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Simple Summary: The TP53 mutation is one of the prevalent genetic alterations in human cancers
and is often linked to a poor prognosis. While earlier studies have produced mixed results, they
frequently involved small patient groups focused on specific breast cancer subtypes and treatments.
To clarify these findings, we examined the clinical relevance of TP53 mutations in 650 patients
across all subtypes, with consistent treatment based on subtype. In total, 172 (26.5%) had TP53
mutations, including 34 (19.8%) with missense hotspot mutations. Those with TP53 mutations had
worse outcomes, with a 10-year recurrence-free survival rate of 83.5% compared to 86.6% for those
without (p = 0.026), and a 10-year overall survival rate of 88.1% versus 91.0% (p = 0.003). However,
the outcomes among patients with TP53 mutation did not differ significantly by mutation types
or locations. Consequently, further research is necessary to explore the clinical relevance of the
characteristics of TP53 mutation.

Abstract: Background: The TP53 mutation is one of the most frequently identified mutations in human
cancers and is typically associated with a poor prognosis. However, there are conflicting findings
regarding its impact. We aimed to clarify the clinical relevance of TP53 mutations across all breast
cancer subtypes and treatments utilizing long-term follow-up data. Methods: We retrospectively
identified the data of breast cancer patients who underwent TP53 mutation testing. Stratified log-rank
tests and Cox regression analysis were performed to compare oncologic outcomes based on TP53
mutation status and the characteristics of these mutations, including types and locations. Mutations
in exons 5-9 were identified using polymerase chain reaction—denaturing high-performance liquid
chromatography (PCR-DHPLC) and direct sequencing. Results: Between January 2007 and December
2015, 650 breast cancer patients underwent TP53 mutation testing in Gangnam Severance Hospital.
The TP53 mutations were identified in 172 patients (26.5%), with 34 (19.8%) exhibiting missense
hotspot mutations. Patients with TP53 mutations (TP53-mutated group) had worse prognosis,
demonstrated by a 10-year recurrence-free survival (RFS) rate of 83.5% compared to 86.6% in patients
without mutations (HR, 1.67; p = 0.026) and a 10-year overall survival (OS) rate of 88.1% versus 91.0%
(HR, 3.02; p = 0.003). However, subgroup analyses within the TP53-mutated group did not reveal
significant differences in oncologic outcomes based on mutation types and locations. Conclusions:
Our findings establish that TP53 mutations are linked to poorer oncologic outcomes in breast cancer
across all subtypes. Yet, within the TP53-mutated group, the specific characteristics of TP53 mutations
do not influence oncologic outcomes.

Keywords: TP53 mutation; missense mutation; missense hotspot; breast cancer; recurrence-free
survival; overall survival
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1. Introduction

The TP53 gene, which codes for the tumor-suppressor protein p53, is the most fre-
quently mutated gene in human cancers [1]. Located on chromosome 17p13.1, TP53
consists of 11 exons, 10 introns, and 393 amino acid residues, and encodes the p53 protein,
a transcription factor with distinct amino-terminal, DNA-binding, and carboxy-terminal
domains [2]. The TP53-activated pathway exerts tumor-suppressive functions by regulating
DNA repair, cell-cycle arrest, senescence, and apoptosis, thereby inhibiting early tumori-
genesis, tumor growth, and progression [3–5]. As a result, the activation of p53 in normal
tissues is critical for preventing tumorigenesis. However, tumors with TP53 mutations
not only lose these tumor-suppressive functions but also often acquire gain-of-function
mutations that promote tumor growth [6,7]. Consequently, TP53-mutated tumors typically
exhibit rapid progression, resistance to treatment, and a poor prognosis [8–10].

According to the International Agency for Research on Cancer (IACR) database, over
75% of TP53 mutations were missense mutations, with approximately 97% located in exons
encoding the DNA-binding domain (DBD, residue 98-292). Six codons (175, 220, 245, 248,
273, and 282) are recognized as well-known missense hotspots, each accounting for more
than 2% of all missense mutations (https://www.cbioportal.org/, (accessed on 29 October
2024)). These single nucleotide substitutions disrupt the 3D structure of the p53 protein or
impair its ability to bind DNA, leading to a loss-of-function [11].

TP53 mutations are identified in nearly 30% of all breast cancers [12,13]. Numerous
preclinical and clinical studies have explored the clinical significance of TP53 mutations in
breast cancer, with most associating them with poor prognosis [14–17]. However, studies
that challenging the conventional understanding of the clinical relevance of TP53 mutations
have also been published. Ostrowski et al. found that while tumors with p53 expression
exhibited more aggressive clinicopathological features, there was no significant difference
in survival outcomes compared to tumors without p53 expression [18]. In a study by
Shiao et al., which evaluated the association between p53 gene alterations and survival in
patients with TP53 mutations, differences in p53 gene alteration patterns were observed
between Black and White patients. Among Black patients, TP53-mutated breast cancer
was associated with poorer outcomes, whereas no such correlation was found in White
patients [19]. Additionally, a meta-analysis including 26 studies with 3476 patients reported
that patients with TP53 mutations had a better response to neoadjuvant chemotherapy [20].
However, studies investigating the association between TP53 mutations and breast cancer
have generally been limited by small patient cohorts and prone to selection bias due to
the varying prevalence of TP53 mutations across molecular subtypes. Moreover, the lack
of standardization in TP53 mutation testing methods and treatment protocols, such as
chemotherapy regimens, complicates the interpretation of findings. As a result, the clinical
relevance of TP53 mutations in breast cancer remains controversial.

As breast cancer treatment becomes increasingly personalized, there is a growing need
not only to access the presence of TP53 mutations but also to adopt a molecular approach
to better understand these mutations. In breast tumors, gene sequencing revealed that
missense mutations were dominant, accounting for about 80%, while other mutations, such
as nonsense and frameshift mutations, made up approximately 20%. Additionally, the
mutational events also differed from those observed in other cancers [21,22]. Moreover,
TP53 mutations in breast cancer act through various mechanisms, including impairing
DNA damage repair, promoting cancer stemness, and enhancing inflammatory responses,
each of which may require different therapeutic strategies [23–25]. Therefore, more in-depth
research on the specific types and locations of TP53 mutations is urgently needed. However,
research in this area remains limited.

In light of these considerations, we investigated the association between TP53 muta-
tions and prognosis in breast cancer patients using long-term follow-up data. Additionally,
we explored the clinical relevance of the characteristics of TP53 mutations among patients
harboring these mutations.

https://www.cbioportal.org/
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2. Materials and Methods
2.1. Data Collection

We retrospectively identified patients diagnosed with breast cancer who underwent
TP53 mutation testing at Gangnam Severance Hospital from January 2007 to December
2015. Clinicopathological data were collected from electronic medical records including age
at diagnosis, histologic subtype, histologic grade, estrogen receptor (ER) and progesterone
receptor (PR) status, human epidermal growth factor receptor 2 (HER2) status, lymphovas-
cular invasion (LVI), Ki67 index, T stage, N stage, and implementation of (neo)adjuvant
chemotherapy. We also collected genetic information about TP53 mutation status and
characteristics of TP53 mutation. Patients diagnosed with recurrent breast cancer and de
novo metastatic breast cancer were excluded. We also excluded bilateral breast cancer to
minimize bias from concomitant pathologies.

T stage and N stage were determined using surgical specimens according to the Amer-
ican Joint Committee on Cancer Guidelines (AJCC) (8th edition). Hormone receptor (HR),
ER and PR status was determined from surgical specimen using immunohistochemistry
(IHC). Positive for ER and PR were defined as those in which more than 1% of tumor
nuclei in the sample were stained [26]. HER2 status was assessed following the recommen-
dation of the 2013 American Society of Clinical Oncology (ASCO)/College of American
Pathologist (CAP) [27]. Triple-negative breast cancer (TNBC) refers to tumors that are
negative for ER and PR, and do not exhibit HER2 overexpression, as determined by IHC.
In this study, we applied a 20% threshold, commonly used in luminal-like subtypes, to
classify Ki67 status as high or low, establishing a broadly applicable standard across all
breast cancer subtypes [28,29]. Neoadjuvant and adjuvant systemic therapies, including
chemotherapy, radiotherapy and endocrine therapy, were administered in accordance with
established guidelines based on the age at diagnosis, molecular subtype, and axillary lymph
node status.

2.2. Mutational Analysis of TP53 Gene

Mutational analysis of exons 5-9 of the TP53 gene was performed using polymerase
chain reaction—denaturing high performance liquid chromatography (PCR-DHPLC) and
direct sequencing. Approximately 1 mg of samples from either biopsies or surgical speci-
mens, freshly frozen of paraffin-embedded, were cut into pieces, and DNA was extracted
using the Easy-DNATM kit (Invitrogen, Carlsbad, CA, USA) with 100 ng/µL of DNA used
for each PCR reaction, where each PCR was performed in a 20 µL reaction mixture con-
taining 100 ng of DNA, 20 µM of forward and reverse primers, 2 µL of Taq buffer (10×),
2.5 mM of deoxyribonucleotide triphosphates (dNTPs), 2.5 mM of MgCl2, and 0.7 U of
Taq DNA polymerase, under conditions of 95 ◦C for 5 min, followed by 50 cycles of 94 ◦C
for 10 s, 62 ◦C for 10 s, 72 ◦C for 15 s, and a final extension at 72 ◦C for 5 min in a DNA
terminal cycler (Perkin-Elmer, GeneAmp PCR System 2400, Waltham, MA, USA), after
which the PCR products were kept at 4 ◦C until further analysis, initially screened for
mutations using DHPLC (WAVE; Transgenomic, Omaga, NE, USA), followed by sequence
analysis if heteroduplex formation was detected, with DHPLC performed by mixing 20 µL
of each exon PCR product with an equal amount of the corresponding wild-type PCR
product, incubating at 95 ◦C for 5 min, and then at room temperature, and separating
heteroduplex and homoduplex strands using triethylammonium acetate (TEAA) absorbed
into the surface of the DNASep Cartridge (Transgenomic, USA) through an association
with the negatively charged phosphate backbone of DNA, with elution using acetonitrile
(ACN), in a gradient solution of buffer A (0.1 M TEAA solution, pH 7.0) and buffer B
(0.1 M TEAA and 25% ACN, pH 7.0), with buffer C (8% ACN (syringe washing solution))
and buffer D (75% ACN (DNASep Cartridge Ultra-Clean and Storage Solution)) used for
cleansing, while the stationary phase involved the DNASep Cartridge (Transgenomic, USA)
column in an alkylated nonporous poly(styrene-divinylbenzene) form, washed with buffer
D at 0.9 mL/min for 60 min, with the detection of separated DNA checked for purity by
injecting 0.5 µL of the non-denatured specimen into the column at 0.9 mL/min at 50 ◦C,
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with the temperature elevated to 63 ◦C and the eluted DNA detected using an ultraviolet
light detector at 260 nm, with analysis showing heteroduplexes eluted more rapidly than
homoduplexes and appearing as separate forms in the chromatogram, and the DHPLC
device operated per the manufacturer’s instruction, with denatured PCR products at 95 ◦C
for 5 min, annealed at 55 ◦C for about 40 min, and monitored as a chromatogram, where
heterogenous molecules typically displayed an additional peak compared to homozygous
molecules, which had only one peak, and sequence analysis was performed using com-
mercial reagents and an automated sequencer (ABI Prism BigDye Terminator v3.1 cycles
sequencing kit and ABI 310 Genetic Analyzer; Applied Biosystems, Foster City, CA, USA),
with both forward and reverse sequenced to confirm nucleotide alterations.

2.3. Definition of TP53 Mutation Characteristics and Oncologic Outcomes

In this study, we classified cases with mutations identified in exons 5-9 through DNA
sequencing, as previously described [30,31], into the TP53-mutated group and cases with
no mutations detected into the TP53 wild-type group. To validate the clinical relevance of
the characteristics of TP53 mutation, we subcategorized the TP53-mutated group into some
categories. Since most TP53 mutations are missense mutations and are predominantly
found in the DBD, we performed subgroup analyses by subdividing the TP53-mutated
group into missense mutation vs. other mutations and DBD vs. other locations. Ad-
ditionally, we distinguished and analyzed cases with missense hotspot mutations (mis-
sense mutations situated at codon 175, 220, 245, 248, 273, and 282) separately from other
cases. The characteristics of TP53 mutations within the TP53-mutated group are visualized
in Figure 1.
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Figure 1. Characteristics of TP53 mutations in patients within the TP53-mutated group. More than
half of the identified TP53 mutations were missense mutations, with the majority occurring in the
DNA-binding domain (DBD). Each circle represents a codon where a TP53 mutation occurred, with
mutation type distinguishing by color. The number of circles indicate the total number of mutations
occurring within specific codons. (Abbreviation, TAD; transactivation domain, PRD; proline-rich
domain, OD; oligomerization domain, CTD; carboxy-terminal domain).
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Recurrence-free survival (RFS) was defined as the time from treatment of breast
cancer (surgery or neoadjuvant chemotherapy) to relapse or death from any cause. Tumor
recurrence occurring in the parenchyma of the ipsilateral breast affected by the primary
cancer was defined as local recurrence (LR), and metastasis to the ipsilateral axillary
lymph node, internal mammary node, and supraclavicular node were classified as regional
recurrence (RR). Metachronous breast cancer (recurrence affecting the contralateral breast
diagnosed after 1 year from the first cancer diagnosis [32]) was also defined as regional
recurrence in this study. Metastasis to all other organs was defined as distant metastasis
(DM). Overall survival (OS) was defined as the time from the treatment to death from
any cause.

2.4. Statistical Analysis

We utilized the chi-square test or Fisher’s exact test to compare the proportion of
de-mographic and clinicopathological variables between the two groups based on TP53
mutation status. Comparisons among TP53-mutated subgroups, based on characteristics
of TP53 mutation including mutation types and locations, were also conducted. Onco-
logic outcomes between the two groups, classified according to TP53 mutation status and
characteristics, were compared using a stratified log-rank test at a two-sided significance
level of 0.05. A stratified Cox regression analysis was performed to estimate hazard ratio
(HR) and 95% confidence intervals (CIs) for oncologic outcome. To estimate the HR of each
clinicopathological variable and TP53 mutation status for RFS and OS, we performed Cox
proportional hazard model. Multivariable Cox analyses were performed using all variables
with p-value (p) ≤ 0.05. Statistical significance was set as p ≤ 0.05. All data analysis was
conducted with SPSS software version 26.0 (SPSS Inc., Chicago, IL, USA) and GraphPad
Prism software version 10.0 (GraphPad software Inc., Boston, MA, USA).

3. Results
3.1. Baseline Patient Characteristics

Between January 2007 and December 2015, 650 patients underwent TP53 mutation
testing using preoperative biopsies or surgical specimens at Gangnam Severance Hospital.
Among these, there were 172 patients (26.5%) who detected TP53 mutations. Of the patients
with TP53 mutations, 34 (19.8%) had missense hotspot mutations (Figure 2).
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Table 1 presents the demographic and clinicopathological characteristics of patients
according to TP53 mutation status. The median age in both groups was 52 years. Compared
to the TP53 wild-type group, the TP53-mutated group had a higher proportion of ductal-
type breast cancer (86.0% vs. 76.6%; p = 0.016), more frequent histologic grade III tumors
(61.6% vs. 28.9%, p < 0.001), an increased rate of LVI (34.5% vs. 17.4%, p < 0.001), and a
higher Ki67 index (73.8% vs. 31.4%, p < 0.001). Additionally, the TP53-mutated group had a
higher incidence of HR-negative tumor (64.7% vs. 35.9%, p < 0.001) and a greater frequency
of HER2-positive tumors (44.2% vs. 26.8%, p < 0.001). When categorized by molecular
subtype, the TP53-mutated group exhibited a lower proportion of HR-positive/HER2-
negative tumors (18.0% vs. 50.9%) and higher proportions of HER2-positive (44.2% vs.
29.4%) and triple-negative tumors (37.8% vs. 19.7%) compared to the TP53 wild-type group
(p < 0.001).

After excluding patients who received neoadjuvant chemotherapy, the distribution
of T stage in the TP53 wild-type group was 54.6% (253/463) for T1, 42.1% (195/463) for
T2, and 3.2% (15/463) for T3-4. In the TP53-mutated group, the distribution was 42.9%
(69/161) for T1, 53.4% (86/161) for T2, and 3.7% (6/161) for T3-4. There was no significant
difference in the proportion of each N stage between the two groups (p = 0.922). In both
groups, regardless of TP53 mutation status, the mastectomy rate was higher than the
breast-conserving surgery (BCS) rate; however, the mastectomy rate was lower in the TP53-
mutated group compared to the TP53 wild-type group (57.0% vs. 66.7%; p = 0.022). The
majority of patients in both groups underwent sentinel lymph node biopsy (SLNB) alone,
and while the axillary lymph node dissection (ALND) rate was higher in the TP53-mutated
group, this difference was not statistically significant (18.0% vs. 12.6%; p = 0.152).

Table 1. Baseline patients’ characteristics according to TP53 mutation status.

TP53-Mutated
(N = 172)

TP53 Wild-Type
(N = 478) p-Value

Age, median [IQR] 52 [27–78] 52 [51–87] 0.284
Histologic subtype 0.016

Ductal 148 (86.0) 366 (76.6)
Lobular 2 (1.2) 23 (4.8)
Others and Mixed 22 (12.8) 89 (18.6)

Histologic grade <0.001
Grade III 106 (61.6) 138 (28.9)
Grade I-II 66 (38.4) 340 (71.1)

HR status # <0.001
Positive 60 (35.3) 261 (64.1)
Negative 110 (64.7) 146 (35.9)

HER2 status <0.001
Positive 76 (44.2) 128 (26.8)
Negative 96 (55.8) 350 (73.2)

Molecular subtype # <0.001

HR-positive/HER2-negative 30 (17.6) 209 (51.2)

HER2-positive 75 (44.1) 113 (22.7)
Triple-negative 65 (38.2) 86 (21.1)

LVI # <0.001
Positive 59 (34.5) 83 (17.4)
Negative 112 (65.5) 395 (82.6)

Ki67 index (cutoff 20%) <0.001
High 127 (73.8) 150 (31.4)
Low 45 (26.2) 328 (68.6)

Neoadjuvant chemotherapy 0.062
Yes 11 (6.4) 15 (3.1)
No 161 (93.6) 463 (96.9)

T stage * 0.035
T1 69 (42.9) 253 (54.6)
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Table 1. Cont.

TP53-Mutated
(N = 172)

TP53 Wild-Type
(N = 478) p-Value

T2 86 (53.4) 195 (42.1)
T3-4 6 (3.7) 15 (3.2)

N stage * 0.826
N0 97 (62.2) 274 (60.8)
N1 47 (30.1) 135 (29.9)
N2-3 12 (7.7) 42 (9.3)

Breast operation 0.022
BCS 74 (43.0) 159 (33.3)
Mastectomy 98 (57.0) 319 (66.7)

Axilla surgery 0.152
No approach 6 (3.5) 12 (2.5)
SLNB 135 (78.5) 406 (84.9)
ALND 31 (18.0) 60 (12.6)

Adjuvant chemotherapy * <0.001
Yes 140 (87.0) 314 (67.8)
No 21 (13.0) 149 (32.2)

Post-operative radiotherapy 0.007
Yes 96 (55.8) 210 (43.9)
No 76 (44.2) 268 (56.1)

# Patients for whom accurate test values could not be confirmed were excluded. * Patients who received
neoadjuvant chemotherapy or did not undergo surgery were excluded. Abbreviations, IQR; inter-quartile range,
HR, hormone receptor, HER2; human epidermal growth factor receptor 2, LVI; lymphovascular invasion, BCS;
breast-conserving surgery, SLNB; sentinel lymph node biopsy, ALND; axillary lymph node dissection.

As previously mentioned, all patients included in the study received established stan-
dard treatment based on a comprehensive evaluation of their age at diagnosis, molecular
subtype, and nodal metastasis. Patients in the TP53-mutated group were more likely to
receive adjuvant chemotherapy (87.0% vs. 67.8%, p < 0.001) and post-operative radio-
therapy (55.8% vs. 43.8%; p = 0.007) compared to those in the TP53 wild-type group. In
HER2-positive subtype, a total of 29 patients (14.2%, 29/204) did not receive HER2-targeted
therapy due to advanced age or comorbidities; however, the difference in the proportion of
these patients between the TP53-mutated and TP53 wild-type groups was not statistically
significant (12.0% in the TP53-mutated group vs. 17.7% in the TP53 wild-type group;
p = 0.289) (data not shown).

At the time of data cut-off of this study, the median follow-up period was 86.2 months
[IQR, 60.3–111.8] in the TP53-mutated group and 97.4 months [IQR, 63.6–134.4] in the TP53
wild-type group.

3.2. Oncologic Outcomes According to TP53 Mutation Status

With an extended follow-up period, we assessed 5-year and 10-year oncologic out-
comes by using Kaplan-Meier analysis and Cox regression analysis. The RFS rates at 5-year
were 88.1% (95% CIs, 84.1–91.1) in the TP53 mutated-group, 93.7% (95% CIs, 91.0–95.7) in
the TP53 wild-type group, and the 10-year RFS rates were 83.5% (95% CIs, 76.2–88.8) in the
TP53-mutated group, 86.6% (95% CIs, 80.2–91.1) in the TP53 wild-type group, showing a
statistically significant difference between the two groups (HR, 1.67; 95% CIs, 1.06–2.64;
p = 0.026; Figure 3A).

The OS rates at 5-year were 89.8% (95% CIs, 83.8–93.6) in the TP53-mutated group and
95.3% (95% CIs, 92.8–97.0) in the TP53 wild-type group, while the 10-year OS rates were
88.1% (95% CIs, 81.7–92.4) in the TP53-mutated group and 91.0% (95% CIs, 87.3–93.6) in
the TP53 wild-type group, indicating that the TP53-mutated group had a worse prognosis
compared to the TP53 wild-type group (HR, 3.02; 95% CIs, 1.43–6.70; p = 0.003; Figure 3B).
However, when recurrence events were analyzed by sites, there were no differences between
the two groups in terms of local recurrence-free survival (LRFS), regional recurrence-free
survival (RRFS), and distant metastasis-free survival (DMFS) (Figure S1).
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We utilized a Cox regression model to explore predictive factors for RFS and OS.
Univariable analysis showed that TP53 mutation was significantly associated with a shorter
period of RFS (HR, 1.669; 95% CIs, 1.058–2.635; p = 0.028; Table 2) and OS (HR, 3.092;
95% CIs, 1.427–6.698; p = 0.004; Table 3). In multivariable analysis, which included all
predictors with a p ≤ 0.05 from the univariable Cox analysis, TP53 mutation remained an
independent predictor of worse RFS (HR, 1.29; 95% CIs, 1.008–1.832; p = 0.046; Table 2) and
OS (HR, 2.488; 95% CIs, 1.407–3.788; p = 0.044; Table 3). Additionally, the multivariable
Cox analysis indicated that the presence of LVI and a high Ki67 index were significantly
associated with worse RFS (Table 2), and the presence of LVI was also an independent
predictor of worse OS (Table 3). In the univariable analysis, large tumor size (more than
2 cm) was identified as a factor associated with worse RFS and OS, but it was not statistically
significant in the multivariable analysis. In addition, factors such as young age at diagnosis,
high histologic grade, HR and HER2 positivity, nodal involvement, breast preservation
during surgery, and the use of HER2-targeted therapy were not significantly associated
with survival outcomes in our study.
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Figure 3. Kaplan-Meier curve for (A) RFS and (B) OS in patients stratified by TP53 mutation status.
(A) Stratified log-rank test and Cox regression analysis showed a significant different between the
two groups (The 5-year RFS rates: 88.1% (95% CIs, 84.1–91.1) in the TP53-mutated group vs. 93.7%
(95% CIs, 91.0–95.7) in the TP53 wild-type group; the 10-year RFS rates; 83.5% (95% CIs, 76.2–88.8)
in the TP53-mutated group vs. 86.6% (95% CIs, 80.2–91.1) in the TP53 wild-type group) (HR, 1.67;
95% CIs 1.06–2.64; p = 0.026). (B) Stratified log-rank test and Cox regression analysis showed a
significant difference between the two groups (The 5-year OS rate: 89.8% (95% CIs, 83.8–93.6) in the
TP53-mutated group vs. 95.3% (95% CIs, 92.8–97.0) in the TP53 wild-type group; the 10-year OS rate:
88.1% (95% CIs, 81.7–92.4) in the TP53-mutated group vs. 91.0% (95% CIs, 87.3–93.6) in the TP53
wild-type group) (HR, 3.02; 95% CIs, 1.43–6.70; p = 0.003).

3.3. Subgroup Analysis Based on Mutation Types Within the TP53-Mutated Group

Since most TP53 mutations are known to be missense mutations, we conducted
a subgroup analysis to examine potential differences in oncologic outcomes between
missense mutation and other mutation types. Among the 172 cases with confirmed
TP53 mutations, 96 (55.8%) were missense mutations, and 76 (44.2%) were other types
of mutations.

After excluding patients who received neoadjuvant chemotherapy, the missense
mutation subgroup had a higher proportion of tumors ≤ 2 cm, and a lower proportion of
tumors > 2 cm compared to the other mutations subgroup (T1 tumors; 50.6% in the
missense mutation subgroup vs. 33.3% in the other mutations subgroup; p = 0.026). Con-
sequently, patients in the missense mutation subgroup underwent BCS more frequently
(53.1% vs. 30.3%; p = 0.003) and were more likely to receive post-operative radiotherapy
(63.5% vs. 46.1%; p = 0.022) than those in the other mutations subgroup. However, no
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differences were observed between the two groups in the proportion of other clinico-
pathologic variables with surgery and treatment implementation. Detailed information is
presented in Table S1.

Table 2. Univariable and multivariable analyses for RFS.

Variable
Univariable Multivariable

HR 95% CIs p-Value HR 95% CIs p-Value

Age ≤ 50 years (ref. > 50 years) 1.24 0.813–1.893 0.318
TP53 mutation (ref. TP53 wild-type) 1.669 1.058–2.635 0.028 1.29 1.008–1.832 0.046

Histologic grade III (ref. HG I-II) 1.123 0.730–1.730 0.597
HR positive (ref. HR negative) # 1.234 0.781–1.950 0.367

HER2 positive (ref. HER2 negative) 0.718 0.439–1.172 0.185
LVI present (ref. LVI absent) # 2.604 1.686–4.021 <0.001 2.366 1.495–3.747 <0.001

Ki67 high (≥20%) (ref. Ki67 < 20%) 1.829 1.198–2.790 0.005 1.607 1.030–2.506 0.037
Tumor > 2 cm (ref. Tumor ≤ 2 cm) * 1.743 1.115–2.724 0.015 1.355 0.843–2.178 0.209

Nodal involvement (ref. Node-negative) * 1.3 0.839–2.014 0.241
BCS (ref. Mastectomy) 1.383 0.903–2.117 0.136

HER2-targeted therapy (ref. no treatment) 0.774 0.455–1.316 0.343
# Patients without definite data were excluded. * Patients who underwent neoadjuvant chemotherapy were
excluded. Abbreviations, HR, hazard ratio, CIs; confidence intervals, HR, hormone receptor, HER2; human
epidermal growth factor receptor 2, LVI; lymphovascular invasion, BCS; breast-conserving surgery.

Table 3. Univariable and multivariable analyses for OS.

Variable
Univariable Multivariable

HR 95% CIs p-Value HR 95% CIs p-Value

Age ≤ 50 years (ref. > 50 years) 0.812 0.375–1.757 0.597
TP53 mutation (ref. TP53 wild-type) 3.092 1.427–6.698 0.004 2.488 1.407–3.788 0.044

Histologic grade III (ref. HG I-II) 0.909 0.405–2.038 0.816
HR positive (ref. HR negative) # 0.549 0.244–1.238 0.148

HER2 positive (ref. HER2 negative) 1.017 0.442–2.339 0.968
LVI present (ref. LVI absent) # 2.604 1.686–4.021 <0.001 2.366 1.495–3.747 <0.001

Ki67 high (≥ 20%) (ref. Ki67 < 20%) 2.419 1.096–5.340 0.029 2.35 0.966–5.717 0.06
Tumor > 2 cm (ref. Tumor ≤ 2 cm) * 2.781 1.079–7.170 0.034 2.061 0.765–5.551 0.153

Nodal involvement (ref. Node-negative) * 1.69 0.718–3.980 0.23
BCS (ref. Mastectomy) 0.927 0.413–2.085 0.855

HER2-targeted therapy (ref. no treatment) 0.914 0.367–2.276 0.846
# Patients without definite data were excluded. * Patients who underwent neoadjuvant chemotherapy were
excluded. Abbreviations, OS; overall survival, HR, hazard ratio, CIs; confidence intervals, HR, hormone receptor,
HER2; human epidermal growth factor receptor 2, LVI; lymphovascular invasion, BCS; breast-conserving surgery.

With a median follow-up period of 86.1 months (IQR, 54.1–110.8), there were no
significant differences in RFS and OS between the two groups. The 5-year RFS rates were
89.9% (95% CIs, 81.4–94.6) in the missense mutation group and 82.3% (95% CIs, 70.8–89.5)
in the other mutations group, whereas the rates of RFS at 10 years were 86.3% (95% CIs,
76.3–92.3) in the missense mutation group and 79.6% (95% CIs, 67.0–87.8) in the other
mutations group (HR, 0.63; 95% CIs, 0.30–1.32; p = 0.217; Figure 4A). The 5-year OS
rates were 93.9% (95% CIs, 84.5–97.7) in the missense hotspot mutation group and 93.2%
(95% CIs, 85.4–96.9) in the other mutation group, while the 10-year OS rates were 88.0%
(95% CIs, 76.3–94.2) in the missense mutation group and 93.2% (95% CIs, 85.4–96.9) in the
other mutations group (HR, 1.63; 95% CIs, 0.55–4.84; p = 0.378; Figure 4B). Additionally,
LRFS, RRFS, and DMFS did not differ significantly between the two groups (Figure S2).



Cancers 2024, 16, 3899 10 of 21

3.4. Subgroup Analysis Based on Locations of Mutation Within the TP53-Mutated Group

Next, focusing on the patient with TP53 mutation, we conducted a subgroup anal-
ysis to investigate oncologic outcomes based on the locations of TP53 mutations. First,
we classified the location of TP53 mutations into the DBD and other locations. In to-
tal, there were 151 cases (87.8%) in the DBD subgroup and 21 cases (12.2%) in the other
locations subgroup.
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other mutations group; the 10-year RFS rates: 86.3% (95% CIs, 76.3–92.3) in the missense mutation
group vs. 79.6% (95% CIs, 67.0–87.8) in the other mutations group) (HR, 0.63; 95% CIs, 0.30–1.32;
p = 0.217). (B) Similarly, there was no significant difference between the two groups (The 5-year OS
rates: 93.9% (95% CIs, 84.5–97.7) in the missense mutation group vs. 93.2% (95% CIs, 85.4–96.9) in the
other mutations group; the 10-year OS rates: 88.0% (95% CIs, 76.3–94.2) in the missense mutation
group vs. 93.2% (95% CIs, 85.4–96.9) in the other mutations group) (HR, 1.63; 95% CIs, 0.55–4.84;
p = 0.378).

Compared to the other locations subgroup, the DBD subgroup had a lower proportion
of HR-positive tumors (32.0% vs. 60.0%; p = 0.014). When tumors were classified by
molecular subtype, the DBD subgroup exhibited a lower proportion of HR-positive/HER2-
negative and HER2-positive tumors, and a higher proportion of triple-negative tumors
(HR-positive/HER2-negative; 16.0% vs. 30.0%, HER2-positive; 42.0% vs. 60.0%, triple-
negative; 42.0% vs. 10.0%; p = 0.018). However, there were no differences between the two
groups in the proportion of the other collected variables (Table S3).

As with TP53 mutation type, there were no differences in oncologic outcomes between
the two groups based on mutation locations. The 5-year RFS rates were 86.8% (95% CIs,
79.9–91.5) in the DBD group and 85.2% (95% CIs, 60.6–95.0) in the other locations group;
and the 10-year RFS rates were 83.2% (95% CIs, 75.2–88.9) in the DBD group and 85.2%
(95% CIs, 60.6–95.0) in the other locations group (HR, 0.79; 95% CIs, 0.24–2.63; p = 0.378;
Figure 5A). The OS rates at 5 years were 93.2% (95% CIs, 87.4–96.4) in the DBD group and
95.2% (95% CIs, 70.7–99.3) in the other locations group, whereas the 10-year OS rates were
91.4% (95% CIs, 84.9–95.2) in the DBD group and 88.4% (95% CIs, 60.3–97.1) in the other
locations group (HR, 0.24; 95% CIs, 0.27–5.58; p = 0.781; Figure 5B). LRFS, RRFS, and DMFS
did not differ significantly between the two groups (Figure S3).
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3.5. Subgroup Analysis Based on the Presence of Missense Hotspot Mutations Within the
TP53-Mutated Group

Lastly, we analyzed oncologic outcomes by distinguishing between cases with mis-
sense hotspot domains and those without within the patients with TP53 mutation. The
majority of mutations identified at hotspot codons were missense mutations (39/44, 88.6%).
However, no statistically significant differences in patients’ characteristics were observed
between the two groups (Table S3).
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Figure 5. Kaplan-Meier curve for (A) RFS and (B) OS in the TP53-mutated group, stratified by
mutation locations. To compare oncologic outcomes, we used stratified log-rank test and Cox
regression analysis. (A) There was no significant difference between the two groups (the 5-year
RFS rates: 86.8% (95% CIs 79.9–91.5) in the DBD group vs. 85.2% (95% CIs, 60.6–95.0) in the other
locations group; the 10-year RFS rates: 83.2% (95% CIs, 75.2–88.9) in the DBD group vs. 85.2%
(95% CIs, 60.6–95.0) in the other locations group) (HR, 0.79; 95% CIs, 0.24–2.63; p = 0.378). (B) There
was also no significant difference between the two groups (the 5-year OS rates: 93.2% (95% CIs,
87.4–96.4) in the DBD group vs. 95.2% (95% CIs, 70.7–99.3) in the other locations group; the 10-year
OS rates: 91.4% (95% CIs, 84.9–95.2) in the DBD group vs. 88.4% (95% CIs, 60.3–97.1) in the other
locations group) (HR, 1.24; 95% CIs, 0.27–5.58; p = 0.781).

The median follow-up period was 95.1 months (IQR, 81.9–98.8) in the missense hotspot
mutations group and 83.7 months (IQR, 75.6–89.3) in the other mutations group. At 5 years,
the RFS rates were 100% in the missense hotspot mutations group and 83.4% (95% CIs,
75.6–88.8) in the other mutations group. The Kaplan-Meier estimates of 10-year RFS rates
were 100% in the missense hotspot mutations group and 79.6% (95% CIs, 70.8–86.0) in
the other mutations group, indicating that the missense hotspot mutations group had a
better oncologic outcome than the other mutations group (HR, 0.15; 95% CIs, 0.06–0.39;
p = 0.033; Figure 6A). However, there was no significant difference in OS between
the two groups (HR, 0.70; 95% CIs, 0.18–2.66; p = 0.636; Figure 6B). Additionally, the
RFS rates stratified by recurrence sites were not significantly different between the two
groups (Figure S4).

3.6. Clinical Relevance of TP53 Within Molecular Subtypes of Breast Cancer

As part of an exploratory analysis, we examined the clinical relevance of TP53 muta-
tions within specific molecular subtypes. After excluding 72 patients for whom IHC-based
HR status was unavailable, there were 239 patients (41.3%) with HR-positive/HER2-
negative (HR+/HER2-) breast cancer, 188 patients (32.5%) with HER2-positive breast
cancer, and 151 patients (26.1%) with TNBC. The proportion of patients with confirmed
TP53 mutations in each subtype were 30 patients (12.6%) in the HR+/HER2- subtype,
75 patients (39.9%) in the HER2-positive subtype, and 65 patients (43.0%) in the TNBC
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group. When comparing survival outcomes based on TP53 mutation status within each
subtype using the Kaplan-Meier estimated model, there were no differences in RFS or OS
in HR+/HER2- (Figure 7A,B) and HER2-positive breast cancer (Figure 7C,D). However, in
TNBC, patients with TP53 mutation had worse RFS compared to those with TP53 wild-type
(HR, 2.13; 95% CIs, 1.01–4.50; p = 0.046; Figure 7E). Nevertheless, there was no statistical
difference in OS according to TP53 mutation status in TNBC (HR, 1.83; 95% CIs, 0.58–5.73;
p = 0.295; Figure 7F). In addition, when comparing survival outcomes based on HER2
overexpression status within the TP53-mutated group, no statistically significant differences
were observed (Figure S5).
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79.6% (95% CIs, 70.8–86.0) in the other mutations group (HR, 0.15; 95% CIs, 0.06–0.39; p = 0.028). (B) 
Stratified log-rank test and Cox regression analysis showed that there was no significant difference 
between the two groups (the 5-year OS rates: 93.3% (95% CIs, 75.9–98.3) in the missense hotspot 
mutations group vs. 93.6% (95% CIs, 87.6–96.7) in the other mutations group; the 10-year OS rates; 
93.3% (95% CIs, 75.9–98.3) in the missense hotspot mutations group vs. 90.4% (95% CIs, 83.3–94.6) 
in the other mutations group (HR, 0.70; 95% CIs, 0.18–2.66; p = 0.636). 

3.6. Clinical Relevance of TP53 Within Molecular Subtypes of Breast Cancer 
As part of an exploratory analysis, we examined the clinical relevance of TP53 muta-

tions within specific molecular subtypes. After excluding 72 patients for whom IHC-based 
HR status was unavailable, there were 239 patients (41.3%) with HR-positive/HER2-neg-
ative (HR+/HER2-) breast cancer, 188 patients (32.5%) with HER2-positive breast cancer, 
and 151 patients (26.1%) with TNBC. The proportion of patients with confirmed TP53 mu-
tations in each subtype were 30 patients (12.6%) in the HR+/HER2- subtype, 75 patients 
(39.9%) in the HER2-positive subtype, and 65 patients (43.0%) in the TNBC group. When 
comparing survival outcomes based on TP53 mutation status within each subtype using 
the Kaplan-Meier estimated model, there were no differences in RFS or OS in HR+/HER2- 
(Figure 7A,B) and HER2-positive breast cancer (Figure 7C,D). However, in TNBC, patients 
with TP53 mutation had worse RFS compared to those with TP53 wild-type (HR, 2.13; 

Figure 6. Kaplan-Meier curve for (A) RFS and (B) OS in patients with TP53 mutation, stratified by
the presence or absence of missense hotspot mutations. (A) By utilizing stratified log-rank test and
Cox regression analysis, patients with missense hotspot mutations had a longer RFS period (the
5-year RFS rates: 100% in the missense hotspot mutations group vs. 83.4% (95% CIs, 75.6–88.8) in
the other mutations group; the 10-year RFS rates: 100% in the missense hotspot mutations group
vs. 79.6% (95% CIs, 70.8–86.0) in the other mutations group (HR, 0.15; 95% CIs, 0.06–0.39; p = 0.028).
(B) Stratified log-rank test and Cox regression analysis showed that there was no significant difference
between the two groups (the 5-year OS rates: 93.3% (95% CIs, 75.9–98.3) in the missense hotspot
mutations group vs. 93.6% (95% CIs, 87.6–96.7) in the other mutations group; the 10-year OS rates;
93.3% (95% CIs, 75.9–98.3) in the missense hotspot mutations group vs. 90.4% (95% CIs, 83.3–94.6) in
the other mutations group (HR, 0.70; 95% CIs, 0.18–2.66; p = 0.636).
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Figure 7. Kaplan-Meier curve for RFS and OS according to TP53 mutation status in each subtype. In
HR+/HER2-subtype, there was no difference in (A) RFS (HR, 0.47; 95% CIs, 0.17–1.34; p = 0.287) or
(B) OS (HR, 1.82; 95% CIs; 0.12–26.73; p = 0.585) between TP53-muated group and TP53 wild-type
group. Similarly, in the HER2-positive subtype, no differences were observed in (C) RFS (HR, 1.45;
95% CIs; 0.55–3.81; p = 0.417) or (D) OS (HR, 4.03; 95% CIs; 0.88–18.5; p = 0.07) based on TP53
mutation status. In the TNBC group, (E) TP53-mutated tumors showed worse RFS compared to
the TP53 wild-type group (HR, 2.13; 95% CIs; 1.01–4.50; p = 0.046). However, (F) although there
was a trend toward worse OS in TP53-mutated tumors, it was not statistically significant (HR, 1.83;
95% CIs, 0.58–5.73; p = 0.295).
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4. Discussion

In this retrospective cohort study, we assessed the clinical relevance of TP53 mutations
in breast cancer patients, including all subtypes and treatments, and conducted subgroup
analyses based on the characteristics of TP53 mutations within the TP53-mutated group.
TP53 mutations were more frequent in breast cancer with more aggressive clinicopatho-
logical variables, such as large tumors, tumors with LVI or high histologic grade, and
overexpression of HER2. Patients with TP53 mutations had shorter RFS and OS compared
to patients with TP53 wild-type tumors. However, within the TP53-mutated group, the
oncologic outcomes did not significantly differ between subgroups based on the charac-
teristics of the TP53 mutations. Missense mutation, mutation situated on DBD, and even
missense mutation situated in hotspots, which are all well-known dominant characteristics
of TP53 mutation, did not have clinical relevance compared to other types or locations of
TP53 mutations. Although patients with missense hotspot mutations in the TP53-mutated
group had a longer RFS period compared to other patients, there was no difference in
OS rate. Therefore, the prognostic impact of missense hotspot mutations of TP53 gene
remains questionable.

Although TP53 mutations are found in approximately 30% of all breast cancers [13],
the proportion of these mutations varies by tumor subtypes. Furthermore, due to the
differing mechanism of p53 protein among tumor subtypes and treatments, most studies
on the clinical relevance of TP53 mutations in breast cancer have been conducted within
specific subtypes or treatments. Given that p53 regulates cell response to DNA damage,
there have been several studies investigating the role of TP53 mutations in patients under-
going chemotherapy or radiation, which induces tumor cell damage. Early preclinical trials
indicated that p53 plays a role in regulating apoptosis or cell cycle arrest following cell
damage such as radiation or systemic anticancer treatments [33–36]. Subsequent studies
have shown that breast cancer patients with TP53 mutations often have higher pathologic
complete response (pCR) rates following neoadjuvant chemotherapy [37–40]. Otherwise,
there were studies showing neutral and negative results regarding the association between
TP53 mutations and pCR rates following neoadjuvant chemotherapy [41–43]. Most of
previous studies had small sample sizes and used different chemotherapy regimens and
methods for detecting TP53 mutations, making it challenging to define the clinical rele-
vance of TP53 mutations. Recently, a meta-analysis of 26 studies involving 3476 breast
cancer patients who underwent neoadjuvant chemotherapy found that those with TP53
mutations had a higher pCR rate [20]. However, even though this study confirmed the
clinical relevance of TP53 mutations through a sizable cohort, it also had the limitation of
inconsistent TP53 mutation detecting methods across the included studies. Additionally,
most cases receiving neoadjuvant chemotherapy were HER2-positive breast cancer or
TNBC. Therefore, it is difficult to consider these studies as having a balanced representation
of all breast tumor subtypes.

ER-positive breast cancers account for about 70% of all breast cancers, making them
the most prevalent subtype. In ER-positive breast tumors, the frequency of TP53 mutations
is lower than in other subtypes [40]; however, when these mutations are present, they
are associated with a poor prognosis. Many studies presented that TP53 mutations could
lead to alterations in the p53 protein, potentially causing endocrine resistance [44–46].
However, the relationship between TP53 mutations and survival outcomes in patients
receiving only hormone therapy has been controversial [40,45,47]. This is due to several
factors such as the small sample size, the detection of TP53 mutations primarily through
IHC, and the lack of information of additional treatments beyond hormone therapy. In
a meta-analysis examining the clinical relevance of TP53 mutations in patients receiving
only hormone therapy, it was found that patients with TP53 mutations had worse overall
survival compared to those without TP53 mutations [48]. Although a different dataset
with varying TP53 mutation detecting methods was utilized, we previously identified an
association between TP53 mutations and high 21-gene recurrence score in ER+HER2- breast
tumors [49]. This finding aligns with prior research indicating that TP53 mutations are
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associated with endocrine resistance in ER-positive breast tumors. Compared to ER-positive
breast cancer, ER-negative breast cancer accounts for a smaller proportion of all breast
tumors; however, the frequency of TP53 mutations is higher in ER-negative breast cancer.
TP53 mutation rates are higher in HER2-positive and TNBC (also referred to as basal-like
subtype) compared to luminal-type breast cancer, which are predominantly ER-positive
tumors [13,50–56]. Some studies indicated that the presence of TP53 mutations is associated
with poor prognosis and might confer resistance to chemotherapy in HER2-positive breast
cancer and TNBC [54,57–59]. However, some studies showed no difference in oncologic
outcomes based on TP53 mutation status in ER-negative tumors [60–64], or even suggested
that TP53 mutations are associated with better prognosis [39,65,66]. This trend has become
more pronounced in recent studies as chemotherapy regimens have continuously evolved
and the clinical use of new drugs, such as dual HER2 blockade and immune checkpoint
inhibitors, has increased. Consequently, determining the clinical significance of TP53
mutations in ER-negative breast cancer has become even more challenging. Given these
circumstances, conducting studies to determine the clinical relevance of TP53 mutations
across all subtypes and treatments involves many hurdles and interpreting the results is
also challenging.

Therefore, the strength of our study is its ability to assess long-term oncologic outcomes
using a large cohort that encompasses all breast cancer subtypes and treatments. Excluding
42 patients whose hormone receptor status was not clearly identified, the data for this study
included 253 HR-positive, HER2-negative tumors (41.6%), 204 HER2-positive cases (33.6%),
and 172 TNBC (28.3%), which means the distribution of tumor subtypes in the collected
data was well-balanced. To date, few studies have investigated the clinical relevance of
TP53 mutations using cohorts that included all breast cancer subtypes and treatments. In
most of these studies, patients with TP53 mutations were found to have worse survival
compared to the TP53 wild-type group [67–70]. However, these studies had limitations
such as small sample size, lack of follow-up data, and inconsistent treatments even within
the same subtype. This study, leveraging a large cohort from a single center, ensured
consistent treatments according to tumor subtypes and stage, thereby minimizing bias from
the data.

Another notable strength of our study is its focus on an Asian population, unlike most
previous research on the link between TP53 mutations and poor prognosis in breast cancer,
which has primarily included individuals of American and European descent. Large-scale
retrospective cohort studies evaluating the clinical relevance of TP53 mutations in Asian
breast cancer patients are still limited. Thus, our findings provide a unique opportunity to
contribute evidence that could support cross-ethnic comparisons and validate the clinical
implications of TP53 mutations in breast cancer. In addition, by collecting data from
patients who underwent TP53 mutation testing between 2007 and 2015, we were able to
secure comprehensive long-term follow-up data.

Furthermore, few studies have examined surgical outcomes based on the location and
type of TP53 mutations in patients with confirmed mutations, underscoring the significance
of our investigation. Given that mutations causing loss of DNA-binding can critically
affect the biological activity of p53 [71], there is increasing interest in understanding the
characteristics of different TP53 mutations. However, the clinical relevance of specific
mutation types and locations remains underexplored. For instance, an analysis of the
METABRIC cohort found that tumors harboring missense mutations in DNA-binding
motifs (DBM) had a higher risk of breast cancer-specific mortality compared to tumors with
non-missense mutations or missense mutations outside the DBM, though this difference
did not reach statistical significance [64]. Similarly, a study in China demonstrated that
metastatic breast cancer patients with TP53 mutations outside the DBD experienced poorer
disease-free survival and OS compared to those with TP53 wild-type, with particularly poor
outcomes observed in patients with non-missense mutations located within the DBD [72].
Pal, et al. assessed the 10 most common TP53 missense mutations using MCF10A cell lines
for preclinical investigation and found that mutations such as R248W, R273C, R248Q, and
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Y220C were associated with the most aggressive tumor phenotypes [73]. Børresen, et al.
reported that TP53 mutations in the zinc-binding domain were associated with worse
prognosis compared to mutations outside this domain [74]. Meanwhile, Kucera, et al.
observed no significant difference in survival outcomes between cases with mutations
in the L2/3 domain and those without such mutations [75]. Data from the BIG 02-98
phase III trial also indicated that only truncating mutations were predictive of increased
recurrence risk, while missense mutations showed no significant association [76]. Despite
these findings, many studies have faced challenges in achieving statistical significance due
to limited sample size, diverse patient populations, varying methods for analyzing TP53
mutations, and differences in study endpoints. In our study, we investigated the clinical
relevance of several characteristics within the TP53-mutated group, including missense
mutations and mutations located in the DBD, but did not find statistically significant results.
Nonetheless, considering the limited research focused on the clinical implications of TP53
mutations in early breast cancer among Asian populations, we believe that our findings
add valuable evidence to the existing literature and can help guide future research efforts.

Although our study allowed us to assess the clinical relevance of TP53 mutations and
their characteristics within a large cohort encompassing all tumor subtypes and treatments,
it still had inherent limitations. The first limitation is the sensitivity of TP53 mutations.
In our study, we identified TP53 mutations in exons 5-9 using PCR-DHPLC and direct
sequencing. Although most TP53 mutations occur within exon 5-9, this approach might
lead to false-negative results for mutations occurring in other regions, particularly in exons
2-4 and 10-11 [77,78]. In addition, somatic mutations identified by PCR-DHPLC might
not always be detectable by direct sequencing, because it has a threshold of detection
of approximately 15–20% [79]. To overcome this limitation, NGS is now used for DNA
sequencing in breast cancer [80]. However, since NGS was introduced at our institution in
2017, it was not applied for the patients retrospectively collected for this study. Another
limitation of our study is the reliance on older data, which may have constrained our
ability to control confounding variables effectively. Furthermore, although this study
included a broad cohort covering all breast cancer subtypes, the overall number of patients
and the subgroup sizes within the TP53 mutation category were limited, representing a
notable study limitation. In our Cox regression analysis assessing associations between
clinicopathological features and survival outcomes, several established prognostic and
predictive markers did not reach statistical significance, likely due to the sample size
constraints, which may have reduced the power to detect meaningful associations. Lastly,
since the data were collected 10 years ago, the treatment protocols at that time may differ
significantly from those currently used in clinical practice. Most patients in this study
did not receive neoadjuvant chemotherapy, and treatments such as CDK4/6 inhibitors,
immune checkpoint inhibitors, and dual HER2 blockade including pertuzumab were rarely
administered at that time. Nevertheless, based on this study, we expected that we could
conduct further research addressing a prognostic influence on the characteristics of TP53
mutations in breast cancer patients with advanced research methods and molecular studies.

5. Conclusions

Using consistently collected long-term follow-up data, we found that TP53 mutations
are associated with worse prognosis in breast tumors encompassing all subtypes and treat-
ments. Additionally, within the TP53-mutated group, there were no significant differences
in surgical outcomes based on the characteristics of TP53 mutations such as mutation types
and locations of mutation.
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