol
and optimized by using simulated bond-cleavage
frequencies without error (eqn. 14), i.e. to reach
Qm.n.,b.c.f., the optimized subsite energies were
within ±0.013 kJ/mol of the parent subsite map. The
minimized value of Q, Qmin.,b.a.f. was 9.0 x 10 ,

The absolute minimum was always reached when
optimizing with Qb.e.f. regardless of the initialized
energies of the subsites. For example, when subsites
I-V and VIII-X were initialized at +21 or -21 kJ/mol
the samemium was reached. Of course, the num-
ber of iterations necessary, and consequently the
computation time, was decreased considerably
when the initialized subsite-binding energies were
close to the optimum subsite-binding energies. The
observation that the absolute minimum is consistently
obtained suggests that the error space created by
Qb.c.r. is a smooth surface without relative local
minima. Therefore there are no equivalent subsite
maps that can account for the bond-cleavage fre-
quencies; consequently bond-cleavage frequencies
cannot predict a false map by becoming trapped in
relative local minimum. We will show below that the
error surface created by (Qxm + Qv) can contain a
relative local minimum.
The simulated bond-cleavage frequencies with an

approximation of experimental scatter were tested
in a similar manner for convergence properties. As
in the case for the perfect data, the final map was
insensitive to the initial values of subsite binding
energies. Of course, the experimnental scatter intro-
duced into the bond-cleavage frequencies will be
propaated as error into the optimized subsite
Vol. 159

binding energies. In thiscase, with a constant standard
error of ±0.03 in the simulated bond-cleavage fre..
quencies approximating experimental precision, the
optimized subsite energies were within ±0.059kJ/mol
of the parent subsite energies. The experimental
scatter is also reflected in the minimized value of
Qb..f.; in this case Q.nJ. b.c.f. 0.9.
Minimization with Michaelis parameters (establish-

ment ofa local minimum). The Michaelis parameters
K.,. and V. contain information about non-produc-
tive binding modes; consequently, they can be used to
provide the binding energies of the two subsites
adjacent to the catalytic site, subsites VI and VII,
whose energies are inaccessible through bond-
cleavage-frequency data. In addition, K.,. and Vr
provide the information required to assess Aq,.
Restraining subsites I-V and VIII-X at the energies
predicted by bond-cleavage frequencies, subsites VI
and VII can be optimized to accommodate the Km,n
and V. data. The sum of the binding energies for the
entire span of subsites is set by Ki.t.. Thus subsites
VI and VII are optimized as dictated by (QK,,, + Qv +

With subsites I-V and VIII-X set by bond-cleavage
frequencies and subsites VI and VII initialized at 0
LJ/mol, subsites VI and VII were optimized to obtain
(Qmln..,Km + Qmin..V + Qm n..KJ t ) by using simulated
data without error from the parent map in Table 2,
A relative local minimum was established with sub-
sites VI and VII equal to -8.45 and 11.67kJ/mol
respectively and Q.1n.,Km Qmin.,v+QmQ11f. ,t. =
52.6. Hence, in contrast with the surface established
by Qb.c.f., the error surface determined by Michaelis
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parameters has at least one local minimum. The
minimization routine has reached one ofthese relative
minimums and cannot get out of the local valley to
reach the absolute minimum. As pointed out by
Fletcher & Reeves (1964), 'the best that can reason-
ably be expected is that the minimization process will
lead as quickly as possible to the bottom of whatever
valley it starts in'. Therefore greater care must be
used when minimizing with Michaelis parameters
rather than bond-cleavage frequencies.
The Michaelis parameters computed from the

subsite energies of a local minimum map are com-
pared in Table 4 with the simulated parameters and
reveal a means of determining when a local minimum
has been reached. One criterion of how well a model
accounts for experimental data is the trends of the
residuals (Mannervik & Bartfai, 1973). When the
local minimum is reached, the ratios of simulated
parameters to Michaelis parameters calculated from
the relative local minimum map show definite trends,
whereas the comparison of simulated parameters
with the Michaelis parameters calculated from the
subsite map that has reached an absolute minimum
(Table 4) -shows a more random distribution of error.
A relative local minimum can be avoided by using

different initialized values for the subsite energies so
that the valley established by the local minimum is
not encountered in the minimization. In this case,
when subsites VI and VII were initialized at +21 and
-21 kJ/mol respectively, the absolute minimum was
found. For the simulated data with experimental
scatter, subsites VI and VII were predicted to be 12.26
and -11.88kJ/mol respectively, which is within
+0.830kJ/mol of the parent values.

Minimization of Qtotal. A final refinement of the
subsite map can be achieved by allowing all of
the subsites to vary to establish the best fit as
dictated by all of the experimentally accessible para-
meters, i.e. by minimization of Qtotai (eqn. 17). This
final optimized map is shown in Table 2 for the
AGa =0 model optimized from simulated data with
error. Binding energies are predicted within
±0.620kJ/mol of the parent binding energies.
To determine if experimental variance can erron-

eously introduce an acceleration factor, AGa was
allowed to vary by using simulated data, with error,
of the parent map in Table 2, where AGa = 0. All of
the subsite-binding energies and AGa were optimized
to establish Qmin.,.total. When the minimum was
reached, AGa was computed to be -0.20kJ/mol. A
negative value for AGa has no physical meaning (see
the Model section) and is simply an artifact of the
experimental scatter. The improvement in Qmin..total
was minimal, from 1.0 when AGa was forced to be
zero to 0.9 when AGa was optimized. Therefore an
acceleration factor that is found to differ from zero
by less than about 0.20kJ/mol will be subject to
suspicion.

Subsite map with an acceleration factor

The parent subsite map with AGa = 1.88kJ/mol
is shown in Table 3. The subsite energies are the
apparent binding energies, AC,, and are transformed
to actual substrate-monomer binding energies by
addition of 1.88kJ/mol to each apparent subsite-
binding energy.

Minimization with bond-cleavagefrequencies. When
a depolymerase does not have constant hydrolytic
rate coefficients then the binding energies predicted
by bond-cleavage frequencies have a term containing
hydrolytic coefficients (eqn. 7) and are apparent
binding energies (AGi-AGa, ). As in the case of
an enzyme without an acceleration factor, mini-
mization of Qb.c.f. by using simulated data without
error established the apparent subsite energies of
subsites I-V and VIII-X of the parent map within
±0.013kJ/mol. By using the data with experimental
scatter, subsites I-V and VIII-X of the parent
map were computed with an error of ±0.34kJ/mol
(Table 3, column 2). The established minimum was
insensitive to the initialized values of apparent
subsite-binding energies, again showing the absence
of relative local minima in Qb.c.f..

Minimization with Michaelis parameters. To deter-
mine how well the data could be fit by forcing the
hydrolytic coefficients to be constant (AGa = 0),
subsites VI and VII were optimized (by using QKm+
Qv+QK1,1) with AGa constrained at zero. Subsites
I-V and VIII-X were set as established by the bond
cleavage-frequency minimization. The optimized
energies for these two sites are given in Table 3,
column 2. The resulting Qmin,total = 9.3. The
Michaelis parameters predicted by this map are
compared in Table 5, columns 2 and 5 with the
simulated Michaelis parameters from the parent sub-
site map (Table 3). It is apparent that the fit is poor;
further, the residuals are obviously not randomly
distributed, i.e. a trend is apparent in the ratio of
the Michaelis parameters. This in fact is the same
data trend which originally led to the proposal of an
acceleration factor from the data of Bacillus
amyloliquefaciens enzyme (Thoma et al., 1971).
When the map was optimized by allowing AG. to

vary, the improvement in the fit was dramatic. All
of the subsite-binding energies and AG. were
optimized by using Qtolal to achieve the map in
Table 2, column 3. Qmin,total was decreased from
9.3 to 1.0, and the subsite energies are within
±0.34kJ/mol of the parent energies, except subsite
VI, which is 0.92kJ/mol too high. The optimized
accelerator factor is 1.67kJ/mol, which is 0.21 kJ/
mol lower than the parent AGa. It is obvious from the
Michaelis parameters predicted in Table 5, columns 3
and 4, that the fit has been drastically improved. We
conclude that the subsite-binding energies can be pre-
dicted within about ±0.920kJ/mol of the true value
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Table 5. Comparison of Michaelis parameters measuredfrom a subsite map with AG. = 1.88kJ/mol with those determined
from optimized maps

In order to approximate experimental data, simulated Michaelis parameters were computed from the parent subsite map
of Table 3 where AG. = 1.88kJ/mol and an approximation of experimental scatter was incorporated into the computed
values. These simulated values were used in the minimization routine to obtain the optimum subsite map, where AG. was
constrained at zero and where AGa was optimized.

Simulated Kin
calculated K.

(AGa =

1.67kJ/mol)t
1.4
0.8
1.2
1.1
0.8
1.1
1.1
1.0
1.0
1.0
1.0
0.9

Simulated V
(AG, =

1.88kJ/mol)*

3.69 x 10-6
9.00 x 10-5
2.15 x 10-3
6.50 x 10-3
3.16 x 10-2
1.71 x 10-1
5.53 x 10-
1.04
1.09
1.16
1.00

V(normalized)*

Simulated VI
calculated V

(AGa =
OkJ/mol)t

0.7
0.9
10.8
25.5
19.5
8.8
2.9
1.4
1.3
1.3
1.0

Simulated VI
calculated V

(AGa =

1.67kJ/mol)t

0.9
1.1
1.0
1.1
1.1
1.1
1.2
1.2
1.2
1.2
1.0

* Maximum velocities were normalized to the Vof chain length 12.
t A comparison of the simulated Michaelis parameters in column (1) to those calculated by an optimization with AG8

constrained at zero (Table 3, column 2).
t A comparison of the simulated parameters in column 1 with those calculated by an optimization where AG. was opti-

mized in addition to the subsite energies. The optimum acceleration factor achieved was -1.67kJ/mol (Table 3, column 3).

and the acceleration factor can be predicted within
about ±0.21 kJ/mol.

Evaluation of the number of subsites and the
position of the catalytic site. We have previously
shown (Thoma & Allen, 1976) that the correct way to
determine the number of subsites comprising the
binding region and to locate the catalytic site is
through the use of quantitative bond-cleavage
frequencies for polymeric substrates that are long
enough to span the entire binding region. Thoma
et al. (1970) outlined a procedure for applying bond-
cleavage frequencies to the task of measuring the
number of subsites and locating the catalytic site,
Our procedure (Thoma et al., 1970) used selected

experimental bond-cleavage frequencies to deter-
mine apparent relative free energies of the subsites.
The actual determination of the number- of inter-
acting subsites from these relative apparent free
energies involved a visual inspection and a sub-
jective judgement as to when differences in the
binding energies became insignificant.
The depolymerase computer model can be used to

determine the number of subsites objectively. In
addition, all of the experimental bond-cleavage
frequencies can be used, and weighting factors can be
used to take into account differences in experimental
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precision. Since the value of Qmin. is a criterion of
the goodness-of-fit of a given subsite map, Qm.n..b.c.f.
offers a means to evaluate the correct number of
subsites necessary to account for experimental bond-
cleavage-frequency data. Table 6 shows the appli-
cation of Qmin..b.c.f. to simulated bond-cleavage
frequencies with added error.

In Table 6 selected subsites are optimized
(indicated by X) and the remaining subsite energies
are constrained to zero (i.e. no interaction with
substrate). In each case the best fit is obtained, as
measured by Qmin..b.c.f., for the allowed number
of subsites. For example, in minimization number 1

when only subsites IV, V, VIII and IX are allowed
to vary in the optimization, the best fit to the bond-
cleavage frequencies has a Qmin.,b.c.f. = 34. Whenever
a real subsite is added (minimizations 2-4, 6, 7),
an improvement in the fit results, until the correct
number ofsubsites is reached in minimization number
9. When the true number of subsites are optimized,
QmIn.,b.c.r. = 0.8, and by adding additional subsites to
either end of the binding region, no significant
improvement in fit results. The number of subsites on
the binding region of an enzyme will be indicated
when the fit is no longer significantly improved by
adding additional subsites. In the minimization

Substrate
chain
length

1
2
3
4
5

6
7
8
9
10
11
12

Simulated Km
(AGa =

1.88kJ/mol)
5.03 x 10-1
3.96 x 10-2
2.41 x 10-2
3.63 x 10-2
8.84 x 10-3
1.06 x 10-2
5.71 x 10-3
1.62 x 10-3
7.62 x 10-'
7.86 x 10-4
7.33 x 10-4
6.59 x 10-'

Km or K, (M)

Simulated Km/!
calculated Km

(AG. =
0 kJ/mol)t

1.3
0.8
1.4

18.8
31.4
37.7
20.3
5.9
3.0
3.1
3.0
2.7
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Table 6. Evaluation of the number ofsubstitutes on a depolymerase

Simulated bond-cleavage frequencies were computed by using the parent map in Table 3 and an approximation of experi-
mental scatter was introduced. In various minimizations certain subsites were optimized (indicated byX) to obtain Qmin.,b.¢.f.
while the-remaining subsites were constrained at a binding energy at zero. The subsite index numbers I-X are real subsites,
while-I and XI-XIII are virtual subsites.

Minimization Catalytic site
no. Subsite index no. .. -I I II III IV V VI k VII VIII
1
2
3
4
5
6
7
8
9
10
11
12
13
14

X X
XX X

x X XX
X X
X x

X XX
X X X x
X X x x
X x X xX
X X x xX

x X X x xX
X XX X X X
X X X x xX
X X X X x x

X X
X X
X X
X X
X X
x X
X X
x x
X X
X X
x x
x X
x X
X X

IX X XI XII XIII Q.I,.,b.c.f.

X
X
X
x
X
x
x
x
X
x
X

x

x

x

X
X
x

X
X

34.0
33.0
20.0
12.0
12.0
12.0
4.0
4.0
0.8
0.8
0.8
0.8
0.8

X 0.8

where additional subsites were optimized, in addition
to the indicated ten subsites, these virtual subsites
were optimized to ±0.63kJ/mol. The virtual subsite
energies are due to experimental error and, in
general, we can attribute binding energies for any
end subsite in the range ±0.63 kJ/mol to experimental
variance.

In the interest of conservation of computer time,
a visual inspection of the data can often provide an
estimate of the number of subsites that can then
be objectively examined by use ofthe computer model.
Consider a substrate of chain length n, which is cap-
able of spanning the entire binding region of an 1
subsite enzyme (i.e. n l). Such a substrate has
(n-1+ 1) binding modes, which result in all subsites
being occupied with a substrate monomer unit.
The dissociation constant for each of these
positional isomers is Kint. (eqn. 6). As established by
eqn. (5) the bond-cleavage frequencies for two
adjacent binding modes (indexed t and + 1) in which
all subsites are filled (n >1) is (k+2,s,1/K1,,.)/(k2,i+1/
Kint.) which simplifies to k+2,4/k+2,,+1-

Since all of the real subsites are occupied in each
binding mode, eqn. (9) predicts that k+2,,-k+2,&+1.
Consequently, when n >1, the positional isomers in
which all subsites are filled will result in equal bond-
cleavage frequencies for the n-mer. So that, as will
be seen in the companion paper (Allen & Thoma,
1976), often a visual examination of the bond-
cleavage frequencies will reveal the approximate size
and position of the cleavage point. If the bond-
cleavage frequencies that result from completely
filled subsites are small due to unfavoured binding,
as in the case, of B. amyloliquefaciens amylase (Thoma

etal., 1970), it may be necessary to resort to the analy-
sis used by Thoma et al. (1970) to obtain an estimate
of the size of the binding region and the position of
the catalytic site. In any case, the subjective evaluation
must be tested with the model to determine if
questionable subsites are significant.

Evaluation of Qmin.,total. To determine the subsite
binding energies of the subsites adjacent to the
catalytic site and to evaluate AGa for B. amylolique-
faciens amylase, Thoma et al. (1971) used a
tabulation-minimization technique. The error sur-
face of QK +QV created by varying the subsites and
AGa was visually inspected. This procedure is limited
to, at most, a two-variable system; and, as pointed
out by Swann (1969) the tabulation minimization is
inefficient. The conjugate gradient minimization
model offers a more efficient technique and allows
optimization of all subsites simultaneously to give
the best overall fit. The bond-cleavage-frequency
partial subsite map generated as outlined above offers
a starting point for the subsequent optimizations.
We therefore start with good initial values for all
of the subsites with the exception of the two adjacent
to the catalytic site. The information for optimization
of these two subsites is contained in Kmn and n,,
with the additional restriction that the sum of all
subsite free energies is constrained by Kin,..
The computation time for the minimization

increases rapidly with the number of subsites.
Therefore the best procedure is to use (QKm+QV+
QK,It ) to minimize the energies of the two subsites
adjacent to the catalytic site, holding the remaining
subsites at the energies established by the bond-
cleavage-frequency analysis outlined above. Then
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Table 7. Evaluationofthe contribution ofexperimental variance to Q,.
The parent subsite maps of Tables 2 and 3 were used to compute Michaelis parameters, bond-cleavage frequencies, and
K,.,.. In order to approximate experimentally measured data, an estimate of experimental variance was incorporated into
the computed parameters. Q values were calculated by, comparison to the parent-map data with incorporated scatter
with the parent-map data computed befQr@ scatter was added. The data with scatter were then used in the minimztion rout-
ine to obtain the optimum subsite map as dictated by Qmn-..total.-

Paramneter
b.c.f.
Km

Ktlt.
total

Table 2 map (AGa-= O/mol)

Q* Qmin.t
0.9 0.9
2.1 2.0
1.4 0.9
0.2 0.1
1.1 1.0 -

Table 3 map (AG,=-1.88 kJ/mol)

Q* Q.1n.t
0.9 1.0'
2.1 1.5
1.4 0.6
0.2 0.5
1.1 1.0

* The Q values reported were obtained by the comparison of the parent maps simulated parameters with experimental
scatter with the parent map parameters with no added scatter.

t The Qmln. values were obtained from the minimization routine where the parent map sinulated parameters with scatter
were used to obtain an optimized subsite map as determined by Qmin..totai.

when all subsites are set at good initial values; ±0.040kJ/mol and AG was.within +0.004kJ/mol of
a final refinement of the map can be affected by the parent values. Qmlu. (q,eg.) was always less than
optimizing all subsites by minimhizing Qtotal 0.01. Wewill see that q,.,,. is insignificant s compared
(Q+,,Qv+QEIX,.). After the best fit is established with qv...
without an acceleration factor (AGa = 0), AGa can The simulated data with an inoiporated estimate
be allowed to vary and the improvement in the ofexperimnental scatter providea means ofestMtinr
resulting Qrin..totai evaluated. -qva. For the maps in Tables 2 and 3, experiment4

error was added to the simulated parameters and the
Evaluation of the contributions to Q fn values of Q were calculated from eqns. (12)-(17)(MOD2 option of the model); the values are given
As pointed out by Mannervik:& B6rtfai (1973) in Table 7. When these simulated parameters with

the error in an optimized model will be experimental error were used to optimize the
Qmin. = qeeg. + q,3t. + qbIas (18) map, Qmin.,totai was improved from 1.1 to 1.0. These

values are slightly improved over the parent subsite
where qreg. is the contribution to the total error due map Q values. That is, the experimental scatter has
to inadequacies of the minimization procedure caused the optimum map to be slightly different from
(regression error), qyar. is the contribution to the the true parent map. Table 7 shows that the upper
total error due to experimental error (variance error) limit of qyar. for bond-cleavage frequencies is 1.0, for
and qbia, is the contribution to the error due to Km is 2.1, for Vis 1.4? and for Klnt. is 0.5. The upper
inadequacies of the model (model-bias' erfor). limitlfor'the qV,..tOtal is 1.1. Since q,.3. was always
As the mathematical depolymerase model approaches less than 0.01, the cnly significant factors contri-
a true description of the physical system. q>h buting to Qmin. are experimental error (qvar.) and'the
approaches zero. If we are to assesm the fit of 'a sub- inadequacies of the model in approximating the phy-
site map, we must sort out these contributing errors sical system (qbMs). In the following paper (Alen &
in Qmni.. Thoma, 1976), by using experimental data, we will
A measure of q,,3. is provided by the application of determine the qbla. value.

the minimization routine to error-free simulated In light of these simulation studies, we conclude
data (Fig. 3) from the subsite maps in Tables 2 that the depolymerase minimization model is applic-
and 3. With these data there is no experiment scatter, able to the subsite-mapping problem. The only
so that qvar. = 0; and the subsite model is a perfect problem encountered with the minimization routine
description of the data, so that qbias=0. Hence, was the establishment of relative local minima when
the Qmmi.. reached will be equal to qreg., the error due optimizing only with Michaelis parameters. This
to the inadequacies of the minimization algorithm difficulty can be overcome by using different
in establishing the absolute minimum. In each case initialization values. The computer model is able
tested with error-free simulated data, the subsite- to evaluate objectively the number of subsites and the
binding energies were predicted correctly within position of the catalytic amino acids. In addition the
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final map can be optimized by using all of the
available experimental parameters. The summed
weighted squared residuals, Q, offer a means of
objectively evaluating the fit of a generated subsite
map to the experimental error.

In summrnary,wehave established the best procedure
for complete subsite mapping as follows. (1) Establish
experimental conditions where complicating mechan-
isms such as bimolecular reactions and multiple
attack are insignificant, or modify the model to
account for these factors. (2) Use end-labelled
substrates to determine quantitative bond-cleavage
frequencies for chain lengths that are large enough
to span the entire binding region. (3) Measure
Km and P as a function of substrate chain length.
(4) Examine bond-cleavage frequencies to estimate
the number of subsites and the position of the
catalytic site, then apply the minimization model to
bond-cleavage frequencies to test the estimate. (5) By
using the binding energ , of the subsites generated in
step 4 for the subsites not adjacent to the binding site,
use km.n and P. to optimize the subsites adjacent
to the catalytic site, then make a refinement of the
map by optimizing all of the subsites using .,t,
P. and bond-cleavage frequencies. (6) Allow the
acceleration factor to vary, and optimize all of the
subsites and AGa. (7) Examine the improvement of
the fit effected by allowing AGa to vary, to determine
if the hydrolytic rate coefficients are constant.

This work was supported by grants from the National
Science Foundation and the University of Arkansas
Computing Center.
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