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Abstract: Accurate 3D segmentation of fluid lesions in optical coherence tomography (OCT) is
crucial for the early diagnosis of diabetic macular edema (DME). However, higher-dimensional
spatial complexity and limited annotated data present significant challenges for effective 3D
lesion segmentation. To address these issues, we propose a novel semi-supervised strategy
using a correlation mutual learning framework for segmenting 3D DME lesions from 3D OCT
images. Our method integrates three key innovations: (1) a shared encoder with three parallel,
slightly different decoders, exhibiting cognitive biases and calculating statistical discrepancies
among the decoders to represent uncertainty in unlabeled challenging regions. (2) a global
reasoning attention module integrated into the encoder’s output to transfer label prior knowledge
to unlabeled data; and (3) a correlation mutual learning scheme, enforcing mutual consistency
between one decoder’s probability map and the soft pseudo labels generated by the other
decoders. Extensive experiments demonstrate that our approach outperforms state-of-the-art
(SOTA) methods, highlighting the potential of our framework for tackling the complex task of
3D retinal lesion segmentation.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Diabetic macular edema (DME), a swelling of the central retina caused by the accumulation of
leaked fluid from retinal capillaries within the intercellular spaces of the retina [1,2], has been the
leading cause of vision impairment and blindness worldwide [3,4]. Optical coherence tomography
(OCT), a non-invasive, high-resolution, and three-dimensional (3D) imaging technology, plays
an important role in the diagnosis and monitoring of retinal DME disease [5,6]. In clinical
ophthalmology, DME lesions detection and segmentation in OCT images is an essential step for
early detection and monitoring [7–9].

Over the past few years, deep-learning approaches have shown significant potential in medical
image analysis [10,11]. Several methods have been proposed for segmenting retinal 2D fluids and
layers from 2D OCT images [12–14]. Particularly, M. Li et al. [15] introduced a novel multi-scale
and cross-channel feature extraction network to obtain high-accuracy 3D segmentation results
of wet AMD lesions. G. Xing et al. [16] adopted a novel curvature regularization term to
incorporate shape-prior information for OCT fluid 2D segmentation. Considering the directional
connectivity in biomarkers, Z. Yang and S. Farsiu [17] proposed the DconnNet to employ
the directional information across the network. Attention mechanisms have also been widely
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used in medical image segmentation with great results in highlighting helpful information
and capturing long-range dependencies. M. Wang et al. [18] developed the MsTGANet, a
multi-scale transformer global attention network for drusen segmentation in retinal OCT images
that combines non-local and multi-semantic information. R. Rasti et al. [19] introduced a novel
model that leverages multi-attention and self-adaptive modules to segment multi-class retinal
fluid segmentation.

Despite the remarkable advancements that have been achieved, many existing segmenting
models work for 2D OCT B-scan frames, which cannot fully explore the OCT 3D voxels, leading to
insufficient 3D segmenting performances and hindering further quantitative analyses. Therefore,
robust and automated 3D segmentation methods for retinal fluid are highly desirable, as they can
effectively leverage the 3D features of OCT imaging to achieve more accurate segmentation results
and provide comprehensive, intuitive lesion information for clinical diagnosis and treatment.
Meanwhile, another significant challenge for 3D segmentation tasks is data annotation. Most
existing segmentation methods rely on abundant labeled data for training, which is more laborious
and costly to obtain for 3D segmentation due to the hundreds to thousands of B-scan images in
each OCT volume.

Recently, semi-supervised learning has emerged as a promising method for 2D medical
image segmentation with limited annotation and has shown significant progress in various 2D
segmentation tasks [20,21]. For example, L. Yu et al. [22] the uncertainty-aware mean teacher
framework, which enforces consistency between the student and teacher models to enhance
model learning. J. Su et al [23] presented a mutual comparison approach that incorporates
intra-class consistency to assess the reliability of pseudo-labels. Y. Wang et al. [24] proposed
a mutual correction framework to generate entropy-minimization results and explore network
bias correction. Meanwhile, adversarial learning has been used for stronger consistency in
semi-supervised learning, such as a self-training adversarial learning framework for 2D retinal
OCT fluid segmentation [25], and a semi-supervised adversarial training strategy to reduce
the negativity of increasing similarity between predicted results and erroneous predictions for
unlabeled data [26]. Additionally, transformer-based self-supervised pre-trained models, such as
UNETR [27] and Swin UNETR [28], have been proposed. These models demonstrate strong
feature extraction capabilities and have achieved remarkable performances in multi-class medical
image segmentation tasks. However, most of the previous semi-supervised learning focused on
2D segmentations, can not work well for retinal DME 3D segmentation.

Besides, current semi-supervised segmentation methods only focus on extracting information
from unlabeled data, disregarding the potential of labeled data to further improve the performance
of the model. Typically, there exist shared characteristics between labeled and unlabeled data,
such as similar texture, shape, and distribution across different samples. Consequently, it can
be hypothesized that establishing a connection between labeled and unlabeled data throughout
the entire dataset can effectively transfer prior knowledge from labeled data to unlabeled data,
enabling the extraction of information from unlabeled data. Effectively harnessing the potential
of limited labeled data and extracting prior knowledge to transfer to unlabeled data can greatly
enhance data utilization and significantly alleviate the burden of labeling work.

To tackle these problems and improve the retinal fluid 3D segmentation accuracy, we propose
a novel semi-supervised consistency-informed mutual learning framework for retinal fluid
segmentation from 3D OCT images, which can comprehensively explore DME features from
multiple perspectives and explicitly model the consistency between labeled and unlabeled data to
effectively leverage labeled data to guide the extraction of information from data. Our proposed
model comprises one shared encoder and three parallel different decoders. At the end of the
encoder, we introduce the global reasoning attention module to enable the effective transfer of
labeled data information to unlabeled data. The discrepancies among the outputs of three distinct
decoders can be leveraged to reinforce model training, enhancing the model’s ability to extract
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target features and thereby yielding consistent and accurate prediction results. In summary, our
contributions are summarized as follows:

(1) We propose a novel consistency-informed mutual learning framework that focuses on the
efficient utilization of labeled data to address the challenge of semi-supervised retinal fluid
3D segmentation.

(2) We introduce the Global Reasoning Attention (GRA) module to establish cross-sample
relationships directly by enabling the transfer of label prior knowledge to unlabeled data
and improve the 3D segmentation performance.

(3) We propose a novel Correlation Mutual Learning (CML) scheme by enforcing mutual
consistency constraints between the probability map of one decoder and the soft pseudo
labels generated by other decoders. In this way, the proposed model can minimize the
discrepancies among the outputs of different decoders during the training process, thereby
enabling the model to produce consistent and robust predictions.

(4) Experimental results on a customized DME dataset and the public RETOUCH dataset
demonstrate significant improvements over previous SOTAs, especially when only a small
number of labeled images are available.

2. Method

In this section, we first provide the structure details and core components of the proposed model.
Then, we present the loss function for optimizing the model. Finally, the training strategy will be
introduced.

2.1. Overview of model architecture

Figure 1 illustrates our framework for semi-supervised retinal lesion segmentation. This
framework consists of a shared encoder and three slightly varied decoders, employing the
transposed convolutional layer, the linear interpolation layer, and the nearest interpolation layer
as up-sampling operations to introduce architectural heterogeneity. The inter-sample correlation
attention module is utilized to achieve efficient cross-sample relationship modeling and facilitate
information propagation between labeled and unlabeled data. Furthermore, we employ a
novel cross-pseudo supervision scheme to take advantage of both the consistency and entropy-
minimization constraints for model training, enhancing the regularization of representation
learning for the unlabeled data.

2.2. Global reasoning attention module

The proposed GRA module generates a novel way for information propagation among individual
pixels within a sample group, thereby concurrently enhancing the feature representation capacity
of each cross-sample group. As shown in Fig. 1, the proposed GRA module consists of two
attention blocks, one self-attention (SA) transformer block and one inter-sample attention (IA)
transformer block. The self-attention transformer block consists of two sub-layers, the multi-head
self-attention (MSA) layer, and the feed-forward (FF) layer, each followed by a residual connection
and layer normalization (LN). The inter-sample attention transformer block has a structure similar
to the previous self-attention transformer block, with the key difference being that the multi-head
self-attention layer is replaced by an inter-sample attention layer. In this block, attention is
computed across different samples within a batch, rather than being confined to the features
of a single sample. Specifically, when the input data passes through the IA transformer block,
it first concatenates the embeddings of each feature for a single data point and then computes
attention across samples. This process enhances the representation of the current position by
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Fig. 1. The pipeline of our proposed model for semi-supervised 3D DME segmentation. The 
GRA module is incorporated at the end of the shared encoder, while the rest of the segmentation 
network retains the original VNet [29] structure.

Fig. 1. The pipeline of our proposed model for semi-supervised 3D DME segmentation.
The GRA module is incorporated at the end of the shared encoder, while the rest of the
segmentation network retains the original VNet [29] structure.

inspecting features from other locations. Additionally, when a feature in a row is missing or noisy,
multi-head inter-sample attention enables the GRA module to borrow corresponding features
from other similar samples in the batch, thereby improving the accuracy of the data representation.
This module is employed to enable computation-efficient correlation attention among all samples.
For an input feature map, where k = h′ × w′ × d′, h’, w′, and d’ represent the height, width, and
depth of the input data, respectively, b represents the batch size and c is the dimension of x, the
pipeline of the GRA module is described by Eq. (1):

m1 = LN(MSA(x)) + x

m2 = LN(FF1(m1)) + m1

n1 = LN(MIA(m2)) + m2

n2 = LN(FF2(n1)) + n1

(1)

where m2 represents the self-attention applied to the spatial dimension of each sample, facilitating
the modeling of information propagation paths among all pixel positions within each sample. n2
denotes the inter-sample self-attention across the batch dimension, which enhances information
propagation among different samples. Therefore, the GRA module necessitates a mini-batch size
greater than 1 to enable the construct of cross-sample relationships by inputting the pixel situated
at the same position across samples into a self-attention module.

2.3. Loss function

To optimize the proposed model, a joint loss function is adopted to guide the training process.
The total loss function of our model can be defined as follows:

Ls = 1 −
2
∑︁
(ypred × ytrue)∑︁

ypred +
∑︁

ytrue
(2)
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Lc =
1
n

n∑︂
i=1

(ytrue − ypred)
2 (3)

L = λLs + βLc (4)

where ypred refers to the prediction generated by the model, and ytrue represents the ground
truth segmentation mask, Ls represents the dice loss, serving as the supervised loss to evaluate
the quality of the model output on labeled inputs and Lc denotes the mean squared error loss,
employed as the cross-supervised consistency loss within the cross-pseudo supervision procedure.
We set the optimal cross-supervision weight λ to 0.5 for all experiments, as this value yielded the
best performance of the proposed model. Detailed results are shown in Fig. 5. And the weight
coefficient β for the loss term is adjusted using a time-dependent Gaussian warming-up function
[30]. During the training process, a batch composed of mixed labeled and unlabeled samples is
fed into the network. The supervised loss is specifically for labeled data, while all samples are
utilized to enable cross-supervised learning.

2.4. Training strategy

Based on such a model design, we adopt a mutual learning paradigm that combines the predictions
of three parallel decoders with the corresponding soft pseudo labels. The key GRA module is
employed to effectively model cross-sample relationships and enable information propagation
among labeled and unlabeled data in a mini-batch. Specifically, we use a sharpening function to
convert a prediction into a soft pseudo-label, defined as follows:

ypseudo =
ypred

1
T

ypred
1
T + (1 − ypred)

1
T

(5)

where T is a hyperparameter that controls the temperature for sharpening and enforces the entropy
minimization constraint to regularize the model.

Inspired by the cross-pseudo supervision [31], we implement mutual learning by aligning
the predictions of one decoder with the soft pseudo-labels produced by other decoders, thereby
enforcing consistency among the outputs of slightly varied decoders for the same sample.
Considering that both the consistency constraint and the entropy minimization constraint enable
the model to effectively utilize unlabeled data, we propose a novel mutual consistency training
strategy that applies both of these constraints between one decoder’s prediction and other
decoder’s soft pseudo labels to train our model in cross pseudo supervision procedure. In this
way, the discrepancy of outputs is reduced to guide the model learning and the predictions in
these highly hard regions should be consistent.

3. Experiment

3.1. Experiment settings

3.1.1. Datasets

Here we employ the customized volumetric DME datasets for both training and testing. This study
included 80 DME patients, excluding those with poor imaging quality due to unclear refractive
media, etc., and the dataset ultimately consisted of 60 DME patients (each consisting of 3D volume
images (512× 1044× 512), a total of 30,702 B-scan images) who were diagnosed at Sichuan
Provincial People’s Hospital from February 2022 to September 2023. All participants underwent
a comprehensive ocular examination including refraction and best-corrected visual acuity, non-
contact intraocular pressure (IOP), ocular axis, slit lamp, wide-angle fundus imaging, and OCT.
This study was approved by the Ethics Committee of Sichuan Provincial People’s Hospital and
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adhered to the Declaration of Helsinki. All participants provided written informed consent after
the nature and possible consequences of the study were explained. Data underlying the results
presented in this paper will be publicly available at https://tianchi.aliyun.com/dataset/178512.

As shown in Fig. 2, (a1) represents the raw 3D data of the DME-related case, along with
the corresponding 3D visualization of the annotations. (a2) demonstrates the B-scan image
that corresponds to the blue slice of the raw data referenced in (a1). (a3) exhibits the label
image corresponding to the green dotted line observed in the 3D visualization of the annotations.
Included individuals underwent macular-centered swept OCT (BM-400 K BMizar, TowardPi,
Beijing, China) over a range of 6× 6 mm, which utilized a swept-source vertical-cavity surface-
emitting laser with a wavelength of 1060 nm at a rate of 400,000 A-scans per second, providing
10 µm lateral resolution and 3.8 µm axial resolution. There are 512 B-scans within this 6× 6 mm
macular scan range and each B-scan consists of 512× 1044 pixels. The initial 512× 1044 pixels
images contain a large amount of black background areas, which can introduce unnecessary
training workload. Therefore, we first preprocessed all the B-scan images in volumes by cropping
out the excess regions that do not contain retinal tissue information, resulting in images of size
512× 512 pixels. Furthermore, the cropped images are resized to 256× 256 pixels to obtain a
unique field of view then normalized the values between 0 and 1 for model training. Moreover,
we extracted 3D patches of size 160× 160× 80 voxels using a sliding window strategy. During
testing, we reconstructed the final output by averaging the results from these patches. For our
experiments, we employed a predetermined data split at the patient level, with the new training,
and validation sets comprising 40 and 20 patients’ data, respectively.

Fig. 2. 3D visualization and B-scan samples of the customized DME datasets.

Fig. 2. 3D visualization and B-scan samples of the customized DME datasets.

We also adopted the publicly available RETOUCH challenge dataset [32] for DME segmentation.
The RETOUCH dataset was collected with three SD-OCT devices: Cirrus HD-OCT (Zeiss
Meditec), Spectralis (Heidelberg Engineering), and Topcon, specifically to distinguish retinal
fluid. In this study, we conducted validation experiments using the data collected from Cirrus and
Spectralis to evaluate our proposed method. The Cirrus dataset consists of 24 volumes, each with
dimensions of 512× 1024× 128, while the Spectralis dataset contains 24 volumes, each with
dimensions of 512× 496× 49. For the limited number of 3D OCT images in the open-source
RETOUCH dataset and to reliably validate the pre-trained semi-supervised model, we employed
an unbiased k-fold cross-validation method to evaluate and generalize the performance of the pre-
trained model. The folding was conducted at the subject level to ensure that data was not included
in both the training and validation sets during any iteration. The model’s final performance was
obtained by averaging the evaluation metrics on validation sets over iterations. All B-scan images
underwent the same preprocessing steps as previously described. The only difference is that
during training, the patch sizes were adjusted to 208× 208× 80 and 208× 208× 40, respectively,
to ensure consistency with the dimensions of individual volumes in the different datasets.

https://tianchi.aliyun.com/dataset/178512
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3.1.2. Implementation details

We implemented the proposed model on Pytorch v1.9.1, CUDA 10.2, and Python 3.9. The training
was conducted on a PC with NVIDIA RTX A6000 (48GB) and 64 GB of RAM. SGD was adopted
as the optimizer to update the network parameters (initial learning rate= 0.01, momentum= 0.9,
weight decay= 0.001). The batch size was set to 4, with each batch consisting of two labeled
patches and two unlabeled patches, for a total of 15000 iterations. All experiments follow the
identical setting to ensure fair comparisons and we consider the challenging semi-supervised
settings to verify our model, where 10% and 25% labels are used and the remaining training data
are regarded as unlabeled data.

3.1.3. Evaluation metrics

We employ four classical performance metrics to quantitatively evaluate the obtained segmentation
results: Dice similarity coefficient (DSC), Jaccard, 95% Hausdorff Distance (95HD), and Average
Surface Distance (ASD). They are calculated by the following equations:

DSC =
2TP

2TP + FP + FN
(6)

Jaccard =
TP

TP + FP + FN
(7)

HD(X, Y) = max(h(X, Y), h(Y , X)) (8)

ASD(X, Y) =
∑︂
x∈X

miny∈Yd(x, y)
|X |

(9)

where TP, FP, and FN are true positive, false positive, and false negative for pixel classification,
respectively. h(X, Y) denotes the directed Hausdorff distance and given by h(X, Y) = max

x∈X
min
y∈Y

| |x−

y| |. d(x, y) represents a 3-D matrix consisting of the Euclidean distances between the two volumes
X and Y.

3.2. Quantitative evaluation and comparison

As depicted in Fig. 3, our method achieves segmentation results that closely align with manual
annotations, both on individual B-scans and throughout the entire three-dimensional volume,
even when trained with only 25% annotated data. This suggests the applicability of our proposed
approach to DME segmentation in 3D OCT images. Detailed files of 3D segmentation results
and corresponding original 3D OCT images of Fig. 3, Fig. 4, Fig. 6, and Fig. 7 can be seen and
downloaded from https://tianchi.aliyun.com/dataset/178512.

We further conduct a comparative analysis of our proposed method against the recently
developed full-supervised 2D and 3D methods for medical image segmentation [10,11,19,33,34],
and several state-of-the-art semi-supervised methods such as UAMT [22], MCNet [35], URPC
[36] and CAML [37] on DME datasets. To ensure a fair comparison with existing methods, we
use the VNet [29] as the backbone for all experiments. The results of our quantitative comparison
are presented in Table 1 and Table 2. As shown in Table 1, the results of the full-supervised VNet
model trained on different ratios serve as the reference for each ratio setting. The first group
displays the performance of the baseline model when trained with 10%, 25%, and all available
labeled data. The second group presents the results obtained when training with 10% labeled
data and 90% unlabeled data. Finally, the last group shows the results achieved when training
with 25% labeled data and 75% unlabeled data.

The quantitative comparisons between our proposed model and the other SOTA semi-supervised
methods on the DME dataset are presented in Table 1. It is evident from Table 1 that our method
demonstrates the effective transfer of knowledge between labeled and unlabeled data to enhance

https://tianchi.aliyun.com/dataset/178512
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Fig. 3. Automatic 3D segmentation results of freestanding individuals from the test dataset 
using our proposed semi-supervised learning framework. (a1)-(c1) demonstrate that raw 3D 
OCT data consist of massive B-scans. (a2)-(c2) show the manually annotated 3D results, (a3)-
(c3) are the corresponding 3D segmentation results obtained by our method.

Fig. 3. Automatic 3D segmentation results of freestanding individuals from the test dataset
using our proposed semi-supervised learning framework. (a1)-(c1) demonstrate that raw 3D
OCT data consist of massive B-scans. (a2)-(c2) show the manually annotated 3D results,
(a3)-(c3) are the corresponding 3D segmentation results obtained by our method.

Fig. 4. Visualization of the segmentations results from different methods.
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Table 1. Comparison with state-of-the-art semi-supervised methods on the DME dataset and
Metrics reported the mean±standard results with three random seeds

Method
Training Metrics

Labeled Unlabeled DSC(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓

V-Net [29] 4(10%) 0 75.90± 6.13 61.36± 6.41 7.81± 5.51 2.87± 1.89

V-Net [29] 10(25%) 0 83.13± 4.42 70.79± 5.29 5.34± 3.44 1.54± 1.21

V-Net [29] 40(All) 0 88.23± 0.87 78.65± 1.24 1.86± 0.32 0.82± 0.43

UAMT [22]

4(10%) 36(90%)

82.28± 3.92 70.08± 5.67 5.69± 3.96 2.07± 1.62

CAML [37] 83.54± 3.31 71.77± 4.13 4.65± 1.72 1.53± 1.13

MCNet [35] 86.06± 1.28 72.10± 1.79 3.21± 1.79 0.89± 0.26

URPC [36] 78.21± 3.56 64.36± 4.80 5.90± 0.80 1.17± 0.77

Ours 87.50± 0.91 77.79± 1.43 2.77± 1.35 0.79± 0.38

UAMT [22]

10(25%) 30(75%)

87.42± 1.24 77.67± 1.95 2.21± 0.79 0.80± 0.39

CAML [37] 85.12± 0.63 74.10± 0.95 2.81± 0.36 0.80± 0.36

MCNet [35] 88.88± 0.29 79.99± 0.41 1.71± 0.29 0.67± 0.29

URPC [36] 84.70± 0.83 73.47± 1.24 3.50± 0.50 0.73± 0.26

Ours 91.04± 0.24 81.93± 0.24 1.38± 0.29 0.56± 0.27

Table 2. Comparison with state-of-the-art 2D and 3D methods on DME
dataset

Methods
Metrics

DSC(%)↑ Jaccard(%) 95HD ASD

UNet [10] (2D) 78.05± 6.42 64.46± 8.84 3.61± 1.13 1.01± 0.52

UNet [33] (3D) 88.04± 1.54 78.68± 2.47 1.82± 0.61 0.62± 0.28

ResNet34[34] (3D) 89.51± 0.78 79.33± 1.51 1.41± 0.44 0.63± 0.32

UNet++[11] (2D) 81.46± 6.37 69.84± 4.12 2.03± 0.81 0.98± 0.51

RetifluidNet [19] (2D) 82.07± 4.07 69.79± 5.89 2.24± 0.85 0.96± 0.44

UNERT [27] (3D) 85.79± 2.81 73.22± 3.82 1.97± 0.81 0.78± 0.42

Swin UNETR [28] (3D) 87.14± 1.96 75.92± 3.05 1.88± 0.75 0.67± 0.36

Ours 91.04± 0.24 81.93± 0.24 1.38± 0.29 0.56± 0.27

segmentation performance. When trained with 10% labeled data, the proposed model achieves
impressive improvement in all four metrics, i.e., DSC improves from 75.90% to 87.50%, Jaccard
boots from 61.36% to 77.79%, 95HD drops from 7.81 to 2.77, ASD drops from 2.87 to 0.79 in
comparison to the baseline model. A similar situation occurs when only 25% of the labeled data
is used for training. Specifically, our method outperforms other SOTA methods when trained
with only 25% labeled data, with DSC, Jaccard, 95HD, and ASD values of 89.03%, 80.23%, 1.71
and 0.65, respectively. Furthermore, as illustrated in Fig. 4, it presents 2D and 3D visualizations
of all the compared methods and the corresponding ground truth. We can easily find that the
segmentation results of our method are closer to the ground truth. In particular, our approach
preserves more fine details and boundary information of the lesions. Table 1 and Fig. 5 also
suggest the effectiveness and robustness of our proposed model.

To showcase the effectiveness of our method, we performed quantitative experiments involving
various 2D and 3D approaches. As shown in Table 2, our model trained with only 25% labeled
data has achieved superior performance across all four metrics. For instance, when compared to
the 3D UNet, our method demonstrates a 3.0% improvement for the DSC metric. Specifically,
compared with the RetifluidNet, the proposed model still maintains an 8.97% improvement in the
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Fig. 5. Mean-standard deviation charts of the segmentations result from methods in DSC
and Jaccrad. The first and second columns show the model’s results after training on 10%
labeled data and 25% labeled data respectively.

DSC. In contrast to 2D methods, 3D methods encompass a more comprehensive consideration of
spatial features, thereby achieving superior performance in segmentation tasks. As illustrated in
Fig. 6, the proposed model obtains higher segmentation performance, especially when segmenting
small-sized targets. Another readily discernible result from Fig. 6 is that 2D methods often
erroneously segment numerous non-lesion areas, whereas 3D methods alleviate this condition
to a certain extent. By learning the inter-sample correlation and leveraging such correlation to
effectively exploit the unlabeled data, our method shows significant improvements over previous
methods.

Fig. 6. Visualization of the segmentations results from different fully supervised methods.
The UNet, 3D UNet, UNet++, and 3D ResNet models are commonly employed for medical
image segmentation tasks, while RetiFluidNet is specifically designed for 2D segmentation
of retinal fluid. These models typically undergo supervised training utilizing all annotated
datasets. In our approach, we adopt VNet as the backbone network and employ only 25% of
the annotated data for training purposes.

To further validate the applicability of our proposed method, we compare it with the other
existing methods on the RETOUCH dataset. As shown in Table 3, our model achieves the best
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DSC for DME segmentation, with values of 90.13% for the Cirrus dataset and 89.94% for the
Spectralis dataset. Compared to RetifluidNet, our model demonstrates significant improvements
of 6.42% in DSC and 8.60% in Jaccard. Additionally, when compared to the 3D ResNet34,
our model shows notable enhancements of 3.40% in DSC and 6.87% in Jaccard. Even under
identical training conditions, our proposed model outperforms the leading MCNet method by
2.17% in DSC. The experimental results show that the proposed model can significantly improve
the DME segmentation performance by leveraging the consistency between labeled and unlabeled
data. However, the use of three decoders and the need for attention calculations across all
samples lead to a corresponding increase in both the number of parameters and computational
complexity. Moreover, As shown in Fig. 7, we present the 2D and 3D segmentation results of
several well-performing methods on the A dataset. While most methods can accurately capture
the overall shape of the lesions, our approach notably excels in preserving edge details. Table 3
and Fig. 7 also further confirm the effectiveness and robustness of our proposed model.

Fig. 7. Visualization of the segmentations results from different methods on RETOUCH-
Cirrus dataset.

Table 3. Comparison with SOTA 2D and 3D methods on RETOUCH Cirrus and Spectralis dataset
with the 3-fold cross-validation method

Network
Scanner

Complexity
Cirrus Spectralis

Full-supervised DSC(%)↑ Jaccard(%)↑ DSC(%)↑ Jaccard(%)↑ Parameters

UNet [10] 73.24± 7.65 63.38± 6.03 72.75± 8.91 63.25± 6.57 5.71 M
UNet++[11] 77.51± 6.01 67.04± 5.80 79.54± 5.46 68.14± 5.73 9.04 M

MsTGANet [18] 78.84± 5.59 67.31± 5.72 81.32± 4.17 70.29± 4.81 11.61 M

RetifluidNet [19] 83.27± 4.63 73.07± 3.43 83.16± 3.85 72.88± 3.60 34.27 M

UNet(3D) [33] 84.87± 4.75 73.70± 3.22 82.84± 4.13 72.59± 3.86 12.94 M

ResNet34(3D) [34] 87.32± 2.74 74.69± 2.87 85.04± 3.76 73.80± 3.14 17.93 M

Semi-supervised (23%)

UAMT [22] 83.15± 4.83 72.07± 3.81 77.68± 6.20 64.33± 5.97 9.44 M

URPC [36] 83.76± 4.09 72.61± 3.56 77.15± 6.31 63.42± 6.04 5.89 M

MCNet [35] 87.24± 2.81 77.70± 2.33 85.33± 3.52 74.16± 3.03 12.35 M

CAML [37] 85.34± 3.67 76.02± 2.54 81.04± 4.68 72.09± 4.18 20.13 M

Ours 89.83± 2.04 81.36± 1.41 88.54± 2.73 79.57± 2.45 15.64 M
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4. Discussion

4.1. Ablation study

Here we conduct an ablation study on the 3D DME dataset to investigate the effectiveness of each
component and analyze the influence of the proposed GRA module and our semi-supervised
training strategy. The V-Net model was adopted as our baseline model. As shown in Table 4,
both the GRA module and customized CML scheme significantly improve the performance of the
baseline trained with 10% labeled data. When trained with 10% labeled data, our model achieves
an absolute improvement of 11.6% in DSC by combining these two designs. Under a labeled data
ratio of 25%, the baseline performance is improved to 91.04% in DSC, which is approximately
comparable to the fully-supervised model. When these two designs are individually integrated
into the baseline model, there is an improvement in all segmentation metrics. These results
support the effectiveness of our methods, demonstrating that incorporating the GRA module and
CML scheme enhances the model’s performance during training.

Table 4. Ablation study of our proposed GRA module and CML training strategy on
the DME dataset

Training Designs Metrics

Labeled Unlabeled GRA CML DSC(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓

4(10%) 36(90%)

75.90± 6.13 61.36± 6.41 7.81± 5.51 2.87± 1.89
√

83.64± 3.22 72.45± 3.43 4.56± 1.57 1.55± 1.32
√

86.36± 1.24 75.80± 1.69 2.41± 0.83 0.93± 0.34
√ √

87.50± 0.91 77.79± 1.43 2.77± 1.35 0.79± 0.38

10(25%) 30(75%)

83.13± 4.42 70.79± 5.29 5.34± 3.44 1.54± 1.21
√

85.62± 1.53 74.78± 1.86 2.67± 0.35 0.79± 0.37
√

88.36± 1.41 79.29± 1.53 1.74± 0.32 0.68± 0.29
√ √

91.04± 0.24 81.93± 0.24 1.38± 0.29 0.56± 0.27

Moreover, we conducted a parameter sensitivity analysis to investigate the impact of parameter
λ on balancing the two losses and the number n of decoders. As Fig. 8 shows, to reliably validate
the pre-trained semi-supervised model, we consistently used VNet+CML+GRA as the baseline
network and tested it on the DME dataset with 10% and 25% labeled data. It can be seen that a
smaller λ would decrease the performance, as the three decoders may produce inaccurate results
due to insufficient labeled data for training. Conversely, a lager λ fails to apply adequate mutual
consistency constraints, resulting in suboptimal performance. Therefore, we set the loss weight λ
as 0.5 to balance the two losses in this study. It can be seen in Fig. 9, that adding more decoders
improves performance, though the gains diminish as n increases. Since the labeled data is limited,
models may generate incorrect predictions but with high confidence. Here we use three decoders
to achieve a balance between effectiveness and efficiency. With a larger labeled dataset, our
model with a more diverse set of decoders could further improve performance in 3D retinal fluid
segmentation.

To further validate the efficacy of our proposed semi-supervised learning framework, we
conducted comparative experiments using various backbone networks. As depicted in Table 5,
we initially assessed the performance of these backbone networks under fully supervised training.
Subsequently, after implementing our proposed CML training strategy and integrating the GRA
module into these base networks, it was noted that, in comparison to their original configurations,
they achieved segmentation performance comparable to those results under fully supervised
training, despite utilizing only 25% of labeled data. As shown in Table 5 compared with
ResNet34, the performance of the proposed framework (ResNet34+CML+GRA) has been
improved significantly. The average DSC, Jaccard, 95HD, and ASD have been improved
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Fig. 8. Result under different loss weight λ on the DME dataset.

Fig. 9. Effects of the number of decoders on the DME dataset.

from 89.51%, 79.33%, 1.41, and 0.63 to 91.37%, 82.57%, 1.35 and 0.49, respectively. The
experiment results demonstrate that the proposed semi-supervised learning framework can adeptly
leverage the feature information within limited labeled data, consequently improving the DME
segmentation accuracy in OCT volumetric images.

Table 5. Evaluation indices for the proposed semi-supervised learning
framework with CNN-based methods on the DME dataset

Network Metrics

Full-supervised DSC(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓

VNet [29] 88.23± 0.87 78.65± 1.24 1.86± 0.32 0.82± 0.43

UNet [33] 88.04± 1.54 78.68± 2.47 1.82± 0.61 0.62± 0.28

ResNet34[34] 89.51± 0.78 79.33± 1.51 1.41± 0.44 0.63± 0.32

Semi-supervised (25%)

VNet+CML 88.36± 1.41 79.29± 1.53 1.74± 0.32 0.68± 0.29

UNet+CML 88.10± 3.77 78.93± 5.96 2.33± 1.60 0.62± 0.40

ResNet34+CML 89.41± 1.14 80.87± 1.88 1.47± 0.41 0.56± 0.31

VNet+CML+GRA 91.04± 0.24 81.93± 0.24 1.38± 0.29 0.56± 0.27

UNet+CML+GRA 90.28± 0.55 80.31± 0.47 1.48± 0.56 0.63± 0.37

ResNet34+CML+GRA 91.37± 0.24 82.57± 0.22 1.35± 0.27 0.49± 0.22



Research Article Vol. 15, No. 12 / 1 Dec 2024 / Biomedical Optics Express 6918

4.2. Clinical analysis

Morphological fluid features such as volume of fluid and retinal thickness can be used to evaluate
the therapy for DME patients precisely [38]. Therefore, we conducted quantitative experiments
on 21 freestanding individuals by measuring the volume and surface area of the lesions and
analyzing the consistency as a way to validate the effectiveness of our proposed method. The
results can be seen in Table 6 and Fig. 10, followed by conducting Pearson correlation analysis
on the measurement results. As illustrated in Fig. 9, the left and right panels depict the volume
and surface area measurement results of the segmentation by the proposed method trained with
25% labeled data and manual annotation, respectively. Figure 9 shows a significant correlation
between the measurements of DME volume (r= 0.99756, p< 0.0001), as do the results in surface
area (r= 0.99602, p< 0.0001). The model demonstrates strong performance in both volume and
surface area metrics, showcasing its significant clinical utility for the diagnosis and monitoring
of DME progression.

Fig. 10. Statistical analysis of DME volume and surface area measurements across 20
different cases.

Table 6. Statistics Measurements of Volume and Surface Area on 21 sets of DME casesa

Metrics Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

GT
Volume(mm3) 3.0194399 5.63872862 0.73190832 1.8628521 0.5655942 0.51876926 0.42110252

Area(mm2) 98.037598 123.818115 23.5513916 51.5115967 11.1324463 21.5749512 8.38696289

Pred
Volume(mm3) 2.965471745 6.02392387 0.71835136 2.01902103 0.42227411 0.52924919 0.45982933

Area(mm2) 83.9981689 115.705811 20.4818115 48.0476074 7.22900391 16.994751 8.06726074

Case 8 Case 9 Case 10 Case 11 Case 12 Case 13 Case 14

GT
Volume(mm3) 2.41632 4.23315 1.095873 2.974581 0.90495 0.8153577 0.846192

Area(mm2) 81.3469 93.13916 35.32709 51.5115967 18.79211 32.365224 25.968361

Pred
Volume(mm3) 2.38911 4.54921 1.077531 3.0185132 0.7656483 0.795324 0.912475

Area(mm2) 77.83457 88.77524 31.72274 48.0476074 15.614604 29.452115 23.289135

Case 15 Case 16 Case 17 Case 18 Case 19 Case 20 Case 21

GT
Volume(mm3) 0.69959307 0.59419582 4.57061291 1.399871 0.7584242 1.5714597 1.7123652

Area(mm2) 16.2982178 20.0994873 100.50293 36.7984516 24.213739 37.515061 48.652231

Pred
Volume(mm3) 0.70200062 0.34435701 4.52811384 1.431247 0.5709712 1.5839849 1.7581273

Area(mm2) 14.6854248 11.638916 86.4206543 34.80454 18.608472 35.7929553 49.086125

aGT stands for the ground truth. Pred represents the predictions generated by the proposed semi-supervised model.

To further assess the feasibility of our approach in clinical practice, we conducted longitudinal
monitoring and treatment experiments on multiple DME patients. As illustrated in Fig. 11,
the retinal macular condition of the DME patient is presented before treatment, after the first
intravitreal injection treatment, and following the second intravitreal injection treatment from
left to right. It can be seen in Fig. 11(a) and (g) that the patient has significant abnormalities
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in lesion volume and central macular thickness (CMT) before initial treatment. At this point,
the patient’s CMT was measured to be 646 µm, and patients with CMT measured as ≥ 300 µm
may undergo intravitreal anti-VEGF or steroid injections [39], [40]. To further demonstrate
the effectiveness of treatment, B-scan images corresponding to the same scanning positions
for this patient are presented in the second row of Fig. 11. Figure 11(g)–10(i) show the CMT
heatmap for the three stages. The green and yellow parts represent the thicknesses at normal and
critical values, respectively. The red part indicates the thickness exceeding the normal range;
the redder the color, the thicker the thickness. One month after receiving the first treatment, the
patient’s CMT dropped significantly to 409 µm (see Fig. 11(h)). Further diagnosis two months
later showed the patient’s CMT had decreased to 386 µm (see Fig. 11(i)). Meanwhile, as shown
in Fig. 11(a)-(c), the volume of DME lesions was significantly reduced after treatment. This
patient had a significant CMT abnormality before treatment and the situation improved after
treatment, which is consistent with the segmentation results of our method.

Fig. 11. Condition monitoring of a patient with DME at different stages of treatment. (a), (b) and (c) 
are 3D visualization results of the DME lesions before, during, and after treatment, respectively. (d), 
(e) and (f) are corresponding B-scan images. (g), (h) and (i) are corresponding macular thickness 
heatmaps of (a), (b) and (c).

Fig. 11. Condition monitoring of a patient with DME at different stages of treatment.
(a), (b) and (c) are 3D visualization results of the DME lesions before, during, and after
treatment, respectively. (d), (e) and (f) are corresponding B-scan images. (g), (h) and (i) are
corresponding macular thickness heatmaps of (a), (b) and (c).

The above experiment demonstrates that the alterations in fundus conditions of patients
with DME can be accurately and visually represented through the 3D segmentation results.
Moreover, the 3D segmentation results align with the diagnostic findings obtained through existing
clinical diagnostic methods. This approach can additionally offer comprehensive information
regarding DME, thereby facilitating convenient diagnosis and monitoring of therapeutic efficacy.
Furthermore, it enhances the acceptance and recognition of diagnostic outcomes among clinical
patients. The 3D segmentation results of DME lesions also assist ophthalmologists in effectively
communicating with patients by providing them with more visualized information.
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5. Conclusion

In this study, we propose a novel mutual learning framework that leverages limited labeled data
to guide the extraction of features from unlabeled data for semi-supervised 3D segmentation on
3D retinal OCT images. This framework consists of a shared encoder and three slightly varied
decoders, employing the transposed convolutional layer, the linear interpolation layer, and the
nearest interpolation layer as up-sampling operations to introduce architectural heterogeneity.
We introduce the GRA module to establish inter-sample relationships directly and improve
the 3D segmentation performance. The model design with three slightly different decoders is
used to indicate highly hard regions and a new mutual consistency constraint for customized
correlation mutual learning training strategy between the decoders’ outputs and corresponding
soft pseudo labels. Extension experiments on the customized DME dataset and the public
RETOUCH dataset have demonstrated that our model has achieved state-of-the-art performance
compared with various semi-supervised and fully supervised methods. We have also conducted
long-term clinical follow-up trials involving patients with DME, the results exhibit commendable
3D segmentation performance of our proposed method, potentially enhancing the comprehension
of DME diseases and offering significant convenience for clinical diagnosis and treatment.

In our future works, we will explore domain adaptation algorithms to further improve the
performance and generalization of the model. This is because there exists a certain variability in
the distribution of images captured by different OCT scanning devices, and a model trained on a
single dataset may not exhibit consistent excellent performance when working on out-of-domain
test data.
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