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O C E A N O G R A P H Y

Predicting optimal mixotrophic metabolic strategies in 
the global ocean
Holly V. Moeller1*, Kevin M. Archibald1, Suzana G. Leles2, Ferdinand Pfab1

Mixotrophic protists combine photosynthesis with the ingestion of prey to thrive in resource-limited conditions in 
the ocean. Yet, how they fine-tune resource investments between their two different metabolic strategies remains 
unclear. Here, we present a modeling framework (Mixotroph Optimal Contributions to Heterotrophy and Autotrophy) 
that predicts the optimal (growth-maximizing) investments of carbon and nitrogen as a function of environmental 
conditions. Our model captures a full spectrum of trophic modes, in which the optimal investments reflect zero-
waste solutions (i.e., growth is colimited by carbon and nitrogen) and accurately reproduces experimental results. 
By fitting the model to data for Ochromonas, we were able to predict metabolic strategies at a global scale. We find 
that high phagotrophic investment is the dominant strategy across different oceanic biomes, used primarily for 
nitrogen acquisition. Our results therefore support empirical observations of the importance of mixotrophic graz-
ers to upper ocean bacterivory.

INTRODUCTION
Marine microbial mixotrophs combine photosynthesis with the con-
sumption of prey to obtain the energetic and material resources nec-
essary for growth. As our ability to quantify grazing has improved, 
oceanographers have discovered that mixotrophy is a widespread 
strategy among eukaryotic phytoplankton, with mixotrophic repre-
sentatives found in nearly all major lineages (1, 2). Further, both em-
pirical and modeling studies have shown that mixotrophs may have 
large ecological and biogeochemical impacts (3). By straddling two 
metabolic niches, mixotrophs can persist in the margins alongside 
phytoplankton and grazers (4) and tolerate oligotrophic conditions 
by supplementing their energetic budgets through feeding (5). As a 
result, mixotrophs are often abundant in oligotrophic regions such as 
the subtropical gyres, where they may be the dominant grazers (6). 
Further, accounting for mixotrophy in global ocean models results in 
predictions of increased mean body size and, as a consequence, in-
creased carbon export through the biological pump (7).

As the recognition of mixotrophy’s importance grows, one major 
challenge to developing generalizable theory is that mixotrophs are in-
credibly taxonomically and functionally diverse (8). For example, some 
mixotrophs are “constitutive”—meaning that they permanently maintain  
the metabolic machinery for both photosynthesis and heterotrophy—
while others are “nonconstitutive” and transiently gain access to photo-
synthesis either by hosting photosynthetic endosymbionts or through 
kleptoplasty (theft of functional chloroplasts from photosynthetic prey) 
(9). Even among the constitutive mixotrophs, metabolic strategies vary: 
Some “obligate” mixotrophs require both light and food to survive (10), 
other “inducible” mixotrophs feed only when certain nutrients are lim-
iting (11, 12), and still others are primarily phagotrophic (13). Yet, only 
by accounting for these different mixotrophic strategies can we accu-
rately model marine ecosystems (14).

One approach to developing a generalizeable model for mixo-
trophs is to focus on metabolic trade-offs (15). Constitutive mixo-
trophs lie on a continuum based on the degree to which they invest in 

photosynthesis and heterotrophy, and the returns on investment they 
get from these two processes. Previous theory predicts that their 
growth strategies vary with environmental conditions (16) and cell 
size (17). However, different growth strategies can be observed even 
among constitutive mixotrophs of similar size as well as among close-
ly related species (10, 13, 18). Unveiling the trade-offs driving mixo-
trophic metabolism is critical and can help us to better constrain 
competition models that predict their ecological dynamics (19).

On the basis of the intersection of these trade-offs with environ-
mental conditions, we might expect different types of mixotrophs 
across the surface ocean, as suggested by previous global analyses 
(20, 21). The mechanisms underlying the different biogeographic pat-
terns remain a gap in knowledge, particularly due to the methodolog-
ical challenges of identifying mixotrophic strategy in situ (22, 23). By 
developing theory based on optimal resource allocation, and thus 
avoiding defining a trade-off a priori, we give one step toward unlock-
ing the metabolic trade-offs that mixotrophs experience and apply 
this model to investigate mixotrophy biogeography at the global scale.

Here, we use a resource-based framework (MOCHA: Mixotroph 
Optimal Contributions to Heterotrophy and Autotrophy) to ac-
count for the trade-offs and synergies that constitutive mixotrophs 
experience between their two forms of metabolism. We identify 
what types of mixotroph strategies are favored as a function of envi-
ronmental conditions, validate our model’s predictions using em-
pirical data from a model genus of mixotrophic nanoflagellates, and 
use our model to project the distribution of mixotroph types in 
Earth’s surface oceans. Our results highlight the importance of 
phagotrophy to constitutive mixotrophs and give insight into how 
mixotrophs evolving in polar seas might find a different metabolic 
niche than mixotrophs evolving in the oligotrophic gyres as Earth’s 
climate warms.

RESULTS
To model a mixotroph’s response to resource supply, we account for 
how it acquires carbon C and nitrogen N via prey consumption and 
photosynthesis, and then uses these resources to build new digestive 
vacuoles V, chloroplasts P, and growth machinery M (Fig. 1A). The 
model captures both synergies and trade-offs from mixotrophic strat-
egies: Because carbon and nitrogen are pooled for growth, production 
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of either element by one metabolic strategy can support the other 
strategy (synergy), but because the organism can only invest the car-
bon and nitrogen it has available for growth, production of each 
type of cellular structure comes at the cost of additional investments 
in the other structure types (trade-off). We consider how a mixo-
troph balances its vacuoles, chloroplasts, and growth machinery to 
achieve a growth-maximizing (a.k.a. “optimal”) investment strategy. 
Our model does not differentiate between enlargement of single 
cells (or a single multicellular organism) and reproduction (e.g., 
through cell division) but does assume a constant per-structure re-
source uptake rate and, therefore, a constant surface area–to–volume 
ratio for biomass.

First, we explored the spectrum of metabolic outcomes that the 
MOCHA model can predict. Depending upon resource availability 
and the acquisition traits that govern an organism’s uptake of these 
resources, optimal strategies range from strict phototrophy to mix-
otrophy to strict phagotrophy (Fig. 1, B to D). Mixotrophy is generally 
favored when the two metabolic strategies are each more effective 
than the other at obtaining one of the key resources (nitrogen or 
carbon). For example, if inorganic nutrients are unavailable (because 
of low supply or inefficient uptake), phagotrophy is obligatory to ob-
tain N. When phototrophy is simultaneously the most efficient source 
of C (e.g., because bacterial C:N ratios are comparatively low or light 
is high), then mixotrophy is favored. This is a canonical case in con-
stitutive mixotrophy, in which feeding provides essential nutrients 
to support photosynthesis. The reverse case—in which phagotrophy 
is the dominant source of C and phototrophy is the dominant source 
of N—can also hypothetically arise because MOCHA couples inor-
ganic N uptake to plastids; however, this scenario is unlikely based 
on studies of extant mixotrophs (and confirmed by our own data 
analysis; see below).

A mixotroph’s optimal investment strategy is sensitive to environ-
mental conditions because the abundance of external resources changes 
the structure-specific efficiency of C and N uptake (Fig. 2). For example, 
with increasing light, the optimal strategy switches from pure phagot-
rophy in darkness to high levels of phototrophy when available light 
is sufficient to meet C demands (Fig. 2, left column). As light avail-
ability continues to increase, each plastid functions more and more 
efficiently to capture light. To avoid N limitation amidst this surplus 
of C, the mixotroph “photoacclimates” by down-regulating its plastid 
investment in favor of investments in digestive vacuoles and growth. 
In regions of resource space for which the growth-maximizing strat-
egy is mixotrophy, this metabolic strategy is a “zero-waste” strategy, 
in which the total C and N acquired precisely balance the C and 
N used for growth (i.e., the gray dashed and black lines overlap in 
Fig. 2, D to I). In such circumstances, mixotrophs are colimited by C 
and N. While Fig. 2 provides a generic illustration of the qualitative 
range of strategies available to a metabolically flexible mixotroph, 
the existence and precise resource availability thresholds at which 
strategy transition points occur can only be determined by tuning 
the model to data from specific mixotrophic taxa (see below).

The calculation of the growth-maximizing strategy assumes fixed 
environmental conditions (i.e., the mixotroph’s metabolic strategy 
does not change its environment). To assess how growth-maximizing 
strategies change in response to dynamic feedbacks on resource 
availability, we extended the MOCHA model to include chemostat-
like dynamics. The chemostat model allows the mixotroph to take 
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Fig. 1. The MOCHA model. (A) Model schematic illustrating the cell of a consti-
tutive mixotroph that can obtain carbon (C) and nitrogen (N) by investing in pho-
totrophy and/or prey consumption and then use C and N to build three structures: 
plastids (green), feeding vacuoles (magenta), and growth machinery (gold). The 
optimal strategies vary with environmental conditions so that (B) phototrophy is 
optimal if prey is limited but light and external inorganic nitrogen (DIN) are re-
plete, (C) phagotrophy is optimal if prey is abundant but light and DIN are limit-
ed, and (D) mixotrophy is optimal if light and prey are replete but DIN is limited. 
Ternary plots [(B) to (D)] show heatmaps of growth rate as a function of the three-
structure investment strategy (dark gray = slow or negative growth; white = fast 
growth). Lines indicate strategies that produce equivalence of growth compo-
nents: Solid lines represent C flux = N flux, dashed lines represent C flux = growth 
flux, and dotted lines represent N flux  =  growth flux. Note that when strict 
phagotrophy or strict phototrophy are optimal, only one of these equalities is 
true. The growth-maximizing strategy (red dot) is at the convergence point of the 
lines (or, in the cases of strict phagotrophy or phototrophy, where the nonopti-
mal metabolic investment is set to zero).
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up inorganic nutrients and bacteria and absorb light as it grows, and 
thus its strategy evolves alongside its resource environment. Consis-
tent with previous work on phytoplankton growth maximization 
strategies (24, 25), we found that mixotroph strategies exhibited two 
distinct phases: an exponential, growth-maximizing phase as the 
mixotroph asymptotically approached resource limitation, and an 
equilibrium phase in which the mixotroph’s biomass is constant and 
its growth rate is equal to the dilution rate (figs. S3 and S4). The 
MOCHA model is not relevant to this latter phase because organ-
isms in resource-limited environments should shift to competitive, 
not growth-maximizing, strategies such as those that minimize the 
equilibrium resource level (24–26). However, mixotroph strategies 
in the exponential, growth-maximizing phase were constant and 
identical to the initial MOCHA solutions before any resource feed-
backs, indicating that growth-maximizing strategies result in ini-
tially balanced drawdown of resources. Thus, we proceeded with the 
MOCHA algorithm when the assumption of exponential growth 
was viable.

Our model’s qualitative predictions of light-dependent strategies 
mirrored laboratory measurements of mixotroph exponential growth, 
photosynthesis, and phagotrophy collected from eight strains of the 
cosmopolitan constitutive mixotroph genus Ochromonas. Members 
of this mixotrophic nanoflagellate genus have been collected from 
both coastal and open ocean ecosystems, are relatively well studied, 
and are known to exhibit plasticity in their metabolic strategies in 
response to changing resource availability (10, 13, 27). When we fit 
the MOCHA model to our published empirical dataset (27), the model 
recovered the light-saturating dependence of growth, as well as a switch 
from phagotrophy to phototrophy followed by photoacclimation 

(reduced chlorophyll per cell) as light levels increased (Fig. 3 and 
fig. S5 with all strains). Experimental data indicated that while 
Ochromonas per-carbon photosynthetic rates saturate with increasing 
light (Fig. 3B and fig. S5), per-chlorophyll photosynthetic rates con-
tinued to increase linearly [fig. S6, (27)]. Thus, our model (which as-
sumes a linear relationship between per-plastid carbon fixation rates 
and light availability) both accurately reflected our experimental 
data and produced saturating photosynthetic rates as an outcome 
of reduced investments in photosynthesis (Fig. 2, A and D), as in 
our experimental system. Our model also captured carbon limita-
tions on growth: when light availability was too low, many of our 
Ochromonas strains could not achieve positive growth rates because 
rates of carbon acquisition were less than metabolic costs of respira-
tion (Fig. 2 and fig. S5).

Our eight Ochromonas strains showed similar capacities for pho-
tosynthesis and phagotrophy, though some were relatively more ef-
ficient at photosynthetic or phagotrophic resource acquisition (Fig. 
3, E to G). Notably, the best-fitting models indicated that these 
Ochromonas strains were not reliant on inorganic nitrogen uptake 
for growth, although experiments were conducted using nitrate- 
and ammonium-containing K media (28). Although we did not 
experimentally quantify inorganic N uptake in our laboratory ex-
periments, this finding is consistent with our experiments, in which 
measured grazing rates and bacterial stoichiometry (27, 29) indi-
cated that phagotrophy provided sufficient N to support mixotroph 
growth without invoking inorganic N uptake.

We combined the validated MOCHA model’s estimates of acqui-
sition rates with observed and simulated resource landscapes from 
Aqua-MODIS satellite missions (30) and output by an ecosystem 
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Fig. 2. Resource dependence of mixotroph strategies. We computed the mixotroph’s optimal allocation strategy (A to C) and corresponding biomass production nor-
malized fluxes of carbon (D to F) and nitrogen (G to I) as a function of light (left column), bacterial abundance (middle column), and inorganic nitrogen (right column). 
When the optimal strategy is mixotrophy (i.e., αP , αV > 0), the total C (in gC gC−1 day−1) and N (in gN gN−1 day−1) fluxes both converge to the growth rate, indicating a 
zero-waste strategy. However, in some circumstances, a single metabolic investment is optimal. For example, when light is low or bacterial abundance is high, strict 
phagotrophy maximizes growth, but bacterial stoichiometric differences produce a surplus of N. In contrast, if bacteria are scarce and strict phototrophy is optimal, the 
organism produces a surplus of C. This plot shows the qualitative behavior of the model, but the parameter values do not correspond to any specific mixotroph species. 
The environmental parameters are as follows (when they are not the focal parameter on the x axis): light L = 30 μmol quanta m−2 s−1, bacteria B = 106 CFU ml−1, and dis-
solved nitrogen I = 10 μgN liter

−1.
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model (31) to project the optimal strategy of an Ochromonas-like 
mixotroph at a global scale. The MOCHA model’s projections rep-
resent an integration of a complex resource landscape with trade-
offs in mixotroph investment strategies (Fig. 4). For example, in the 
oligotrophic gyres where light is abundant, mixotrophs nonetheless 
invest substantially (and sometimes exclusively) in phagotrophy 
to acquire N from bacterial prey. Generally, more photosynthetic 
strategies are optimal where bacterial abundance is high, such as at 
higher latitudes and at the equatorial upwelling zone. Growth rates 
(which are proportional to αM) tended to positively correlate with 
photosynthetic investment, while both αM and αP tended to trade off 
with phagotrophic investment (αV) (Fig. 4). In other words, increas-
ing bacterial abundance allows mixotrophs to reduce investments 

in phagotrophy and simultaneously increase investments in photot-
rophy and growth.

In general, our projections indicate that Ochromonas-like mixo-
trophs invest predominantly in producing digestive vacuoles (Fig. 
4C), but that strategies can vary substantially at a global scale. Al-
though phagotrophic investments are high, grazing primarily func-
tions to supply N, and most of the mixotroph carbon acquisition is 
done via photosynthesis (fig. S7); thus, Ochromonas-like mixotrophs 
truly “mix” two metabolic strategies to obtain two essential resources 
for growth. The patterns of this variation were broadly consistent 
across the eight Ochromonas strains for which we parameterized the 
model, indicating that global within-strain variability is likely to be 
larger than across-strain variability in this genus.

Fig. 3. The MOCHA model reproduces patterns in empirical data. The MOCHA model reproduces patterns in empirical data. We use data from eight strains of Ochromonas 
to parameterize our model. Here, we show empirical data (points) and model fits (lines) from strain 584 as an example [(A) to (C)]; data and model fits from all strains are 
given in fig. S5. Empirical data include the following: (A) photosynthetic investment (chlorophyll content per Ochromonas biomass, mgChl gC−1) and heterotrophic invest-
ment (attack rate, a.k.a. “clearance rates,” in units of × 10−7 ml per Ochromonas biomass per day, ml gC−1 day−1), (B) photosynthetic rate (carbon fixed per Ochromonas 
biomass per day, gC gC−1 day−1) and grazing rate (bacteria per Ochromonas per day, CFU μgC−1 day−1), (C) and growth rate (day−1). On the basis of the model fits, we were 
able to estimate different parameters in MOCHA [(D) to (G)]. The estimated parameters for strain CCMP 584 (blue bars) were derived from the model fits shown in (A) to 
(C). The gray bars indicate how variable these parameters were across different strains while the black bar reports the estimated values for an “average Ochromonas cell” 
based on a global fit to pooled data from all eight strains. Strains varied in their growth factor production rate [yGM, day−1 (D)]; carbon acquisition from bacteria in carbon 
acquired per carbon vacuole structure, day, and bacteria density [uCB, gC gC−1 day−1 (CFU ml−1)−1 (E)]; nitrogen acquisition from bacteria in nitrogen acquired per carbon 
vacuole structure, day, and bacteria density [uNB, gN gC−1 day−1 (CFU ml−1)−1 (F)]; and photosynthetic carbon acquisition in carbon acquired per carbon plastid structure, 
day, and light intensity [uCL, gC gC−1 day−1 (μmol quanta m−2 s−1)−1 (G)].
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DISCUSSION
Mixotrophs are increasingly recognized as omnipresent and often 
substantial components of planktonic communities, where their 
combination of metabolic strategies allows them to persist when 
either food or light is limiting. Our modeling approach shows how 
the combination of phototrophy and phagotrophy can produce 
both synergies—in which nitrogen obtained via prey consumption 
supports photosynthesis—and trade-offs—in which investment in 
one metabolic strategy comes at the cost of maintaining machinery 
for the other. By fitting the model to empirical data obtained for 
several Ochromonas strains (27), we find that phagotrophy is the 
dominant investment strategy among Ochromonas-like mixotrophs 
across the ocean, used primarily to meet nutrient requirements. We 
hypothesize that understanding changes in bacterial abundance 
will be critical to predict mixotrophic metabolisms in a warmer 
ocean and how their responses might differ between oligotrophic 
and polar seas.

When mixotrophic (as opposed to strictly phototrophic or strictly 
phagotrophic) strategies are optimal, growth is “zero-waste,” mean-
ing that mixotrophs are colimited by carbon and nitrogen and 
investment strategies are balanced to bring in stoichiometrically 
balanced amounts of carbon and nitrogen. In this way, the MOCHA 
optimal mixotroph parallels other optimally foraging organisms 
that must obtain two complementary resources (26, 32). By allowing 
a mixotroph to obtain carbon and nitrogen from two independent 
metabolic processes with different acquisition rates, and then syn-
thesize the requisite metabolic machinery, the MOCHA model 

produces a cell that can demonstrate a wide range of phenotypes as 
it titrates the relative combination of these two forms of metabolism 
to match its stoichiometric demands. The model’s general predic-
tions are consistent with studies of mixotroph phenotypic plasticity 
that show photoacclimation [e.g., reduction of photosynthetic 
investment at high light (13, 27)], inducible mixotrophy [e.g., in-
vestment in phagotrophy when nutrients are limiting (11)], and 
opportunistic feeding [e.g., up-regulation of bacterivory when prey 
are abundant (12)].

Our model predicts that, on a global scale, Ochromonas-like 
mixotrophs tend to invest primarily in phagotrophy, especially in 
the oligotrophic gyres where mixotrophs are already known to be 
key grazers (6). This is consistent with observations of robust graz-
ing by Ochromonas species in laboratory experiments (10, 13, 29). 
In our simulation of the global distribution of mixotroph strategies, 
the abundance of bacteria was the dominant driver of mixotrophic 
strategies. However, this played out in a somewhat counterintuitive 
way: Wherever bacterial abundance was high, mixotroph phagotro-
phic investment was relatively low. This negative correlation arises 
through a combination of trade-offs and synergies: First, in our 
model parameterization, Ochromonas cells are obligate phagotro-
phs because they must obtain nitrogen through feeding. Second, 
the more abundant bacteria are, the more efficiently mixotrophic 
vacuoles can function to obtain this nitrogen. Thus, high rates of 
bacterivory can be supported by fewer vacuoles, freeing up resources 
for investment plastids (which have higher C acquisition efficiency) 
and growth machinery (essential for increasing growth rates) (Fig. 2). 
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Therefore, high-bacteria environments reduce N-limitation, support-
ing relatively more investment in both plastids and growth ma-
chinery, which also allows the mixotrophs to grow more rapidly 
(Fig. 4F).

With its focus on obligately phagotrophic mixotrophs like 
Ochromonas, the MOCHA model adds to a growing body of litera-
ture describing the environmental circumstances under which mix-
otrophy is a viable metabolic strategy. Like other studies (16, 17), we 
model mixotrophs’ simultaneous investment in photosynthesis and 
phagotrophy to identify growth-maximizing allocation strategies. 
Our results support prior findings that mixotrophs benefit from 
synergies between phagotrophic nutrient uptake and phototrophic 
carbon fixation (16, 17), but do so without invoking constraints on 
respiratory demand (16) or allometric scaling (17). Unlike Berge 
et al. (16) and Chakraborty et al.(17), we do not model explicit al-
location to nutrient uptake structures. However, because our em-
pirical data indicate that Ochromonas do not need to take up 
inorganic nitrogen to support their growth, this choice does not af-
fect our results. Thus, in contrast to Berge et al. (16), who modeled 
an obligately phototrophic mixotroph parameterized after Karlodinium 
dinoflagellates, our mixotrophs are obligate phagotrophs. Because 
we were able to parameterize and validate our model with experi-
mental data, we were also able to assess implications for mixotroph 
metabolic strategies at a global ocean scale. Parameterizing the MOCHA 
model for other mixotroph types (e.g., that use inorganic nutrients 
or are obligately phototrophic) would shift the predicted spatial dis-
tribution of mixotroph strategies.

Although no large-scale data quantifying mixotroph invest-
ment strategies exist to compare directly with MOCHA predic-
tions, there are some parallels with local case studies. For example, 
mixotrophs are known to be key bacterivores in the oligotrophic 
gyres (6), the same locations where our model predicts substantial 
phagotrophic investment. In such regions, prey nutrients may al-
low mixotrophs to sustain growth when inorganic nutrient sup-
plies are depleted. Edwards (19) combined a metanalysis with a 
dynamic model to suggest that synergies between metabolic modes 
may explain mixotroph relative success in the oligotrophic gyres, 
as well as in coastal regions where the MOCHA model predicts 
rapid growth by mixotrophs (Fig. 4, yellow panel). These synergies 
may be important in overcoming trade-offs that mixotrophs expe-
rience relative to similarly sized organisms with single metabolic 
strategies (33). Still, growth maximization does not necessarily 
correspond to competitive dominance; thus, we caution that the 
MOCHA model should not be used to project mixotroph absolute 
(or relative) abundances. However, our approach to identifying 
growth-maximizing, zero-waste mixotroph allocation strategies could 
be integrated into a more complex community or ecosystem model 
[e.g., (4, 19, 34, 35)] to better predict mixotroph persistence along-
side specialist trophic strategies.

Here, we have focused on Ochromonas because of its utility as a 
model organism and the availability of laboratory data with which to 
validate our model. However, Ochromonas is noteworthy for its 
heavy reliance on phagotrophy (in comparison to other, inducibly 
phagotrophic nanoplankton). Further, although Ochromonas lin-
eages have been isolated from numerous marine and freshwater 
systems, it is unclear how numerically dominant these lineages are 
because they are not always identified in field studies surveying 
nanoflagellate diversity (21,  33,  36) or quantifying their activity 

(6, 37) [including through new isolation techniques, e.g., (38)]. Thus, 
the MOCHA model should be reparameterized (and its conclu-
sions revisited) for other mixotroph lineages as the necessary ex-
perimental data become available.

Nevertheless, our findings have important ramifications given 
future climate scenarios. Theory and empirical observations have 
found that warming may drive mixotrophic metabolisms to be 
more heterotrophic (29, 39, 40). However, warming and shallower 
mixed layers are expected to decrease bacterial abundance across 
the ocean with the exception of polar regions (41). In the polar seas, 
higher light availability can boost primary production, which, in 
turn, would increase dissolved organic carbon fueling bacterial 
production (42). According to our model, metabolically plastic 
mixotrophs may adjust their investment in phagotrophy in re-
sponse to changing bacterial abundances to meet the N demands of 
growth. Our model therefore leads to the hypothesis that, in the 
short term, mixotrophs in polar oceans may reduce phagotrophic 
investments and grow faster, but need to increase phagotrophic in-
vestments (at the expense of photosynthesis and growth) in regions 
of the ocean where bacterial abundances are expected to decline 
(e.g., the oligotrophic gyres). However, upper limits on rates of 
phagotrophy, feedbacks from mixotroph activity on bacterial and 
other resource availability, and other ecological factors will modu-
late these responses. Our modeling approach assumes nonequilib-
rium dynamics during which growth-maximizing strategies should 
be favored (24, 25); while the dynamic nature of ocean environ-
ments (which mix on multiple spatial and temporal scales) may well 
hold communities in a state of disequilibrium, future applications 
of this approach would need to consider acquisition-maximizing 
strategies as well. Nevertheless, our model highlights the impor-
tance of changes in bacterial abundance to mixotroph strategies in 
future oceans.

MATERIALS AND METHODS
General model formulation
The MOCHA model is a special case of a more general model 
describing the growth of an organism that produces n types of 
structures to obtain m distinct components necessary for growth. 
The model allows for synergies when structures contribute com-
plementary vectors of components for organismal growth, as 
well as for trade-offs because components are, in turn, invested 
in the production of structures (and thus investment in one struc-
ture requires components that are no longer available for another 
structure type). Each structure type j can take up (or produce) 
one of the components i with a structure- and component-specific 
efficiency u

Structures may also incur maintenance costs, such as via respiration. 
Costs may be accrued in any component currency at a structure-
dependent rate r

The m-by-n matrix �  accounts for the overall per-structure yields 
y of each component type per unit of structural biomass in the or-
ganism. The entries of �  are

ui,j (1)

ri,j (2)

yi,j = ui,j − ri,j (3)
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(where i ∈ 1,… ,m and j ∈ 1,… , n), and account for the net produc-
tion (if u > r) or loss (if r > u) of the ith component type by the jth 
structure type.

If �⃗x (of length n) is the vector of structure biomasses, then the 
overall flux of components into the organism is given by a vector �⃗f  
of length m

After components are obtained and maintenance costs are paid, 
the organism uses the surplus of components �⃗f  for growth. We as-
sume that all structures have the same stoichiometry, with a per-
biomass quota Qi for each component (24,  25). Here, we define 
qi = 1∕Qi, a quotient that determines the amount of biomass that 
can be produced with one unit of a given resource. This quotient 
takes into account both the materials needed for biomass and 
growth efficiency. We assume that growth is limited by the least 
abundant component. Therefore

The excess production of any nonlimiting components cannot be 
stored and is immediately lost from the organism.

The organism allocates resources to grow its structures based on 
an allocation strategy �⃗α, in which the allocation to each structure αj 
determines that structure’s growth rate

To satisfy mass balance, the allocation parameters sum to one

Thus, αj is the proportion of organismal growth capacity allocated 
to the jth structure.

When growth is positive, organismal structures accumulate expo-
nentially over time. Our model does not differentiate between en-
largement of single cells (or a single multicellular organism) and 
reproduction (e.g., through cell division), except insofar as it specifies 
that per-structure uptake rates are constant. Thus, surface area and 
volume must increase proportionately. We find it most convenient to 
consider growth as representing increases in the structural biomass of 
a population of organisms of identical stoichiometry and cell size.

A three-structure model for constitutive mixotrophy
To model constitutive mixotrophs, we reduce the dimensionality 
of the general model to two elemental components—carbon C and 
nitrogen N—and three structures—chloroplasts P, digestive vacu-
oles V , and growth machinery M. The mixotroph obtains C and N 
from three types of external resources: bacteria B, light L, and dis-
solved inorganic nitrogen I. Vacuoles can produce both carbon and 
nitrogen through digestion of bacteria, and chloroplasts produce 
carbon through light-dependent photosynthesis. We assume that 
uptake of inorganic nutrients is also plastid dependent (but note 
that fitting our model to Ochromonas data suggests that inorganic 
nitrogen uptake is unnecessary to explain growth in our experi-
ments, so this assumption has limited effects on our analysis).

To assemble these elements for growth, the mixotroph must 
also produce a third component, growth factors G, using its growth 
machinery M. Accounting for the respiration cost r of each struc-
ture, the yield matrix is

Here, uCB and uNB represent net carbon and nitrogen gained from 
phagotrophy respectively, and incorporate both bacterial stoichiom-
etry and assimilation efficiencies. Similarly, uCL scales net C gain 
from phototrophy, and uNI scales net N gain from inorganic nitro-
gen. The parameter yGM is the rate of growth factor production per 
unit of growth machinery M.

Note that we have assumed that respiration costs are identical 
for all three types of structures. Among strictly phototrophic and 
phagotrophic species, data suggest that the metabolic costs of 
chloroplasts are lower than those of digestive vacuoles (43,  44). 
However, these costs have not been quantified for mixotrophs. Ab-
sent this information, and because of the value of simplifying as-
sumptions in making model parameterization more tractable (and 
avoiding overfitting), we have assumed that the metabolic costs 
associated with chloroplasts, digestive vacuoles, and growth ma-
chinery are identical.

The three-structure allocation vector is

where αV + αP + αM = 1.

Finding optimal growth
Because we are interested in mixotroph optimal allocations, we re-
strict our analysis to cases of positive growth (g > 0). Noting that αM 
can never be set to 0 (because growth factors are required for 
growth), our model allows for three possible outcomes:

1. Strict phagotrophy: When yield from grazing on bacteria ex-
ceeds any possible yield from photosynthesis, mixotrophs should set 
αP = 0. Thus αV + αM = 1, and the mixotroph optimizes over a two-
dimensional domain. Environments that favor this strategy will 
have high prey availability and low light and/or inorganic nutrients.

2. Strict phototrophy: When yield from photosynthesis and inor-
ganic nutrient uptake exceeds any possible yield from phagotrophy, 
mixotrophs should set αV = 0. Thus, αP + αM = 1. Environments 
that favor this strategy will have low prey availability, high light, and 
high inorganic nutrients.

3. Mixotrophy: Depending on environmental conditions (e.g., 
resource availability) and organismal traits (e.g., uptake rates, con-
version efficiencies, or stoichiometries), mixed investment strategies 
with αV , αP > 0 can be optimal. These cases typically arise when cel-
lular structures are specialized (e.g., chloroplasts are more effective 
at C acquisition and vacuoles at N acquisition), but can also occur if 
plastids and vacuoles are functionally identical. (Photosynthesis and 
phagotrophy are unlikely to be functionally identical in nature, so 
we avoid this case in our analyses.)

We consider all three cases, and mathematically derive their 
conditions, associated growth rates, and investment strategies �⃗α 
in Supplementary Methods. Our analysis reveals that a growth-
maximizing strategy is also a waste-minimizing one. Recall that 

�⃗f = � �⃗x (4)

g =min
[
q1f1, q2f2, … , qmfm

]
(5)

d �⃗x

dt
= �⃗α g (6)

α1 + α2 + … + αn = 1 (7)

� =

⎛
⎜⎜⎜⎝

uCBB− r uCLL− r − r

uNBB uNII 0

0 0 yGM

⎞
⎟⎟⎟⎠

(8)

�⃗α =

⎛
⎜⎜⎜⎝

αV

αP

αM

⎞
⎟⎟⎟⎠

(9)
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excess (nonlimiting) components are lost because storage is not ac-
counted for in the model. Exact solutions for investments can be 
derived as a function of acquisition parameters. For an optimally 
growing mixotroph, maximum growth rate occurs when the mixo-
troph is balancing investments in C acquisition, N acquisition, and 
growth factor production such that all three components are equally 
available to support growth (mathematically: ĝC = ĝN = ĝG). For 
strict phagotrophs or phototrophs, either C or N is limiting (Fig. 1, 
B and C).

Finally, we considered the growth-maximizing strategies of a 
mixotroph in a chemostat-like environment, in which bacterial and 
inorganic nutrient resources are drawn down by mixotroph growth. 
Full details of this model are available in Supplementary Methods.

Fitting the model to empirical data
We fit our data to previously published data collected in our labora-
tory [described in more detail in the Supplemental Materials; for full 
experimental details, see (27)]. Briefly, we grew eight strains of 
Ochromonas from the National Center for Marine Algae and Micro-
biota culture collection in a gradient of light levels (from 0 to 150 μmol 
quanta m−2 s−1) to stimulate variation in investment in photosyn-
thesis and phagotrophy. From experimental cultures, we obtained 
measurements of investment in photosynthesis (chlorophyll per car-
bon biomass) and phagotrophy (bacterial attack rate per carbon), 
resource flux rates (photosynthetic and grazing rates), and cell growth 
rates [as described in (27)].

We fit the MOCHA model to these data by maximizing a likeli-
hood function [detailed in (45)]. To do so, we defined relations to 
convert from experimental data units into the units used by the 
model. We used the chlorophyll-to-carbon ratio and the photosyn-
thesis rate as proxies for the investment in plastids, αP, and the 
attack rate and grazing rate as proxies for investment in vacuoles, αV. 
We further use the observed growth rate as a direct proxy for the 
simulated growth rate g under the assumption of growth optimizing 
investment strategies by the mixotrophs. Details on the model fit-
ting are given in the Supplementary Materials.

We performed fits for each of the eight Ochromonas strains inde-
pendently to understand strain-by-strain variation within the mixo-
troph genus (Fig. 3 and fig. S5). We also fit the model to all empirical 
data simultaneously, to obtain a global mean fit representative of an 
“average” Ochromonas cell.

Global ocean projections
Using eqs. S30 to S32, we estimated the growth-maximizing mixo-
troph strategy on a global scale, using light and bacteria abundance 
as inputs. Light values were obtained from the NASA Aqua-MODIS 
(Moderate Resolution Imaging Spectroradiometer) ocean color 
satellite mission (30). These data represent annually averaged mea-
surements of photosynthetically active radiation (PAR) for the year 
2021 at a 4 km resolution. Heterotrophic bacterial abundances were 
obtained from simulations of a coupled physical-biogeochemical-
ecosystem model with specific setup following (31) including modi-
fications described in (46). The model data simulate heterotrophic 
bacterial biomass across a 1° grid with 23 depth bins. We converted 
biomass to abundance by assuming a fixed bacterial C content of 
10 fg per cell. We chose this order of magnitude estimate based on 
estimates for pelagic bacterial cells [e.g., SAR11; (47, 48)] because 
the Darwin model is parameterized for pelagic environments and 
does not resolve near-shore processes, but note that this may result 

in an overestimate of bacterial abundance (in cells per milliliter) in 
more coastal regions. The growth-maximizing strategy was calcu-
lated using bacterial abundances and PAR values at the sea surface, 
interpolated to the same 1° grid used by the Darwin model. Global 
projections were generated using parameters estimated from the 
empirical data for each Ochromonas strain individually and for all 
strains combined (Fig. 3).

Supplementary Materials
This PDF file includes:
Supplementary Methods
Figs. S1 to S7
Tables S1 to S3
References

REFERENCES AND NOTES
	 1.	 A. Z. Worden, M. J. Follows, S. J. Giovannoni, S. Wilken, A. E. Zimmerman, P. J. Keeling, 

Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. 
Science 347, 1257594 (2015).

	 2.	 M.-A. Selosse, M. Charpin, F. Not, Mixotrophy everywhere on land and in water: The grand 
écart hypothesis. Ecol. Lett. 20, 246–263 (2017).

	 3.	 J. Tittel, V. Bissinger, B. Zippel, U. Gaedke, E. Bell, A. Lorke, N. Kamjunke, Mixotrophs 
combine resource use to outcompete specialists: Implications for aquatic food webs. 
Proc. Natl. Acad. Sci. U.S.A. 100, 12776–12781 (2003).

	 4.	 K. W. Crane, J. P. Grover, Coexistence of mixotrophs, autotrophs, and heterotrophs in 
planktonic microbial communities. J. Theor. Biol. 262, 517–527 (2010).

	 5.	 A. Mitra, K. J. Flynn, J. M. Burkholder, T. Berge, A. Calbet, J. A. Raven, E. Granéli,  
P. M. Glibert, P. J. Hansen, D. K. Stoecker, F. Thingstad, U. Tillmann, S. Våge, S. Wilken,  
M. V. Zubkov, The role of mixotrophic protists in the biological carbon pump. 
Biogeosciences 11, 995–1005 (2014).

	 6.	 M. Hartmann, C. Grob, G. A. Tarran, A. P. Martin, P. H. Burkill, D. J. Scanlan, M. V. Zubkov, 
Mixotrophic basis of Atlantic oligotrophic ecosystems. Proc. Natl. Acad. Sci. U.S.A. 109, 
5756–5760 (2012).

	 7.	 B. A. Ward, M. J. Follows, Marine mixotrophy increases trophic transfer efficiency, mean 
organism size, and vertical carbon flux. Proc. Natl. Acad. Sci. U.S.A. 113, 2958–2963 
(2016).

	 8.	 D. K. Stoecker, P. J. Hansen, D. A. Caron, A. Mitra, Mixotrophy in the marine plankton. Ann. 
Rev. Mar. Sci. 9, 311–335 (2017).

	 9.	 A. Mitra, K. J. Flynn, U. Tillmann, J. A. Raven, D. Caron, D. K. Stoecker, F. Not, P. J. Hansen,  
G. Hallegraeff, R. Sanders, S. Wilken, G. M. Manus, M. Johnson, P. Pitta, S. Våge, T. Berge,  
A. Calbet, F. Thingstad, H. J. Jeong, J. A. Burkholder, P. M. Glibert, E. Granéli, V. Lundgren, 
Defining planktonic protist functional groups on mechanisms for energy and nutrient 
acquisition: Incorporation of diverse mixotrophic strategies. Protist 167, 106–120 (2016).

	 10.	 A. A. Lie, Z. Liu, R. Terrado, A. O. Tatters, K. B. Heidelberg, D. A. Caron, A tale of two 
mixotrophic chrysophytes: Insights into the metabolisms of two Ochromonas species 
(chrysophyceae) through a comparison of gene expression. PLOS ONE 13, e0192439 
(2018).

	 11.	 M. D. Johnson, Inducible mixotrophy in the dinoflagellate Prorocentrum minimum.  
J. Eukaryot. Microbiol. 62, 431–443 (2015).

	 12.	 R. W. Sanders, K. G. Porter, D. A. Caron, Relationship between phototrophy and 
phagotrophy in the mixotrophic chrysophyte Poterioochromonas malhamensis. Microb. 
Ecol. 19, 97–109 (1990).

	 13.	 S. Wilken, C. J. Choi, A. Z. Worden, Contrasting mixotrophic lifestyles reveal different 
ecological niches in two closely related marine protists. J. Phycol. 56, 52–67 (2020).

	 14.	 S. G. Leles, J. Bruggeman, L. Polimene, J. Blackford, K. J. Flynn, A. Mitra, Differences in 
physiology explain succession of mixoplankton functional types and affect carbon fluxes 
in temperate seas. Prog. Oceanogr. 190, 102481 (2021).

	 15.	 K. H. Andersen, D. L. Aksnes, T. Berge, Ø. Fiksen, A. Visser, Modelling emergent trophic 
strategies in plankton. J. Plankton Res. 37, 862–868 (2015).

	 16.	T . Berge, S. Chakraborty, P. J. Hansen, K. H. Andersen, Modeling succession of key 
resource-harvesting traits of mixotrophic plankton. ISME J. 11, 212–223 (2017).

	 17.	 S. Chakraborty, L. T. Nielsen, K. H. Andersen, Trophic strategies of unicellular plankton. 
Am. Nat. 189, E77–E90 (2017).

	 18.	 A. Calbet, M. Bertos, C. Fuentes-Grunewald, E. Alacid, R. Figueroa, B. Renom, E. Garcés, 
Intraspecific variability in Karlodinium veneficum: Growth rates, mixotrophy, and lipid 
composition. Harmful Algae 10, 654–667 (2011).

	 19.	 K. F. Edwards, Mixotrophy in nanoflagellates across environmental gradients in the 
ocean. Proc. Natl. Acad. Sci. U.S.A. 116, 6211–6220 (2019).



Moeller et al., Sci. Adv. 10, eadr0664 (2024)     13 December 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

9 of 9

	 20.	 S. G. Leles, A. Mitra, K. J. Flynn, D. K. Stoecker, P. J. Hansen, A. Calbet, G. B. Mc Manus,  
R. W. Sanders, D. A. Caron, F. Not, G. M. Hallegraeff, P. Pitta, J. A. Raven, M. D. Johnson,  
P. M. Glibert, S. Våge, Oceanic protists with different forms of acquired phototrophy 
display contrasting biogeographies and abundance. Proc. Biol. Sci. 284, 20170664 
(2017).

	 21.	E . Faure, F. Not, A.-S. Benoiston, K. Labadie, L. Bittner, S.-D. Ayata, Mixotrophic protists 
display contrasted biogeographies in the global ocean. ISME J. 13, 1072–1083 (2019).

	 22.	 S. Wilken, C. C. M. Yung, M. Hamilton, K. Hoadley, J. Nzongo, C. Eckmann,  
M. Corrochano-Luque, C. Poirier, A. Z. Worden, The need to account for cell biology in 
characterizing predatory mixotrophs in aquatic environments. Philos. Trans. R. Soc. B 374, 
20190090 (2019).

	 23.	N . C. Millette, R. J. Gast, J. Y. Luo, H. V. Moeller, K. Stamieszkin, K. H. Andersen,  
E. F. Brownlee, N. R. Cohen, S. Duhamel, S. Dutkiewicz, P. M. Glibert, M. D. Johnson,  
S. G. Leles, A. E. Maloney, G. B. Mcmanus, N. Poulton, S. D. Princiotta, R. W. Sanders,  
S. Wilken, Mixoplankton and mixotrophy: Future research priorities. J. Plankton Res. 45, 
576–596 (2023).

	 24.	C . A. Klausmeier, E. Litchman, T. Daufresne, S. A. Levin, Optimal nitrogen-to-phosphorus 
stoichiometry of phytoplankton. Nature 429, 171–174 (2004).

	 25.	C . A. Klausmeier, E. Litchman, S. A. Levin, Phytoplankton growth and stoichiometry under 
multiple nutrient limitation. Limnol. Oceanogr. 49, 1463–1470 (2004).

	 26.	 D. Tilman, Resource Competition and Community Structure (Princeton Univ. Press, 1982), 
vol. 296.

	 27.	 G. S. Barbaglia, C. Paight, M. Honig, M. D. Johnson, R. Marczak, M. Lepori-Bui, H. V. Moeller, 
Environment-dependent metabolic investments in the mixotrophic chrysophyte 
Ochromonas. J. Phycol. 60, 170–184 (2024).

	 28.	 R. R. Guillard, in Culture of Marine Invertebrate Animals: Proceedings—1st Conference on 
Culture of Marine Invertebrate Animals Greenport (Springer, 1975), pp. 29–60.

	 29.	 M. Lepori-Bui, C. Paight, E. Eberhard, C. M. Mertz, H. V. Moeller, Evidence for evolutionary 
adaptation of mixotrophic nanoflagellates to warmer temperatures. Glob. Chang. Biol. 28, 
7094–7107 (2022).

	 30.	N ASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing 
Group, Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Level-3 Mapped 
Photosynthetically Available Radiation Data, version R2022.0, NASA Ocean Biology 
Distributed Active Archive Center, 2022.

	 31.	C . L. Follett, C. L. Follett, S. Dutkiewicz, F. Ribalet, E. Zakem, D. Caron, E. V. Armbrust,  
M. J. Follows, Trophic interactions with heterotrophic bacteria limit the range of 
Prochlorococcus. Proc. Natl. Acad. Sci. U.S.A. 119, e2110993118 (2022).

	 32.	 P. Abrams, The functional responses of adaptive consumers of two resources. Theor. 
Popul. Biol. 32, 262–288 (1987).

	 33.	 K. F. Edwards, Q. Li, K. A. McBeain, C. R. Schvarcz, G. F. Steward, Trophic strategies explain 
the ocean niches of small eukaryotic phytoplankton. Proc. R. Soc. B 290, 20222021 (2023).

	 34.	 S. Våge, M. Castellani, J. Giske, T. F. Thingstad, Successful strategies in size structured 
mixotrophic food webs. Aquat. Ecol. 47, 329–347 (2013).

	 35.	 B. A. Ward, S. Dutkiewicz, A. D. Barton, M. J. Follows, Biophysical aspects of resource 
acquisition and competition in algal mixotrophs. Am. Nat. 178, 98–112 (2011).

	 36.	C . J. Choi, V. Jimenez, D. M. Needham, C. Poirier, C. Bachy, H. Alexander, S. Wilken,  
F. P. Chavez, S. Sudek, S. J. Giovannoni, A. Z. Worden, Seasonal and geographical 
transitions in eukaryotic phytoplankton community structure in the Atlantic and Pacific 
oceans. Front. Microbiol. 11, 542372 (2020).

	 37.	 J. Frias-Lopez, A. Thompson, J. Waldbauer, S. W. Chisholm, Use of stable isotope-labelled 
cells to identify active grazers of picocyanobacteria in ocean surface waters. Environ. 
Microbiol. 11, 512–525 (2009).

	 38.	 Q. Li, K. F. Edwards, C. R. Schvarcz, K. E. Selph, G. F. Steward, Plasticity in the grazing 
ecophysiology of Florenciella (Dichtyochophyceae), a mixotrophic nanoflagellate that 
consumes Prochlorococcus and other bacteria. Limnol. Oceanogr. 66, 47–60 (2021).

	 39.	 S. Wilken, J. Huisman, S. Naus-Wiezer, E. Van Donk, Mixotrophic organisms become more 
heterotrophic with rising temperature. Ecol. Lett. 16, 225–233 (2013).

	 40.	L . M. Gonzalez, S. R. Proulx, H. V. Moeller, Modeling the metabolic evolution of 
mixotrophic phytoplankton in response to rising ocean surface temperatures. BMC Ecol. 
Evol. 22, 136 (2022).

	 41.	H . H. Kim, C. Laufkötter, T. Lovato, S. C. Doney, H. W. Ducklow, Projected 21st-century 
changes in marine heterotrophic bacteria under climate change. Front. Microbiol. 14, 
1049579 (2023).

	 42.	 D. L. Kirchman, X. A. G. Morán, H. Ducklow, Microbial growth in the polar oceans—Role of 
temperature and potential impact of climate change. Nat. Rev. Microbiol. 7, 451–459 
(2009).

	 43.	 D. Straile, Gross growth efficiencies of protozoan and metazoan zooplankton and their 
dependence on food concentration, predator-prey weight ratio, and taxonomic group. 
Limnol. Oceanogr. 42, 1375–1385 (1997).

	 44.	 P. G. Falkowski, J. A. Raven, Aquatic Photosynthesis (Princeton Univ. Press, 2013).
	 45.	T . Jager, R. Ashauer, Modelling survival under chemical stress: A comprehensive guide to the 

GUTS framework (Toxicodynamics Ltd., 2018).
	 46.	 K. M. Archibald, S. Dutkiewicz, C. Laufkötter, H. V. Moeller, Thermal responses in global 

marine planktonic food webs are mediated by temperature effects on metabolism.  
J. Geophys. Res. Oceans 127, e2022JC018932 (2022).

	 47.	N . Cermak, J. W. Becker, S. M. Knudsen, S. W. Chisholm, S. R. Manalis, M. F. Polz, Direct 
single-cell biomass estimates for marine bacteria via Archimedes’ principle. ISME J. 11, 
825–828 (2017).

	 48.	 A. E. White, S. J. Giovannoni, Y. Zhao, K. Vergin, C. A. Carlson, Elemental content and 
stoichiometry of sar11 chemoheterotrophic marine bacteria. Limnol. Oceanogr. Lett. 4, 
44–51 (2019).

	 49.	L . M. Sonneborn, F. S. Van Vleck, The bang-bang principle for linear control systems. J. Soc. 
Ind. Appl. Math. Ser. A Control 2, 151–159 (1964).

	 50.	C . S. Holling, Some characteristics of simple types of predation and parasitism. Can. 
Entomol. 91, 385–398 (1959).

	 51.	 M. T. Auer, B. Forrer, Development and parameterization of a kinetic framework for 
modeling light-and phosphorus-limited phytoplankton growth in cannonsville reservoir. 
Lake Reserv. Manag. 14, 290–300 (1998).

Acknowledgments: We acknowledge helpful feedback from C. Klausmeier and members of 
the Moeller Laboratory at UCSB. Funding: This work was supported by National Science 
Foundation grants OCE-1851194 and OCE-2237017 (H.V.M.), the Simons Foundation Early 
Career Fellowship in Marine Microbial Ecology and Evolution (award 689265, H.V.M.), and the 
Simons Foundation Postdoctoral Fellowship in Marine Microbial Ecology (award 990798, 
K.M.A.; award 877215, S.G.L.). Author contributions: All authors contributed equally to the 
conceptualization, model construction, analysis, writing, and editing of this manuscript. 
Specifically, according to the CRediT scheme: H.V.M. contributed to writing—original draft, 
conceptualization, investigation, writing—review and editing, methodology, resources, 
funding acquisition, data curation, validation, supervision, formal analysis, software, project 
administration, and visualization. K.M.A. contributed to writing—original draft, 
conceptualization, writing—review and editing, methodology, formal analysis, software, and 
visualization. S.G.L. contributed to conceptualization, writing—review and editing, 
methodology, formal analysis, software, and visualization. F.P. contributed to writing—original 
draft, conceptualization, investigation, writing—review and editing, methodology, resources, 
data curation, validation, formal analysis, software, and visualization. Competing interests: 
The authors declare that they have no competing interests. Data and materials availability: 
All data and code needed to evaluate the conclusions in the paper and reproduce results are 
present in the paper and/or the Supplementary Materials and at https://zenodo.org/
doi/10.5281/zenodo.13826163.

Submitted 13 June 2024 
Accepted 11 November 2024 
Published 13 December 2024 
10.1126/sciadv.adr0664

https://zenodo.org/doi/10.5281/zenodo.13826163
https://zenodo.org/doi/10.5281/zenodo.13826163

	Predicting optimal mixotrophic metabolic strategies in the global ocean
	INTRODUCTION
	RESULTS
	DISCUSSION
	MATERIALS AND METHODS
	General model formulation
	A three-structure model for constitutive mixotrophy
	Finding optimal growth
	Fitting the model to empirical data
	Global ocean projections

	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments


