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Abstract: The transcription factors c-Myc and FoxO3a play significant roles in neurodegenerative
processes, yet their interaction in neurological disorders remains largely unexplored. In contrast,
much of the available information about their relationship comes from cancer research. While
it is well-established that FoxO3a inhibits c-Myc activity, this interaction represents only a basic
understanding of a far more complex dynamic, which includes exceptions under specific conditions
and the involvement of additional regulatory factors. Given the critical need to address this gap for the
treatment and prevention of neurodegenerative disorders, this review consolidates current knowledge
on the joint roles of these two factors in neuropathology. It also highlights their conformational
flexibility, post-translational modifications, and outlines potential directions for future research.
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1. Introduction

The balance between neural regeneration and degeneration is a critical determinant
of neural health and function, with profound implications for recovery from neurodegen-
erative diseases and injury. Among the molecular pathways governing this balance, the
interplay between the oncogene c-Myc and the forkhead transcription factor FOXO3a has
emerged to be significant in determining cell fate [1].

Among the FOXO family proteins, FOXO3a appears to be the most important in
neurodegenerative disorders due to its critical roles in regulating neuronal survival, apop-
tosis, and autophagy. It can activate pro-apoptotic pathways, leading to neuronal death,
under conditions of severe stress or damage in neurodegenerative diseases [2,3]. FOXO3a
enhances autophagy, a process that clears damaged proteins and organelles from neurons.
This is particularly important in diseases like Alzheimer’s, where FOXO3a activation pro-
motes autophagic clearance of toxic amyloid-beta (Aβ) aggregates [3,4]. FOXO3a helps to
maintain cellular redox balance by regulating antioxidant defense genes. This is important
since oxidative stress is a common feature of neurodegenerative diseases [2,3]. FOXO3a
antagonizes the oncogene c-Myc, which promotes cell proliferation [2].

The transcription factor c-Myc, as well as transcription factors Oct4, Sox2, Klf4, is
able to reprogram any somatic cell into induced pluripotent cells, as shown by the Nobel
Prize Laureate Shinya Yamanaka [5]. c-Myc plays an essential role in cell cycle regulation,
driving cell proliferation and growth by modulating genes involved in metabolism, protein
synthesis, and mitochondrial function [6]. c-Myc regulates 10–15% of all genes in non-
oncotransformed cells, influencing processes such as energy metabolism, protein synthesis,
and the cell cycle [7]. In the nervous system, c-Myc is indispensable for neurogenesis,
synaptic plasticity, and axonal growth [8]. Yet, its overactivation can lead to detrimental
outcomes, including uncontrolled proliferation, impaired differentiation, and neuronal
death [9,10]. There is mounting evidence that both acute and chronic injury to the central
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and peripheral nervous systems are associated with increased c-Myc activity [1]. c-Myc has
a role in the early dysregulation of the neuronal cell cycle, which comes before neuronal
apoptosis and degeneration [1,11], even though it is essential and sufficient for neural
regeneration after axonal injury [12,13].

Some authors do, in fact., include c-Myc and FOXO3 in the same “axis” [14,15]. Both
factors are well-studied in cancer biology, where they often oppose each other’s roles in
proliferation and apoptosis. At the same time, their contributions to neural homeostasis
and plasticity extend far beyond oncogenesis [10,16]. However, studies concerning both
proteins and their interactions in the nervous system are almost absent. For example,
searching the PubMed research query “(myc OR c-myc) AND foxo3* AND neur*” without
any filters and specified fields yields only 10 results (dated 19.09.2024), where just about
six are actually related to neurobiology. Since we cannot hope than this number would
substantially increase to the date when this paper is published, it can be claimed that
there is virtually no data on how the “axis” is specifically involved in neuropathological
processes, and even if it is involved at all.

This article aims to provide an overview of the roles of these two transcription factors
in neurological disorders related to neural regeneration and degeneration, their possible
interactions, and the main prospects for future studies.

2. The Role of c-Myc and FOXO3a in the Regulation of Neuronal Regeneration in the
Central and Peripheral Nervous System

To date, it is believed that mammalian central nervous system (CNS) neurons have
largely lost their regenerative capacity due to the need to preserve their synaptic structure to
protect the brain’s cognitive processes [17,18]. The cranium’s durability on the outside and
additional buffering by glial cells provide the brain with sufficient mechanical protection.
This allowed mammals to develop high cognitive abilities in the course of evolution, which
was probably prioritized over preserving the regenerative potential of the CNS. However, in
neurodegenerative diseases and various CNS injuries, like strokes or brain and spinal cord
injury, even imperfect strategies for axon regeneration and restoration of synaptic contacts
can be immensely beneficial. In the adult mammalian CNS, axotomy causes neuronal
degeneration and/or death. Due to the reduced regenerative capacity of adult neurons and
the presence of inhibitory factors in the environment, spontaneous axonal regeneration
rarely occurs [19]. Comparative studies on the causes of the differences between the ability
to regenerate axons in young and adult individuals have identified some regulators of
regeneration, such as, for example, cAMP, whose levels are significantly reduced in mature
neurons [20]. Numerous findings, however, suggest that many intact neurons have a
considerable capacity for structural plasticity and axon sprouting, even in the mature
central nervous system [21]. They even have the ability to return to a development state
similar to that of embryos, which permits axon regeneration [22]. There are three different
ways that damaged nerve tissue might be repaired (Figure 1). The regeneration of injured
sensory or motor nerve axons from the intact neuronal body is the most easily achieved kind
of recovery [23,24]. Both the creation of synapses and the activation and regulation of axon
development are necessary for this process. Because it includes repairing the remaining
injured neuron, the second form of restoration is more challenging to complete [25,26].
A certain degree of neuronal functional integrity is necessary. The third and least likely
mode of regeneration necessitates the presence of multipotent neural stem cells in order
for new neurons to develop to replace damaged neurons [27,28] (Figure 1). Moreover,
the surrounding tissue must retain the ability to ensure migration, growth, and synapse
formation, which is necessary for the restoration of neuronal networks. Most of the time,
the surviving neurons regenerate but no new cells are formed [1].

c-Myc can play both pathologic and physiologic roles in nerve cell injury [9,10]. Yet,
there is a clear dichotomy between the PNS and CNS regarding the reparative action of
c-Myc. What might be the mechanisms responsible for the same type of physical injury
causing an increase in c-Myc levels in PNS neurons, but a decrease in c-Myc expression
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in CNS neurons [1]? One reason for these differences may be the differences in neuronal
responses to acute stress, which depends on a strict relationship between the levels of
FOXO (forkhead box) and MYC transcription factors. FOXO proteins repress MYC ac-
tivity and compete with it for binding promoter regions of genes involved in cell cycle
progression [29,30].
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Levels of FOXO3a (forkhead box O3a) and its downstream target p27 (kip1) rise
somewhat after injury, but subsequently sharply decline, according to data from a sciatic
nerve compression model [16,31]. In many neuronal subtypes, the activation of apoptotic
genes was first associated with the stress-induced nuclear translocation of the transcription
factor FOXO3a. It has been suggested that FOXO3a has a more intricate function in how
sensory neurons react to damage. FOXO3a expression and its nuclear localization were
evaluated in adult rat DRG neurons ipsilaterally, contralaterally, or distant from the site of
damage in a model of chronic unilateral transection of the L4-6 spinal nerve in comparison
to intact animals [16]. Both nuclear and cytoplasmic FOXO3a levels are elevated in healthy
neurons. Furthermore, a peptide associated with the calcitonin gene, a hallmark of the
nociceptive subpopulation of neurons, colocalizes with the protein. Nuclear FOXO3a in
damaged tiny neurons increased dramatically within an hour of injury, then significantly
decreased within 1, 2, and 4 days. One week after axotomy, the levels were no different
from those in undamaged mice. In intact contralateral and remote-from-injury neurons, a
stronger biphasic response to injury was seen. The damaged neuron was shielded from
apoptosis by the early reduction in FOXO3a expression and nuclear localization [16]. Thus,
decreased FOXO3a levels in sciatic nerve injury may promote c-Myc activation and axon
regeneration during a time period, while translocation of FOXO3a to neuronal nuclei
may prevent the realization of the proliferative potential of c-Myc during another one.
According to several researchers, the intricate relationship between FOXO3a and c-Myc
during axon regeneration is shown in the surrounding glial cells, distant neurons, and
injured neuronal cells. It is also likely not a quick process [1]. Glial cells undergo apoptosis
within the first few days of peripheral nerve injury, although neuronal apoptosis does not
occur in the short term. Only one month following axotomy can the retrograde loss of
L4-5 DRG sensory neurons be identified, because glial cells provide autocrine and trophic
support to the injured nerve [32,33]. At the same time, unfortunately, there are currently
no data describing the dynamics of FOXO protein changes in CNS axon injury. Taking
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into account the role of FOXO and MYC proteins in axon regeneration [34] and their
competitive relationships, it would be reasonable to compare the dynamics of expression
and intracellular distribution of FOXO and MYC in CNS neurons upon injury. See Figure 2
for a summary of the mentioned facts.
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In the central nervous system, FOXO3 also has a critical role in maintaining the
quiescent state of neural stem cells in the adult mouse brain. The deletion of Foxo3 causes
early neural stem cell differentiation, which reduces the neural stem cell pool and causes
abnormalities in brain development [35].

3. Involvement of c-Myc and FOXO3a in the Development of
Neurodegenerative Diseases

A key feature of neurodegenerative diseases, particularly Alzheimer’s disease (AD), is
cell death, while cancer, in contrast, involves uncontrolled cell proliferation, which puts
these two pathologies on opposite sides of the spectrum of cellular population dynamics.
What is interesting, however, is that both processes begin with the induction of cell prolif-
eration. Trauma, stress, or viruses cause cell cycle activation in neurons just as they do in
other cell types. However, unlike cell types with significant proliferative potential, where
disruption of cell cycle regulation can cause malignant transformation, in neurons, cell cycle
activation most often leads to their death and less often to the induction of DNA replication
and tetraploidy of a fraction of neurons, which is an early sign of neurodegeneration in the
adult brain [36].

So, in AD, damaged neurons become susceptible to degeneration when attempting to
re-enter the cell cycle [37]. Along with amyloid plaque development, tau hyperphosphory-
lation, and apoptotic neuronal death, the poorly controlled attempt by neurons to re-enter
the cell cycle is currently regarded as a characteristic of AD [38–40]. Other neurological
disorders that accompany neuronal degeneration also exhibit alterations in the neuronal
cell cycle. Therefore, it is possible that neurons re-enter the G1 phase of the cell cycle in
Parkinson’s disease (PD) and amyotrophic lateral sclerosis due to the accumulation of
hyperphosphorylated pRb (retinoblastoma protein) in neurons and changes in the location
of the E2F1 transcription factor [41,42]. According to the current cell cycle hypothesis,
diseases with insufficient cell cycle control include cancer’s cell proliferation and AD’s
neurodegeneration [39]. Curiously, a large longitudinal study with over a million partici-
pants discovered that Alzheimer’s disease and cancer do not usually co-occur, particularly
in older adults. When AD is present, the chance of acquiring cancer can be lowered by
up to 50%, and in cancer patients, the risk of developing AD can be lowered by up to
35% [43]. A recent study [44] connects the pathogenetic cell-cycle reentry with aging. Using
a bioinformatics strategy, it was revealed that neurons which had undergone such an event
become senescent and could accumulate in neurodegenerative disorders and contribute to
their development.
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Evidence suggests that c-Myc, a key player in determining cell destiny, contributes to
the early disturbance of neuronal cell cycle control that occurs prior to dementia. Dystrophic
neurons and neurites with neurofibrillary tubules have been found to contain phospho-
rylated active c-Myc protein in a number of neurodegenerative tauopathies, such as AD,
Pick’s disease, progressive supranuclear palsy, and cortico-basal degeneration, which is
linked to neuronal damage and apoptosis [45,46]. This raises the question of whether
absence of co-occurrence between AD and cancer be due to variations in MYC activity.
According to certain theories, the degree and duration of energy stress play a crucial role in
the onset of both AD and cancer, even if cellular stress may serve as a common trigger for
both conditions [47]. High-energy-dependent neurons are primarily affected by the extreme
acute energy stress that arises during the development of cancer. This causes mTOR to be
activated and additional ROS to be produced, which in turn activates the FOXO family
of transcription factors, primarily FOXO3a, increasing the levels of antioxidant defense
enzymes to prevent possible neuronal damage [48,49]. FOXO1 and FOXO3a proteins sup-
press c-Myc activity [29,30]. However, under chronic stress, the protective role of FOXO
is ignored and c-Myc activity is not suppressed, leading to neurodegeneration and the
development of AD [47]. The repressor protein MM-1 (MYCModulator-1), which regulates
c-Myc activity in addition to FOXO-related pathways, also influences neurodegenerative
processes through mechanisms of protein quality regulation and aggregation control, in-
cluding amyloid aggregation [11]. Additionally, the NMDA receptor-dependent apoptotic
cascade, which culminates in NF-kB and p53 activation, is downstream of c-Myc [50,51].

How can the various roles of c-Myc in neuronal regeneration and degeneration be
explained? Recent research has shown that the cytoplasmic form of the protein has a
hitherto underappreciated role in enhancing cell survival, even though c-Myc activity has
primarily been ascribed to its function as a transcription factor.

C-Myc consists of 439 amino acid residues and has several conserved regions that are
the same in all members of the Myc family. It consists of an N-terminal transactivation
domain (TAD) including MBI, MBII and MBIII partner interaction domains, nuclear lo-
calization sequences (NLS) and an intrinsically disordered C-terminal region containing
the bHLHZip domain together with the binding sites of its key interaction partners (MAX,
MIZ1, ARF, SKP) and DNA-binding domains. These domains contain highly conserved
modules that provide docking sites for a large number of cofactors that regulate the activity
and stability of c-Myc (Figure 3).

As studies have shown [52,53], the cytoplasmic form of c-Myc, Myc-nick, can be
formed by calpain-dependent proteolysis of full-length c-Myc at lysine 298. Myc-nick
retains the conservative Myc box regions but lacks the nuclear localization signal (NLS) and
the bHLHZ domain required for binding to Max and DNA. Myc-nick is required for cell
survival during muscle differentiation. The inhibition of c-Myc proteolysis prevents differ-
entiation of myoblasts into myotubules and induces apoptosis [52]. c-Myc is constitutively
converted to Myc-nick in the cytoplasm of most normal and cancer cells. However, in cells
exposed to environmental stress, which includes high cell density, hypoxia, and nutrient
deprivation, Myc-nick is the predominant form of c-Myc [53]. The N-terminal region of
c-Myc is a binding site for acetyltransferase recruitment and for binding to α-tubulin [54].
Myc-nick binds to α-tubulin and induces acetylation of α-tubulin by recruiting the histone
acetyltransferase GCN5 to microtubules. It has been shown that during muscle cell differen-
tiation, levels of Myc-nick and acetylated α-tubulin increase, while levels of full-length Myc
decrease, leading to cell reorganization and differentiation [52]. Acetylation of α-tubulin at
lysine 40 stabilizes microtubules and promotes their flexibility [55]. In neurons, acetylated
α-tubulin is involved in both dendrite morphogenesis and axon growth. In murine models,
the ablation of MEC-17 (α-TAT1), which leads to the loss of α-tubulin acetylation, has
been shown to induce excessive axon branching and outgrowth [56]. The ability of the
N-terminal segment of c-MYC to bind to acetyltransferases appears to be critical for the
biological functions of c-Myc in the cytoplasm. Deletion of the MBII region (amino acids
106-143) required for binding of c-Myc to acetyltransferases GCN5 and TIP60 reduces
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the ability of c-Myc to promote cancer cell survival, chemoresistance, and migration [53].
Thus, the nuclear and cytoplasmic forms of c-Myc may have directly opposite effects on
survival and regulation of neuronal regeneration after injury and during degeneration.
Moreover, while quite a lot is known about c-Myc as a transcription factor, almost nothing
is known about the Myc-nick protein cytoplasmic form and its role in neuronal regeneration
and degeneration.
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nuclear localization sequence (NLS) and an intrinsically disordered C-terminal region containing
the bHLHZip domain together with the binding sites of its key partners MAX, MIZ1, ARF, and
SKP. (b) Known phosphorylation and acetylation sites of c-Myc according to UniProt data (http:
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It is unknown how c-Myc expression and activity in the PNS and CNS are controlled
during regeneration or degeneration, but one mechanism is likely to be the interconnection
between FOXO1/3 and c-Myc protein levels [57,58].

Similar to c-Myc, the activity of its antipode, FOXO3a, also depends largely on the
intracellular localization of the protein. FOXO3a is predominantly regulated through its
phosphorylation by Akt kinase. The activation of the PI3K/Akt pathway is triggered by
many stimuli, including the action of insulin, insulin-like growth factor, epidermal growth
factor, and erythropoietin. Phosphorylation of FOXO3a by T32 and S253 leads to the
formation of binding sites for 14-3-3 proteins that promote the exclusion of FOXO3a from
nuclei, thereby blocking its role as a transcription factor and promoting its translocation
to the cytoplasm. Phosphorylation of FOXO3a by casein kinase 1 (CK1) at S315 results
in accelerated cytoplasmic sequestration of the protein [59]. Tyrosine-phosphorylated
regulated dual-specificity regulated kinase 1A (DYRK1A) has been shown to phosphorylate
FOXO3a, which also promotes its cytoplasmic translocation [60]. The phosphorylation of
FOXO3a is reversible; the PP2A protein phosphatase dephosphorylates FOXO3a, allowing
its reentry into cell nuclei. Many anticancer drugs (e.g., cisplatin) induce dephosphorylation
and acetylation of FOXO3a [61]. The reduction of endogenous FOXO3a levels by RNA
interference renders hippocampal neurons more resistant to excitotoxicity. A number of
stimuli, including stimulation of extrasynaptic N-methyl-D-aspartate receptors, reduced
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growth factors, and oxygen–glucose deprivation caused rapid translocation of FoxO3a from
the cytosol to the cell nucleus, inducing neuronal cell death. This translocation was inhibited
in hippocampal neurons that were subjected to prolonged periods of synaptic activity prior
to injury and was dependent on the activity of calcium/calmodulin-dependent protein
kinase IV [62]. The inhibition of JNK (c-Jun N-terminal kinases) activity can inhibit the
translocation of FOXO3a from the cytoplasm to the nucleus and reduce the levels of
pro-apoptotic proteins Bim and CC3, resulting in reduced neuronal apoptosis after hypoxic-
ischemic brain injury [63]. Also, like in the case of c-Myc, the functions and physiological
effects of the nuclear and cytoplasmic forms of FOXO3a are very different.

In AD, FOXO3a is significantly upregulated in the brain, promoting Aβ production
and neurodegeneration. However, it also plays a protective role by upregulating stress-
resistance genes, thereby defending neurons from Aβ-induced toxicity [2,4]. Additionally,
c-Myc is implicated in cell cycle processes that contribute to AD progression [1]. In Parkin-
son’s disease (PD), FOXO3a is linked to Lewy bodies and contributes to dopaminergic
neuron death, with its activity involved in ROS detoxification during oxidative stress [2,64].
In Huntington’s disease (HD), FOXO3a is overexpressed and appears to regulate its own
expression through a positive autoregulation loop, potentially initiating a protective re-
sponse to cellular stress [64]. By suppressing c-Myc, FOXO3a helps reduce reactive oxygen
species (ROS) levels, which is vital for neuronal health, as elevated ROS can cause oxidative
damage and apoptosis [65].

The relations of the two transcription factors are summarized in Figure 4. In the
boxes, red indicates damaging factors, and blue-red gradients indicate dysregulation of
cellular functions. However, it should be noted that although FOXO3a inhibits c-Myc
under certain conditions, it can also promote c-Myc transcription in specific contexts. For
example, FOXO3a has been found to activate c-Myc expression by directly binding to its
promoter region, indicating a complex regulatory role that may vary depending on the
cellular environment [66]. Myc is also involved in naive and memory T cell activation in
multiple sclerosis [10]. Concurrently, an expanding evidence suggests that Foxo3a plays a
role in the pathogenesis of multiple sclerosis (MS) through pro-apoptotic mechanisms, as
well [67,68].
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4. Intrinsically Disordered Proteins of the c-Myc and FOXO Families

The 20th century saw the establishment of the paradigm for protein structure and
function. This paradigm’s main idea is that a protein’s function depends on its ordered
(rigid) and distinct three-dimensional structure [69]. A protein’s amino acid sequence
encodes its three-dimensional native structure, which is at the core of the structure–function
paradigm. This structure is controlled by a complex balance of different physical forces
between the protein’s atoms. This paradigm’s acceptability has been aided by the growth of
the enzyme catalysis hypothesis and knowledge of how receptors, transporters, membrane
channels, etc., function [69]. Over the years, our understanding of the structure and
function of proteins has greatly expanded. It turns out that approximately 30% of all
mammalian proteins are disordered, i.e., lack stable secondary and tertiary structure
disordered, whereas 75% of all signaling proteins contain extended disordered regions.
Such proteins with unstable significant regions (or along their entire length), have been
termed intrinsically disordered proteins (IDPs) [69]. In order to carry out their signaling
tasks, IDPs momentarily attach to a number of interaction partners in dynamic regulatory
networks that can digest complicated information and react accurately and quantitatively
to cellular signals. Temporal and dynamic molecular interactions occur when IDPs trade
binding partners and compete for binding with central hub proteins, which are frequently
found in small amounts and have brief half-lives. These proteins can behave as switches
and rheostats because post-translational changes fine-tune these interactions [69–71].

Multifunctional proteins that lie at the center of a number of signaling pathways
and act as central hubs in cell signaling networks usually contain intrinsically disordered
regions (IDRs) that facilitate the dynamic assembly of triple and higher-order complexes
and integrate diverse signaling pathways [72,73]. C-Myc, as well as its antagonist FOXO3a,
stands at the interface point of several intracellular signaling cascades and belongs to a
group of multifunctional proteins with a disordered structure [6,74]. Both c-Myc and FOXO
play key roles in cell fate determination, though with opposite effects [65]. Growth factors,
metabolic stress, oxidative stress, and other cellular stimuli send signals to both proteins,
which then translate those signals into responses that alter protein-protein interactions
and spatiotemporal gene expression, either causing apoptosis or promoting repair and
regeneration [73,75,76]. Reversible post-translational modifications (PTMs), like as phos-
phorylation, acetylation, and ubiquitination, precisely control these activities. Depending
on the situation, these PTMs might interact and even have opposite effects [77].

The c-Myc N-terminal TAD domain is a disordered region of the protein that interacts
with hundreds of proteins regulating chromatin rearrangement, transcription, stability, and
interaction with partners [78]. In cell nuclei, c-Myc can acquire an ordered structure after
binding to its disordered partner protein MAX. As predicted by the disorder prediction
algorithm, c-Myc is expected to contain more than 45% of residues that are prone to forming
a disordered structure. Nuclear magnetic resonance studies of the disordered region of
c-Myc (residues 1-88, c-Myc boxes MBI and MBII) demonstrated its functional plasticity and
capacity to form multiprotein complexes. The N-terminal domain encompasses residues 1
to 167 and is linked to the C-terminal region by a flexible linker. This region of TAD serves
as the central hub for all transactivation activity, which is regulated by binding to multiple
proteins. The significance of Myc-boxes in cellular transformation and proliferation has
been substantiated by experiments employing targeted mutagenesis. Nevertheless, the
precise biochemical mechanism through which c-Myc-mediated transactivation occurs
remains elusive, largely due to the paucity of structural data pertaining to the TAD region.
However, studies have identified the residues spanning 1 to 143 within the TAD region as
indispensable for neoplastic transformation, differentiation, and apoptosis [79,80].

Like c-Myc, FOXO3a is particularly rich in IDRs lacking clearly determined 3D con-
formations (predicted to be up to 75% of the protein sequence) [81] Human FOXO3a is a
673 amino acids protein with an N-terminal FH domain (forkhead domain, 157-237 amino
acid residues) that contains a winged helix fold, and the rest of FOXO3a is highly disor-
dered, although these IDRs contain three regions (CR1-CR3) conservative among FOXO
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family proteins, which, include the TAD domain [82]. Thus, the overall conformation of
FOXO3a resembles a rigid “head” followed by a flexible “tail”. The FOXO3a molecule
exists in a “closed” conformation where both DBD and TAD are partially autoinhibited [83].

The disordered structure of c-Myc and FOXO family proteins indicates that both
proteins may play a key role in determining cell fate with opposite effects. The presence
of a disordered structure facilitates the dynamic assembly of protein-protein complexes
of different orders involving both proteins, integrating diverse neuronal signaling path-
ways in response to external stimuli. It is likely that the complex competitive interactions
between FoxO1/3a and c-Myc or its shortened form during neuronal regeneration or de-
generation allows c-Myc to realize its regenerative potential while limiting its proliferative
potential. An additional level of functional and structural regulation of proteins with
disordered structure, to which c-Myc and its antipode FoxO1/3a belong, is provided by
posttranslational modifications.

5. Post-Translational Modifications of c-Myc and FOXO Family Proteins

The acetylome of cells, especially those not oncotransformed, is much less studied than
the phosphoproteome [84]. At the same time, acetylation sites are highly conserved, much
more conservative and evolutionarily older than phosphorylation sites. Furthermore, a
comparative analysis of lysine conservation in Drosophila and humans with respect to that
in nematodes and Danio rerio fish revealed that acetylated lysins exhibited significantly
greater conservation than non-acetylated lysins. Bioinformatic investigation employing
gene ontology terms indicated that proteins bearing acetylation-conserved residues regulate
essential cellular processes, including translation and folding of proteins, DNA packaging,
and mitochondrial metabolism [85]. At present, the number of post-translational modifica-
tions (PTMs) identified through mass-spectrometric techniques greatly exceeds the number
of PTMs for which functional understanding exists. The situation is similarly underdevel-
oped in the case of phosphorylation, where functional information exists for fewer than
3% of mapped phosphorylation sites in the human proteome. This figure is considerably
lower for acetylation sites. In our view, a significant challenge for modern proteomics in the
post-genomic era is to gain insight into the poorly understood phosphorylation, as well as
other PTMs such as acetylation. A number of complementary approaches may be employed
to this end, including the use of existing multi-omics data to predict functionality or the
screening of mutant libraries under different physiological conditions. Alternatively, the
use of functional proteomics to assess the impact of PTMs on protein properties represents
a promising, more focused approach. With the advent of machine learning algorithms, it is
now possible to employ an in silico approach to predict PTM sites and the potential biologi-
cal effect [86]. And the combination of predicting sites of a particular modification with the
capabilities of molecular dynamic simulation of protein conformation and docking, allows
for a more directed and meaningful approach to planning in vitro and in vivo experiments.
Our studies using this approach show, for example, that point acetylation of p53 at lysine
320 by PCAF acetyltransferase can promote p53 translocation between the nucleus and
cytoplasm in penumbra neurons with preferential accumulation in the neuronal cytoplasm.
Additionally, p53 acetylation at lysine 320 is more preferential than acetylation at lysine 373
and supports penumbra neuron survival and recovery following photothrombotic stroke.
Therefore, methods to increase p53 acetylation at lysine 320, either by inhibiting HDAC1 or
HDAC6 deacetylases or by increasing PCAF activity, or a combination of these measures,
may be therapeutically beneficial for post-stroke recovery [87].

Recent studies indicate that c-Myc can be acetylated by a number of cAMP response
element-binding protein (CREB) acetyltransferases [88]. Its acetylation by p300, GCN5, and
TIP60 partially stabilizes c-Myc via suppression of ubiquitin-dependent degradation of the
protein and promotes its interaction with partners such as MAX [89]. On the other hand,
hyperacetylation of c-Myc induced by administration of HDAC inhibitors destabilizes the
protein [90], and deacetylation of c-Myc at lysine 323 by HDAC3 in cholangiocarcinoma
cells protects c-Myc from ubiquitin-dependent proteolysis [91]. Regrettably, most studies
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on the effect of post-translational acetylation of c-Myc on its activity have been performed
on oncotransformed cells; little is known about the effect of acetylation on the properties of
c-Myc in nerve cells. Our studies suggest that in photothrombotic penumbra neurons there
is an increase in acetylation of c-Myc at the N-terminal lysine 148 but not at the C-terminal
lysine 323. The results of molecular dynamic simulations suggest that the lysine at position
148 of c-Myc plays a key role in stabilizing the spatial structure of the protein. The ischemia-
induced increase in the level of acetylation of c-Myc at lysine 148 by acetyltransferase
p300 may prevent the protein from binding to its partner MAX in cell nuclei, preventing
it from realizing its proapoptotic potential and promoting its cytoplasmic translocation.
The acetylation of c-Myc at lysine 148 in the cytoplasm had no effect on its interaction with
α-tubulin [92].

The combination of different PTMs is crucial for the function of FOXO family proteins.
There is even a concept as a “FOXO code”, similar to the “histone code”, which combines
several PTMs of proteins to regulate their functions [75,93]. The major PTMs of lysine
residues are acetylation, methylation, and ubiquitination. However, the process of lysine
ubiquitination is seldom directly targeted by protein regulation. Rather, the addition or
removal of other modifications at or in close proximity to the ubiquitination site typically
occurs prior to this event. These PTMs serve as recognition sites, thus providing an
additional level of rapid and reversible regulation and fine-tuning prior to the irreversible
degradation of the protein. The experimentally observed number of sites in the protein
for various PTMs greatly exceeds the number of protein-coding genes in the human
genome. For example, a recently conducted study of lung cancer using proteomics revealed
that approximately 35% of phosphorylated proteins also exhibited a minimum of one
or two methylation or acetylation sites. Consequently, individual PTMs of a particular
protein are increasingly being regarded as integral components of regulatory networks,
whereby combinations of PTMs act in concert to achieve specific functional outcomes [94].
According to the data, PTMs may act as exclusive XOR switches for diverse biological effects
when there are inverse correlations between them. Phosphorylation versus acetylation,
phosphorylation versus methylation, and methylation versus acetylation are all covered
by this idea. Indeed, acetylation and methylation sites have also been shown to exhibit
negative associations within proteins. By reversibly changing the sets of interacting proteins
with their domains, acetylation, methylation, and phosphorylation enhance the interactome
of hub proteins in signal transduction networks. The acetylation of FoxO1 at lysins 242
and 245, and FoxO3 at lysins 245 and 248 significantly reduces the proteins’ ability to bind
to DNA and promotes cytoplasmic localization of FoxO proteins, potentially protecting
neurons from damage. CBP/P300 acetyltransferase acetylates FoxO proteins in response to
oxidative stress. On the other hand, the deacetylation of FoxO family proteins by histone
deacetylases SIRT1, SIR2, SIRT3, or HDAC3 promotes the nuclear localization of the protein
and contributes to its function as a transcription factor [57]. In general, it is believed that
acetylation of FOXO3a promotes cell survival, whereas deacetylation by, for example, SIRT1
promotes autophagy [75].

The phosphorylation of FOXO3a at specific sites, like Thr32 and Ser253, enhances
its binding to 14-3-3 proteins, promoting its retention in the cytoplasm and reducing its
nuclear localization and transcriptional activity. When phosphorylated, FOXO3a is less
capable of effectively interacting with c-Myc, as it is sequestered away from the nucleus
where c-Myc operates [95,96]. FOXO3a activation has been shown to increase c-Myc
phosphorylation at T58, a modification crucial for c-Myc recognition by the Fbw7 ubiquitin
ligase, leading to its enhanced degradation. This suggests that FOXO3a indirectly regulates
c-Myc levels through its phosphorylation state [97]. Additionally, acetylation of FOXO3a
by coactivators like CBP/p300 can influence its transcriptional activity. Acetylated FOXO3a
may exhibit altered DNA-binding abilities, modulating its interaction with c-Myc. In
particular, acetylation near phosphorylation sites can alter the conformation of FOXO3a’s
nuclear localization signal (NLS), affecting its ability to bind DNA and interact with
transcription factors like c-Myc [95,98]. Furthermore, acetylation exposes lysine residues on
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FOXO3a, making them targets for ubiquitination. This modification can lead to increased
degradation of FOXO3a or influence its interaction with c-Myc. For example, acetylation
may make FOXO3a more susceptible to ubiquitin-mediated degradation, thereby reducing
its availability to interact with c-Myc [96,98].

Thus, even pointwise PTM of multifunctional, intrinsically disordered proteins, such
as p53 [87,99], MYC [92,100], FOXO [75,96], E2F1 [84,101], and a number of others, which
are hubs of several signaling pathways in the cell, can have a significant effect on protein
conformation, localization, and interaction with partners, which may ultimately lead to
the implementation of diametrically opposite functions. More and more data confirm the
important role of such hub proteins in the development of cardiovascular diseases, cancer,
and neurodegeneration [75,102,103].

6. Future Prospects

Given the above findings, further investigation of the mechanisms of regenerative
and antidegenerative activity of c-Myc is needed. Is the detrimental c-Myc activity in
neurodegeneration simply a failed attempt to protect and repair the CNS from damage?
How can the regenerative and antidegenerative potential of the Yamanaka factor protein
be effectively managed? By regulating its intracellular localization (c-Myc—c-Myc-nick),
modulating the activity of its antagonist protein (FOXO1/3), acetylating/deacetylating con-
served sites, altering its protein-protein interactions, or combining all of these approaches?
In our opinion, the development of in silico methods for predicting changes in the structure
of proteins after their PTM and, accordingly, interaction with partner proteins, makes
it possible to hope that these questions will be resolved. It is necessary to identify the
mechanism by which the activity of the same proteins is regulated in different directions,
which is necessary to increase neuronal survival at the early stage of acute injury or neu-
rodegenerative process, to reduce neuronal death, and to increase their ability to regenerate
at a later stage.
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