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Abstract: Background/Objective: Leishmaniasis is the second deadliest parasitic disease in the world,
after malaria, with an estimated 1.6 million new cases each year. While cutaneous leishmaniasis can
result in permanent scars from lesions after treatment, the mucocutaneous and visceral diseases can
result in life-altering and life-threatening complications. Accurate species diagnosis is critical for
treatment and follow-up, and while PCR-based diagnostics can provide sensitive parasite detection
and species identification, they are slow, expensive, and not suitable for low-resource settings. In this
publication, we describe our efforts to develop a simple, affordable, and instrument-free Leishmania
DNA diagnostic that can be used in both high-tech settings and the field. Methods: Computational
biology was utilized to design region-targeted RPA oligos and the corresponding CRISPR guides
for the detection of all Leishmania species as well as the specific identification of L. (V.) panamensis
as a predictor of mucocutaneous disease. Then, we executed systematic approaches for parasite
lysis, RPA amplification of DNA, and fluorescent CRISPR crRNA detection. Results: We have
demonstrated the ability to detect single-digit parasites without compromising the specificity in
identifying single species as the proof of concept for a point-of-care diagnostic. Individual assays
were carried out in succession, culminating in an unquenched fluorescent signal quantifiable over
negative control. Conclusions: The described work is the foundation which will be implemented into
a three-track [all Leishmania, mucocutaneous or visceral only, and a human positive control] assay
that we plan to utilize in a Funnel Adapted Sensing Tube (FAST) single use, instrument-free, and
affordable diagnostic.
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1. Introduction

Leishmaniasis ranks among the top ten neglected tropical diseases (NTD), with
0.7 to 2 million new cases with 12 million overall prevalence, 20,000 to 30,000 deaths, and
>350 million people at risk of infection per year [1–3]. These numbers are presumed to
be underestimations, due to non-mandatory reporting and unrecognized cases [4]. Leish-
mania parasites are endemic in almost 100 countries, spanning large areas of the tropics
and subtropics which can be divided into “Old World” (Europe, Africa, Asia) and “New
World” (North America, South America, Caribbean) based on geographic location [1,5,6].
Individuals infected with Leishmania parasites can suffer from three main forms of disease:
visceral (VL or kala-azar, black fever), cutaneous (CL) and mucocutaneous (MCL). Visceral
disease, the most serious, impacts several internal organs, such as the spleen and liver, and
can be fatal if left untreated [7,8]. A secondary complication of VL is skin rashes consisting
of macules, papules, or nodules (post-kala-azar dermal Leishmaniasis) [9]. Cutaneous
disease, the most common, causes skin sores which can vary in severity, number and
appearance [10]. MCL impacts the mucosal membranes of the nose, mouth and throat,
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which can lead to permanent disfigurement and pain [11]. In 2020, of the 200 countries and
territories that reported to the WHO, 98 (49%) were considered endemic for Leishmania-
sis [12]. Both MCL and VL can initially present with cutaneous lesions; therefore, the rapid
diagnosis of more severe disease-causing species is vastly important [13,14]. While the
majority of the 21 species that infect humans cause CL, L. (L.) donovani and L. (L.) infantum,
are most commonly associated with VL in the Old World, whereas L. (V.) brazilensis, L. (V.)
panamensis, and L. (V.) guyanensis are most commonly associated with MCL in the New
World, and L. (L.) infantum also caused LV in the New World, especially in Brazil [10,15].

A consensus from clinicians in the endemic regions of low- and middle-income coun-
tries (LMIC) indicates that the most accurate and reliable methods of diagnosis, PCR and
qPCR, are generally restricted to larger clinics in more urban settings and, where available,
can be cost prohibitive at >USD 45 [16–19]. The initial diagnosis of Leishmaniasis is typi-
cally performed using a microscopic examination of lesion scrapings for CL or blood and
bone marrow aspirates for VL [20–22]. When Leishmaniasis is suspected, nucleic acid-based
tests, such as PCR or qPCR, are used for definitive diagnosis. In low-resource settings,
confirmative diagnostic tests can be impacted by factors such as the distance to clinic, lack
of electricity, availability of supplies, instrumentation and/or trained personnel [17,23].
Samples can be sent to central laboratories, but the results are often not available for two or
more weeks, which can make patient follow-up difficult and delay treatment. In addition,
the cost of DNA purification and PCR (approximately USD 45 per test) can be a barrier.

What is lacking is an accurate and sensitive, low-cost, instrument-free Leishmania
diagnostic that can be deployed into the field and used in low-resource settings [24]. Cur-
rent available options that are compatible with field detection include clinical evaluations
and either microscopic examinations (lesion scrapings, biopsy impression smears and
histopathology) or rapid antibody tests including IT Leish from Global Access Diagnostics
(Bedford, UK), CL Detect ™ from InBios International, Inc. (Seattle, WA, USA), and Sig-
nal®KA from Span Divergent Ltd. (Surat, GJ, India) [25–27]. The limitations of microscopic
examinations include the inability to distinguish between different species of Leishma-
nia [1,28]. The limitations of antibody tests include the inability to distinguish between
active and past infections. False positive diagnoses may lead to unnecessary therapies with
expensive and toxic drugs while false negative diagnoses correlate to prolonged disease
course and greater patient suffering [28].

The treatment of Leishmaniasis is determined by the type of disease, stemming from
parasite identification, and can be involved and expensive, especially for impoverished regions
where traveling into city centers is required for PCR confirmation and treatment [29,30].
Although there is no universal treatment procedure for Leishmaniasis, current practices
include intravenous pentavalent antimonials, chemotherapies and antifungal azole drugs,
which require residing at or near treating hospitals with durations in excess of 28 days [5,31,32].
Due to the frequent side effects of the drugs, aggressive treatment is often reserved for those
with visceral, mucocutaneous, or severe cutaneous disease.

To improve the diagnostic process, we are developing a rapid nucleic acid diagnostic
that requires no electricity or instrumentation and can be used in the field, point-of-care
clinics, or low-resource settings, as well as advanced care and state-of-the-art hospitals [33–36].
In the final configuration, reagents will be lyophilized and placed into the diagnostic for
extended shelf life and thermostability, therefore enabling the diagnostic to not only operate
without electricity but be stored without. The process is sensitive and specific, rivaling the
results produced by PCR testing in laboratory settings. The technology uses the detergent
lysis of parasites to release target DNA, Recombinase Polymerase Amplification (RPA) to
boost sensitivity, and finally, Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR-Cas12a) for specific detection. In this report, we present data derived using thin-wall
PCR tubes and plan to adapt the assay to a novel multichambered “Funnel-Adapted Sensing
Tube” (FAST) device. The diagnostic will incorporate reactions for the identification of (1) all
Leishmania species while avoiding the detection of Trypanasoma spp. [All], (2) selected species
that cause either MC or VL disease [MC], and (3) a final chamber for the detection of human
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DNA as a positive control [Human Control]. We demonstrate the detection of target DNA
sequences from less than one parasite and the differential detection of L. (V.) braziliensis, as a
species that can cause MCL.

2. Materials and Methods
2.1. Propagation of Parasites and Use as Targets

The following reagents were obtained through BEI Resources, NIAID, NIH: Leish-
mania parasite species: Leishmania (Viannia) braziliensis, Strain HOM/BR/75/M2903, NR
50608; Leishmania (Viannia) panamensis, Strain PSC-1 (MHOM/PA/94/PSC 1), NR-50162;
Leishmania (Leishmania) infantum, Strain HOM/CN/93/KXG-LIU, NR 50605; Leishmania
(Leishmania) venezuelensis, Strain MHOM/VE/80/H-16, NR-29184; Leishmania (Leishma-
nia) tropica, Strain HOM/TR/99/EP41, NR-51828; Leishmania (Leishmania) gerbilli, Strain
RHO/CN/62/20, NR-50601; Leishmania (Leishmania) donovani, Strain HOM/IN/83/AG83,
NR-50602. The parasites were propagated in a tissue culture. Briefly, frozen samples of
the parasites were inoculated into T-25 flasks with Modified M199 medium (Gibco (Grand
Island, NY, USA; Ref: 12350-039), supplemented with 10% Heat-Inactivated Fetal Bovine
Serum [HIFBS] (Neuromonics (Edina, MN, USA); Cat. No. FBS006) and 10 ug/mL Hemin
Chloride (Millipore Sigma (Burlington, MA, USA); Ref: 3741-5GM) at 25 ◦C, then expanded
into T-182 flasks (CellTreat (Ayer, MA, USA); Ref:229351). When peak density was achieved,
the parasites were cryopreserved in 0.5 mL aliquots at a final concentration of approxi-
mately 3 × 107 parasites/mL in fresh medium with 5% DMSO (Fisher (Frederick, MD,
USA); Ref:BP231-1) in liquid nitrogen for long-term storage. When used as targets in assay
development, the parasites were enumerated using a cytometer, pelleted from growth me-
dia at 2000× g, and washed with phosphate buffered saline (PBS) (Gibco (Grand Island, NY,
USA); Ref:10010-031). For purified DNA samples, the parasites were extracted twice each
with phenol-chloroform (1:1) (Fisher (Frederick, MD, USA): Ref:BP1750I-100/BP1145-1)
than additionally chloroformed (Fisher (Frederick, MD, USA); Ref: BP1145-1), and then
ethanol precipitated (Fisher (Frederick, MD, USA); Ref: A407P-4). For use as crude para-
sites, the washed parasites were resuspended in PBS for the addition of detergents. During
these processes, the concentration of parasites in each sample was recorded.

2.2. Parasite Lysis

Initial Lysis: 12 mL of peak density L. (V.) braziliensis, or other species, were harvested,
pelleted, washed with 10 mL of PBS, pelleted, resuspended in 12 mL of PBS (Gibco (Grand
Island, NY, USA); Ref:10010-031) and aliquoted into 1.5 mL micro-centrifuge tubes. The par-
asites were pelleted and supernatant decanted, then 200 µL of a 0.1% or 0.5% (v/v) solution
of the detergents was added; CHAPS (Fisher (Frederick, MD, USA); Ref: BP571-5), Triton
X-100 (Acros (Geel, Belgium); Ref: 21568-2500), NP40 (Boston BioProducts (Milford, MA,
USA); Ref: P-872), Tween-20 (Fisher (Frederick, MD, USA); BP337-500), n-octyl glucopyra-
noside (Affymetrix (Santa Clara, CA, USA); Ref: 29736-26-8) detergents were added and
exposed to 56 ◦C for 10 min. The negative control was an equivalent number of parasites
with 1× PBS only. The extent of lysis by each detergent was determined microscopically.
The compatibility with enzymatic reactions was determined by using an RPA reaction of
2.75 µL of lysed DNA to an equivalent number of targets in phenol-extracted DNA. As an
additional test, 100 µL of each lysis condition were added into a 12-well plate (TrueLine
(Greenville, SC, USA); TR5001) with 3 mL of culture media and incubated for 4 days to
observe for propagation as a sign of un-lysed parasites.

Master preparations of lysed parasites were stored at −20 ◦C between experiments.

2.3. Recombinase Polymerase Amplification [RPA]

RPA amplification was conducted using the TwistAmpTM Basic Kit (TwistDx (Scarbor-
ough, ME, USA) Part #: INTABAS), using a modified protocol of 14 µL reactions in PCR
tubes [33–39]. Each reaction tube consisted of 1 µL each of 5 µM forward and reverse primers,
6 µL of rehydration buffer, 2.5 µL of previously diluted polymerase reaction mix [10 µL
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nuclease-free water added to the TwistAmpTM reagent tubes], ~2.75 µL Template DNA,
0.8 µL MgOAc, and ~2.45 µL NG water to final volume. Standard reactions were incubated at
39 ◦C for 20 min. For visualization on 2.5% agarose gels (BioRad (Hercules, CA, USA); Ref:
161-3102), 1 µL of a 0.1 mg/mL solution of BioLab SYBR Green (Biotium (San Francisoco,
CA, USA); Ref: 40086) and 2 µL of 6× tracking dye (NEB (Ipswich, MA, USA); B70245) were
added to each tube prior to electrophoresis. A variety of temperatures and incubations times
were evaluated to determine RPA parameters and detergent compatibilities.

RPA primers were designed after identifying primer sites that flank potential CRISPR
guide sequences through the analysis of multiple sequence alignments. Kinetoplast
maxicircle DNA (kDNA) was targeted for the diagnostic due to each parasite having
30–50 copies. Maxicircle DNA contains a mixture of sequences that are both conserved
and variable between Leishmania species. The region targeted for detection maps to
nucleotides 1808 to 2769 in the Leishmania (V.) panamensis strain PSC1 (maxicircle) kineto-
plast (BK010875). Seven forward and eight reverse primers were selected for evaluation
and purchased from Integrated DNA Technologies (IDT, Coralville, IA, USA) (Table 1).

Table 1. Details for the eight forward and seven reverse RPA oligos designed for the amplification of
region 1 and/or region 2 on the maxicircle kinetoplast.

Primer
Name Nucleotide Sequence Length

Nt. Location in PSC1
Kinetoplast
ACC#BK010875

F1 GGCAAGTCCTACTCTCCTTTACAAAG 26 1808..1838

F2 GGCAAGTCCTACTCTCCTTTACAAAGAGAAC 31 1808..1833

F3 TTGTATGTTTGATTGGGGCAATACT 25 1851..1875

F4 AGGTTCGAGCAGGTTAACAAGC 22 1922..1943

F5 ATGTGTTTCATCGTCTACTTATTGC 25 1955..1979

F6 TTCGTTAGTTGGGTTAAAATCGTTG 25 2012..2036

F7 GATGCCAGCCGTTGCGGTAATTTCTATGC 29 2417..2445

F8 GATGCCAGCCGTTGCGGTAATTTC 24 2417..2440

R1 ATTAATGCTTGTTAACCTGCTCGAAC 26 rev:1924..1949

R2 TAGCAATAAGTAGACGATGAAACAC 25 rev:1957..1981

R3 TGCTTTACAACGATTTTAACCCAAC 25 rev:2019..2043

R4 TGCTTTACAACGATTTTAACCCAACTAACG 30 rev:2014..2043

R5 TAAAAGCATAGAAATTACCGCAACG 25 rev:2426..2450

R6 GTTGTCTTTATTACAAAGAATGGTGGGCAAC 31 rev:2738..2768

R7 GTTGTCTTTATTACAAAGAATGGTG 25 rev:2744..2768

2.4. CRISPR

For consensus guides, the guide tool CRISPOR (hosted by UC Santa Cruz at crispor.org)
was used to score and select potential guide target regions. For less common specific guides,
manual selection, or bespoke algorithm aided selection (Python), was performed to screen
for guides. The IDT website tools were used for generating the remaining constant RNA
using the CRISPR-Cas12a guide oligos design tool. In CRISPOR, Step 1 is to input a created
consensus sequence for each of the conserved regions, Step 2 is the selection of the Homo
sapiens human target genome, and Step 3 is the identification of the [TTT(A/C/G)-23 bp–
Cas12a (Cpf1)]–recommended, guides. The highest scoring guides were selected for region
1 (All-1, All-2) and region 2 (All-3, All-4). The target regions for the guides are shown in
Table 2. IDT website tools were utilized in selecting CRISPR-Cas12a guide oligos (crRNA).
The PAM elements are not included in the synthesized RNA guides but are included in
the table (bold) to demonstrate their importance for predicting specificity. gRNAs that
are target conserved and possessed variable regions were purchased. The sequence of the
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reporter oligo is “56-FAM/TTATT/3IABkFQ” with a 6-carboxyfluorescein modification on
the 5’ end and an Iowa Black™ fluorescence quencher modification on the 3’ end.

Table 2. Details for the six CRISPR guides designed for the detection of all Leishmania and mucocu-
taneous specific species. PAM sequence in bold is not included in the oligo.

Guide Name Nucleotide Target Sequence Length Location on Maxicircle

All-1 TTTACAACGATTTTAACCCAACTAA 25 (21 + PAM) rev:2016..2040

All-2 TTTAGGAATAGTTAATAATAATTTA 25 (21 + PAM) 2284..2308

All-3 TTTGACAACATGATAAGGATTATAA 25 (21 + PAM) 2629..2653

All-4 TTTATAAAATAAATGTATAATATTT 25 (21 + PAM) rev:2450..2474

MC-1 TTTAAAAATATAAAAGTCAATTGTT 25 (21 + PAM) 2138..2161

MC-2 TTTATATTATTTTATATTATTTTAT 25 (21 + PAM) 2178..2201

A standard 20 µL CRISPR detection reaction contains: ITD Alt-R® A.s Cas12a (cfp1)
ultra [1.0–3.0 µL of a 1 µM solution] complexed to the complementary IDT crRNA [1.5–3.5 µL
of a 1 µM solution]. The complex is incubated at room temperature for 10 min, then the IDT
ssDNA green quench reporter [0.5–1 µL of 100 µM solution], NEBuffer™ r2.1 10× [2 µL],
target DNA [1–5 µL (undiluted up to 1/100 dilution], and Ambion™ Nuclease Free Water
(Invitrogen (Waltham, MA, USA)) are added to the reaction tube to the final volume of
20 µL [33]. The sequence of the addition of the reagents is important: Cas12a is complexed
with crRNA for 10 min at room temperature, after which the remaining reagents are added
and the reaction mixed by vortex prior to incubation at 37 ◦C for up to 30 min. The reaction
demonstrated viability with a variety of targets, including phenol-extracted ethanol-purified
DNA, 0.1% Triton X-100 crude parasite lysates, and RPA-amplified DNA.

2.5. Detection

For the qualitative assessment, the fluorescent signal of reaction tubes was observed
visually after placement on a blue-light transilluminator (Invitrogen Safe Imager TM 2.0 Cat no.
G6600) accompanied with an amber viewing cover. The transilluminator has a narrow emission
peak centered at approximately 470 nm, which is compatible with the excitation wavelength of
the fluorescent reporter tag in our diagnostic assay. Green fluorescent intensity was observed in
relation to no-DNA control tubes. An inexpensive “blue light” flashlight will be included in
future diagnostic kits for the excitation of the fluorescent signal.

For the quantitative fluorescent analysis during assay design, reactions were conducted
in either 96-well (CellTreat; Ref: 229195) (80 µL reactions) or 384-well plates (Greiner
(Kremsmunster, Austria): Ref: 781-096) (20 µL reactions) and placed into a fluorescent
plate reader (Thermo Scientific (Waltham, MA, USA) Spectrophotometer Varioskan LUX
machine, Ref# VLBL00D0) using an excitation wavelength of 485 nm and an emission of
520 nm. Unless indicated, the machine is pre-warmed to 37 ◦C prior to plate insertion and
either single or kinetic loop readings are taken. The resulting information is exported from
the SkanIT™ Software RE (ver. 7.0.0.50) into Excel for graphical production.

3. Results
3.1. Summary

A systematic approach was taken to develop an instrument-free Leishmania diagnos-
tic. PCR-based diagnostics targeting kDNA are among the most sensitive methods for
the detection of Leishmania parasites and are superior to microscopic methods in both
sensitivity and specificity. Kinetoplasts are present in 30–50 copies per parasite and contain
sequences that are both conserved and variable between species. Because PCR requires
instrumentation and electricity, we selected isothermal RPA as a viable substation method
for amplification, to both detect and amplify specific targets prior to the detection with
Cas12a. To introduce additional specificity and sensitivity, we used CRISPR/Cas12a to
detect the RPA amplicons. An overview of the process is depicted in Figure 1.
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3.2. Identification of Target Sequence for Detection

Kinetoplast DNA (kDNA) forms an ultra-structure, specific to the genera of the family
Trypanosoimatidae, that consists of a network of interlocking rings [40–42]. The unique
kDNA structure was vaguely described after viewing under a phase contract by the
renowned parasitologist William Trager in 1953 and continued to be illuminated in greater
detail through advances in microscopic technology [43,44]. The kDNA target for conven-
tional or quantitative PCR assays is composed of minicircle and maxicircle DNA molecules
of unique kDNA [45]. When viewed under electron microscopy, the kDNA appears tightly
packed in a disk-like structure [46,47]. For this diagnostic, we evaluated mini-circles,
which are often the first choice for diagnostics because of their high copy number (10,000–
20,000 copies/parasites). However, the high variability between Leishmania species, and
even amongst strains of individual species, created challenges for the design of useful
primers and probes [48]. Although parasites contain only 30–50 copies of maxicircles,
they are more conserved within a species while exhibiting sufficient variation between
species for diagnostic differentiation [49]. The robust amplification due to RPA more than
compensates for the reduction in copy number to 30–50 per parasite.

3.3. Design and Testing of RPA Primers

The initial diagnostic is intended to comprise three channels for the detection of: (1) all
Leishmania species, (2) species that cause mucosal disease, and (3) a human gene as a
positive control. Later versions of the diagnostic will selectively detect L. (L.) donovani
and L. (L.) infantum species that cause visceral disease in Old World countries. A 960 bp
region from nucleotides 1808 to 2769 in the Leishmania panamensis strain PSC1 (maxicircle)
kinetoplast (BK010875) was selected for amplification and detection due to the presence
of sequences that are both conserved and variable between species. After the selection
of maxicircles, a comprehensive analysis for the design of amplification primers and
CRISPR guide sequences was performed. Analyses included ClustalW pairwise analysis
of Genbank-deposited sequences covering all the major species available, including those
that are associated with cutaneous or mucosal disease. Target regions for the first channel
were selected for conservation amongst all Leishmania species but exclude sequences from
the non-Leishmania Trypanosomatidae. In the second channel, only regions specific to
mucocutaneous-associated species will be detected. In this paper, we focus on the specific
detection of L. (V.) panamensis.

Eight forward and seven reverse oligonucleotide primers of 26 nucleotides were designed
to amplify regions of kDNA containing both conserved and variable regions. Figure 2 shows
the position of the “forward” and “reverse” primers within a 960 bp region of the maxicircle
kinetoplast. The primers were combined as 24 pairs for the amplification of the two conserved
regions that encompass the CRISPR guides All-1, -2, -3, and -4 (Table 1 and Figure 2).
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Figure 2. Map of 900bp target region of Leishmania maxicircle showing relative locations of all RPA
oligos and CRISPR guides designed.

3.4. Selection of RPA Primer Pairs

The performance of the 24 Leishmania primer pairs in RPA was assessed using DNA
that was phenol-chloroform extracted from a pool of 3 × 106 parasites equally composed
of L. (V.) panamensis, L. (V.) braziliensis, and L. (L.) infantum, ethanol precipitated, and then
resuspended in 0.45 mL of 20 mM Tris pH 7.4. Figure 3 shows the amplicons generated
from 20 µL isothermal reactions, incubated for 20 min at 39 ◦C using ~2 × 104 copies of
purified DNA. While most reactions generated amplicons, five primer pairs were selected
for continued analysis due to enhanced performance. Primer pairs #13 F3/R5 and #17
F5/R5 amplify region 1, primer pairs #22 F7/R7 and #23 F8/R6 amplify region 2, and primer
pair #15 F4/R6 amplifies both regions 1 and 2 (Figure 2). To examine the amplification over
time, the progress of the RPA reaction of L. (V.) braziliensis was monitored on a VarioSkan
fluorescent plate reader with 50× SYBR Green and primer pair #15 F4/R6 and compared
to the RPA reaction without target DNA (Figure 4). We observed a rapid increase in
fluorescence, which indicates that the amplification of this reaction is rapid with a stable
signal when compared to the negative control.
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Figure 3. Agarose gel image demonstrating 24 primer pair RPA reactions with Leishmania parasite DNA.
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Figure 4. RPA amplification with SYBR Green for visualization of fluorescent output between L. (V.)
braziliensis and no-DNA.

3.5. Parasite Lysis for RPA

Common detergent-based lysis buffers were assessed for the release of Leishmania
DNA and compatibility with RPA. Initial studies assessed isotonic phosphate buffers
containing CHAPS, Triton X-100, NP40, Tween-20, OCG at concentrations of 3%, 1%, 0.5%,
and 0.1% (v/v) for the disruption of parasites and amplification by RPA. Microscopic
inspection identified the minimum concentrations of each detergent that lysed the parasites.
For each parasite tested, 0.1% (v/v) was sufficient to lyse parasites to an undetectable
level in each microscope field examined. Figure 5 shows the appearance of native L. (V.)
panamensis under phase-contrast microscopy on a standard hemocytometer, with Panel 5A
demonstrating the preference of this species for aggregation, and Panel 5B demonstrating
the dispersion slightly after vortexing. Panel 5C demonstrates L. (V.) panamensis parasites
completely disrupted post lysis with 0.1% Triton X-100 detergent. Due to Triton X-100
detergents’ ability to fully lyse parasites, when compared to other reagents, and not interfere
with the RPA amplification reaction, 0.1% of Triton X-100 was chosen to move forward in
the assay development process.
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3.6. Threshold of RPA Amplification

The viability of this diagnostic will be directly correlated to the sensitivity and speci-
ficity of detection. Therefore, the minimum parasite concentration was quantitatively
determined in the RPA amplification assay. The ultimate goal would be to have the speci-
ficity above 97% and sensitivity under 10 parasites per complete RPA + CRISPR reaction.
The number of parasites in a single infected macrophage is around this number [50].
The majority of the sensitivity will come from RPA amplification, but CRISPR will aid the
process as well. Following protocol RPA conditions, with incubation at 39 ◦C for 20 min,
a sample of lysed L. (L.) venezuelensis DNA at a concentration of 3 × 107 parasites per
mL was serially diluted for the assessment of the sensitivity of detection. Figure 6 shows
the amplicons from 2.75 µL aliquots of 20 µL reactions. A careful inspection of the SYBR
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green-stained gel enabled the visual detection of target DNA from 817 parasites (lane 6).
The true RPA threshold is likely below 817 parasites but is limited by the visual parameters
of the gel. The quantifiable threshold of detection will be the combined RPA + CRISPR
reaction, with more sensitive fluorescent emissions.

Figure 6. Agarose gel analysis of RPA-amplified products from 10-fold dilutions of starting lysed
Leishmania DNA concentrations.

3.7. Variation of Time and Temperature for RPA

Isothermal amplification over a range of temperatures is advantageous for ease of
use. RPA is known to have peak polymerase activity at parameters of 39 ◦C with typical
reaction times of 20 min. Because ambient temperatures in areas where the diagnostic
is intended to be deployed can vary, the effect of temperature on RPA performance was
analyzed. We evaluated the parameters of incubation duration and temperature in strategic
stepwise increments. To ensure that there was ample signal for visualization, experiments
were conducted using 0.1% Triton X-100 lysates containing 2000 L. (V.) panamensis parasites
per reaction. Figure 7 shows the amplicons produced following incubations of 10, 20, or
30 min at temperatures of 28, 32, 36, or 40 ◦C. Amplicons are visible at each temperature
after a 20 min incubation. Additionally, while less vibrant, weak bands were visible after
only 10 min. We note that additional sensitivity is produced during the following CRISPR
detection step and that the amount of amplification to produce a visible band in an agarose
gel (~25 ng or >108-fold amplification) may not be necessary. In the event that the ambient
temperature is below 28 ◦C, the reactions could be heated using an inexpensive chemical
hand warmer or a small battery-operated thermal chamber.
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Figure 7. Agarose gel analysis of RPA using range of temperature and timepoint parameters. Arrow
demonstrates target band size.
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3.8. Two-Step Integrated CRISPR Detection

The compatibility of the crRNA guide sequences to the RPA-amplified target DNA is
critical to the CRISPR reaction, and the success of the diagnostic relies on the specificity
from the CRISPR guide sensing. Without RPA amplification, the number of targets that
can be detected with CRISPR alone is approximately 1000 to 2000, which is well above a
usable field diagnostic for Leishmania. To properly evaluate CRISPR detection, purified
RPA-amplified DNA was utilized to minimize incompatibility variables that might be
found from inhibitors from crude parasites, the RPA reagents, and the CRISPR reagents.
Correctly sized RPA DNA bands were gel-purified, ethanol precipitated and rehydrated
with nuclease free water. The amplicon concentrations were determined by absorbance
at 260 nm and the samples were normalized to 0.1 mg/µL. The Cas12a reactions were
performed at 39 ◦C for 20 min, and probe cleavage emission was visualized on a blue-light
transilluminator. All reactions produced visible fluorescent signals which glowed more
intensely than the no-DNA negative control tube (Figure 8A). These results were confirmed
using lysed parasites and RPA amplification with and without purification. Quantitative
analysis was then performed using fragment DNAs with the VarioSkan fluorescent plate
reader (Figure 8B).
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Figure 8. CRISPR analysis for all Leishmania visualized (A) in PCR tubes on blue light, (B) bar
graphed based on quantitative fluorescent output from VarioSkan LUX machine.

3.9. Two-Step Integrated RPA–CRISPR Optimization

After confirmation that the CRISPR reactions detected their intended target sequences,
we analyzed the threshold of detection in comparison to the background signal. Figure 9A
shows the CRISPR/Cas12a signals as the DNA in the RPA–CRISPR reaction is reduced
from 500 to 0.5 parasites. The negative reactions contained the CRISPR reagents without the
inclusion of the RPA products. Both the specificity and sensitivity are enhanced through the
combination of RPA + CRISPR than in either standalone reaction. The results also support
the use of the multi-copy nature of the kDNA target as the tube containing 0.5 parasites
produces a signal over the background. The lower set of tubes emulate negative samples
and lack parasite DNA. Figure 9B shows the same samples analyzed for fluorescent intensity
in the plate reader. In this study, the sensitivity was determined to be 0.5 lysed parasites
per reaction or 15–25 kDNA targets, which is below our initial goal of 10 parasites per test.

The evaluation of the incubation time and RPA product dilution for the RPA–CRISPR
transition is critical for the development for compatibility with the device. Shorter assay
times should translate into better field adoption, provided that the results remain consistent.
The greater the dilution from RPA, the smaller the reaction volume can be yet still provide
sufficient product for the CRISPR assay. RPA reactions were performed for 10, 20, and
30 min in 20 µL volumes to determine the impact that RPA incubation has on the CRISPR
fluorescent signal. After the RPA step, 5 µL of the products, diluted and undiluted, were
added to CRISPR reactions using guide All-3 with a 20 min incubation at 37 ◦C. Figure 10
demonstrates that, while not as vibrant as 20- and 30-minute incubation, as little as 10 min
of RPA amplification produces a distinguishable fluorescent signal. In addition, undiluted
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and 1/10 dilutions of the RPA product had comparable signals; however, 1/100 was too
diluted, in this experiment, for the current reaction parameters.
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Figure 10. CRISPR reaction evaluating viability of RPA at three timepoints, 10, 20, 30 min, and three
dilutions, undiluted, 1/10 and 1/100, alongside no-DNA control.

To further examine the impact that RPA amplification incubation time has on the
CRISPR fluorescent signal, a timepoint experiment was performed. Identical reactions using
600 ng of DNA were utilized and timepoints of 5, 10, and 20 min were evaluated at 37 ◦C.
Promptly, at the designated timepoints, 1/10 dilutions were made. In the CRISPR reaction,
5 uL of the 1/10 dilutions were utilized in the 384-well plates and the fluorescent signal was
evaluated after 25 min. Figure 11 demonstrates that as little as 5 min of RPA amplification
was enough to generate a strong fluorescent signal above the no-DNA background. While
increasing the incubation does translate to a slightly stronger signal, additional experiments
will be required to determine the statistical significance.

Next, the CRISPR parameters of incubation duration and temperature were evalu-
ated using unpurified L. (L.) venezueliensis lysates containing 2000 parasites per reaction.
As shown in Figure 12, minimal differences are distinguishable between 20, 30, and 40 min
reactions performed at 30, 34, and 37 ◦C. Shorter reaction times and wider ranges of
temperatures are currently under evaluation.
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Figure 11. CRISPR reaction evaluating RPA incubation timepoints of 5, 10, and 20 min with a 1/10 of
RPA product alongside a no-DNA control.
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3.10. CRISPR Specificity

Clinical providers in endemic countries highlight that differentiation between species
of Leishmania parasites is an important component in the diagnosis and treatment of
Leishmaniasis [30,50]. L. (V.) panamensis is a major contributor of mucocutaneous dis-
ease in Central America and was selected as the first target for specificity testing [13,51].
The objective was to locate sections unique only to L. (V.) panamensis species that share
conservation to most L. (V.) panamensis and L. (V.) guyanensis isolates that could be encoun-
tered. After rounds of thorough multisequence alignment analysis, two promising sections
of conservation were selected for the design of MC-1 and MC-2 CRISPR guides, located
in region 1 of the maxicircle kinetoplast shown in Figure 2. Specificity was demonstrated
when the fluorescent signal was restricted only to L. (V.) panamensis in comparison to the
seven other Leishmania species, using either RPA-amplified lysed parasites or purified
DNA fragments (Figure 13A,B, respectively). These results were upheld when the RPA
amplification region was extended to span both regions 1 and 2 that would be required
for multiplexing RPA amplification in the FAST device. Thus, the current design of the
diagnostic is for Channel 1 to detect all Leishmania species and Channel 2 to detect species
that progress to mucocutaneous disease. Future specificity testing will incorporate the
mucocutaneous Leishmania species, L. (V.) braziliensis and L. (V.) guyanensis, for detection
of the species in additional regions and include the specific detection of VL-causing species.
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Figure 13. (A,B) RPA + CRISPR experiment demonstrating that only MCL-specific CRISPR was able
to positively detect the L. (V.) panamensis DNA sample when identical reaction mixture was tested on
all eight Leishmania parasite species.

4. Discussion

We have demonstrated the viability of the individual assay components and shown
how they can be performed in succession to detect single-digit Leishmania parasites
for a field point-of-care diagnostic. The use of RPA to amplify target sequences and
CRISPR to detect the amplicons increases both the specificity and sensitivity of the assay.
Additional studies are planned to translate this proof-of-concept work into a valuable,
working diagnostic tool.

As lysis and sample preparation can be inhibitory to diagnostic development, we
sought to evaluate these parameters for incompatibility issues in succession to lysis per-
formance. Of the many lysis reagents that are available, Triton X-100 was chosen. Our
criteria required sufficient lysis for DNA release while not inhibiting the RPA amplification
reaction at a final concentration of 0.1%. Additionally, as this diagnostic is intended for
use in low-and-middle income countries, the price and availability of the reagent is also
a priority. Triton X-100 can be obtained from many sources and is inexpensive. Our lysis
conditions are compatible with all downstream reactions; however, these conditions are
most comparable in the real world to test cell-free parasites from skin lesion swabs or
scrapings. It will be important to test for inhibitors in these samples and also confirm lysis
and the detection of amastigotes from infected macrophages.

The robustness of the RPA reaction and its performance over a range of times (5–30 min)
and temperatures (28–40 ◦C) is a vital component in creating a standalone field diagnostic
not beholden to modern diagnostic instrumentation. The robust isothermal reaction ampli-
fies minute amounts of Leishmania DNA that can be visualized on agarose gels (approximately
20 ng) and detected in CRISPR reactions. Differences observed in the tubes will be evaluated
in the devices to determine which parameters provide the clearest distinction between positive
and negative results. In addition to the sensitivity, the specificity of the RPA primers is the first
of a two-part system which allows for the detection of single species of Leishmania parasites
required to identify the causative agent and triaging low verse high-risk prognosis. While all of
the RPA primer combinations appeared to generate visible bands, a clear distinction was made
for those which were advantageous over the others to move forward for the amplification of
the desired regions.

The specificity of the diagnostic was further enhanced by the use of CRISPR/Cas12a
detection. The specific detection of L. (V.) panamensis among the field of all seven para-
site strains was a remarkable result and was essential to achieving the required level of
disease specificity. As with the RPA reaction, the CRISPR detection step demonstrated
compatibility at a range of temperatures (30 to 37 ◦C), incubation durations (5–30 min)
and up to 1/100 dilution of RPA-amplified DNA product. The visual detection of the
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green fluorescent signal was qualitatively and quantitatively evaluated, demonstrating
clear distinctions between positive, negative, and control samples. We predict that the
readout will be easily seen in the FAST device, which is transparent in the emission range.
The FAST device shall be utilized in POC applications, when access to PCR diagnostics
is prohibitive. Experimentation is in progress for the evaluation and optimization of the
assay parameters in the FAST device to ensure that all aspects perform similarly as in tube
or plate reactions (Figure 14). We are exploring options for the lyophilization of RPA and
CRISPR reagents, which could be formed into pellets and introduced into each chamber of
the diagnostic before backplate is attached. We also plan to assess multiplexing the three
RPA reactions in one tube and develop methods to detect parasites in blood samples for the
diagnosis of visceral disease. As mentioned previously, the fluorescent signal in the device
will be evaluated in a variety of environments and a simple viewing chamber may facilitate
detection in broad sunlight. Future studies will utilize de-identified patient samples for
validation. We are also exploring other options for the FAST device system to include other
pathogens (Malaria and HPV) as well as electrochemical sensors.

Diagnostics 2024, 14, x FOR PEER REVIEW 15 of 18 
 

 

specificity of the RPA primers is the first of a two-part system which allows for the 
detection of single species of Leishmania parasites required to identify the causative agent 
and triaging low verse high-risk prognosis. While all of the RPA primer combinations 
appeared to generate visible bands, a clear distinction was made for those which were 
advantageous over the others to move forward for the amplification of the desired regions. 

The specificity of the diagnostic was further enhanced by the use of CRISPR/Cas12a 
detection. The specific detection of L. (V.) panamensis among the field of all seven parasite 
strains was a remarkable result and was essential to achieving the required level of disease 
specificity. As with the RPA reaction, the CRISPR detection step demonstrated 
compatibility at a range of temperatures (30 to 37 °C), incubation durations (5–30 min) 
and up to 1/100 dilution of RPA-amplified DNA product. The visual detection of the green 
fluorescent signal was qualitatively and quantitatively evaluated, demonstrating clear 
distinctions between positive, negative, and control samples. We predict that the readout 
will be easily seen in the FAST device, which is transparent in the emission range. The 
FAST device shall be utilized in POC applications, when access to PCR diagnostics is 
prohibitive. Experimentation is in progress for the evaluation and optimization of the 
assay parameters in the FAST device to ensure that all aspects perform similarly as in tube 
or plate reactions (Figure 14). We are exploring options for the lyophilization of RPA and 
CRISPR reagents, which could be formed into pellets and introduced into each chamber 
of the diagnostic before backplate is attached. We also plan to assess multiplexing the three 
RPA reactions in one tube and develop methods to detect parasites in blood samples for 
the diagnosis of visceral disease. As mentioned previously, the fluorescent signal in the 
device will be evaluated in a variety of environments and a simple viewing chamber may 
facilitate detection in broad sunlight. Future studies will utilize de-identified patient 
samples for validation. We are also exploring other options for the FAST device system to 
include other pathogens (Malaria and HPV) as well as electrochemical sensors. 

 

Figure 14. 3-D depiction of the three-track diagnostic prototype with separate RPA and CRISPR 
chambers. 

5. Conclusions 
We have demonstrated the ability to detect single-digit parasites, without 

compromising the specificity in identifying single species, as proof of concept for a point-
of-care diagnostic. In-tube analyses of individual assays were carried out in succession, 
culminating in an un-quenched fluorescent signal quantifiable over negative control. The 
described work is the foundation which will be implemented into a three-track [all 
Leishmania, mucocutaneous or visceral only, and a human positive control] assay that we 

Lysis Chamber 

All RPA 

Muc 
RPA 

Hu Con. 
 RPA 

   All 
CRISPR 

   Muc 
CRISPR 

Hu Con. 
CRISPR 

Figure 14. 3-D depiction of the three-track diagnostic prototype with separate RPA and CRISPR chambers.

5. Conclusions

We have demonstrated the ability to detect single-digit parasites, without compro-
mising the specificity in identifying single species, as proof of concept for a point-of-care
diagnostic. In-tube analyses of individual assays were carried out in succession, culminat-
ing in an un-quenched fluorescent signal quantifiable over negative control. The described
work is the foundation which will be implemented into a three-track [all Leishmania, muco-
cutaneous or visceral only, and a human positive control] assay that we plan to utilize in a
Funnel Adapted Sensing Tube (FAST) single use, instrument free, and affordable diagnostic.

6. Patents

US20240085406A1: priority date of September 2022. “Multi-chamber device for detect-
ing pathogens/molecules and methods of using same”.
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