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Abstract: The study of microRNAs (miRNAs) has emerged in recent decades as a key approach to
understanding the pathophysiology of many diseases, exploring their potential role as biomarkers,
and testing their use as future treatments. Not only have neurological, cardiovascular diseases,
or cancer benefited from this research but also infertility. Female infertility, as a disease, involves
alterations at multiple levels, such as ovarian and uterine alterations. This review compiles the latest
studies published in humans that link female disorders that affect fertility with altered miRNA profiles.
Studies on ovarian alterations, including diminished ovarian reserve (DOR), poor ovarian response to
stimulation (POR), premature ovarian insufficiency (POI), and polycystic ovary syndrome (PCOS), are
summarized and classified based on the expression and type of sample analyzed. Regarding uterine
disorders, this review highlights upregulated and downregulated miRNAs primarily identified as
biomarkers for endometriosis, adenomyosis, decreased endometrial receptivity, and implantation
failure. However, despite the large number of studies in this field, the same limitations that reduce
reproducibility are often observed. Therefore, at the end of this review, the main limitations of
this type of study are described, as well as specific precautions or safety measures that should be
considered when handling miRNAs.

Keywords: infertility; microRNA; ovarian alterations; uterine disorders

1. Introduction

Infertility is defined as the inability to achieve pregnancy after having regular un-
protected sexual intercourse for 1 year. This condition affects millions worldwide, with a
lifetime prevalence of 17.5% and 12.6% during the 12 months [1]. The origin of infertility
can be in both male and female factors, with approximately 50% of the cases attributed
to men [2]. Congenital bilateral absence of the vas deferens associated with mutations of
the cystic fibrosis gene is one of the primary genetic origins [3], followed by varicocele as
an acquired factor [4], and in another percentage of cases, the origin remains unknown.
Focusing on women, infertility can be associated with endocrine [5], ovarian, or uterine
alterations. However, in many cases, as in men, it is not possible to determine the infertility
origin. Ultimately, conception and pregnancy take place in the woman, and disturbances at
any of these levels may result in failure of conception or even miscarriage.

In many instances, assisted reproductive technologies (ARTs) are used to overcome
infertility and conceive [6,7]. Establishing an accurate early diagnosis is crucial during this
process. The origin of infertility and the available treatments will determine the prognosis
when the infertility diagnosis is determined. For this reason, much of the research efforts in
the field of ARTs are focused on (1) facilitating and accelerating the diagnosis of infertility,
(2) providing a realistic prognosis, and (3) developing new therapies for this condition.
In recent years, miRNAs have become promising molecules that could help achieve any
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of the above mentioned objectives. Although this field of study is still in its very early
stages, several researchers have explored the potential of miRNAs from different diseases
or conditions. Given the invasiveness of diagnostic techniques, such as laparoscopy [8]
or hysterectomy [9], used in women, many studies analyzing the role of miRNAs at the
reproductive level focus on women, hence this literature review. However, despite a
large number of published researches, specific considerations and precautions must be
considered when dealing with miRNAs.

This literature review article summarizes the published preliminary studies in humans
that postulate miRNAs as tools for the diagnosis, prognosis, and treatment of female
reproductive disorders.

2. microRNAs
2.1. Identification and Biogenesis

Although not translated into proteins, some RNA molecules are functional and called
non-coding RNA (ncRNA) [10]. These types of RNAs are classified according to their size.
If it is more significant than 200 nucleotides, they are considered long non-coding RNAs
(lncRNAs), while if it is smaller, they are classified as small non-coding RNAs (sncRNAs).
Multiple types of sncRNAs exist as miRNAs or Piwi-interacting RNAs (piRNAs) [11]. Still,
this review will focus on miRNAs because they are widely conserved molecules across
species, and a single miRNA can exert its regulation on many different targets. They are
RNA molecules of approximately 22 nucleotides that play a crucial role in regulating gene
expression at the post-transcriptional level [12]. Its discovery dates back to 1993 in the
organism Caenorhabditis elegans (C. elegans), when Lee et al. [13] demonstrated the existence
of the LIN-4 gene, which, after transcription, did not code for a protein but gave rise to
two small RNA molecules. These small RNAs were complementary to the LIN-14 gene
mRNA in the 3′ untranslated region (UTR), and as a result of the interaction, a decrease in
Lin-14 protein levels was observed [14]. Years later, Reinhart et al. (2000) [15], working on
the same model organism, would reach the same conclusion by discovering a new lethal-7
(LET-7) gene that showed a similar pattern.

Currently, multiple miRNAs have been identified, and their processing has been
described in detail [16–18]. Although there are different post-transcriptional processing
pathways, the majority of conserved miRNAs in all vertebrates originate from the canonical
pathway explained below (Figure 1a) [19]. In general terms, RNA polymerase II (Pol
II) transcribes the miRNA genes, generating a primary miRNA transcript (pri-miRNA)
in the cell nucleus [20]. This pri-miRNA varies in size from hundreds of nucleotides to
tens of kilobases and forms a stem-loop structure in which a hairpin and a base can be
distinguished. The pri-miRNA is characterized by being polyadenylated and capped, and
it can be spliced [21]. In the nucleus, it will undergo an initial processing by which the
base part is cleaved, leaving only the hairpin miRNA precursor (pre-miRNA) of about
70 nucleotides. The machinery in charge of this first step in miRNA processing is the
microprocessor complex formed by the RNase III enzyme Drosha and the double-stranded
RNA-binding protein DiGeorge syndrome critical region gene 8 (DGCR8) [22]. Then, thanks
to Exportin-5 [23–25], the pre-miRNAs will be transferred to the cell cytoplasm, where the
next Dicer-mediated processing step will occur. Dicer is an RNase III enzyme that, after
association with double-stranded RNA (dsRNA)-binding proteins, will cleave the stem-
loop terminal region of pre-miRNA, generating a miRNA duplex. This duplex consists of a
double strand of approximately 22 nucleotides. The dsRNA-binding proteins in human
cells can be PKR activator protein (PACT) or transactivation response RNA-binding protein
(TRBP) [26]. From the generated duplex, one of the strands will be bound to argonaute
proteins (Ago) [27], the RNA-induced silencing complex (RISC) will be formed, and the
other strand will be degraded [28].
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Figure 1. Biogenesis of miRNAs and their regulatory function of gene expression. (a) miRNAs ob-
tention and maturation process. In the canonical pathway, RNA-polymerase II transcribes the 
miRNA gene; the initial transcript generated is called pri-miRNA. Then, thanks to the type III ribo-
nuclease activity of Drosha, the double-stranded RNA will be recognized and removed from the 
poly-A tail, giving rise to the pre-miRNA. This pre-miRNA is exported from the cell nucleus to the 
cytoplasm bound to Exportin-5 via the RanGTP/RanGDP transport system. Once in the cytoplasm, 
another type III ribonuclease, Dicer, cleaves the stem-loop-terminal region and generates a double-
stranded miRNA. One of the two strands that form the mature miRNA will be degraded (called the 
passenger strand) by the argonaute protein with endonuclease activity or RNases present in the 
cytoplasm. The other strand of the miRNA will remain bound to the argonaute protein to perform 
its function. (b) Gene silencing. Post-transcriptional regulation of the expression of different genes 
can occur in two ways. (Left) When the complementarity of bases between the miRNA and the tar-
get mRNA is total, the argonaute protein itself, with its endonuclease activity, will destroy the 
miRNA. (Right) However, if this complementarity is not total, the RISC complex will remain and 
impede the progress of the translation process. 

By the process detailed above, canonical miRNAs are obtained. However, it is im-
portant to note the existence of miRNA isoforms called isomiRs. These small RNA 

Figure 1. Biogenesis of miRNAs and their regulatory function of gene expression. (a) miRNAs
obtention and maturation process. In the canonical pathway, RNA-polymerase II transcribes the
miRNA gene; the initial transcript generated is called pri-miRNA. Then, thanks to the type III
ribonuclease activity of Drosha, the double-stranded RNA will be recognized and removed from
the poly-A tail, giving rise to the pre-miRNA. This pre-miRNA is exported from the cell nucleus
to the cytoplasm bound to Exportin-5 via the RanGTP/RanGDP transport system. Once in the
cytoplasm, another type III ribonuclease, Dicer, cleaves the stem-loop-terminal region and generates
a double-stranded miRNA. One of the two strands that form the mature miRNA will be degraded
(called the passenger strand) by the argonaute protein with endonuclease activity or RNases present
in the cytoplasm. The other strand of the miRNA will remain bound to the argonaute protein to
perform its function. (b) Gene silencing. Post-transcriptional regulation of the expression of different
genes can occur in two ways. (Left) When the complementarity of bases between the miRNA and
the target mRNA is total, the argonaute protein itself, with its endonuclease activity, will destroy the
miRNA. (Right) However, if this complementarity is not total, the RISC complex will remain and
impede the progress of the translation process.

By the process detailed above, canonical miRNAs are obtained. However, it is impor-
tant to note the existence of miRNA isoforms called isomiRs. These small RNA molecules



Int. J. Mol. Sci. 2024, 25, 12979 4 of 23

differ from the canonical miRNAs in length, sequence, or both and sometimes even have a
different function [29,30]. Their synthesis takes place using the same process as canonical
miRNA synthesis. Alterations in the process, such as imprecise Drosha or Dicer excision,
addition or deletion of nucleotides at the 5′ or 3′ ends, or inclusion of single nucleotide
polymorphisms (SNPs), are the specific origin of isomiRs [31]. Therefore, their presence
should be taken into account in studies on miRNAs as they may be missed in miRNA
detection and expression methods [32].

2.2. Role in Biological Processes

The early findings about miRNAs mainly were attributed to the organism C. elegans,
and these findings were further supported by research on the regulatory function of these
molecules in Drosophila [33,34]. The primary function of miRNAs is to regulate gene expression
by post-transcriptional gene silencing acting on messenger RNA (mRNA) [35,36]. Specifically,
this is the process of RNA interference, a biological mechanism mainly mediated by small
RNA molecules such as miRNAs and small interfering RNAs (siRNAs). For miRNA-mediated
interference to occur, the miRNA, as a part of the RISC complex, must travel to its target
mRNA and, through base complementarity, carry out its function (Figure 1b). Two regions
are essential for the miRNA binding to target mRNA: the miRNA seed region and the 3′-UTR
region of the mRNA. The miRNA seed region is between nucleotides 2 and 8 of the miRNA
5′ end [37]. The 3′-UTR region is an untranslated region of the mRNA localized at the 3′

end, also called the trailer sequence [38]. Total or partial base complementarity between
the miRNA seed region and 3′-UTR mRNA can be used to characterize the phenomenon
as translational repression or mRNA degradation [39,40]. In the first case, the direct and
immediate degradation of mRNA will be induced and performed by Ago endonuclease
activity [41,42]. If the base complementarity is partial, translation inhibition will be indirect
since the RISC complex will stay attached to the mRNA, forming a spatial barrier that will
stop the translation machinery from progressing [43].

Mature miRNAs mostly work in the cytoplasm of cells. However, recent studies have
shown that these molecules can also act at the nuclear level [44]. Although the negative
regulation of complementary target mRNAs is the main function at the cytosolic level,
there are several ways in which this regulation can be executed at the nuclear level. Among
these new approaches to miRNA-mediated regulation are the interaction between miRNAs
and other ncRNAs as circular RNAs (circRNAs) [45,46] and the silencing of genes coding
for proteins involved in the maturation process of the miRNAs themselves [47] or even
indirectly involved in epigenetic modifications [48].

2.3. miRNA Availability

As explained above, miRNAs are synthesized in the cell nucleus and exported to the
cytoplasm to complete their maturation process. Once the miRNAs have matured, they will
mainly exert their function in the cytoplasm. However, it is important to mention that many
miRNAs migrate out of the cell, having an important role as chemical messengers [49,50].
As a consequence of this migration, it is possible to identify miRNAs in body fluids such as
blood [51], urine [52], saliva [53], follicular fluid [54], seminal fluid [55], and breast milk [56],
among others. Furthermore, it has been observed that despite their ribonucleic acid nature,
they are characterized by high stability in biofluids [57]. The reason is that miRNAs are not
released in isolation; instead, they move and form vesicles or ribonucleoprotein complexes.
Thanks to these bindings, the RNases present in biofluids cannot degrade them. Specifically,
90% of circulating miRNAs are bound to proteins such as AGO2 [58], GW182 [59], and
HDL [51], while the remaining 10% travel inside exosomes or microvesicles [57,60].

2.4. miRNAs as a New Approach in Diagnosis and Treatment

After the last few years of study on miRNAs, it has been confirmed that these molecules
play a fundamental role in the appearance or progression of diseases. While providing
information on the molecular processes mediated by miRNAs that may be altered in
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different conditions, all these studies also represent a major advance for diagnosing and
treating diseases. One of the most promising roles for miRNAs is their use as biomarkers.
Different researchers have explored these molecules in cancer [61–64], immunological [65]
and neurological disorders [66–68], or even cardiovascular diseases [69–71]. Recently,
miRNAs have also been evaluated as hopeful therapies using an analog or mimic [72] and
inhibitors or antagonists [73] of the miRNA in question.

3. miRNAs and Infertility

The World Health Organization (WHO) classifies infertility as a disease [74]. Therefore,
like many other pathologies mentioned above, miRNAs can also play a role in the diagnosis
and treatment of infertility. However, infertility is a complex condition that involves
the interaction of biological [75–77], emotional [78,79], anatomical or physical [80–84],
and social factors [85–87]. In addition, infertility can have its origin in either the man
or the woman. Specifically, infertility in women can be due to ovulatory disorders and
uterine alterations, among others, as hormonal problems. The vast majority of published
research on miRNAs and female infertility works with ovarian and endometrial samples,
subsequently analyzing whether the miRNA expression pattern found in that type of
sample is reflected in biofluids such as blood. For this reason, the latest research on
miRNAs related to ovarian and uterine disorders will be discussed below.

3.1. Ovarian Alterations

One of the causes of female infertility is ovarian insufficiency. This concept includes
poor ovarian response, premature ovarian insufficiency (also called premature ovarian
failure, POF), and advanced maternal age. All these are characterized by reduced ovarian
reserve, but the boundaries between these concepts are poorly defined [88]. Consequently,
in many cases, the diagnosis is not clear since clinical features may overlap. This problem
is directly reflected in the studies that analyze the relationship between miRNAs and the
different situations of ovarian failure.

The following is a summary of research that has looked into the function and potential
of miRNAs in cases of POI, POR, and DOR. Furthermore, a detailed discussion of PCOS,
another extremely common ovarian condition, will be provided. Table 1 summarizes the
miRNAs found to be altered in each ovarian disorder analyzed. They are classified by color
depending on the nature of the sample studied.

Table 1. miRNAs differentially expressed in ovarian disorders.

DOR POR POI PCOS

U
pr

eg
ul

at
ed

miR-128-3p [89]
miR-6881-3p [90]

miR-484 [91]
miR-4463 [92]

miR-342-3p [93]
miR-483-3p [93]
miR-625-3p [93]
* miR-28-3p [94]

* miR-155-5p [94]
miR-29a-5p [94]

* miR-23a [95]
* miR-21-5p [96]
miR-15a-5p [97]

* miR-23a [98]
miR-27a [98]

miR-33b [99]
miR-142 [99]

miR-1298-5p [100]
miR-212-3p [101]
miR-490-5p [101]
miR-4643 [101]
miR-3131 [102]
miR-206 [102]

miR-204-5p [102]
miR-100-5p [102]

miR-193a-5p [102]
miR-381-3p [103]

miR-199b-5p [103]
* miR-93 [104] -3p [103]

miR-361-3p [103]
miR-127-3p [103]

miR-1238-3p [103]
miR-382-5p [103]
miR-425-3p [103]
* miR-222 [105]

* miR-146a [105] -5p [106]
miR-30c [105]

* miR-21-5p [107]
* miR-23a-3p [107]
miR-26a-5p [107]
* miR-223 [104]

miR-126-3p [106]
miR-151a-5p [108]

miR-488 [108]
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Table 1. Cont.

DOR POR POI PCOS

D
ow

nr
eg

ul
at

ed

miR-221-3p [109]
miR-16-5p [89]

* miR-106a [110]
miR-122-5p [93]
miR-1246 [93]

miR-130b-3p [93]
* miR-21-5p [94]

miR-22-3p [111]

miR-423 [99]
miR-647 [101]

miR-539-5p [102]
miR-650 [103]

miR-663b [103]
* miR-155 [112]

miR-103-3p [107,113]
miR-376a-3p [107,113]

miR-19b-3p [107]

* miR-222-3p [107]
miR-139-5p [113]
* miR-28-3p [113]

miR-320 [114]
miR-20b-5p [106]

* miR-106a-5p [106]
miR-18a-3p [106]

* miR-223-3p [108]

* indicates miRNAs that have been reported to be differentially expressed in several studies, either for the same or
different conditions. More information can be found in Section 3.1.5. Differentially expressed miRNAs in follicular
cells such as GCs or CCs are shown in blue. Those studied in FF appear in green, while those detected in blood
(serum or plasma) are red. The miRNAs that combine both colors indicate that they have been detected in these
two types of samples. DOR: diminished ovarian reserve; POR: poor ovarian response; POI: premature ovarian
insufficiency; PCOS: polycystic ovarian syndrome.

3.1.1. Diminished Ovarian Reserve

Currently, there is no single accepted definition for the term DOR [115]. At the clinical
level, it is mainly defined as a reduction in ovarian follicle number, a low ovarian response
to stimulation, and a poorer oocyte quality [88]. Therefore, one of the key concepts is
ovarian reserve, which can be assessed by the antral follicle count (AFC) or anti-müllerian
hormone (AMH) level [116,117]. In most studies that examined the expression of miRNAs
in DOR cases, the AMH and AFC were shown to differ between the DOR group and the
control group. However, these differences in ovarian reserve markers are accompanied by
statistically significant differences in the mean age of the groups. Although the concept
of DOR only refers to a woman’s ovarian reserve, it is important to mention that it is a
normal physiological process linked to age and is very common in women in their mid-40s.
However, when it appears in young women, it is a pathological condition [115].

An analysis of miRNAs in this patient profile has been conducted to comprehend the
pathophysiology and physiology of DOR. Granulosa cells (GCs) and cumulus cells (CCs),
which are ovarian follicle cells, have been the primary subjects of this kind of study. The
main reason is that the decrease in oocyte competence in women with DOR could originate
from abnormal regulation by the cells accompanying the oocyte in the environment of
the antral follicle. The miRNAs miR-221-3p, which targets the gene FOXO1 [109], and
miR-106a, whose target is ASK1 [110], showed reduced levels in DOR patients. In both
studies, alteration in these miRNAs led to increased GCs or CCs apoptosis. The study
by Woo et al. [89] also evidenced lower levels of miR-16-5p, triggering an increase in
MAPK and WNT3, promoting elevated cell proliferation, differentiation, and apoptosis.
The same study demonstrated higher levels of miR-128-3p, causing a decrease in TGFBR1,
an alteration previously observed in older women. Consequently, the DOR profile would
be similar to older women’s profiles. MiR-6881-3p [90] and miR-484 [91], also with higher
expression in DOR women, caused decreases in SMAD4 and YAP1, respectively, increasing
the levels of apoptosis of GCs. However, not only has the miRNA profile been studied in
cells directly related to folliculogenesis, but miRNAs have also been evaluated in follicular
fluid (FF). Since one of the primary roles of exosomes is cell-to-cell communication, the
amounts of various miRNAs found in FF exosomes have been specifically examined.
Among the most recent studies, Shen et al. [93] found a lower expression of miR-122-5p,
miR-1246, and miR-130b-3p. The miRNAs miR-342-3p, miR-483-3p, and miR-625-3p were
the most abundant FF exosomes from DOR patients. The fact that there were no statistically
significant variations in the mean age of the DOR groups and the control group with normal
ovarian reserve is a good aspect of this study. This fact cannot be stated in another study,
the one carried out by Xie et al. [94], where despite finding downregulated miR-21-5p and
upregulated miR-28-3p, miR-155-5p, and miR-29a-5p, the mean age between the study
groups was statistically significant.
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Each of the aforementioned research studies, which sought to elucidate the role
of miRNAs in the etiology of DOR, proposes miRNAs as potential biomarkers for this
condition. miRNAs as biomarkers would be an additional parameter, which, together
with AMH and AFC values, would allow professionals to narrow down and diagnose this
condition accurately. However, specific studies have focused on analyzing female blood
samples with DOR, searching for non-invasive or minimally invasive biomarker candidate
miRNAs. MiR-106a [110] and miR-4463 [92], the first decreased and the second increased
in DOR patients, have been tested simultaneously in serum and follicular cell samples.
The research by Abu-Halima et al. [118] did not focus on circulating miRNAs in serum or
plasma but instead profiled miRNAs present in blood cells from women with lower AMH,
normal AMH, and higher AMH.

3.1.2. Poor Ovarian Response

POR refers to a low number of competent oocytes retrieved after ovarian stimulation.
This type of response to ovarian stimulation is mainly associated with maternal age over
40 years; it is typical in women with a previous history of cycle cancellation due to a low
number of oocytes retrieved and a DOR [119,120].

Compared to research about DOR, fewer publications examine the expression profile
of miRNAs in women with POR. However, many of the studies performed in DOR are
executed during in vitro fertilization (IVF) treatments after ovarian stimulation. Once
stimulation has been performed and oocytes are collected, GCs, CCs, or FF obtained during
oocyte pick-up are used for miRNA analysis. Therefore, ovarian stimulation can influence
the miRNA signature, and considering that DOR and POR conditions often overlap, it is
difficult to determine whether these types of studies are exclusive to women with a DOR
profile. The studies on POR women have been performed with the same objective as studies
on DOR: to analyze the role of miRNAs in the etiology of this condition. These investiga-
tions have also been conducted in GCs, where an increase in miR-23a was evidenced. This
is linked to an elevation of apoptosis in GCs, which results in follicular atresia by inhibiting
SIRT1. The increase in apoptosis was evidenced by elevated Caspase-3 [95]. In CCs, the
miRNA that recorded elevated levels in POR women was miR-21-5p, demonstrating in-
dependence concerning low estradiol levels [96]. The study by Zhang et al. [97] focused
on FF, differentiated between younger and older POR women, and only in the younger
group were high levels of miR-15a-5p detected. This upregulated miRNA promoted cell
apoptosis by reducing BCL2 levels.

Although studies on miRNAs that may play a role in the cause of POR are promising,
to date, none have been explored as a treatment or biomarker per se. Currently, the clinical
approach to POR cases is focused on obtaining a greater number of competent oocytes. To
this end, smaller follicles, whose oocytes may also have compromised nuclear competence,
are often aspirated during oocyte collection. From the point of view of miRNAs, and
for clinical reassurance, there were no significant differences in the miRNA signature
associated with oocyte maturation (miR-451 and miR-574) in FF from both small and large
follicles [121]. The study showed that this strategy versus the POR condition does not
imply a lower nuclear competence of the oocyte aspirated from the smaller follicles.

3.1.3. Premature Ovarian Insufficiency

As previously described, a loss in ovarian function is typical of advanced maternal
age. Still, when it occurs before the age of 40, it refers to the term POI, also known as
POF [122]. Clinically, the diagnosis is made when a woman presents menstrual irregulari-
ties, an increase in follicle-stimulating hormone (FSH), and low-level estrogen [123]. This
alteration is represented in approximately 1% of the female population [124]. The main
consequence of this ovarian activity decline is infertility [125]. Nonetheless, there are other
consequences that negatively impact women’s health, usually associated with menopause.
Osteoporosis [126], cardiovascular disease [127], and sexual dysfunction [128], all of them
linked to a decrease in estrogen production, accompany the symptomatology of POI. In
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addition, the consequences on the psychological well-being of these women, like emotional
distress, are devastating [129–131].

Respecting the etiology of POI, genetic causes [132,133], immunological alter-
ations [134,135], metabolic disorders [136], and environmental toxins [137] have been
identified. The induced POI by different agents as chemotherapeutic in animal models
has made it possible to profile the miRNAs involved in this condition [138–142]. How-
ever, human studies are very difficult to carry out because follicular aspiration is not
performed in many of these women due to cycle cancellation. After the cancellation of
oocyte retrieval, collecting FF, GC, or CC samples for research is impossible. For this rea-
son, many of the studies about POI are performed on blood. Recent plasma studies have
studied miRNAs and the role of other ncRNAs, such as circRNA. They act as “molecular
sponges”, binding to and absorbing miRNAs and indirectly controlling the expression
and function of the target mRNA [143]. A lower expression in circRNA_008901 and
circRNA_403959 was observed in POI patients, suggesting these as biomarkers for this
condition [144]. Other studies, following a more traditional experimental design, have
focused on the direct search for miRNAs with altered expression in the blood of women
with POI. These investigations have evidenced the importance of downregulated miR-
22-3p [111] or the overexpression of miR-23a and miR-27a in women suffering from this
condition [98]. Thanks to these types of studies that have suggested potential miRNAs
that could directly affect the cause of POI, it has been possible to transfer the investi-
gations from blood samples to cell cultures. The group of Nie et al. (2015) [145], based
on their previous studies from blood samples [98], transfected primary cultures of GCs
obtained from patients undergoing IVF techniques with miR-23a and miR-27a. Over-
expression of these miRNAs showed that their increase caused a decrease in SMAD5,
promoting apoptosis in human GCs. Studies with established cell lines, such as KGN
cells (human granulosa-like tumor cells), complement those carried out with primary cul-
tures. Co-transfection of these cells with miR-146b-5p and the lncRNA DLEU1 showed
that there is indeed an interaction between the two so that DLEU1 promotes cell apop-
tosis by reducing the inhibitory effect of miRNA on cell apoptosis [146]. Not only are
granulosa cells the direct target of these studies, but the clinical complexity of POI cases
has led to the exploration of other cell types, such as Th17 [147]. These cells are a type of
lymphocytes that activate the immune system, causing inflammation, whose activation
is mediated by miR-326. The results recorded an increase in this miRNA in Th17 cells
from patients with POF.

Previously, clinical management of POI cases was often limited to oocyte donation to
increase pregnancy success rates. However, many new clinical approaches and promising
therapies are now being implemented in this patient profile [148]. These new therapies
also represent a promising front of study for miRNAs; profiling the differentially expressed
miRNAs in POI patients under these treatments could provide important information on
their role in the POI origin.

3.1.4. Polycystic Ovarian Syndrome

PCOS affects 4–20% of pre-menopausal women worldwide and is characterized by
ovarian dysfunction, polycystic ovaries, and hyperandrogenism. Women with PCOS have
reduced fertility [149]. However, this syndrome also involves other alterations, especially
at the endocrine and metabolic levels [150]. These characteristics and manifestations
include hirsutism, acne, obesity, and insulin resistance [151]. This variety in the alterations
associated with PCOS complicates the study of the miRNAs differentially expressed in
these patients since there is significant heterogeneity between studies [152].

MiRNAs in women with this profile have been investigated in blood samples, FF,
GCs, and CCs. In blood, published studies have measured miRNA levels in both serum
and plasma. With respect to serum studies, miR-222, miR-146a, miR-30c [105], miR-21-
5p, miR-23a-3p, and miR-26a-5p [107] were upregulated in PCOS women, whereas miR-
155 [112], miR-103-3p [107,113], miR-376a-3p [107,113], miR-19b-3p, miR-222-3p [107],
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miR-139-5p, miR-28-3p [113], and miR-320 [114] were downregulated. In plasma, miR-93,
miR-223 [104], miR-126-3p, miR-146a-5p [106], miR-151a-5p, and miR-4488 [108] were
identified with higher expression in women with PCOS, whereas the levels of miR-20b-5p,
miR-106a-5p, miR-18a-3p [106], and miR-223-3p [108] were lower. Among the studies on
the expression profile of miRNAs in the FF of PCOS women, miR-539-5p [102], miR-650,
and miR-663b [103] evidenced downregulation. MiR-3131, miR-206, miR-204-5p, miR-
100-5p, miR-193a-5p [102], miR-381-3p, miR-199b-5p, miR-93-3p, miR-361-3p, miR-127-3p,
miR-1238-3p, miR-382-5p, and miR-425-3p [103] recorded elevated levels in PCOS patients.
One of the studies worked with FF and CCs found in both types of samples, and the same
miRNAs were increased (miR-212-3p, miR-490-5p, and miR-4643) and downregulated
(miR-647) [101]. Regarding GCs, Li et al. (2019) [99] determined by quantitative polymerase
chain reaction (qPCR) that miR-33b and miR-142 expression was upregulated, whereas
miR-423 was downregulated. However, in the study by Xu et al. (2023) [100], they went
a step further, and after showing an increase in miR-1298-5p in GCs from PCOS patients,
they transferred their study to cultured COV343 human ovarian granulosa cells to analyze
their molecular role in this condition.

Despite the large number of studies on miRNAs and PCOS, the conclusions gained
are conditioned by certain inherent characteristics of this condition. For this reason, it is
necessary to define the PCOS study population clearly.

3.1.5. Overlapping miRNAs in Ovarian Alterations

After the analysis of the different miRNAs with differential expression in each ovarian
disorder exposed, it can be observed that many of them have been identified in different
alterations or even multiple times in the same disorder. MiR-106a was identified by its
low expression in both blood and follicular cells in women with DOR [110]; its expression
was also lower in PCOS blood, although in the study, it was specified that the miRNA
identified was miR-106a-5p [106]. Something similar occurred with miR-155 [112] and miR-
28-3p [113] downregulated in blood from PCOS women and upregulated in follicular fluid
from DOR [94], although specifically, the first one was miR-155-5p [94]. Another miRNA
with differential expression between DOR and PCOS was miR-21-5p; this miRNA recorded
low expression in the FF of DOR [94] and high expression in the blood of PCOS [107]. In
addition, this miRNA was upregulated in follicular ovarian cells of POR women [96]. The
miRNA miR-23a showed elevated levels in POR women (in follicular cells) [95] and in the
blood of POI [98] and PCOS cases; in the latter, it was miR-23a-3p [107].

The results within the group of women with PCOS are highly controversial. MiR-
222 [105] and miR-223 [104] were upregulated in blood samples, whereas the specific
miRNAs miR-222-3p [107] and miR-223-3p [108] registered low levels in the blood of
these patients. Finally, both miR-146a [105] and miR-93 [104] were notable for their higher
expression in blood samples from women with PCOS, although in the first case, both miR-
146a and miR-146a-5p [106] were detected, and in the second case, it was miR-93-3p [103]
that was also upregulated in the follicular fluid from these patients.

3.2. Uterine Alterations

Like the ovary, the uterus is an organ of great importance for fertility in the female
reproductive system. This organ is formed by three layers, which, from the inside to the out-
side, are the endometrium, myometrium, and serosa [153]. Specifically, the endometrium is
the most important one since its thickness varies cyclically in response to sex hormones
during the menstrual cycle. Because the embryo will implant in the endometrium and the
pregnancy will continue, the primary function of this tissue is associated with pregnancy.
As in other tissues, miRNAs also have a regulatory role [154,155]. The endometrial miRNA
profile can vary depending on the menstrual cycle phase [156,157], endometrial receptivity
for embryo implantation [158–160], or in situations of implantation failure [161–163]. In
addition, this profile may be altered by disorders closely linked to fertility, such as en-
dometriosis or adenomyosis [164]. The miRNAs that were discovered to be changed in
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endometriosis and adenomyosis are listed in Table 2. Depending on the type of sample
examined, the miRNAs are categorized by color.

Table 2. miRNAs differentially expressed in endometriosis and adenomyosis.

Endometriosis Adenomyosis

U
pr

eg
ul

at
ed

miR-30a [165]
miR-93 [165]

miR-325 [166]
miR-492 [166]
miR-520e [166]
* miR-145 [167]
miR-122 [168]

miR-199a [168]
miR-125b-5p [169]
miR-150-5p [169]
miR-342-3p [169]
miR-451a [169]

* miR-30c-5p [170]

miR-17 [171]
miR-191 [172]

miR-181b [172]
* miR-145 [173]

D
ow

nr
eg

ul
at

ed

miR-143 [165]
miR-203a-3p [166]
miR-126-5p [174]
miR-202-3p [175]
miR-424-5p [175]

miR-449b-3p [175]
miR-556-3p [175]

miR-199a-3p [176]
miR-143-3p [176]
miR-340-5p [176]

* let-7b [169,177] -5p [176]
miR-21-5p [176]

miR-103a-3p [176]
* miR-17-5p [176,178]

* miR-20a-5p [176,178]
miR-22 [178]
miR-31 [167]

miR-135a [177]
miR-3613-5p [169]

miR-10b [172]
miR-200c [172]

let-7a [179]
* miR-30c-5p [180]

miR-183 [181]

* indicates miRNAs that have been reported to be differentially expressed in several studies, either for the same or
different conditions. Differentially expressed miRNAs in endometrial tissue are shown in grey. Those studied in
blood (serum or plasma) appear in red.

3.2.1. Endometriosis

Endometriosis is a disease characterized by endometrial tissue outside the uterine
cavity. It is an estrogen-dependent chronic inflammatory disease [182,183]. It is estimated
that endometriosis affects 10% of women of reproductive age [184]. Its symptoms include
pelvic pain, menstrual irregularities, heavy bleeding, and pain during urination and sexual
intercourse [185]. However, the symptomatology is somewhat generic, resulting in a
6–10 year delay in diagnosis. The reference technique for diagnosing this condition is
laparoscopy, characterized by high diagnostic sensitivity and specificity. Invasiveness
and dependence on the surgeon’s judgment for identifying lesions are intrinsic to this
technique [186]. This is why multiple studies have been carried out to explore the capacity
of miRNAs as diagnostic biomarkers of endometriosis [187].

Numerous studies have been aimed at finding differentially expressed miRNAs in
endometriosis. The latest publications work with samples obtained non-invasively, such
as saliva [188]. One of the most explored samples in endometriosis is blood, obtained
through a minimally invasive process. Studies on blood plasma, such as that by Papari et al.
(2020) [176], showed low levels of miR-199a-3p, miR-143-3p, miR-340-5p, let-7b-5p, miR-21-
5p, miR-103a-3p, miR-17-5p, and miR-20a-5p. These last two miRNAs were also detected
as downregulated in women with endometriosis in the study by Jia et al. (2013) along
with miR-22 [178]. However, in both studies, no differences were established regarding the
stage of endometriosis severity, while Bashti et al. (2018) considered this criterion [167].
Among the miRNAs the last study detected as differentially expressed in women with
endometriosis, miR-31 stands out for its lower expression and miR-145 for its higher
expression. In blood serum samples, miR-122, miR-199a [168], miR-125b-5p, miR-150-5p,
miR-342-3p, miR-451a [169], and miR-30c-5p [170] registered higher levels in samples
from women with endometriosis. On the contrary, miR-135a [177], miR-3613-5p [169], and
let-7b [169,177] showed lower levels.

Studies carried out directly with endometrial tissue samples showed that the levels of
the same miRNA can vary depending on the location of the endometrial tissue [165,174,189].
This implies the importance of the type of sample in which the analysis is performed,
where even the peritoneal fluid from this patient profile is of interest [190,191]. Among
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the miRNAs that have been detected with a higher expression in endometrial tissue from
women with endometriosis, miR-30a, miR-93 [165], miR-325, miR-492, miR-520e [166] stand
out, while miR-143 [165], miR-203a-3p [166], miR-126-5p [174], miR-202-3p, miR-424-5p,
miR-449b-3p, and miR-556-3p [175] registered lower levels.

Endometriosis and cancer share molecular characteristics because the cells involved
in both pathologies can evade the apoptosis process; they are characterized by high pro-
liferation and angiogenic potential [192]. For this reason, studies that focus on miRNA
expressed in endometriosis and compare this condition with reproductive cancer would
allow us to understand the differential processes between both [174].

3.2.2. Adenomyosis

Adenomyosis is a benign uterine disorder characterized by the presence of ectopic
endometrium in the myometrial tissue and an increase in uterine volume. Invasion of the
endometrial glands and stroma into the adjacent myometrium causes hyperplasia of smooth
muscle cells, leading to anatomical distortion of the uterine cavity, local inflammation,
altered estrogen metabolism, and dysregulation of genes involved in maternal–embryonic
crosstalk [193,194]. This condition is estimated to affect 20–30% of women of reproduc-
tive age [195], and the symptomatology is similar to endometriosis cases [196]. These
percentages are based on diagnosis using transvaginal ultrasound and magnetic reso-
nance imaging [197]. However, the image characteristics of adenomyosis can be confused
with those of other uterine diseases such as endometriosis, as explained above, uterine
leiomyoma, or endometrial polyps, making clinical diagnosis difficult. For this reason, the
reference technique for the definitive diagnosis of adenomyosis requires histological analy-
sis of the uterus after hysterectomy [198]. The invasive nature of this technique hinders and
delays diagnosis. As a result, several research studies have concentrated on identifying the
profile of miRNAs that are differently expressed in adenomyosis.

Unlike endometriosis, where the profile of differentially expressed miRNAs has been
extensively studied in biofluids, in adenomyosis, the vast majority of studies were per-
formed in endometrial samples. These studies showed the following miRNAs overex-
pressed in eutopic and/or ectopic endometrium from women with adenomyosis: miR-
17 [171], miR-191, miR-181b [172], and miR-145 [173]. Among the differentially downreg-
ulated miRNAs expressed, miR-10b, miR-200c [172], let-7a [179], miR-30c-5p [199], and
miR-183 [181] stood out. However, these miRNA expression levels can be altered after
the application of a treatment, such as high-intensity focused ultrasound, as observed
with miR-191-5p, whose levels decreased after treatment [200]. Other studies, such as
Juarez-Barber et al. (2023) [201], instead of studying miRNAs in the entire endometrial
tissue, have focused on the extracellular vesicles that secrete endometrial organoids from
women with adenomyosis whose maintenance in vitro is possible.

3.2.3. Receptivity Status and Implantation Failure

Both endometriosis and adenomyosis have high rates of infertility among their pa-
tients, mainly due to anatomical abnormalities present in their uterus [202]. In cases where
surgery is not very aggressive, removal of the lesions allows pregnancy [203]. However,
some women who do not suffer from any of these pathologies or ovarian disorders also
have infertility. This may be due to problems linked to endometrial receptivity and embryo
implantation failures.

For embryo implantation to take place, the moment in which the blastocyst-stage
embryo attaches to the mother’s endometrium, it is necessary for the endometrium to be in
the mid-secretory phase (days 20–24 of the menstrual cycle, approximately 6-10 days after
ovulation). This crucial moment of the endometrium is known as the implantation win-
dow [204,205]. Once the blastocyst attaches to the luminal epithelium of the endometrium,
it invades the epithelial cell layer to enter the stromal compartment, leaving the embryo
completely covered by the luminal epithelium [206]. Endometrial receptivity can be pre-
dicted by transvaginal ultrasound and hormonal analysis [207]. However, establishing
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the miRNA expression profile during the implantation window would allow us to narrow
down this optimal period. Ideally, achieving this objective with blood samples would be
relevant since the endometrium would remain intact. Chen et al. (2023) [158] developed
a predictive model based on the miRNA expression profile in blood to determine the
implantation window of the endometrium. Other studies have worked in parallel on the
endometrium and blood samples, finding similarities between miRNAs with expression
linked to greater receptivity between both samples. An increase in miR-31 [160] or a de-
crease in miR-455-3p and miR-4423-3p [159] have been associated with the endometrial
phase of greatest receptivity. Studies such as Di Pietro et al. (2018) [208] or Zhou et al.
(2024) [209] in patients with chronic endometritis who present receptivity problems have
shown elevated levels of miR-27a-3p and miR-124-3p in both endometrial tissue samples
and serum. However, recent studies suggest that not only do miRNAs regulate the expres-
sion of genes important in endometrial receptivity but that there is cooperation between
miRNAs and different isomiRs [210–212].

Even when the endometrium is most receptive, implantation failure can occur. Finding
a cause has been the primary goal of studies on miRNAs implicated in implantation
failure [213]. For the most part, these types of studies have recruited women with recurrent
implantation failure (RIF), characterized by repeated embryo transfers without pregnancy
(more than two attempts). Studies with this patient profile have been carried out in blood,
endometrial tissue biopsies, and extracellular vesicles extracted from the endometrium.
Zeng et al. (2021) [214] showed elevated levels of miR-6767-5p, miR-149-5p, and miR-4433b-
5p and lower expression of miR-4511, miR-124-3p, miR-146-3p, miR-150-5p, miR-150-3p,
miR-342-3p, and miR-874-3p in blood plasma and exosomes from it in women with RIF.
Regarding extracellular vesicles originating from endometrial tissue, studies showed that
miR-6131, miR-1246, and miR-218-5p were upregulated in women with RIF [163]. Among
the upregulated miRNAs in endometrial tissue biopsies, miR-665 [162], miR-940, miR-144-
3p [161], and miR-152-3p [159] stood out, while miR-20b-5p and miR-330-5p [161] were
downregulated. However, there are discrepancies in miR-155-5p; for example, in the study
by Chen et al. (2021) [161], its increase was associated with RIF, while in the study by
Drissennek et al. (2022) [159], its levels were lower in the patient’s profile.

4. Challenges and Precautions in miRNA Work

As demonstrated throughout this review, miRNAs are of great importance not only for
disorders related to fertility but also for many other pathologies. They have a crucial role in
the pathophysiology of illnesses because they are determinants in gene silencing at the post-
transcriptional level. Due to the increase or decrease in their levels associated with certain
conditions, they could be biomarkers of these pathologies. The promise of miRNAs as
future therapeutics was further explored by research demonstrating that their effects might
be reversed by changing their levels, particularly through transfection experiments using
mimics and inhibitors [215,216]. However, in many of the studies analyzed throughout
this article, certain limitations have marked the potential of such studies. Therefore, some
specific aspects must be considered in the study design to ensure robust results and less
confusion due to avoidable biases.

4.1. Definition of Study Population

Given that infertility is associated with an increase in maternal age [217], recruitment
in both groups must be age-matched if the research objective is focused on a reproductive
outcome. In this way, there will be a guarantee that there are no statistically significant
differences between the mean age in case and control groups. For example, the differences
in AMH or AFC values between study groups were statistically significant in studies that
refer to ovarian alterations. When checking the age of both groups, this variable was also
different. Given that the AMH [218] value and the AFC [219,220] decrease as age increases,
comparing two groups whose age variable differs between them could imply that the
differences found are not due to the pathology but the aging process.
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Similarly, the timing of the sample collection that will be studied during the research
is crucial. Women have hormonal fluctuations throughout the menstrual cycle [221], and
these changes directly affect the ovarian and uterine levels. Studies where sample collection
is not unified, both in the ovary and the uterus, could lead to comparing different cycle
phases and, thus, incorrect results. In those cases where sample collection is carried out
throughout the fertility treatment, unifying the time of sample collection and the ovarian
stimulation protocol is of great importance.

4.2. miRNA Techniques

Massive sequencing methods using Next-Generation Sequencing (NGS), microarray
technology, and qPCR are the principal methods for studying miRNAs [222]. In the first and
second cases, the costs are increased. Using NGS, it is possible to detect both the expression
and sequence of all the miRNAs present in a sample. This technique requires the extraction
of high-quality RNA and the preparation of miRNA libraries. Microarray technology is
based on probes and is gradually being displaced by NGS. These two technologies are
very useful in developing a large profile of the miRNAs differentially expressed between
different groups. However, it is necessary to verify these results subsequently using
qPCR [223], which is the gold standard to date. Given that many of the studies are based
on techniques such as NGS and microarray, and later qPCR, it is important to divide the
study population into two groups: the discovery population intended for these massive
techniques and the subsequent validation population for qPCR. Both populations must
comprise patients with the same profile but not the same subjects. This will guarantee
that the results have been verified with two different techniques and allow the budget
to be adjusted if the sample size of higher-cost techniques such as NGS or microarrays
is reduced.

Regardless of the technique used, it is necessary to normalize the values obtained.
Seyednasrollah et al. (2015) compared eight software packages and pipelines used in
normalization for RNA sequencing and concluded that the tool used can affect the outcome
of data analysis [224]. In the case of massive sequencing techniques, the decision will
depend on the software incorporated into the technology used. However, in the case of
qPCR, there is significant controversy among the studies since many use the U6 non-coding
small nuclear RNA (RNU6). The use of this RNA as endogenous for cellular or tissue
samples is widely accepted, although it does not have the exact nature and composition as
a miRNA. But its use is not recommended when the type of study sample is blood, whether
plasma or serum, and the objective is to analyze the expression of circulating miRNAs [225].
Given that RNU6 is part of the cell nuclear, its presence would indicate cell rupture in these
cases. For this reason, it is suggested that during the initial screening techniques, NGS
or microarray, miRNAs that do not show differential expression between the groups are
also selected for subsequent use as endogenous miRNAs to perform normalization in the
qPCR [226].

A final note regarding the use of blood samples, both plasma and serum, is the
monitoring of hemolysis in the samples since it is a source of significant variability in the
profile of expressed miRNAs [227]. This can be checked by measuring the absorbance of
the sample at 414 nm, the absorbance of hemoglobin, or by calculating delta Cq [(miR-23a-
3p)–(miR-451a)]. By assessing these two miRNAs, the level of hemolysis of the samples
can be determined since the levels of miR-23a-3p are stable in serum and plasma and are
not affected by hemolysis, and miR-451a is highly expressed in erythrocytes [228].

Another common mistake in working with miRNAs is failing to specify whether
the differentially expressed miRNA is 5p or 3p [229]. During the maturation process of
miRNAs, the passenger strand is degraded, leaving the functional one that will travel
attached to the argonaute proteins to its target mRNA. Depending on the cell type or tissue,
both strands may be functional or only one, and the target mRNAs may vary. For this
reason, it is important to specify which strand is associated with the studied pathology.
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4.3. miRNAs as Therapy

Once the alteration in the levels of a particular miRNA has been evident in a specific
pathology and its effect on its target mRNA has been determined, it can be used as a
biomarker of the disease. Subsequent studies with this miRNA will focus on the transfection
of the interest cells with a mimic and/or inhibitor of that miRNA to explore its potential
use as therapy [215,216]. In this type of study, it is necessary to consider two main aspects:
(1) a miRNA can have multiple target genes and (2) preventing degradation of the miRNA
until it reaches its target mRNA. Therefore, to reduce the effect of miRNAs on other tissues,
the route of administration of miRNAs must be monitored for the use of therapies. If
it does not work, try developing delivery or vehicle systems like viral vectors [217] or
nanoparticles [203] that ensure the miRNA reaches the intended organ, which will prevent
the breaking down in the blood and even reduce adverse immune reactions to miRNA.

5. Conclusions

Numerous studies have shown that miRNAs are crucial for post-transcriptional regula-
tion, even if they do not code for proteins. Because of their ability to inhibit specific mRNA
targets, they are molecules of tremendous interest for understanding pathophysiology and
for usage as biomarkers or future treatments. Thanks to this scientific review article, we
hope to provide clarity on the studies performed to date in women that relate miRNA
profiles and reproductive alterations, thus establishing a solid foundation on which to build
future research. In addition, conducting multiple meta-analyses on miRNAs and female
infertility disorders could offer several benefits, such as helping to generalize the findings,
increasing statistical power, identifying consistent patterns, improving reproducibility,
reducing biases, and strengthening the conclusions.
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