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Abstract: Background/Objectives: Artificial Intelligence (AI) in healthcare employs advanced al-
gorithms to analyze complex and large-scale datasets, mimicking aspects of human cognition. By
automating decision-making processes based on predefined thresholds, AI enhances the accuracy
and reliability of healthcare data analysis, reducing the need for human intervention. Schizophrenia
(SZ), a chronic mental health disorder affecting millions globally, is characterized by symptoms such
as auditory hallucinations, paranoia, and disruptions in thought, behavior, and perception. The SZ
symptoms can significantly impair daily functioning, underscoring the need for advanced diagnostic
tools. Methods: This systematic review has been conducted following the PRISMA (Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses) 2020 guidelines and examines peer-reviewed
studies from the last decade (2015–2024) on AI applications in SZ detection as well as classification.
The review protocol has been registered in the International Prospective Register of Systematic
Reviews (PROSPERO) under registration number: CRD42024612364. Research has been sourced from
multiple databases and screened using predefined inclusion criteria. The review evaluates the use of
both Machine Learning (ML) and Deep Learning (DL) methods across multiple modalities, including
Electroencephalography (EEG), Structural Magnetic Resonance Imaging (sMRI), and Functional
Magnetic Resonance Imaging (fMRI). The key aspects reviewed include datasets, preprocessing
techniques, and AI models. Results: The review identifies significant advancements in AI methods
for SZ diagnosis, particularly in the efficacy of ML and DL models for feature extraction, classification,
and multi-modal data integration. It highlights state-of-the-art AI techniques and synthesizes insights
into their potential to improve diagnostic outcomes. Additionally, the analysis underscores common
challenges, including dataset limitations, variability in preprocessing approaches, and the need
for more interpretable models. Conclusions: This study provides a comprehensive evaluation of
AI-based methods in SZ prognosis, emphasizing the strengths and limitations of current approaches.
By identifying unresolved gaps, it offers valuable directions for future research in the application of
AI for SZ detection and diagnosis.

Keywords: schizophrenia detection; machine learning; EEG signals; MRI scans; deep learning;
artificial intelligence; systematic review

1. Introduction

Schizophrenia (SZ), being a psychiatric condition, is noted for its deficits and distor-
tions in feelings, behavior, thought, communication, and cognitive functions [1–4]. It is
a psychological condition which impacts approximately 20 million individuals globally.
It involves aberrant brain growth, resulting in symptoms such as paranoia and hearing
unusual voices [5,6]. Individuals with SZ are more prone to experiencing premature death
compared to healthy individuals, owing to the high prevalence of medical conditions. SZ
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impacts both genders, although evidence shows that males might develop the condition
at an earlier age. Experts are investigating genetics and modern tools to understand the
brain’s structure [7–10].

A competent psychiatrist diagnoses SZ based on the signs and diagnostic assessments
to understand the individual’s background and state of mind [11]. New antipsychotic
medications have not improved recovery rates, indicating that their efficacy remains sta-
ble [12]. Neuroimaging can aid clinicians in early illness diagnosis [13]. Recent research
has used neuroscience and neuroimaging approaches, along with ML and DL, to automate
the diagnosis of SZ [14–16].

The world map in Figure 1 depicts the global burden of schizophrenia in 2021,
highlighting the necessity for focused healthcare efforts in areas with greater prevalence
rates [17]. The color gradient, which runs from bright yellow to dark orange, indicates
the rising prevalence of schizophrenia, with deeper colors signifying higher rates. Many
nations, including the majority of countries in Africa, South America, Europe, and Asia,
have prevalence rates of 0.2% to 0.3%. Countries such as Australia, China, and the United
States have a prevalence of 0.3% to 0.4%. India is tinted in mild orange, indicating a
prevalence rate of 0.2% to 0.3%.
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Figure 1. The projected rate of schizophrenia among a population of 100 individuals, adjusted for
age, in the year 2021 (taken from [17]).

There are two types of neuroimaging studies used for diagnosing SZ: structural and
functional [18]. Neuroimaging can help detect and diagnose psychotic illnesses, which
are caused by aberrant brain structure and function [19]. Neuroimaging of brain structure
comprises structural magnetic resonance imaging (sMRI) and diffusion tensor imaging
(DTI). The investigations examine brain tissues (gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF)) to identify abnormalities. However, the imaging of brain activity
comprises electroencephalography (EEG) [20], magnetoencephalography (MEG) [21], func-
tional magnetic resonance imaging (fMRI) [22], and functional near-infrared spectroscopy
(fNIRS) [23].

EEG signals can detect and record minute changes in electrical activity in the brain,
revealing important information about brain function [24]. EEG is less costly than are other
neuroimaging procedures such as MRI or positron emission tomography (PET). EEG is eas-
ily accessible and non-invasive. EEG has high temporal resolution, collecting brain activity
in real time [1,4]. EEG is more practicable for clinical usage. EEG signals can be accessed
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from high-quality open databases. EEG data can be used to detect SZ automatically using
ML techniques. EEG has the ability to reveal underlying neurophysiological abnormalities
linked with SZ. However, interpreting EEG data is difficult due to its large dimensionality
and the delicate nature of the disorder-related signal alterations [25–27].

An sMRI scan assesses the brain’s anatomical features by analyzing its structure and
connectivity. sMRI scans can reveal brain injury and abnormalities. They analyze GM
and WM volume, as well as brain structure size, integrity, and shape [28]. fMRI is another
commonly utilized technique for diagnosing SZ. fMRI records variations in the flow of
blood to identify the regions of the brain responsible for vital processes. This approach
operates on the principle that active brain areas experience increased blood flow. [29]. SZ is
primarily caused by structural and functional brain abnormalities according to research [30].
SZ is associated with larger ventricles caused by GM deficiency [31]. Research suggests
that cortical thickness decreases throughout normal childhood brain development and
continues to decrease throughout adolescence and age [32].

AI research focuses on creating intelligent machines capable of solving complex is-
sues [33–35]. ML, a subset of AI, addresses prognosis, categorization, and modeling
systems [36–38]. DL is a specific branch within the broader field of ML which collects
information from big datasets, mimicking the human brain. During the last decade, high-
performing classifiers were constructed for SZ diagnosis, with significant success [39].
DL models, particularly those based on convolutional neural networks (CNNs), are in-
creasingly being used for extracting features and recognizing patterns of EEG data. These
models have demonstrated outstanding ability to discover complicated patterns in huge
datasets, making them ideal for biomedical applications [40–42]. Figure 2 illustrates the
categorization of SZ and healthy controls (HC) utilizing ML and DL techniques applied to
various imaging modalities.
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Motivation of the Present Survey

SZ is a complicated mental condition that necessitates interdisciplinary research in-
volving neuroscience, psychology, psychiatry, and data science. This study’s goal was to
synthesize findings from these several domains to provide a comprehensive picture of the
advances in this sector. Over the past decade, there have been substantial technological
developments and increased use of neuroimaging methods. This research helps us to under-
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stand how these advancements have helped to improve the diagnosis and classification of
SZ. The survey aimed to assess various neuroimaging techniques (EEG, sMRI, and fMRI) in
terms of efficacy, accuracy, and therapeutic applicability. This comparison can aid in finding
the most successful approaches for various areas of SZ diagnosis. This work also identified
gaps in current research and approaches by examining the existing literature. This can help
to shape future research areas and increase the efficacy of SZ detection and categorization.
Table 1 compares our survey study to other significant surveys on SZ diagnosis, including
their limitations. We developed a new survey to address the research gaps identified in
Table 1. The survey’s key contributions are noted below.

1. This survey includes all significant research papers published on SZ diagnosis between
the year 2015 and 2024;

2. It provides an overview of SZ diagnostic methods, including ML and DL approaches;
3. It includes commonly utilized SZ datasets for both detection and classification purposes;
4. It also provides a critical overview of the existing approaches for SZ diagnosis;
5. The article concludes by analyzing future research opportunities in the topic.

Table 1. A basic review of prior surveys on SZ diagnosis and the present survey.

Work Dataset
Description

EEG
Modality

MRI
Modality

ML
Techniques

DL
Techniques

Detailed
Critical

Analysis
Drawbacks

Rahul
et al. [43]—

2024
✔ ✔ ✔

Dataset description is absent.
Does not cover

MRI-based publications.
Does not provide detailed

critical review.

Ranjan
et al. [25]—

2024
✔ ✔ ✔ ✔

Does not cover
MRI-based publications.

ML-based approaches are
not discussed.

Voineskos
et al. [44]—

2024
✔ ✔ ✔

Dataset description is absent.
Does not cover

EEG-based publications.
DL-based approaches are

not discussed.

Jafari
et al. [45]—

2023
✔ ✔ ✔ ✔ ✔

Does not cover
MRI-based publications.

Verma
et al. [46]—

2023
✔ ✔ ✔ ✔ ✔

Dataset description is brief.
Does not provide detailed

critical review.

J.A. Cortes-
Briones

et al. [47]—
2022

✔ ✔ ✔

Dataset description is absent.
ML-based approaches are

not discussed.
Does not provide detailed

critical review.

Sadeghi
et al. [48]—

2022
✔ ✔ ✔ ✔

Dataset description is absent.
Does not cover

EEG-based publications.

Barros
et al. [49]—

2021
✔ ✔ ✔ ✔

Dataset description is absent.
Does not cover

MRI-based publications.

Luján
et al. [50]—

2021
✔ ✔

Dataset description is absent.
Does not cover

MRI-based publications.
DL-based approaches are

not discussed.
Does not provide detailed

critical review.
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Table 1. Cont.

Work Dataset
Description

EEG
Modality

MRI
Modality

ML
Techniques

DL
Techniques

Detailed
Critical

Analysis
Drawbacks

Lai et al. [51]—
2021 ✔ ✔ ✔

Dataset description is absent.
DL-based approaches are

not discussed.
Does not provide detailed

critical review.

Steardo Jr.
et al. [52]—

2020
✔ ✔

Dataset description is absent.
Does not cover

EEG-based publications.
DL-based approaches are

not discussed.
Does not provide detailed

critical review.

de Filippis
et al. [53]—

2019
✔ ✔

Dataset description is absent.
Does not cover

EEG-based publications.
DL-based approaches are

not discussed.
Does not provide detailed

critical review.

Proposed
Survey—2024 ✔ ✔ ✔ ✔ ✔ ✔ -

The following portions of the paper are arranged as follows: Section 2 provides the
statistical findings of our reviewed literature. Section 3 provides the publicly available
datasets. Section 4 provides the state-of-the-art methods along with all major research
publications between the year 2015 and 2024. Section 5 outlines a critical review of existing
approaches. Section 6 concludes the paper and outlines the research prospects. Figure 3
illustrates our survey’s brief workflow.
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2. Materials and Methods

A systematic review of research papers was conducted using key terms such as
“Schizophrenia”, “Artificial Intelligence”, “Machine Learning”, “Deep Learning”, “EEG”,
“CWT”, “sMRI”, “fMRI”, and their variants. The literature was assessed for relevance
before inclusion in the review. This systematic review was conducted in accordance with
the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020
guidelines to ensure transparent and comprehensive reporting of the review process and
findings. We used the PRISMA 2020 checklist [54] when writing our report, which is pro-
vided in the Supplementary Materials along with the manuscript. The review protocol was
registered in the International Prospective Register of Systematic Reviews (PROSPERO) [55]
under registration number: CRD42024612364. The flow diagram in Figure 4 illustrates the
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systematic screening process. A total of 129 records were initially identified from databases
(104 records) and registers (25 records). Sixteen records were removed before screening.
This included 10 duplicate records and 6 records removed for other reasons. After the initial
removal, 113 records were screened for relevance to the review topic. Forty records were
excluded based on predefined criteria at this screening stage. From the screened records,
73 reports were identified for further retrieval. Five reports could not be retrieved due to
accessibility issues. Sixty-eight reports were evaluated in more detail for eligibility. Five
reports were excluded at this stage, with the reasons being that these studies did not meet
the required study design criteria (n = 3) and that these studies were deemed irrelevant to
the research question (n = 2). After this process, a total of 63 studies met all criteria and
were included in the final review.

Diagnostics 2024, 14, x FOR PEER REVIEW 7 of 34 
 

 

from databases (104 records) and registers (25 records). Sixteen records were removed 

before screening. This included 10 duplicate records and 6 records removed for other rea-

sons. After the initial removal, 113 records were screened for relevance to the review topic. 

Forty records were excluded based on predefined criteria at this screening stage. From the 

screened records, 73 reports were identified for further retrieval. Five reports could not be 

retrieved due to accessibility issues. Sixty-eight reports were evaluated in more detail for 

eligibility. Five reports were excluded at this stage, with the reasons being that these stud-

ies did not meet the required study design criteria (n = 3) and that these studies were 

deemed irrelevant to the research question (n = 2). After this process, a total of 63 studies 

met all criteria and were included in the final review. 

 

Figure 4. PRISMA 2020 flow diagram for selecting appropriate literature on the automatic detection 

of SZ. 

This study aimed to investigate AI strategies for SZ diagnosis utilizing EEG, sMRI, 

and fMRI. This survey will provide SZ scientists with information on the latest break-

throughs relevant to the diagnosis of SZ. Figure 5 displays the number of publications 

(both journals and conferences) on SZ diagnosis with ML or DL approaches published 

from 2015 to 2024. Out of 108 research publications (which may not be a comprehensive 

list), 39 were based on ML methods and 69 were based on DL models. 

Figure 4. PRISMA 2020 flow diagram for selecting appropriate literature on the automatic detection
of SZ.

This study aimed to investigate AI strategies for SZ diagnosis utilizing EEG, sMRI, and
fMRI. This survey will provide SZ scientists with information on the latest breakthroughs
relevant to the diagnosis of SZ. Figure 5 displays the number of publications (both journals
and conferences) on SZ diagnosis with ML or DL approaches published from 2015 to 2024.
Out of 108 research publications (which may not be a comprehensive list), 39 were based
on ML methods and 69 were based on DL models.
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3. Available Datasets

This section discusses the openly accessible datasets for SZ. The SZ dataset includes
neuroimaging modalities used to detect the condition. EEG, sMRI, and fMRI are commonly
utilized modalities for SZ research. Openly accessible datasets relevant to SZ diagnosis in-
clude COBRE [56], RepOD [57], NUSDAST [58], UCLA [59], SchizConnect [60], MCIC [61],
MLSP2014 [62], MSU [63], and FBIRN [64], as described further. Table 2 provides a sum-
mary of all the freely available datasets used for SZ diagnosis.

Table 2. Particulars of publicly accessible datasets for SZ diagnosis.

Dataset Publisher Modality Number of
Samples Sample Diversity Data Collection

Biases Download Link

COBRE [56]—
2012

Mind Research
Network and the

University of
New Mexico

sMRI and
fMRI

SZ = 72
HC = 75

Primarily
U.S.-based, limited

demographic
diversity

(age 18–65)

Demographic
homogeneity,
exclusion of

comorbid
conditions,

institutional
differences

http:
//fcon_1000.projects.
nitrc.org/indi/retro/
cobre.html (accessed

on 20 July 2024)

RepOD [57]—
2017

Institute of
Psychiatry and
Neurology in

Warsaw, Poland

EEG SZ = 14
HC = 14

Focused on
paranoid

schizophrenia
subtype

Exclusion of other
psychiatric
disorders

https:
//repod.icm.edu.pl/

dataset.xhtml?
persistentId=doi:10.1
8150/repod.0107441

(accessed on 15
September 2023)

NUSDAST [58]—
2015

National
University of

Singapore (NUS)
sMRI

SZ = 171
HC = 170

Strict SZ = 44
No disorder = 66

Mixed
demographics

Potential
institutional bias,

overrepresentation
of certain clinical

subtypes

https://sites.wustl.
edu/oasisbrains/

central-xnat/
(accessed on 22

July 2024)

UCLA [59]—
2013 OpenfMRI project

sMRI and
fMRI and

DWI

SZ = 50
HC = 130

Patients with
ADHD = 43

Bipolar
illness = 49

Diverse group
covering SZ, bipolar

disorder, ADHD,
and HC

Possible
overrepresentation
of specific disorders
(SZ, bipolar), lack of

detailed
demographic data.

https:
//openfmri.org/

dataset/ds000030/
(accessed on 22

July 2024)

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
https://repod.icm.edu.pl/dataset.xhtml?persistentId=doi:10.18150/repod.0107441
https://repod.icm.edu.pl/dataset.xhtml?persistentId=doi:10.18150/repod.0107441
https://repod.icm.edu.pl/dataset.xhtml?persistentId=doi:10.18150/repod.0107441
https://repod.icm.edu.pl/dataset.xhtml?persistentId=doi:10.18150/repod.0107441
https://repod.icm.edu.pl/dataset.xhtml?persistentId=doi:10.18150/repod.0107441
https://sites.wustl.edu/oasisbrains/central-xnat/
https://sites.wustl.edu/oasisbrains/central-xnat/
https://sites.wustl.edu/oasisbrains/central-xnat/
https://openfmri.org/dataset/ds000030/
https://openfmri.org/dataset/ds000030/
https://openfmri.org/dataset/ds000030/
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Table 2. Cont.

Dataset Publisher Modality Number of
Samples Sample Diversity Data Collection

Biases Download Link

Schiz-
Connect [60]—

2015

SchizConnect
consortium

sMRI and
fMRI

No disorder = 632
Strict SZ = 384
Broad SZ = 215

Bipolar
disorder = 10

Schizoaffective
disorder = 41

Siblings of
unknown

disorder = 66
Siblings of strict

SZ = 44

Diverse diagnostic
groups, limited
demographic

details

Overrepresentation
of certain diagnostic

groups (strict SZ,
broad SZ), potential
selection bias from
varied data sources

http://www.
schizconnect.org/

(accessed on 22 July
2024)

MCIC [61]—
2013

Mind Research
Network (MRN)

sMRI and
fMRI and

DWI

SZ = 162
HC = 169

Wide age range,
limited to specific
geographic and
clinical settings

Potential bias due
to geographic focus

https://www.nitrc.
org/projects/mcic/

(accessed on 20
July 2024)

MLSP2014 [62]—
2014 IEEE sMRI and

fMRI
SZ = 69
HC = 75

Limited
demographic

variation

Potential bias from
focus on structural

and functional
brain features

https:
//www.kaggle.com/

c/mlsp-2014-mri
(accessed on 20

July 2024)

MSU [63]—
2017

Lomonosov
Moscow State

University
EEG SZ = 45

HC = 39

Specific to age
group, limited

broader
representation

Age-specific focus
(adolescents)

http://brain.bio.msu.
ru/eeg_

schizophrenia.htm
(accessed on 15

September 2023)

Phase II of
FBIRN [64]—

2007
FBIRN

consortium
fMRI

SZ = 87
HC = 85

Moderate diversity,
spanning ages

18–70 years, limited
geographic

representation

Potential
overrepresentation

of specific SZ
subtypes,

age-related bias

https:
//www.ncbi.nlm.nih.

gov/pmc/articles/
PMC4651841/

(accessed on 23 July
2024)

Phase III of
FBIRN [64]—

2007

SZ = 176
HC = 186

Broader sample
with similar age

range (18–70 years),
limited

demographic
diversity

Potential selection
bias due to specific
inclusion criteria

3.1. COBRE

The Center for Biomedical Research Excellence (COBRE) [56] conducted fMRI on
147 volunteers, comprising 72 SZ patients and 75 HC aged 18–65. The dataset includes
phenotypic details such as handedness, age, diagnosis, and gender. The dataset statistics
are shown in Figure 6.
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Figure 6. Data statistics of the COBRE dataset [55].
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3.2. RepOD

The Repository for Open Data (RepOD) [57] offers an EEG dataset from Olejarczyk
and Jernajczyk’s study [65], containing data from 14 paranoid SZ patients and 14 HC,
including 14 men and 14 women aged 18 or older. The data were collected using 19 EEG
channels with a sampling frequency of 250 Hz. The dataset statistics are shown in Figure 7.

1 
 

 

Figure 6. 

 

Figure 7. 

 

Figure 8. 

Figure 7. Data statistics of the RepOD dataset [57].

3.3. NUSDAST

The Northwestern University Schizophrenia Data and Software Tool (NUSDAST) [58]
includes MRI brain imaging data from over 450 participants, along with medical, hereditary,
and psychological information. Dataset statistics are shown in Figure 8.
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Figure 8. Figure 8. Data statistics of the NUSDAST dataset [58].

3.4. UCLA

The UCLA dataset [59] includes sMRI, fMRI, and Diffusion-weighted imaging (DWI)
data, along with phenotypic information. It comprises 50 SZ patients, 130 HC, 43 ADHD
patients, and 49 individuals with bipolar disorder. Dataset statistics are shown in Figure 9.
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Figure 10. 

Figure 9. Data statistics of the UCLA dataset [59].
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3.5. SchizConnect

SchizConnect [60] is a data repository combining brain imaging data relevant to
schizophrenia from various sources. It includes 1392 subjects: 632 HC, 384 with strict SZ,
215 with broad SZ, 10 with bipolar disorder, 41 with schizoaffective disorder, 66 siblings
with unknown disorders, and 44 siblings with strict SZ. Dataset statistics are shown in
Figure 10.

 

2 

 

Figure 9. 

 

Figure 10. Figure 10. Data statistics of the SchizConnect dataset [60].

3.6. MCIC

The MCIC dataset [61] includes data from 162 SZ patients and 169 HC, along with
demographic features such as sex and age group. Dataset statistics are shown in Figure 11.
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Figure 11. Data statistics of the MCIC dataset [61].

3.7. MLSP2014

The MLSP 2014 competition [62] used a dataset that includes structural morphometry
and functional connectivity data from MRI scans of 69 SZ patients and 75 HCs. The dataset
statistics are shown in Figure 12.
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Figure 12. 

Figure 12. Data statistics of the MLSP2014 dataset [62].
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3.8. MSU

The dataset from M.V. Lomonosov Moscow State University (MSU) [63] includes EEG
recordings from adolescents, divided into two groups: 39 HCs and 45 showing symptoms
of SZ. The dataset statistics are shown in Figure 13a. 

4 

(a) (b) 
Figure 13. 

(a) (b) 
Figure 14. 

Figure 13. (a) Data statistics of the MSU EEG dataset. (b) Topographical positions of channel
numbers [63].

Each EEG file contains recordings from 16 channels, with EEG amplitudes (in µV)
captured at a sampling rate of 128 Hz. Each file consists of 7680 samples per channel,
corresponding to 1 min of data. The channels are T6, F3, O1, Pz, C4, T5, Cz, F8, P4, O2, P3,
T3, F7, C3, T4, and F4, as shown in Figure 13b [63].

3.9. FBIRN

The FBIRN dataset [64] consists of three phases, with the 2nd and 3rd phases contain-
ing data on SZ individuals. Phase 2 includes 87 SZ patients and 85 HCs, aged 18–70 years.
Phase 3 contains 176 SZ patients and 186 HCs. The dataset statistics for Phase II and Phase
III are shown in Figures 14a and 14b respectively.

 

4 

(a) (b) 
Figure 13. 

 
(a) (b) 

Figure 14. 
Figure 14. Data statistics of the FBIRN dataset: (a) Phase II and (b) Phase III [64].

4. Cutting-Edge Approaches and Results of SZ Diagnosis

Several researches have employed AI to detect SZ utilizing EEG, sMRI, and fMRI
modalities. Sections 4.1–4.3 cover the ML and DL approaches and the consequent outcomes
of SZ diagnosis. Figure 15 shows the imaging techniques of the brain for automated
SZ diagnosis.



Diagnostics 2024, 14, 2698 12 of 32

Diagnostics 2024, 14, x FOR PEER REVIEW 14 of 34 
 

 

(a) (b) 

Figure 14. Data statistics of the FBIRN dataset: (a) Phase II and (b) Phase III [64]. 

4. Cu�ing-Edge Approaches and Results of SZ Diagnosis 

Several researches have employed AI to detect SZ utilizing EEG, sMRI, and fMRI 

modalities. Sections 4.1–4.3 cover the ML and DL approaches and the consequent out-

comes of SZ diagnosis. Figure 15 shows the imaging techniques of the brain for automated 

SZ diagnosis. 

 

Figure 15. Taxonomy of neuroimaging modalities for SZ detection and classification. 

85, 49%

87, 51%

HC DSM-IV SZ or Schizoaffective Disorder

186, 51%

176, 49%

HC SZ

Figure 15. Taxonomy of neuroimaging modalities for SZ detection and classification.

4.1. EEG-Based Diagnosis of SZ

EEG signals have been shown to be effective in detecting SZ in clinical settings. EEG
is a cost-effective and high-resolution diagnostic technique for a range of diseases [66].
CAD systems aid in the reliable diagnosis of SZ. ML approaches employing EEG signals
have become increasingly popular for diagnosing mental diseases. Researchers have used
DL models, such as CNN and LSTM, to improve SZ diagnosis. Figure 16 displays the
EEG waveform obtained from the F7 electrode to distinguish between an SZ and HC
individual [67]. The imbalance in wave amplitude is steady across the measurement.
Lower amplitude signals are known to be aberrant or to indicate a psychotic condition.

In recent years, there has been substantial research on detecting SZ using EEG signals.
There are many datasets available publicly.

Using the Kaggle EEG dataset [68], Lei Zhang [69] developed an artificial neural
network (ANN) design where EEG signals were recorded using event-related potential
(ERP) corresponding to button press and audio tone playback. Five temporal features taken
from EEG data, as well as two demographic features, were utilized to train and test the
ANN. Following the wavelet transform of the ERP EEG signals for ANN classification,
additional time–frequency features were recovered. The highest classification accuracy of
more than 98.5% was achieved. These research findings indicate a significant potential
for developing an accurate and subjective diagnosis tool for SZ based on EEG signals.
Siuly et al. [70] investigated the use of deep residual networks (ResNet) to automatically
detect SZ from EEG signals. The process included three major stages: the preprocessing
of EEG signals using the average filtering approach to reduce noise, feature extraction
where a deep ResNet was used to automatically extract important features from EEG
recordings, and the classification of retrieved features via a Softmax layer. In addition,
multiple ML approaches, including a support vector machine (SVM), were applied to
the same feature set. Their proposed method achieved 99.23% accuracy with the SVM
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classifier, outperforming the ResNet classifier and other existing approaches. C. Barros [71]
demonstrated a DL-based technique for automatically detecting SZ using EEG signals.
This research highlights the effectiveness of DL approaches in exploring impaired auditory
processing in SZ, with potential diagnostic implications.
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Using the RepOD dataset [57], Buettner et al. [72] developed a rapid, high-performance
classification approach for diagnosing SZ. The model primarily comprised three preprocess-
ing steps: independent component analysis (ICA), spectral analysis utilizing Buettner et al.’s
99-frequency-band approach, and normalization. The random forest (RF) approach was
employed for classification. The model could exclude SZ with 100% accuracy. This ap-
proach, when combined with a differential diagnosis system, can speed up, improve the
accuracy, and reduce the cost of ICU treatments. Krishnan et al. [73] focused on multi-
variate empirical mode decomposition (MEMD) and entropy measures to detect SZ. The
researchers employed MEMD to break down EEG signals into intrinsic mode functions
(IMF) signals. Computing the signal’s entropy yielded the randomness measure for the
IMF signal. Numerous ML classifiers were trained using a feature matrix obtained from
the entropy values of the IMF signal. Among these, SVM with a radial basis function
(SVM-RBF) achieved the highest accuracy and F1-score of 93% for the 95 features. It also
produced an AUC of 0.9831. Shoeibi et al. [74] investigated the early identification of
SZ using EEG signals and a one-dimensional transformer model. EEG signals were pre-
processed by filtering, normalizing, and segmenting into time frames. Feature extraction
entailed using a one-dimensional transformer architecture with various activation functions
to extract features from pre-processed EEG signals. The Softmax classifier was used in
the final stage. The proposed model had a maximum accuracy of 97.62% in diagnosing
SZ, indicating its potential efficacy. Sara et al. [75] demonstrated a unique strategy where
the EEG data were analyzed using the transfer entropy (TE) method to determine the
effective connection matrix. The hybrid framework of pre-trained CNN-LSTM models
outperformed the pre-trained CNN models. The EfficientNetB0-LSTM model yielded the
highest average accuracy and F1-score via the 10-fold cross-validation procedure, at 99.90%
and 99.93%, respectively.

Using a clinical dataset [76], Taylor et al. [77] conducted a study aimed at developing
an objective, biologically based computational tool for diagnosing SZ using EEG. The sub-
jects were exposed to three auditory oddball paradigms, which consisted of tonal sequences
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that varied from standard tones in 10% of the trials. The authors employed multivariate
pattern analysis and identified the snapshots created using statistical parametric mapping
(SPM) of the spatiotemporal EEG data, specifically ERPs recorded on the 2D surface of
the scalp. For classification, they used SVM and Gaussian process classifiers (GPCs). The
classification of individual patients and controls achieved an accuracy as high as 80.48%
(p-value = 0.0326, adjusted for the false discovery rate). Receiver operating characteris-
tic (ROC) analysis produced an area under the curve (AUC) of 0.87. Gaussian process
regression analysis demonstrated that the mismatch negativity predicted GAF scores, with
a correlation of 0.73, an R2 of 0.53, and a p-value of 0.0006. Chang et al. [78] examined
functional connectivity in the brain during the mismatch negativity procedure in HC and
SZ participants. The researchers used accurate low-resolution electromagnetic tomogra-
phy to reconstruct cortical endogenous electrical activity from EEG recordings, and they
established functionality of brain structures utilizing EEG. They retrieved graph theory
properties of brain structures and classified FESZ, CSZ, and HC groups with an SVM. They
also proposed a graph neural network (GNN) architecture that can learn directly from
the brain structure. This study discovered that CSZ involves more damaged brain areas
than does FESZ, with the auditory cortex being particularly harmed. This highlights the
variety of SZ’s effects across different illness histories, as well as the relationship between
the MMN and the auditory cortex. The GNN classifier trained on brain functional networks
had an accuracy of 84.17%. This considerably outperformed an SVM classifier trained on
graph-theoretic characteristics, which had a maximum accuracy of 69.17%. Febles [79]
described a study that used ML to diagnose SZ. Using the multiple kernel Learning (MKL)
classifier and the entire dataset, the study achieved an 83% classification accuracy. After
the Boruta feature selection technique was applied, the classification accuracy increased
to 86%. The auditory P300 paradigm’s latency and amplitude were the most important
criteria in the classification.

Using the dataset from the Mental Health Research Center [63] and the Institute of
Psychiatry and Neurology in Warsaw [57], Aslan et al. [1] conducted a study that used DL
techniques to diagnose SZ. The EEG signals were transformed to 2D using the continuous
wavelet transform (CWT) technique for acquiring time-frequency characteristics. Unlike
typical ML techniques, the network’s training features were automatically retrieved from
EEG recordings. The research successfully classified SZ patients and healthy persons with
98% and 99.5% accuracy, respectively, using two separate datasets containing individuals of
various ages. The interpretability of the results, as visualized using several methodologies,
clearly indicated a relationship between spectral elements in HCs and SZ patients. The
computer-aided diagnostic (CAD) approach for automatic SZ detection utilizing EEG
signals is shown in Figure 17. Saadatinia et al. [80] developed an approach for automatic
SZ diagnosis based on EEG brain recordings. Spectrograms were created from raw EEG
signals. The original diagnosis was made using a convolutional neural network (CNN). The
variational autoencoder-augmented dataset yielded a 3.0% increase in accuracy, reaching
99.0%. The authors also utilized the local interpretable model-agnostic explanations (LIME)
algorithm to increase trust in the diagnostic process.

Using the MSU dataset [63], C. Phang et al. [81] completed a study that employed a
deep neural network with deep belief network (DNN-DBN) architecture for SZ classification
using EEG. Their approach attained a 95% classification accuracy in the theta and beta
bands. Rajesh et al. [82] described a study that used symmetrically weighted local binary
patterns (SLBPs) for SZ identification. The authors proposed an SLBP-based automated
method for detecting SZ. The SLBP-based histogram characteristics were passed via a
correlation-based feature selection technique. Finally, the feature vector produced was
fed into a LogitBoost classifier to distinguish patients with SZ from HCs. The suggested
approach attained an accuracy of 91.66%. Sobahi et al. [83] described a study that employed
a unique approach for detecting SZ via EEG recordings. The authors proposed a novel
signal-to-image mapping approach. The obtained rhythm signals from EEG recordings
were encoded using the 1D local binary pattern (LBP). During the data augmentation
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step, extreme-learning-machine (ELM)-based autoencoders (AE) were used. Notable deep
transfer learning methods were used to distinguish patients with SZ from HCs. Their
proposed approach achieved a 97.7% accuracy.
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Figure 17. Flowchart of the CAD approach for automatic SZ detection with EEG signals developed
by Aslan et al. [1].

Table 3 provides a table summarizing the study characteristics of the key research on
employing EEG signals for SZ identification.

Table 3. Study characteristics of notable research relevant to SZ diagnosis utilizing EEG (patients—
with SZ).

Work Dataset Number of
Samples Data Preparation

Software for
Data

Preparation

Feature
Extraction
Method

Approach Result (%)

Lei Zhang [69]—
2020

Kaggle Basic
Sensory

Task data

Patients = 49,
controls = 32

Baseline
selection,
min–max

normalization

-

Temporal, spatial,
demographic &
time–frequency

features

Artificial
neural network Accuracy = 98.5

Siuly
et al. [70]—

2023

Patients = 49,
controls = 32 Average filtering - Deep ResNet

Softmax Layer
and deep
features

with SVM

Accuracy = 99.23

Buettner
et al. [72]—

2019

RepOD

Patients = 14,
controls = 14

ICA,
normalization - Fourier

transformation Random Forest Accuracy = 100

Krishnan
et al. [73]—

2020

Patients = 14,
controls = 14 - -

Extraction using
MEMD and en-
tropy measures

SVM-RBF
Accuracy = 93,
precision = 92,

recall = 94

Shoeibi
et al. [74]—

2024

Patients = 14,
controls = 14

Filtering,
normalization,
segmentation

into
time windows

- 1D transformer
architecture

Softmax
classifier,

10-fold cross-
validation

Accuracy = 97.62

Sara et al. [75]—
2022

RepOD-IBIB
PAN

Patients = 14,
controls = 14 - - Connectivity

matrix, TE

CNN-LSTM,
10-fold cross

validation
Accuracy = 99.9
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Table 3. Cont.

Work Dataset Number of
Samples Data Preparation

Software for
Data

Preparation

Feature
Extraction
Method

Approach Result (%)

Febles [79]—
2022 Clinical Patients = 54,

controls = 54

Filtering,
baseline

correction,
artifact rejection

-

Features related
to peak-to-peak
measurements

and signal
characteristics,

Boruta algorithm

Multiple
kernel learning Accuracy = 86

Aslan
et al. [1]—2022

Mental
Health

Research
Center,

Institute of
Psychiatry &
Neurology in

Warsaw

Patients = 45
healthy = 39
Patients = 14,
controls = 14

- - Time–frequency
features CNN

Accuracy = 98,
precision = 98,

recall = 98

Accuracy = 99.5,
precision = 99,

recall = 99

Saadatinia
et al. [80]—

2024

Patients = 45,
controls = 39
Patients = 14,
controls = 14

- - -
CNN,

WGAN-GP
and VAE

Accuracy = 99

C. Phang
et al. [81]—

2019

MSU

Patients = 45,
controls = 39 - - DC-CN features DNN-DBN Accuracy = 95

Rajesh
et al. [82]—

2021

Patients = 45,
controls = 39 - -

SLBP-based
histogram
features

LogitBoost
Classifier Accuracy = 91.66

Sobahi
et al. [83]—

2022

Patients = 45,
controls = 39 - - Time–frequency

features ELM-based AE Accuracy = 97.7

4.2. sMRI-Based Diagnosis of SZ

Several studies have used ML techniques to diagnose SZ utilizing sMRI modalities.
Many researchers have used logistic regression (LR), RF, or SVM classifiers to classify data
at the subject level [84]. Figure 18 depicts an sMRI scan for distinguishing between the
ventricles of HCs and SZ participants [29].
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Figure 18. SZ diagnosis utilizing sMRI ((Left): enlarged ventricles indicate SZ. (Right): typical
ventricles indicate a healthy condition) [29].

Using the COBRE dataset [56], Qureshi et al. [85] employed a combined weighted
feature integration comprising neural networking of the brain as well as morphologi-
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cal characteristics extracted from MRI data, which was then analyzed using an extreme
learning machine (ELM). This technique attained a maximum accuracy of 99.29%. In
2018, M. Latha et al. [86] conducted a study on structural biomarkers in the SZ brain
using T1-weighted MRI data from the COBRE database. For segmentation, they used a
neighborhood-clustering-based level set technique, and texture analysis was performed
using Laws texture features. The approach revealed significant differences in geometric
features between normal and SZ brains with texture features. Ramkiran et al. [87] investi-
gated resting-state anticorrelated networks in SZ. To choose largely anticorrelated networks,
the method entailed generating functional connectivity matrices and then applying the
anticorrelation after mean of antilog (AMA) method. The study discovered anomalies in
anticorrelated networks connecting subcortical and cortical locations. Chen et al. [88] used
sMRI data from SZ patients and normal controls (NCs) to distinguish between the two
groups. The method employed a ML framework with a coarse-to-fine feature selection
methodology that included two-sample t-tests, recursive feature elimination (RFE), and
SVM for classification. The framework focused on GM and WM properties and achieved a
classification accuracy of more than 85%, allowing for individual diagnosis and correlating
with earlier biomarker research. This procedure can potentially be used for other disorders
as well. Guo et al. [89] investigated the application of ML to SZ categorization based on
brain morphology. Morphological data from 26 hippocampal and 20 amygdaloid subre-
gions were retrieved from T1 sMRI scans. For feature selection, the sequential backward
elimination (SBE) approach was utilized, and classification was performed utilizing a linear
SVM classifier. The SBE-SVM model’s classification accuracy was 81.75%, with a sensitiv-
ity of 84.21% and a specificity of 81.16%. The area under the curve (AUC) was 0.82411.
The study shows how ML algorithms can be used to classify SZ based on subcortical
morphological traits. Tanveer et al. [90] employed ML to improve the diagnosis of SZ.
Several categorization techniques were tested, including SVM, RF, kernel ridge regression,
and randomized neural networks. The t-Test, ROC, Wilcoxon, Entropy, Bhattacharyya,
MRMR, and NCA were all used to select features. This study emphasizes the significance
of classification algorithms in SZ diagnosis.

Using the NUSDAST dataset [58], Talpalaru et al. [91] examined SZ subgroups using
ML. Clinical subgroups were identified by hierarchical clustering, and three ML mod-
els (LR, SVM, RF) were utilized for predicting subgroup membership based on cortical
thickness estimates in 78 regions of interest. The RF model fared the best, with an AUC
of 0.81 for the high-symptom-burden group and 0.78 for the moderate-symptom-burden
group, outperforming the baseline comparison AUC of 0.75. Pinaya et al. [92] proposed
a method that uses DL to identify aberrant brain areas in neuropsychiatric illnesses. A
deep autoencoder, or artificial neural network, was used to quantify overall and regional
neuroanatomical aberrations in individuals with SZ and autism spectrum disorder uti-
lizing two independent datasets (n = 263). The model accurately distinguished between
diseases and controls, producing discrete values of neuroanatomical deviation for each
disease (p < 0.005), consistent with previous neuroimaging research. This work demon-
strated the utility of deep autoencoders for detecting neuroanatomical abnormalities in
neuropsychiatric populations.

Using a clinical dataset [76], Zarogianni et al. [93] investigated the use of a variety
of data types to improve the prediction of SZ in high-risk patients. An SVM classifier
with recursive feature elimination (RFE) was utilized in a nested cross-validation strategy
to find relevant predictors and increase diagnostic accuracy. Rather than utilizing each
measure alone, the model combined schizotypal measurements, a declarative memory test,
and MRI data and achieved a classification accuracy of 94%. J. Liu et al. [94] proposed a
strategy for classifying SZ using a variety of imaging techniques. The authors created a
multi-modal, multi-atlas feature representation, and multi-kernel learning method (MMM).
They retrieved eight feature sets from the MRI data using four brain atlases and four
markers, followed by a two-step feature selection procedure. For SZ and HC categorization,
the MMM technique achieved an accuracy of 91.28%, a sensitivity of 90.85%, a specificity
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of 92.17%, and an AUC of 0.9485. A.V. Nimkar et al. [95] sought to improve the prediction
of SZ diagnosis by ML approaches. ML approaches were used to obtain the highest binary
classification accuracy for predicting SZ. Nguyen H. et al. [96] addressed the issue of vari-
ability in multi-site neuroimaging data. Their study focused on T1-weighted brain pictures
obtained from various locations. The authors employed generative adversarial networks
(GANs) to alter photos from one site to match those from another, with the goal of reducing
site-specific differences while retaining gender or clinical-diagnosis-relevant information.
The usefulness of GANs in normalizing image sets to a common scanner set was tested,
and the model was shown to perform effectively, with less information loss than that of
contemporaneous techniques. This strategy enabled the pooling of neuroimaging data
from various sites, increasing research sensitivity and statistical power without requiring
thorough knowledge of the origins of bias. Srinivasagopalan et al. [97] reported on a DL
approach for diagnosing SZ. The National Institute of Health [76] contributed the secondary
dataset used in the study. The researchers compared classic ML methods such as LR, SVMs,
and RFs against a DL model with three hidden layers. The DL model demonstrated better
accuracy in diagnosing SZ, indicating that it could be a substantial development in the field.

Using the B-SNIP dataset [98], Rokham et al. [99] employed a multi-label data purifi-
cation strategy with T1 sMRI data from 1493 people to detect label noise in the diagnoses
of mood and psychotic disorders. The method comprised numerous classifications with an
SVM and relabeling based on MRI data, and it was very accurate in identifying label noise.

Using the SchizConnect dataset [60], Oh et al. [100] used a DL algorithm to assess
sMRI data to diagnose SZ. The model performed well, with an AUC of 0.96 showing that it
is useful in detecting SZ. Junhao et al. [101] used DL and 3D structural brain MRI data to
detect SZ. Their model was trained and tested on three open datasets using conventional
T1-weighted MRI scans, yielding an AUC of 0.987, suggesting nearly flawless accuracy in
differentiating SZ patients from HCs. Using the NAMIC dataset [102], Manohar et al. [103]
proposed a method for detecting SZ using MR brain scans, which attained an accuracy of
90% and an AUC of 0.9, suggesting its efficacy in discriminating between SZ and healthy
individuals. Figure 19 displays the visuals of this dataset [104]. Latha et al. [105] used a
metaheuristic algorithm and a radiomics technique to study neuroanatomical structures in
SZ and schizoaffective disorder.
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SZ [104].

Using a multi-site dataset, Weiqi et al. [106] examined the brain age gap (BAG) as a
possible indicator of SZ utilizing sMRI data from eight sites. They used support vector
regression (SVR) to estimate age based on gray-matter volume and discovered that patients
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had much higher BAG than did controls, indicating its potential as a biomarker for SZ.
Using a multisite dataset comprising COBRE [56], NMorphCH [60], and NUSDAST [58],
Pierrefeu et al. [107] investigated the application of ML with structured sparsity to predict
SZ in an interpretable and stable manner. They created a model that is both interpretable
and replicable across sites.

Using the dataset from the Institute of Mental health (IMH), Singapore [108],
Chilla et al. [109] used ensemble ML algorithms and a wide range of neuroanatomical
markers to distinguish between SZ patients and HCs. The study’s classification accuracies
ranged from 83 to 87%, with sensitivities and specificities of 90–98% and 65–70%, respec-
tively. Using a multisite dataset from NUSDAST [58] and IMH [108], M. Hu et al. [110]
used 3D convolutional neural networks (CNNs) to classify SZ and controls using brain
MRI. The CNNs outperformed classic handcrafted feature-based ML algorithms in terms
of accuracy, highlighting their promise for individual psychiatric diagnosis.

Table 4 provides a table summarizing the study characteristics of the key research on
the sMRI prediction of SZ.

Table 4. Study characteristics of notable research relevant to SZ diagnosis utilizing sMRI (patients—
patients with SZ).

Work Dataset Number of
Samples

Data
Preparation

Software for
Data Preparation

Feature
Extraction
Method

Approach Result (%)

Qureshi
et al. [85]—

2017

COBRE

Patients = 72,
controls = 72

Data
segmentation,

group
independent
component

analysis
(GICA)

FreeSurfer,
Analysis of
Functional

NeuroImages
(AFNI), FMRIB

Software Library
(FSL) https://fsl.

fmrib.ox.ac.uk
(accessed on 10

September 2024).

Shape
characteristics

ELM, nested
10-by-10-

fold
cross-

validation

Accuracy = 99.29

Chen
et al. [88]—

2020

Patients = 34,
controls = 34

Data
segmentation

Statistical
parametric
mapping

GM and WM
features

SVM, leave-
one-out

cross-
validation
(LOOCV)

Accuracy = 85

Tanveer
et al. [90]—

2022

Patients = 72,
controls = 74

Smoothing,
resampling

Computational
Anatomy

Toolbox (CAT12)

GM, WM and
integrated GM
& WM features,

Wilcoxon
Method

Neural
network,

10-fold cross-
validation

Accuracy = 86.71

Liu et al. [94]—
2018

Clinical

Patients = 62,
controls = 33 -

Functional
magnetic
resonance

imaging of the
brain (FMRIB)

Cortical GM
volume,
cortical

thickness,
fractional

anisotropy

SVM, 6-fold
cross-

validation
Accuracy = 91.28

A V Nimkar
et al. [95]—

2018
- Normalization –

Features from
multiple

modalities,
Boruta

algorithm

SVM Accuracy = 94.12

Nguyen
et al. [96]—

2018

Patients = 171,
controls = 142

Data
segmentation

Statistical
parametric
mapping

GANs 10-fold cross-
validation Accuracy = 99.3

Srinivasgopalan
et al. [97]—

2019

Patients = 69,
controls = 75 ICA - deep CNN Sigmoid Accuracy = 94.44

https://fsl.fmrib.ox.ac.uk
https://fsl.fmrib.ox.ac.uk


Diagnostics 2024, 14, 2698 20 of 32

Table 4. Cont.

Work Dataset Number of
Samples

Data
Preparation

Software for
Data Preparation

Feature
Extraction
Method

Approach Result (%)

Rokham
et al. [99]—

2020
B-SNIP

BPD = 176
patients = 374,
controls = 362

Data
segmentation SPM

Brain image
voxels,

analysis of
variance

(ANOVA)

SVM Accuracy = 89

Junhao
et al. [101]—

2022
SchizConnect Patients = 450,

controls = 437

skull striping,
brain-and-
head affine
registration

Brain extraction
tool

Hierarchical
spatial features 3D-CNN Accuracy = 92.1

Manohar
et al. [103]—

2018
NAMIC Twenty groups Data

segmentation - Multi-
objective BPSO Fuzzy SVM Accuracy = 90

Latha
et al. [105]—

2021

NAMIC and
SchizCon-

nect

Patients = 81,
controls = 82

Data
segmentation - BPSO 3-fold cross-

validation Accuracy = 90.09

Kadry
et al. [111]—

2021

Working
Memory
Dataset

99 subjects - -

Features
selected by the
slime module

algorithm
(SMA)

VGG-16

SVM-cubic,
10-fold cross-

validation
Accuracy = 94.33

Weiqi
et al. [106]—

2021

3 datasets
from local
institute,

5 datasets
from Schiz-

Connect

Patients = 501,
controls = 512

Bias-field
correction,

segmentation,
normalization,

resampling,
smoothing

SPM12, CAT12 Demographic
features

SVR, 5-fold
cross-

validation
Accuracy = 95

Chilla
et al. [109]—

2022

Institute of
Mental
Health
(IMH),

Singapore

Patients = 158,
controls = 76

Segmentation,
cortical surface
reconstruction,

cortical
parcellation

FreeSurfer

Cortical
thickness,

cortical surface
area, and mean

curvature

Ensemble of
SVM,

nuSVM, and
LR

3-fold cross-
validation

Accuracy = 87

4.3. fMRI-Based Diagnosis of SZ

Early detection of brain disorders relies heavily on functional network changes. Studies
have employed ML on fMRI scans to detect SZ caused by brain abnormalities [84]. In
Figure 20, the default brain network is changed in SZ compared to HC [29].
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Using the COBRE dataset [56], Qureshi et al. [13] proposed a methodology for dis-
tinguishing SZ patients from HCs using resting-state fMRI data. To extract and evaluate
features from fMRI data, the authors used 3D-CNN in conjunction with ICA. The proposed
technique had a ten-fold cross-validated classification accuracy of 98.09% and an AUC of
0.99821. Xiang et al. [112] proposed a method for detecting SZ utilizing graph with multiple
view measurements regarding the functionality of brain structures. The authors presented
an enhanced SZ identification method based on graphs with multiple view measurements
of brain structures. Using the Brainnetome atlas, they created distinct functional connection
networks for each patient. Multi-view graph measurements were then calculated using
feature representations. Sparse group lasso was used to choose discriminative features by
taking into account correlations between measures within the same brain area. A SVM
classifier was utilized to identify SZ. The proposed method achieved an accuracy of 93.10%
for SZ detection using the LOOCV scheme. Ghanbari et al. [113] created a DL system
which integrates a 3D convolutional neural network (CNN) with a long short-term memory
(LSTM). They pre-processed the fMRI images, identified functional connectivity elements,
and used those to generate activity maps. These maps were then employed as inputs for the
3D CNN-LSTM model, which classified the images into healthy and schizophrenic groups.
The model scored a 92.32% classification accuracy. Nallusamy et al. [114] developed a
technique to distinguish between SZ patients and healthy participants using fMRI data. The
fMRI scans underwent preprocessing to reduce noise. The automated anatomical labelling
atlas was used to divide the human brain into 116 distinct areas. A region connection matrix
was created using the fMRI data. The connectivity matrix yielded a weighted undirected
graph. The graph similarity algorithm calculated the similarity between each graph or
subject. A weighted network was established, with each graph representing a node and
the edges made with the top k similarity scores. A community detection method was
used to distinguish between SZ and normal people. Figure 21 shows the block diagram
of the system. This approach comprises two phases: brain graph building from fMRI and
SZ categorization.
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Using the FBIRN dataset [64], Juneja et al. [115] focused on using fMRI data for
computer-aided SZ diagnosis. The work employed two balanced datasets (D1 and D2)
from the FBIRN multisite dataset [64], which include fMRI data from age-matched healthy
volunteers and SZ patients undertaking an auditory oddball task. D1 and D2 were collected
with 1.5 T as well as 3 T scanners, respectively. Voxels from three-dimensional spatial maps
were segmented into anatomical brain regions. After the selection of a smaller collection
of discriminative characteristics, the features were then fed into a SVM classifier, and
performance was measured utilizing LOOCV. Their approach had a classification accuracy
of 95.6% for D1 and 96.0% for D2. Chatterjee et al. [116] employed fMRI data collected
during an auditory oddball task from both SZ patients and HCs. The authors proposed a
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three-stage feature selection model: the general linear model (GLM) was used to determine
initial features, statistical hypothesis testing was used to improve the feature set, and a
limited collection of approximately fifty discriminative features was selected, the selected
features were then utilized to classify fMRI data from healthy controls and SZ patients. The
proposed technique had a high classification accuracy of 99.5%.

Using the clinical dataset [76], Liu et al. [117] investigated aberrant brain function-
ality as a possible indicator of SZ utilizing ReHo and SVM analysis. This approach was
used to assess neuronal activity synchronization in local brain areas. Support vector ma-
chine, an ML technology, was used to categorize patients and controls based on their
brain activity patterns. The SVM model achieved 89.87% classification accuracy. Wang
et al. [118] investigated the role of regional homogeneity (ReHo) as an imaging biomarker
for adolescent-onset SZ. The study analyzed resting-state fMRI data from teenagers with
SZ and HCs. To assess local brain activity synchronization, the scientists analyzed the
fMRI data using ReHo. They used an SVM to classify SZ patients and HCs based on ReHo
values. The study found that ReHo could efficiently distinguish between adolescent-onset
SZ patients and HCs, indicating its potential as an imaging biomarker. Zhu et al. [119]
proposed a method for detecting SZ using positive distinctive functionality of brain struc-
tures relevant to fMRI data. The authors presented a unique approach which identified
changes in brain functional connectivity between SZ patients and HCs. For SZ classification,
the suggested technique achieved 100% sensitivity, 90.48% specificity, and 95.56% overall
accuracy. Salvador et al. [120] investigated MRI-based SZ diagnosis using multimodal
brain image integration. The task-based fMRI activation levels, amplitude of low-frequency
fluctuations, and weighted global brain connectivity were obtained from a single MRI
session. They investigated multimodal techniques such as post-classification integration,
two-step sequential integration, and voxel-level integration via one-dimensional CNNs
(1D-CNNs). The lasso on the two-back task maps had a maximum unimodal classifier
accuracy of 84%. Qiu et al. [121] investigated the classification of SZ patients and HCs by
integrating ICA and CNNs. ICA obtained the relevant components of fMRI, which were
later refined by CNNs to develop hierarchical diagnostic features and classify participants.
The proposed method attained an average accuracy of 91.32% for subject-level classification
using majority voting and 98.75% in the auditory cortex for slice-level classification. Niu
et al. [122] investigated the use of sample augmentation to improve the classification of
SZ patients and HCs from fMRI data. The authors integrated ICA and CNNs. They used
sample augmentation techniques to improve the training process by creating new data
samples from the existing dataset. The proposed method had an average classification
accuracy of 91.32% for subject-level classification using majority voting.

Yang et al. [123] explored modern neuroimaging techniques to investigate functional
connectivity patterns in the brain. They employed statistical and computational tools to
discover connection deficits associated with SZ. The study found substantial results on
the widespread nature of connectivity deficits in SZ. Using the CCNMD dataset [124],
Y. Bae et al. [125] used ML to evaluate fMRI data and distinguish between SZ patients
and HCs. The study used global and local network connectivity metrics and produced a
high prediction accuracy of 92.1% with SVM. Lei et al. [126] utilized ML and multimodal
neuroimaging for identifying SZ on an individual basis. The study achieved a classification
accuracy of 90.83%.

Using the MCIC [61] and a genes dataset, Alam et al. [127] proposed a kernel machine
method for detecting higher-order interactions in multimodal datasets, which was specifi-
cally applied to SZ. The authors created a semiparametric technique using a replicating
kernel Hilbert space. This method was developed using a typical mixed-effects linear model.
The strategy centered on recognizing interactions between many modalities (e.g., brain
imaging and genetic data) in order to uncover complicated links with SZ. The suggested
method outperformed established methods in finding higher-order interactions, indicating
its potential for better understanding the multidimensional nature of SZ. Using the same
dataset, Li et al. [128] offered a unique method for combining imaging and genomics data
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using deep principal correlated autoencoders. The study used imaging data (such as MRI)
and genomics data from multiple sources to investigate the integration of these modalities.
The authors proposed the deep principal correlated autoencoder (DPCAE) model. This
model took advantage of principal component analysis (PCA) and autoencoders to capture
the associated characteristics of imaging and genomics data. The DPCAE model was
intended to improve the representation and integration of multimodal data. The proposed
technique showed better performance in merging imaging and genomics data.

Table 5 provides a table summarizing the study characteristics of key research on the
use of fMRI to predict SZ.

Table 5. Study characteristics of notable research relevant to SZ diagnosis using fMRI (patients—
patients with SZ).

Work Dataset Number of
Samples

Data
Preparation

Software for
Data

Preparation

Feature
Extraction
Method

Approach Result (%)

Qureshi,
et al. [13]—

2019

COBRE

Patients = 72,
controls = 72

Independent
component

analysis

FMRIB
Software
Library

Three-
dimensional–
convolutional

neural network

10-fold cross-
validation

Accuracy = 98.09,
recall = 97.49

Ghanbari
et al. [113]—

2023

Patients = 72,
controls = 74

Motion
correction,

spatial
normalization,

smoothing

SPM12

Functional
connectivity

features, activity
maps, statistical

methods

3D-CNN,
LSTM network Accuracy = 92.32

P. Jain
et al. [129]—

2021

UCLA
COBRE

Patients = 71,
controls = 73

Slice-time
correction,

realignment,
co-registration,
normalization,

smoothing

SPM12
FC map features,

two-sampled
paired t-test

2- step ridge
Classifier,
LOOCV

Accuracy = 85.26

A. Juneja
et al. [115]—

2018

FBIRN

Patients = 34,
controls = 34
Patients = 25,
controls = 25

GSICA and
GLM GIFT and SVM Filter-cum-

wrapper method SVM Accuracy = 96

I. Chatterjee
et al. [116]—

2018

Patients = 55,
controls = 55 - SPM 3-stage algorithm Linear support

vector machine Accuracy = 99.5

Chatterjee
et al. [130]—

2020

Patients = 55,
controls = 55 - SPM

Voxel values
T-rest, GLM,

NSGA-II
SVM Accuracy = 95.45

S. Wang
et al. [118]—

2018

Clinical

Patients = 48,
controls = 31 - REST

Regional
homogeneity

measures

Support vector
machines Accuracy = 90.14

Q. Zhu
et al. [119]—

2018

Patients = 24,
controls = 21 -

Statistical
parametric
mapping

Features of brain
connectivity,

KDA

Neural
Networks Accuracy = 95.56

P. Liu
et al. [131]—

2019

Patients = 28,
controls = 28 Group ICA

Representational
state transfer

(REST)

Nodes of FCN,
PCA SVM, LOOCV Accuracy = 92.86

Yang
et al. [123]—

2017

Multiple
sites

Patients = 446,
controls = 451 -

Statistical
parametric
mapping

Sparsity
parameter

10-fold cross-
validation Accuracy = 86

Y. Bae
et al. [125]—

2018
CCNMD Patients = 21,

controls = 54 -
Statistical

parametric
mapping

Parameters of
functional

connectivity

10-fold cross-
validation

Accuracy = 92.1,
precision = 94,

recall = 92

Lei et al. [126]—
2020

Five
datasets

Patients = 295,
controls = 452

Data
segmentation DPARSF

Volume of gray
and white matter,

covariance
matrix, fuzzy

C-means (FCM)
clustering, ReHo

SVM, 10-fold
cross-

validation
Accuracy = 90.83
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Table 5. Cont.

Work Dataset Number of
Samples

Data
Preparation

Software for
Data

Preparation

Feature
Extraction
Method

Approach Result (%)

Alam
et al. [127]—

2018

Genes
dataset of

MCIC

Patients = 79,
controls = 103

75 genes
-

Statistical
parametric
mapping

epigenetics
features,

kernel-Based
multi-view

discriminative
and high-order

information
(KMDHOI)

SVM, 2-fold
cross-

validation
Accuracy = 89.68

G. Li
et al. [128]—

2020
MCIC Patients = 81,

controls = 103

Data
augmentation

and data
segmentation

Statistical
parametric
mapping

DPCAE 5-fold
correlated AE Accuracy = 93.8

5. Critical Analysis and Discussion

This section presents a critical review of the papers surveyed in the report. After a
detailed debate, we identified significant difficulties that require further attention from
researchers for the better diagnosis of SZ. Some of these concerns are outlined below:

1. EEG signals are adulterated by various inputs, such as eye blinks, muscle movements,
and electrical noise, which can obscure the true neural signals, hindering the ability to
examine the data accurately. For ensuring the reliability of EEG investigations, it is
critical to develop standardized and effective methods for artifact removal. Techniques
such as ICA and ML-based approaches are currently being investigated, although a
consensus on best practices is still required.

2. EEG is noted for its excellent temporal resolution, which can capture cerebral activity
in milliseconds. However, its spatial resolution is limited, creating challenges in
identifying the specific site of brain function. Combining EEG with other imaging
modalities, such as fMRI, which has excellent spatial resolution, can provide a more
complete picture of brain activity. However, combining various modalities necessitates
complicated algorithms and approaches that are still being developed.

3. EEG data preprocessing steps include filtering, artifact removal, and normalization.
There is no commonly approved preprocessing pathway, resulting in diversity in
study outcomes. Developing uniform preprocessing techniques would improve the
reliability and comparability of EEG research.

4. The ability of DL algorithms to evaluate EEG data for SZ detection has been demon-
strated. However, these models require substantial training datasets, which are not
always available. Furthermore, DL models are sometimes viewed as “black boxes,”
creating challenges in understanding the predictions. Creating interpretable models
and tackling data shortage issues are critical concerns.

5. SZ is linked to modest structural abnormalities in the brain, such as variations in
gray-matter volume and cortical thickness. These modifications might vary greatly
between individuals, making it difficult to create models that accurately capture these
differences. More complex models can be built using advanced ML techniques and
larger datasets.

6. Most sMRI investigations are cross-sectional, capturing brain structure at a single
point in time. Longitudinal studies that track structural changes over time are required
to better understand the course of SZ. These investigations can shed light on how brain
structure changes over time and aid in the identification of early illness biomarkers.

7. Combining sMRI with functional data from fMRI or EEG can help provide a more
complete picture of SZ. However, effective integration strategies are still being devel-
oped. Multimodal techniques can assist in establishing the link between anatomical
abnormalities and functional problems in SZ.
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8. fMRI has high spatial resolution, allowing researchers to identify the location of brain
activity. On the other hand, its temporal precision being restricted, it measures fluctu-
ations in the activity of the brain over seconds instead of milliseconds. Improving the
temporal resolution of fMRI and better combining it with EEG can provide a more
thorough picture of brain function.

9. There is ongoing disagreement concerning whether task-based or resting-state fMRI
is more effective in diagnosing SZ. Task-based fMRI requires participants to execute
specific tasks, whereas resting-state fMRI monitors brain activity at rest. Each method-
ology has merits and demerits; hence, additional studies are required in order to
establish the most efficient method for detecting SZ.

10. fMRI data are complicated and multidimensional, necessitating modern computer
approaches for analysis. Meaningful patterns can be extracted from fMRI data using
methods such as ML and network analysis. However, more robust and interpretable
models are needed to provide unambiguous insights into brain activity in SZ.

11. Combining data from EEG, sMRI, and fMRI can provide a more complete picture of
brain function and anatomy. However, successful multimodal integration techniques
are still in their infancy. Developing algorithms that can seamlessly combine data
from several modalities is an important field of research.

12. There is a dearth of consistent processes for data collection, preparation, and analysis
among investigations. This diversity makes it difficult to compare data and draw
broad conclusions. Standardized methods would improve the repeatability and
comparability of study results.

13. Many advanced models, particularly those based on DL, are difficult to comprehend.
Developing models that provide precise insights into the underlying brain pathways
is critical for comprehending SZ. Interpretable models can aid in the identification of
biomarkers and a better knowledge of disease pathology.

14. Large, high-quality datasets are required to train robust models. More open-access
datasets are required, as are collaborative data-sharing efforts. Initiatives such as
data-sharing platforms and consortia can help to overcome data scarcity and facilitate
the creation of more accurate models.

15. AI algorithms, particularly deep learning models, often face overfitting issues when
applied to small datasets, which is common in schizophrenia research due to chal-
lenges in acquiring large-scale EEG or neuroimaging data. Techniques such as data
augmentation, transfer learning, and regularization can mitigate this problem, but
their effectiveness depends on the specific dataset and application.

16. Despite promising advancements, deploying AI systems in clinical environments
presents several practical challenges. These include integrating AI solutions into exist-
ing workflows, ensuring data privacy and security, and meeting stringent regulatory
requirements. Rigorous validation, pilot testing in clinical settings, and collaboration
with healthcare professionals are critical to overcoming these obstacles and ensuring
the reliability of AI systems for schizophrenia detection.

These points highlight some of the important areas where additional study and devel-
opment is needed to better the diagnosis and understanding of SZ using EEG, sMRI, and
fMRI. Table 6 highlights the highest classification accuracies achieved by the corresponding
datasets notable for SZ diagnosis.

Table 6. Highest classification accuracies attained on the respective datasets that are relevant for
SZ diagnosis.

Work Dataset Modality AI Technique Highest Classification
Accuracy (%)

Buettner et al. [72]—2019 RepOD EEG RF, 10-fold cross-validation 100

Siuly et al. [70]—2023 Kaggle Basic Sensory
Task data EEG Deep ResNets, Softmax layer

and deep features with SVM 99.23
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Table 6. Cont.

Work Dataset Modality AI Technique Highest Classification
Accuracy (%)

Sobahi et al. [83]—2022 MSU EEG ELM-based AE 97.7

Qureshi et al. [85]—2017 COBRE sMRI, fMRI ELM 99.29

Nguyen et al. [96]—2018 Clinical sMRI SVM, 10-fold
cross-validation 99.3

Chatterjee et al. [116]—2018 FBIRN fMRI Linear SVM 99.5

6. Conclusions and Future Scope

AI developments have opened up new potential for detecting mental diseases such
as SZ. SZ, being a brain dysfunction, involves hallucinations, aberrant speech, and cog-
nitive, thinking, and behavioral impairments. This study examined AI methods such as
feature reduction, selection, ML, and DL for diagnosing SZ automatically. We reviewed
previous studies on utilizing ML and DL to diagnose SZ and promote healthy behavior.
Recent studies have demonstrated high accuracy in prediction tests, sparking interest in
AI techniques.

The paper discusses three key modalities used to detect SZ: EEG, sMRI, and fMRI.
Recent studies have emphasized the use of MRI data for SZ categorization above EEG
data due to its ability in providing critical analysis of the functionality of the brain and
promoting accurate diagnosis. While sMRI is commonly used to classify patients into SZ
and HC groups, resting-state fMRI is increasingly being used by researchers.

Researchers can use public datasets to improve diagnoses with ML and DL models.
Medical datasets and AI approaches can enhance the prognosis for chronic illnesses such
as SZ. DL demands massive quantities of data for complex tasks. However, due to limited
datasets, ML is more commonly used for automated SZ diagnosis. While ML can be utilized
with limited datasets, DL algorithms with autonomous feature selection can help doctors
understand disease causes more effectively. DL can predict initial onset of SZ as well as
identify a significant treatment option. Our examined research stresses the importance
of using a balanced and context-specific strategy. AI has the potential to improve SZ
diagnosis, but it requires interdisciplinary collaboration and ethical considerations for its
implementation in mental health.

Future research could benefit from incorporating generative models to enhance
schizophrenia detection and classification. Techniques such as generative adversarial
networks (GANs) and variational autoencoders (VAEs) may be used to generate synthetic
EEG or neuroimaging data, helping to overcome the challenge of limited datasets in psychi-
atric studies. By supplementing real data with high-quality synthetic samples, these models
can strengthen the performance of classification algorithms and improve their ability to
generalize. Furthermore, they can identify intricate patterns in brain activity, offering
valuable insights into the neural mechanisms underlying schizophrenia. Investigating the
use of generative models has the potential to not only boost diagnostic accuracy but also
introduce innovative analytical methods and simulations, advancing our understanding of
this complex disorder.
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