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Integrated analysis of immunometabolic interactions  
in Down syndrome
Lucas A. Gillenwater1,2,3, Matthew D. Galbraith1,2, Angela L. Rachubinski1,4, Neetha Paul Eduthan1, 
Kelly D. Sullivan1,5, Joaquin M. Espinosa1,2*, James C. Costello1,2,3*

Down syndrome (DS), caused by trisomy 21 (T21), results in immune and metabolic dysregulation. People with DS 
experience co-occurring conditions at higher rates than the euploid population. However, the interplay between 
immune and metabolic alterations and the clinical manifestations of DS are poorly understood. Here, we report an 
integrated analysis of immunometabolic pathways in DS. Using multi-omics data, we infered cytokine-metabolite 
relationships mediated by specific transcriptional programs. We observed increased mediation of immunometa-
bolic interactions in those with DS compared to euploid controls by genes in interferon response, heme metabo-
lism, and oxidative phosphorylation. Unsupervised clustering of immunometabolic relationships in people with 
DS revealed subgroups with different frequencies of co-occurring conditions. Across the subgroups, we observed 
distinct mediation by DNA repair, Hedgehog signaling, and angiogenesis. The molecular stratification associates 
with the clinical heterogeneity observed in DS, suggesting that integrating multiple omic profiles reveals axes of 
coordinated dysregulation specific to DS co-occurring conditions.

INTRODUCTION
Down syndrome (DS) is the most common human chromosomal 
disorder, with approximately 1 in 700 newborns in the United States 
having trisomy 21 (T21), the driver of DS (1, 2). The incidence of DS 
increased from 9.0 to 11.8 per 10,000 live births in the United States 
between 1979 and 2003 (3). In the same period, the average life span 
of individuals with DS increased from 30 to 60 years due to im-
proved medical care (4). Despite this increased life span, individuals 
with DS and their families face ongoing health challenges from co-
occurring conditions that are more prevalent among those with 
T21. People with DS are at a higher risk than the general population 
for developing disorders such as hearing and visual impairments, 
obesity, dyslipidemia, congenital heart defects, leukemias, diverse 
autoimmune disorders, Alzheimer’s disease, and neurological con-
ditions like autism and epilepsy (5–13). In addition, individuals 
with DS experience more severe complications from viral respira-
tory infections, putting them at high risk of poor outcomes, as is the 
case for severe acute respiratory syndrome coronavirus 2 infections 
(14). Despite the known clinical conditions associated with DS, little 
is known about the mechanisms by which triplication of chromo-
some 21 alters molecular pathways, cellular function, and overall 
physiology to result in the observed pattern of co-occurring 
conditions.

DS is characterized as both an immune and metabolic disorder 
(4, 15). The cross-talk between cytokines, gene expression, and me-
tabolites leads to coordinated regulation of metabolism and im-
mune responses (16, 17). Inflammatory cytokine release is initially 
protective against infection, but extended and potentiated exposure 

is harmful (18). For example, elevated levels of acute phase proteins, 
such as C-reactive protein (CRP) and serum amyloid A (SAA), have 
been associated with mild cognitive impairment in individuals with 
DS (19, 20). Elevated levels of interleukin-6 (IL-6), CRP, and SAA 
have also been correlated with body mass index (BMI) and elevated 
fasting insulin, indicating their involvement in metabolic disorders 
(21). In a longitudinal study of individuals with Parkinson’s disease, 
CRP and SAA were correlated with tryptophan pathway metabolites 
(22). In a cohort of 165 people, Powers et al. (23) reported that 75 
individuals with DS had higher circulating levels of kynurenine and 
quinolinic acid, a neurotoxic metabolite, compared to euploid con-
trols. These previous studies, along with others, have focused on 
single-omic profiles and identified clear differences between indi-
viduals with T21 and disomic (D21) karyotypes (23–27). However, 
to our knowledge, no study has considered how immunometabolic 
cross-talk, inferred from cytokine-metabolite associations and their 
relations to gene expression, relates to disease co-occurrence in the 
context of T21.

Here, we identify the relationships between cytokine levels, me-
tabolite profiles, and gene expression patterns to infer putative 
mechanisms of immunometabolic regulation in people with and 
without T21. Furthermore, by integrating cytokine and metabolite 
profiles, we define four distinct subgroups of individuals with DS 
that are enriched for different co-occurring conditions. This inte-
grated analysis provides insights into the molecular underpinnings 
of co-occurring conditions in individuals with DS that are not ap-
parent when using a single molecular profile.

RESULTS
The immunometabolic profile of DS differs from the 
general population
To investigate immunometabolic dysregulation in DS and its rela-
tionship to clinical features in this population, we analyzed datasets 
generated through the Human Trisome Project (HTP) cohort study 
[www.trisome.org; NCT02864108 (27)]. Multiple-omics datasets 
were generated from whole-blood samples, including 54 plasma 
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immune markers using Meso Scale Discovery (MSD) assays, 174 
plasma metabolites via ultrahigh performance liquid chromatogra-
phy–mass spectrometry (UHPLC-MS), and 12,560 protein-coding 
gene transcript counts measured by RNA sequencing (fig. S1 and 
see Methods). Demographic data and information on co-occurring 
conditions were also collected through a combination of partici-
pant/caregiver surveys and review of medical records. The results 
presented here correspond to analysis from a subset of 290 individu-
als, of which 244 individuals were trisomic for chromosome 21 
(T21), and 46 individuals were euploid controls (D21) (Fig. 1A).

Consistent with previous reports, individuals with T21 signifi-
cantly differed from euploid individuals in the occurrence of 9 of 17 
clinical variables measured, including higher rates of obesity, auto-
immune skin conditions, hypothyroidism, asthma, and recurrent 
otitis media, among others (table S1) (28–30). A greater portion of 
individuals with T21 were in their 20s and 30s, but we did not ob-
serve a statistically significant difference in age or sex by karyotype 
(fig. S2, A and B).

We performed differential abundance analysis for both immune 
markers and metabolites. In agreement with previous reports, on 

Fig. 1. The immunometabolic profile of DS differs from the general population. (A) Overview of analysis workflow. Whole-blood samples collected from individuals 
with T21 and D21 karyotypes were used to quantify plasma cytokines and metabolites. Individual-omic profiles were evaluated and an integrated analysis was performed. 
Identification of gene mediators of cytokine-metabolite relationships was performed, and immunometabolic subgroups were defined. Further analysis was performed on 
the subgroups. (B) Heatmap of Spearman correlation coefficients between standardized cytokine and metabolite abundances. Clustering with k-means defined four 
groups. (C) Representative scatterplots of standardized values between cytokines, metabolites, and across molecular assay type. Blue lines represent the lines of best fit 
between the features; gray areas represent the 95% confidence interval. Spearman correlation statistics are reported. (D) Statistically significant (FDR < 0.1) correlations 
between cytokines and metabolites, aggregated by metabolite class. The thickness of the edges between nodes represents the absolute value of aggregated correlations 
coefficients. (E) Overrepresentation enrichment of significant correlations between cytokines and metabolites (FDR < 0.1) annotated to metabolite classes using a Fisher’s 
exact test. (F) Spearman correlation coefficients between cytokines and metabolites in people with T21 and D21. Points are colored blue if the relationships are only sig-
nificant (FDR < 0.1) in T21, red if they are only significant in D21, and dark green if they are significant in both T21 and D21 individuals. GM-CSF, granulocyte-macrophage 
colony-stimulating factor; FDR, false discovery rate; CRP, C-reactive protein; IL-17C, interleukin-17C; VCAM-1, vascular cell adhesion molecule–1; AMP, adenosine 
5′-monophosphate; IDP, inosine 5′-diphosphate; SAA, serum amyloid A.
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average, people with DS had increased cytokine abundances, in-
cluding pro-inflammatory cytokines [e.g., thymic stromal lympho-
poietin (TSLP), Interleukin (IL)–17D, IL-17C, IL-16, and IL-6] and 
chemokines [e.g., Monocyte chemoattractant protein-1 (MCP-1) 
and Interferon-γ inducible protein 10 (IP-10)], as well as acute phase 
proteins (e.g., CRP) (31). Anti-inflammatory cytokines (e.g., IL-10 
and IL-1RA) and other immune mediators (vascular endothelial 
growth factor A, placenta growth factor, and fibroblast growth fac-
tor) were also elevated. Cytokines that significantly decreased in the 
population of people with DS included tumor necrosis factor–β 
(TNF-ꞵ) and IL-12/IL-23p40 (table S2). Increased metabolites 
in DS included markers of inflammation [e.g., sphingosine, urate, 
5(S) hydroxyeicosatetraenoic acid (HETE), 12(S)-HETE, and 
11-HETE], tryptophan pathway metabolites (e.g., kynurenine and 
5-hydroxyindoleacetate), bile acids (e.g., taurolithocholic acid and 
ursodeoxycholic acid), and lysophospatidic acids (LPAs) (e.g., LPA 
16:1) (32). Amino acids (e.g., glycine, histidine, serine, and tyrosine) 
were decreased in people with DS (table S3) (33). Overall, the me-
tabolite and cytokine results are consistent with previously reported 
findings and provide support that the datasets are robust and repre-
sent the biology of individuals with DS (23–27, 31, 33).

To identify patterns of immunometabolic dysregulation in DS, 
we calculated pairwise Spearman correlations between all cytokine 
and metabolite pairs (fig. S1 and see Methods). In individuals with 
T21, we identified sets of cytokines and metabolites that share simi-
lar patterns of dysregulation using k-means clustering (k = 4) (Fig. 
1, B and C; single dataset correlations are represented in fig. S3, A 
and B, and tables S4 and S5). Among cytokines, expectedly, factors 
in the IL-6/CRP/SAA signaling axis showed significant positive 
correlations with each other (Fig. 1C and fig. S3A). Interferon-γ 
(IFN-γ), IFNL1 (IL-29), and the IFN-inducible protein IP-10 were 
also positively correlated and associated with multiple monocyte-
activating cytokines and chemokines, such as macrophage inflam-
matory protein-1α (MIP-1α), MCP-1, and MCP-4 (fig. S3C). Among 
metabolites, we observed strong correlations in tryptophan catabo-
lites previously observed to be dysregulated in DS, such as kynuren-
ine and 5-hydroxyindolacetate (Fig. 1C and fig. S1B) (23). Other 
examples of metabolites tightly correlated in individuals with DS 
included leukotriene B4 with hexadecenoic acid and resolvin D1/
D2 with protectin D1 (fig. S3D).

Several interesting patterns were identified from the combined 
analyses of immune markers and metabolites. For example, CRP, 
SAA, and IL-6 were all negatively correlated with amino acid levels 
in DS, including serine, asparagine, and threonine (Fig. 1D and fig. 
S3E). As reported previously, TNF-α was positively correlated with 
the tryptophan catabolites kynurenine and 5-hydroxyindolacetate 
(23). We further evaluated the enrichment of significant correla-
tions between cytokines and metabolites by metabolic class. Amino 
acids were enriched for negative correlations with several cytokines 
including CRP, IL-1RA, IL-22, IL-6, and MIP-1α (Fig. 1E). Enrich-
ments of negative correlations were also observed between fatty ac-
ids/eicosanoids with IL-5 and VCAM-1. The cytokine IL-1α was 
enriched for positive correlations with arginine and proline metabo-
lism as well as indole and tryptophan metabolites.

To assess the differences between karyotype, we compared the 
pairwise correlation coefficients between cytokines and metabolites 
in those with T21 versus euploid controls (D21). Overall, and con-
sistent with the sample size of the groups, we observed more signifi-
cant correlations between cytokines and metabolites [false discovery 

rate (FDR) < 0.1] in people with T21 (634 significant correlations) 
relative to D21 euploid controls (91 significant correlations) (Fig. 1F 
and table S6). To address the imbalance in sample size across 
karyotypes, we randomly subsampled the T21 cohort to 46 indi-
viduals to match the sample size of the D21 cohort. As with the 
full cohort, we observed more significant cytokine-metabolite 
correlations, both positive and negative, in those with T21 com-
pared to euploid controls. Moreover, we observed a smaller range 
of correlation coefficients in euploids controls compared to the 
cohort with T21 (fig. S3F and table S6). For example, in those 
with T21, we observed more positive correlations between cyto-
kines with kynurenine and N-acetylneuraminate compared to 
controls (Fig. 1F). N-acetylneuraminate is the predominant form of 
sialic acid in mammals and has been linked to immune signaling 
and recognition-memory impairment in mice (34). Together, these 
results reveal immunometabolic dysregulation in DS that differs 
from and is more heterogeneous than euploid individuals, which 
could contribute to the etiology of key co-occurring conditions in 
this population.

Mediation analysis reveals signaling pathways driving 
cytokine-metabolite relationships in DS
Cytokines can indirectly affect metabolite levels by altering the reg-
ulation and expression of enzymes involved in metabolic cascades 
(35). For example, IFN-γ signals through the IFN-γ receptors IFN-
GR1/IFNGR2 activate the Janus kinases 1 and 2 (JAK1/2) that, in 
turn, phosphorylate and activate the signal transducers and activa-
tors of transcription 1 (STAT1) transcription factor (Fig. 2A) (36). 
Upon translocation to the nucleus, STAT1 induces transcription of 
hundreds of IFN-stimulated genes (ISGs), including IDO1, which 
encodes indoleamine 2,3-dioxygenase 1, the rate-limiting enzyme 
in the conversion of tryptophan to kynurenine in the tryptophan 
catabolism pathway (37,  38). IDO1 expression is also induced by 
type I and type III IFNs through similar pathways (39, 40).

To predict these kinds of mediating relationships, using IFN-γ 
(type II IFN) as a positive control, we used matched transcriptome 
data to identify genes that could regulate cytokine-metabolite rela-
tionships (fig. S1). Using the partial correlation (see Methods for 
technical details), we can show that STAT1 mediates the relationship 
between IFN-γ and kynurenine based on the 88% drop in correla-
tion when the relationship is conditioned on STAT1 (Fig. 2B). This 
result demonstrates that analyzing cytokine, metabolite, and gene 
expression measurements through the partial correlation mediation 
analysis captures known biological regulation and can be used to 
prioritize genes as potential mediators of immunometabolic rela-
tionships.

To assess the specificity of potential gene regulation, we applied 
the mediation analysis across all other immunometabolic relation-
ships (Fig. 2C and see Methods for more details). We identified sev-
eral known genes as mediators of the IFN-γ–kynurenine relationship. 
Overall, STAT1 was the sixth highest ranked gene (Fig. 2D). 
Guanylate-binding proteins 2 and 1 (GBP2/1) were ranked first and 
eight, respectively. Bai et al. (41) found that knocking down GBPs 
inhibited IDO1 expression in human mesenchymal stromal cells. 
Another highly ranked potential mediator was Fcγ receptor I (FC-
GR1A). IFN-γ increases FCGR1A expression and the relative affinity 
of FCGR1A for immune complexes (42). Conversely, and consistent 
with known relationships, the immunometabolic relationships most 
significantly mediated by STAT1 were between IFN-γ and saturated 
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Fig. 2. Cytokines induce gene expression changes that mediate metabolite levels. (A) Indoleamine 2,3-dioxygenase 1 (IDO1) is the rate-limiting enzyme in the con-
version of tryptophan to kynurenine and is induced by IFN-γ signaling. IFN-γ signals through the IFN-γ receptor activating STAT1, which then up-regulates IDO1 via bind-
ing to the gamma interferon activation site (GAS). The right panel extends this signaling pathway based on the mediation analysis to include other ISGs. Created using 
BioRender.com. (B) Scatterplots for IFN-γ–STAT1, kynurenine-STAT1, and IFN-γ–kynurenine. Blue lines represent the lines of best fit between the features. The red line 
represents the linear fits of the partial correlation coefficient after adjustment for STAT1 expression. Spearman direct correlation (black) and partial correlation (red) statis-
tics are reported. (C) Overview of the mediation analysis algorithm to identify immunometabolic relationships that are conditioned on gene expression. The partial Spear-
man correlation coefficients between cytokines and metabolites after adjusting for transcript abundances is compared to the direct Spearman correlations between 
cytokines and metabolites. The percentage changes between the partial and direct correlations over all cytokine-metabolite relationships and gene transcripts are calcu-
lated, and then both the cytokine-metabolite and gene axes are z-score normalized. Last, the z scores are combined using Stouffer’s method to combine z scores. (D) Gene 
mediation rankings for IFN-γ–kynurenine with IFN-γ response genes highlighted in red. (E) Cytokine-metabolite rankings for mediation by STAT1 with cytokine-metabolite 
relationships enriched for IFN-γ response genes are highlighted in red. FCGR, Fcγ receptor; GBP, guanylate-binding protein; IgG, immunoglobulin G; JAK, Janus kinase; 
PARP9, poly(ADP-ribose) polymerase.
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fatty acids (e.g., dodecanoic acid, docosapentaenoic acid, and tretra-
decanoic acid) or tryptophan catabolites (e.g., kynurenine and 
5-hydroxyindoleacetate) (Fig. 2E) (43). In summary, our approach 
of leveraging the difference between partial and direct correlations 
is effective for identifying genes that are most likely to mediate im-
munometabolic relationships, thus allowing us to expand and con-
textualize the known effectors as illustrated with IFN-γ signaling in 
Fig. 2A.

Distinct transcriptional programs mediate 
immunometabolic relationships
To understand the transcriptional mediation effect on cellular path-
ways and processes, we performed gene set enrichment analysis on 
the ranked list of mediator gene z scores for each cytokine-metabolite 
relationship (fig. S1) (44, 45). We previously identified T21-specific 
changes in gene expression in the whole-blood transcriptome in-
cluding activation of the IFN-γ response, heme metabolism path-
ways, and oxidative phosphorylation (26, 27). Ranking the gene sets 
based on the variance of normalized enrichment scores (NESs) 

across cytokine-metabolite relationships and hierarchically cluster-
ing cytokine-metabolite relationships by pathway mediation NESs 
revealed that the IFN-γ and IFN-α response pathways varied widely 
across cytokine-metabolite relationships (fig. S4). The oxidative 
phosphorylation and heme metabolism pathways mediated sets of 
cytokine-metabolite relationships that are largely distinct from the 
IFN-γ and IFN-α sets. Together, these results demonstrate that spe-
cific cytokine-metabolite relationships are mediated by largely dis-
tinct transcriptional programs in people with DS.

IFN-γ response genes were significantly enriched (FDR < 0.05) 
for mediation in 93 cytokine-metabolite relationships (Fig. 3A). In 
ranking cytokine-metabolite relationships by IFN-γ response en-
richment scores, we observed that the top result was IFN-γ and do-
decanoic acid (or lauric acid) (Fig. 3B). Lauric acid has been shown 
to inhibit the effect of IFN-γ on intercellular adhesion molecule–1 
(ICAM-1) and vascular cell adhesion molecule–1 (VCAM-1) ex-
pression in macrophages (46). The correlation coefficient between 
IFN-γ and dodecanoic acid is indeed negative (table S6), indicating 
that this relationship may be regulated by IFN-γ response genes. 
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Overall, metabolite pathway enrichment analysis for IFN-γ revealed 
significant enrichment (FDR < 0.1) of sugars (e.g., maltose, manni-
tol, d-ribose, d-rhamnose, and d-arabitol) and saturated fatty acids 
[e.g., hexanoic acid (caproate), heptanoic acid, octanoic acid (capry-
late), nonanoic acid (pelargonate), decanoic acid (caprate), dodeca-
noic acid, and tetradecanoic acid] among the immunometabolic 
interactions.

Heme metabolism genes were significantly enriched for the media-
tion of 89 cytokine-metabolite relationships (Fig. 3A). Immunometa-
bolic relationships between dopamine and the cytokines MCP-4 and 
eotaxin were most enriched for heme metabolism mediation (Fig. 3D). 
Other top-ranking cytokine-metabolite relationships were observed 
between cytokines ICAM-1, macrophage-derived cytokine (MDC), 
IFN-β, and VCAM-1 with bile acids (e.g., ursodeoxycholic acid and che-
nodeoxycholic acid). Metabolite pathway enrichment analysis on the 
immunometabolic relationships enriched for mediation by heme me-
tabolism showed that the most represented metabolite classes included 
amino acids and bile acids (FDRs of 0.13 and 0.36, respectively).

Oxidative phosphorylation genes were significantly enriched for 
the mediation of 80 cytokine-metabolite relationships (Fig. 3A). The 
relationship between inflammatory cytokine IL-6 and urea cycle 
metabolite ornithine was most significantly enriched for mediation 
by oxidative phosphorylation (Fig. 3C). Moreover, we observed that 
oxidative phosphorylation mediated several of the immunometa-
bolic relationships involving arginine and proline metabolism 
metabolites (e.g., ornithine, proline, trans-4-hydroxy-l-proline, 
4-5-guanidino-2-oxopentanoate). Overall, we observed enrichment 
of oxidative phosphorylation mediation with relationships involv-
ing amino acids, phosphates, urea cycle, and arginine and proline 
metabolism at FDRs of 0.07, 011, 0.11, and 0.17, respectively.

Together, we observed that immunometabolic relationships were 
mostly regulated by distinct transcriptional programs dysregulated 
in DS, such as IFN-γ response, heme metabolism, and oxidative 
phosphorylation (Fig. 3E). These results suggest that dysregulated 
pathways in DS affect unique immunometabolic relationships.

Integrating immune markers and metabolites identifies 
clinical subgroups in DS
There is heterogeneity in co-occurring conditions in people with 
DS. For example, 78% of people with DS in this cohort have a his-
tory of sleep apnea, 65% have a history of autoimmune skin condi-
tion, and 42% are classified as obese (BMI ≥ 30), while only 29 and 
11% have a history of asthma or depression, respectively. Given our 
observation that dysregulated pathways are related to distinct im-
munometabolic relationships, we performed an integrated cluster-
ing of the cytokine and metabolite profiles in DS to identify 
subgroups of individuals that were enriched for pre-existing, co-
occurring conditions (fig. S1 and see Methods for details on 
clustering).

We identified an integrated immunometabolic cluster solution of 
four subgroups (ranging from 39 to 91 individuals) with distinct im-
munometabolic interactions and clinical profiles (Fig. 4, A and B; 
fig. S5A; and table S7). We compared the integrated subgroups to 
the subgroups based on individual cytokine or metabolite profiles, 
which consisted of two and three subgroups, respectively (fig. S5, B 
and C, and tables S8 and S9). The integrated solution stratified the 
cohort into unique groups with a combination of individuals from 
the single-omic clustering solutions (Fig. 4C and fig. S5D), suggest-
ing that integrating the data identifies molecular patterns that are 

not captured in the single-omic profiles. Furthermore, there were 
more enriched co-occurring conditions across the clusters based on 
the integrated-omic data in comparison to the single-omic clusters 
(Fig. 4, A to C, and fig. S5, B and C and E and F). We refer to the 
integrated clusters as immunometabolic subgroups (IMSs) 1 to 4.

Immunometabolic subgroup 1 (IMS1) consists of 71 individuals. 
Compared to the rest of the individuals with T21, this group was 
enriched for people with a history of autoimmune skin conditions 
(Fig. 4B). Individuals in IMS1 have higher levels of fatty acids/eico-
sanoids. For example, hexadecanoic (palmitic) acid, a prevalent 
saturated fatty acid found in Western diets, was higher in this sub-
group (Fig. 4D). Hexadecanoic acid has been associated with adap-
tive immunity and is known to enhance toll-like receptor–dependent 
inflammation by inducing ceramide metabolism (47).

IMS2 consists of 91 individuals. This subgroup was underrepre-
sented for obese individuals and those with a history of frequent/
recurrent pneumonia (Fig. 4B). Amino acids were more highly 
abundant in this subgroup, while fatty acids/eicosanoids had lower 
abundances. The feature most significantly elevated in IMS2 was 
acetylcholine (Fig. 4E). Acetylcholine inhibits the release of inflam-
matory cytokines and inflammation via α7 nicotinic acetylcholine 
receptors on immune cells (48), suggesting that acetylcholine may 
reduce inflammatory effects within this subgroup.

IMS3 consists of 31 individuals. This subgroup was enriched for 
individuals with a history of hypothyroidism, depression, and obe-
sity (Fig. 4B). This subgroup also had fewer people with a history of 
autoimmune skin conditions. Individuals in this subgroup tend to 
have higher abundances of inflammatory cytokines (e.g., IFN-γ, 
SAA, and IL-29) (Fig. 4F) and tryptophan catabolites (e.g., kynuren-
ine and 5-hydroxyindoleacetate) (Fig. 4G). This cluster was also en-
riched for lower abundances of fatty acids/eicosanoids.

IMS4 consists of 43 individuals. This group was enriched for 
people with a history of frequent or recurrent pneumonia and had 
fewer individuals with a history of autoimmune skin conditions 
(Fig. 4B). The individuals in this group had significantly lower levels 
of amino acids. For example, alanine was significantly lower in IMS4 
compared to all other individuals with either T21 or D21 karyotypes 
(Fig. 4H).

To understand if there was a karyotype-specific immunometa-
bolic effect, we investigated the euploid controls using the same 
approach as with the trisomic individuals. Within the euploid 
individuals, we identified two D21 IMSs (fig. S6A). On the molecu-
lar level, we found similarities in cytokine and metabolite clusters 
between T21 and D21 individuals (fig. S6, B and C). However, there 
was also variability in molecular clusters, indicating that there are 
karyotype-specific immunometabolic patterns.

Overall, the clustering of the integrated cytokine and metabolo-
mic profiles revealed groupings in DS with enrichment and deple-
tion for combinations of co-occurring conditions. Furthermore, the 
consistent molecular interactions within the stratifications implicate 
shared mediation of immunometabolic relationships and identify 
putative mechanisms related to the associated conditions.

Immunometabolic subgroups reveal differential mediation 
of cytokine-metabolite relationships
Given the distinct immunometabolic patterns of the four IMSs, we 
investigated the transcriptional programs associated with these pat-
terns by applying our multi-omic mediation analysis within each 
subgroup (fig. S1). To create an IMS representation of pathway 
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mediation, we compared the number of immunometabolic relation-
ships with significant (FDR < 0.05) positive enrichments (NES > 0) 
across the hallmark gene sets. To identify shared and distinct pat-
terns of pathway mediation, we normalized the counts of enriched 
gene sets within each IMS to the counts of enriched gene sets across 
all individuals with T21.

Comparatively, IMS1 (elevated history of autoimmune skin con-
ditions) and IMS3 (elevated history of hypothyroidism, depression, 
and obesity) demonstrated increased immunometabolic mediation 
by the DNA repair gene set (Fig. 5A). In contrast, IMS4 (elevated 
history of frequent/recurrent pneumonia) showed increased media-
tion by genes involved in angiogenesis. IMS2, which included peo-
ple with a healthier clinical profile, had comparatively higher 
enrichments and immunometabolic mediation by Hedgehog signal-
ing. The rates of enriched immunometabolic mediation by IFN-γ, 
heme metabolism, and oxidative phosphorylation gene sets were 
similar across the four IMSs.

We next investigated the top three pathways that were most dif-
ferential across the IMSs, specifically DNA repair, Hedgehog sig-
naling, and angiogenesis (Fig. 5A). We compared the metabolite 
classes enriched for pathway mediation and found shared and dis-
tinct classes of immunometabolic mediation, even when the over-
all number of immunometabolic features was similarly enriched. 

For example, immunometabolic relationships involving amino 
acids were enriched for mediation by DNA repair genes in both 
IMS1 and IMS3; however, relationships with fatty acids/eico-
sanoids were distinctly mediated in IMS1, while relationships with 
indole and tryptophan metabolites were distinctly mediated in 
IMS3 (Fig. 5B).

To investigate this further, we identified immunometabolic rela-
tionships and the top gene-mediating relationship within these me-
tabolite clusters. For DNA repair genes in IMS1, POLR2J (RNA 
polymerase II subunit J) was the top mediator for several of the re-
lationships between VCAM-1 and eicosanoids (e.g., prostaglandin 
A3/B3 and leukotriene B4/PGA1/PGB1) (Fig. 5C). IMS2 revealed 
pathway mediation of immunometabolic relationships involving 
amino acids by Hedgehog signaling, with very-low-density lipopro-
tein (VLDLR) receptor as the top mediator for several of the immu-
nometabolic relationships involving amino acids (e.g., glycine) (Fig. 
5D). In IMS3, Inosine monophosphate dehydrogenase 2 (IMPDH2) 
was the top mediator for relationships between inflammatory cyto-
kines (e.g., CRP, SAA, and IL-17C) and tryptophan catabolites (kyn-
urenine and 5-hydroxyindoleacetate) (Fig. 5E). In IMS4, which was 
enriched for people with a history of frequent/recurrent pneumo-
nia, several of the immunometabolic relationships were mediated by 
platelet-derived growth factor subunit A (PDGFA) (Fig. 5F). The full 
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set of mediator results across all clusters is available at 10.5281/ze-
nodo.13370637.

To determine whether we captured different information in the 
mediation analysis compared to gene expression patterns across the 
IMSs, we performed differential expression analysis between each 
IMS and all other individuals with T21 (table S10) followed by gene 
set enrichment analysis. We then compared the gene set NES values 
based on differential expression to the IMS representation of gene 
set mediation (fig. S7, A to D). While some gene sets were enriched 
for both mediation and differential expression across all IMSs (e.g., 
IFN-γ response), several gene sets showed evidence of mediating 

immunometabolic relationships without induction or suppression. 
This implies that the gene sets enriched for mediation serve a func-
tional role in immunometabolic regulation.

Together, IMS-specific mediation analyses revealed two important 
observations. First, the mechanisms and pathways previously identi-
fied as important to the disease pathology in DS, specifically interfer-
on signaling, heme metabolism, and oxidative phosphorylation 
(26, 49–51) are ubiquitous and affect all IMSs equally. Second, there 
are patterns that indicate differential influence of pathways and pro-
cesses in mediating immunometabolic relationships in an IMS-
specific manner. Unraveling these interactions provides evidence of 
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putative molecular interactions that may drive the heterogenous 
manifestation of co-occurring conditions in DS.

DISCUSSION
The triplication of chromosome 21 in DS causes an up-regulation of 
the expression of genes present on chromosome 21 and results in a 
wide array and severity of co-occurring conditions. J. Lejeune, who 
found T21 as the aneuploidy causing DS based on the slides of 
M. Gautier, hypothesized that DS is a “metabolic disease” (52, 53). It 
is only recently through efforts such as the HTP that molecular 
features in DS have been systematically and comprehensively 
measured. These data support J. Lejeune’s hypothesis where 
transcriptomic and metabolomic profiles have revealed dysregula-
tion across metabolic pathways including insulin resistance, oxida-
tive phosphorylation, lipid metabolism, homocysteine/folate/
transulfuration pathways, heme metabolism, and many others 
(15, 26, 50, 54–56). As we have shown here, these data can further be 
used to identify putative molecular relationships using integrative 
computational methods.

Each blood plasma-omic profile used in this study provides a 
snapshot of the biological state of an individual. However, these mo-
lecular features provide complementary information, and we can 
gain different insights into potential mechanisms underlying DS 
and co-occurring conditions by studying the relationships between 
these molecular features. We showed that cytokine-metabolite rela-
tionships differ between euploid individuals (D21) and those with 
T21 (Fig. 1) and that gene expression data can be included to iden-
tify potential mediators of these relationships using a data-driven 
and systematic methodology (Fig. 2). We identified known relation-
ships and characterized how gene sets, including IFN-γ signaling, 
heme metabolism, and oxidative phosphorylation, may affect the 
cytokine-metabolite relationships in DS (Fig. 3). Furthermore, we 
used these data to define immunometabolic subgroups of individu-
als with DS. These subgroups showed differential abundance of dif-
ferent cytokines and metabolites, as well as differential enrichment 
for the history of co-occurring conditions (Fig. 4). Last, we used 
mediation analysis to identify potential mechanisms that could ex-
plain why co-occurring conditions are associated with specific im-
munometabolic subgroups (Fig. 5).

An example of a potential immunometabolic mechanism specific 
to IMS2 is revealed by the pathway enrichment of cytokine-metabolite 
relationships involving amino acids and Hedgehog signaling (Fig. 
5B). In IMS2, for which we observed comparatively lower levels of 
cytokines and increased abundances of amino acids (Fig. 4A), VLDLR 
was the top mediator for several of the immunometabolic relation-
ships involving amino acids. Nguyen et al. (57) showed that VLDLR 
deficiency attenuates the inflammatory interaction between adipo-
cytes and macrophages. As IL-3 regulates the proliferation of 
macrophages (58), and glycine is associated with decreased lipid 
accumulation in macrophages via attenuation of very-low-density li-
poprotein) uptake (59), the relative increase in mediation by VLDLR 
is a potential explanation of the comparatively healthy profile of indi-
viduals in IMS2. Furthermore, previous studies have observed re-
duced Hedgehog signaling in people with DS, and this reduced 
signaling was associated with abnormalities in tissue development 
including craniofacial skeleton, heart, and the enteric nervous system 
tissues (60, 61). In T21 neural progenitor cells, treatment with a Sonic 
Hedgehog (SHH) agonist increased concentration of SHH and 

normalized T21-driven changes in gene expression and neuronal cell 
differentiation (62). In relation to immune signaling, IFN-γ has been 
shown to attenuate Hedgehog signaling in white adipose cells (63), 
and deficiency in the Hedgehog signaling gene VLDLR reduces in-
flammatory interaction between adipocytes and macrophages (57). 
Together, the increased mediation of immunometabolic relationships 
by Hedgehog signaling, specifically through VLDLR, in the blood of 
comparatively healthy individuals presents an interesting hypothesis 
for the role of Hedgehog signaling across tissues of people with DS; 
reduced Hedgehog signaling is associated with dysregulated neuro-
genesis yet healthier adipogenesis and inflammatory signaling. Future 
studies are necessary to model and further elucidate this mechanism 
in people with DS.

An expansion and more clinically focused translation of this 
work is in the stratification of individuals into groups with similar 
clinical characteristics to be leveraged for improved clinical care and 
potential prediction of drug response. As we have shown, the IMSs 
provide unique and molecularly defined groupings of individuals 
that are enriched for specific conditions. These groupings could help 
clinicians with defining common mechanisms of disease dysregula-
tion. By incorporating the IMS-specific mediation analysis, we can 
reveal subgroups of people with T21 exhibiting more evidence of 
molecular regulation by specific genes and pathways (e.g., DNA re-
pair in IMS1 and IMS3; angiogenesis in IMS4). Cross-referencing 
the evidence of mediation with gene and pathway drug targets may 
predict drug efficacy. For example, tofacitinib, a JAK/STAT inhibi-
tor, is now in clinical trials for the treatment of autoimmune skin 
conditions and regression disorder in people with DS (NCT04246372 
and NCT05662228). Our analysis suggested that IFN-γ response 
immunometabolic mediation is similar across IMSs. However, we 
hypothesize that differences in other interacting pathways across 
IMSs may predict the systemic response to this treatment within 
those groups of people; this will require follow-up studies.

This study also has distinct limitations. The cross-sectional na-
ture of the data limits our ability to distinguish the molecular pat-
terns that we identify as being causal or the result of co-occurring 
conditions. Although the data are deep (generating multiple-omic 
data on each sample), observations from a single time point must be 
considered in this context and present specific hypotheses to focus 
prospective analysis. In the mediation analysis, we assumed that cy-
tokines induce transcriptional changes affecting metabolite levels. 
That is, we implied a directionality in the relationships based on bio-
logical knowledge, but the statistical model is undirected. Metabo-
lites could also impact gene expression and then cytokine levels. 
Therefore, as with all associative analyses, causality cannot be prov-
en without additional follow-up studies. We also note that our re-
sults should be interpreted in the context of the biospecimens and 
measurement approaches used, namely, blood samples and bulk-
omic profiling. Last, here, we evaluated 244 samples from T21 and 
46 samples for D21—any future multi-omic data analyses will ben-
efit from increased sample size, particularly considering occurrence 
rates for each co-occurring condition. Future data generation can 
focus on specific conditions longitudinally, which will strengthen 
both the overall analysis and the condition-specific analysis. Despite 
these limitations, this is the first study to integrate cytokine, metab-
olite, and gene expression datasets sampled from the same individu-
als in DS, and we identified relationships for future studies.

In conclusion, we carried out a comprehensive study aiming to 
elucidate the mechanisms underlying immunometabolic regulation 
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within subgroups of people with DS. Using this approach, we repro-
duced known mechanisms of regulation and prioritized hypotheses 
for future evaluation. We anticipate that this methodology and these 
results may aid DS researchers in elucidating the molecular causes 
of co-occurring conditions and prioritizing treatments with the 
highest likelihood of success.

METHODS
Study consent
The Crnic Institute’s HTP (www.trisome.org) enrolled participants 
under a study protocol approved by the Colorado Multiple Institu-
tional Review Board (COMIRB #15-2170). Written informed con-
sent was obtained from participants or their legally authorized 
representative; written consent was obtained from participants 
over 7 years old as allowed by cognitive ability. Study procedures 
were explained to all participants, regardless of age and/or cog-
nitive ability.

Clinical histories
Clinical histories were recorded for study participants through a 
combination of participant/caregiver surveys and annotation of 
medical records. In the case of discrepancies, medical records took 
precedence. Demographic data collected at visit time include age at 
visit, sex, and BMI. All co-occurring conditions were recorded as 
“history of,” regardless of the status of the condition. Of the 17 re-
corded co-occurring conditions, we removed four conditions from 
the analysis with less than 15 case counts in people with DS, includ-
ing history of autism spectrum disorder, cataracts, pulmonary hy-
pertension, and regression. The conditions used in this study include 
history of anxiety, any autoimmune skin condition, hypothyroid-
ism, hearing loss, sleep apnea, seizures, celiac disease, asthma or 
restrictive airway disease, frequent or recurrent pneumonia, obesity, 
and recurrent otits media.

Blood processing and molecular quantification
Waugh et al. (26) and Galbraith et al. (27) report detailed descrip-
tions of blood processing and molecular quantification for omic 
profiling performed by the HTP. Briefly, peripheral blood was col-
lected in Vacutainer K2 EDTA tubes (BD) and PAXgene RNA Tubes 
(QIAGEN). Plasma inflammatory markers (cytokines) were quanti-
fied using multiplex immunoassay platform V-PLEX Human Bio-
marker 54-Plex Kit (Meso Scale Diagnostics). Plasma metabolomic 
and lipidomic profiles were quantified using a Vanquish UHPLC 
coupled online to a Q Exactive high-resolution mass spectrometer 
(Thermo Fisher Scientific). Whole-blood paired-end RNA sequenc-
ing was performed using Illumina NovaSeq 6000 instrument (No-
vogene) on samples extracted from the PAXgene RNA tubes.

Data preprocessing
All data processing and analyses were performed in R (v4.2.1). This 
study included 290 individuals from the HTP cohort with matched 
immune, metabolite, and gene expression profiling, of which 244 in-
dividuals have DS. Before analysis, all the omic profiles were log2-
transformed. To correct for confounding variables in clustering 
analyses, we adjusted for age, sex, and sample source in a random ef-
fects model using the “adjust” function from the “datawizard” R pack-
age (v0.7.1) (64). Age and sex were fixed effects, while sample source 
was included as a random effect. Data were z score–transformed for 

comparison across feature classes. Transcriptomic features were fil-
tered to protein coding genes with a variance greater than 0 (12,624 
features). Cytokine and metabolite profiles consisted of 54 and 174 
features, respectively.

Molecular correlations
To evaluate the normality of cytokine and metabolite distributions, 
we performed Kolmogrov-Smirnov (KS) goodness of fit test (KS) 
and Shapiro-Wilk (SW) test for normality using the “ks.test” and 
“shapiro.test” functions, respectively, from the base “stats” package 
(v4.2.1) in R. For the 54 cytokines, we found that 23 (43%) and 43 
(80%) for the KS and SW tests fell below 0.05, which rejects the null 
hypothesis that the data are sampled from a normal distribution. 
Similarly, for the 174 metabolites, we found that 54 (31%) and 122 
(70%) for the KS and SW tests similarly fell below the 0.05 thresh-
old. These analyses indicate that not all samples are normally dis-
tributed, so we selected the nonparametric Spearman correlation 
coefficient to be used for all correlation calculations.

Spearman rank-based correlations were calculated within and 
across data types using the “corr.test” function from the “psych” R 
package (v2.3.6). When comparing correlations, test results were 
corrected for multiple comparisons using the Benjamini-Hochberg 
procedure (65). When comparing correlations across karyotypes 
(i.e., T21 against D21), we addressed class imbalances by iteratively 
(1000 iterations) subsampling the T21 population to 46 individuals 
(matching the sample size of the D21 population) and recalculating 
Spearman correlation coefficients.

Differential abundance analysis
Given the large number of samples per group (minimum of 31 in 
IMS3), the statistical test to evaluate differential abundance for the 
cytokine and metabolomic data was the Wilcoxon ranked sum test, 
which we calculated using the “wilcox.test” function from the base 
stats package (v4.2.1) in R. Test results were corrected for multiple 
comparisons using the Benjamini-Hochberg procedure (65).

Differential gene expression analysis
We calculated the differential gene expression between each IMS 
compared to all other IMSs (e.g., IMS1 versus IMS2 to IMS4). Dif-
ferential gene expression pipelines are well-established, and we used 
the “limma” package (v 3.52.4) with the RNA sequencing counts 
matrix as input and incorporated covariates into the model (i.e., age 
at visit, sex, and sample source) (66).

Metabolites class enrichment
We identified enriched metabolite classes within significantly cor-
related immunometablic relationships using an overrepresentation 
analysis testing the hypothesis that the proportion of significant me-
tabolites from a particular metabolite class is higher than expected. 
We used the “fisher.test” function from the base stats package 
(v4.2.1) in R with the alternative hypothesis parameter set to “great-
er.” Test results were corrected for multiple comparisons using the 
Benjamini-Hochberg procedure (65).

Gene mediation analysis
We calculated the direct Spearman correlations between all signifi-
cant (FDR < 0.1) combinations of cytokine abundance, metabolite 
abundance, and transcript counts (transformed and standardized as 
defined in the “Data pre-processing” section). We then calculated 

http://www.trisome.org
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partial correlations between cytokine and metabolite abundances 
with adjustment for each gene count using the “pcor” function in 
the “ppcor” package (v1.1) (67). Equation 1 defines the partial cor-
relation between cytokine (i) and metabolite ( j) given transcript (k)

We then calculated the percent change between the direct and 
partial correlation coefficients for each cytokine-metabolite rela-
tionship across all genes using Eq. 2

To extend this partial correlation analysis systematically, we lev-
eraged the context likelihood of relatedness (CLR) network infer-
ence method (68). The CLR approach aims to find relationships that 
are specific to the biological context tested. Therefore, to assess the 
specificity of the observed conditional change and prioritized po-
tential mediators, we calculated the z scores for the percent change 
for each cytokine-metabolite association across all genes (z1) and for 
the percent change for each gene across all cytokine-metabolite as-
sociations (z2). We then created a combined z score for downstream 
analysis using Stouffer’s method for combining z scores (69) as de-
fined in Eq. 3

Gene set enrichment analysis
We ranked gene expression transcripts based on differential media-
tion (either by karyotype or across clusters within people with DS) 
by the percent change in the mediation analysis. We then performed 
gene set enrichment analysis over the hallmark gene sets from the 
Molecular Signatures Database and using the“fgsea” package (ver-
sion 1.22.0) (44, 45, 70).

Immunometabolic stratification
To identify immunometabolic subgroups, single- and multi-omic 
clustering was performed using neighborhood-based multi-omics 
(NEMO) clustering (71). First, interpatient similarity matrices were 
calculated for each molecular profile. The similarity measure used is 
based on the radial basis function kernel and incorporates a nor-
malizing factor to control for the density of samples by averaging the 
squared distance between samples to their nearest neighbors and 
each other (71, 72). Next, the relative similarity matrix was calcu-
lated for each omic profile to account for the different distributions 
of features within each data type. For a single-omic profile, cluster-
ing was performed on the similarity matrix. For multi-omic profiles, 
the relative similarity matrices were combined into an average simi-
larity matrix. Last, spectral clustering was performed using a variant 
based on the eigenvectors of the normalized Laplacian (73).

Determining the number of clusters and 
hyperparameters of NEMO
The minimum cluster size was set to 5% of the sample size for adequate-
ly powered statistics between clusters. The number of clusters was deter-
mined by evaluating several metrics, including the eigengap heuristic 
(74), the modified eigengap heuristic used in NEMO [i.e., the eigengap 

solution multiplied by the number of clusters (71)], the number of en-
riched co-occurring conditions, and the number of significantly differ-
ential molecular features. Of the evaluation criteria, we gave the most 
weight to the number of enriched conditions based on the goal of iden-
tifying molecular subgroups with shared biology in those with similar 
profiles of co-occurring conditions.

The NEMO algorithm is affected by the number of neighbors’ 
hyperparameter. The authors suggest that when the number of clus-
ters is defined, then the number of neighbors should be equal to 
# of samples

# of clusters
. However, the NEMO algorithm was developed for omic 

profiles with substantially more features (i.e., gene expression, 
methylation, and microRNA expression) than the cytokine and me-
tabolite assays we tested. Therefore, we performed a grid search be-
tween 10 and 100 neighbors by increments of 5 to evaluate the 
number of enriched conditions per clustering solution.

We further validated the clusters using a bootstrapping approach 
(75), which randomly sampled the population with replacement, re-
clustered the random sample, and calculated the adjusted rand in-
dex (76) between the random clusters and the full cohort solution. 
The bootstrapping was performed for 1000 iterations, and the aver-
age adjusted rand index is reported.

Association testing with co-occurring conditions
One-sided Fisher’s exact tests were performed to test for indepen-
dence within each immunometabolic subgroup. For any continuous 
phenotypes tested, Wilcoxon rank-sum tests were performed com-
paring the within cluster to the mean of all other subjects. Results 
were adjusted for multiple comparisons using the Benjamini-
Hochberg procedure (65).

Supplementary Materials
The PDF file includes:
Figs. S1 to S7
Legends for tables S1 to S10

Other Supplementary Material for this manuscript includes the following:
Tables S1 to S10
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