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Abstract: Ozone (O3) is an unstable, highly oxidative gas that rapidly decomposes into oxygen. The
therapeutic use of O3 dates back to the beginning of 20th century and is currently based on the
application of low doses, inducing moderate oxidative stress that stimulates the antioxidant cellular
defences without causing cell damage. In recent decades, experimental investigations allowed the
establishment of some basic mechanisms accounting for the therapeutic effects of eustress-inducing
low-dose O3. In this review, special attention was given to the impact of O3 administration on the
cell oxidant–antioxidant status, O3 anti-inflammatory and analgesic properties, efficacy in improving
tissue regeneration, and potential anticancer action. Low O3 concentrations proved to drive the
cell antioxidant response mainly by activating nuclear factor erythroid 2-related factor 2. The anti-
inflammatory effect relies on the downregulation of pro-inflammatory factors and the modulation
of cytokine secretion. The painkilling action is related to anti-inflammatory processes, inhibition of
apoptosis and autophagy, and modulation of pain receptors. The regenerative potential depends on
antioxidant, anti-inflammatory, anti-apoptotic, and pro-proliferative capabilities, as well as fibroblast
activation. Finally, the anticancer potential is based on oxidant and anti-inflammatory properties, as
well as the inhibition of cell proliferation, invasion, and migration and the induction of apoptosis.

Keywords: ozone; oxidative stress; Nrf2; inflammation; cytokines; apoptosis; autophagy; pain; cancer;
tissue regeneration

1. Introduction

Ozone (O3) occurs in nature as a chemical compound made of three oxygen atoms.
It is highly unstable and decomposes into oxygen molecules with a half-life of 40 min at
20 ◦C. Its relative concentration in the atmosphere is very low (approximately 6.5 × 10−7

of the whole mass), with a mean concentration of 1 mg/m3. O3 is present in the entire
atmosphere, from the ground up to approximately 50 km, but is unevenly distributed as its
concentration increases with the distance from the Earth’s surface and reaches a maximum
at altitudes of 20 to 25 km. Here, a millimetre-thick O3 layer absorbs most of the sun’s
ultraviolet radiation, thus being responsible for the stratosphere’s thermal structure, while
exerting a crucial protective role for all living organisms on Earth [1].

O3 was first detected in 1785 by the Dutch physician, chemist, and plant physiologist,
Martinus van Marum, who noticed the typical smell acquired by air that had been passed
by an electric spark [2]; he attributed the smell to the electricity itself, so it became known as
“the odour of electricity” [3]. It was only in 1839 that the German–Swiss chemist Christian
Friedrich Schönbein discovered O3 as a distinct chemical substance and gave it its name
from the Greek word
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Christian Friedrich Schönbein discovered O3 as a distinct chemical substance and gave it 
its name from the Greek word ὄζειν (ozein, meaning “to smell”) [4]. Schönbein demon-
strated that O3 is a powerful oxidizing agent that reacts with inorganic [5] and organic 
compounds [6]. After it was demonstrated that O3 is an allotropic form of oxygen [7,8], 
the correct molecular formula for O3 was finally due to Andrews and Tait [9]. 

2. A Brief History of Medical Ozone 
Contrary to its beneficial effects when in the stratosphere, O3 exerts a quite opposite 

role in the troposphere because of its highly oxidative power, which may be harmful to 
health, particularly breath. This was already reported by Schönbein [10], who observed 
that O3 at high concentrations affected breathing and caused chest pains and irritation of 
the mucous membranes in both humans and animals (mice and rabbits). 

In 1857, von Siemens constructed the first technical unit for O3 production [11]. Since 
then, the use of such devices allowed better comprehension of the effects of O3 on living 
organisms. Fox [12] discovered that O3 is able to eliminate microorganisms, and this dis-
infectant action was later confirmed by Kellogg [13]. 

In 1896, Nikola Tesla was issued a patent for an O3 generator (US Patent 568,177; 22 
September 1896); after the Tesla Ozone Company had been established in 1900, O3 gener-
ators were made available to medical doctors for practical use, and the company also pro-
duced and sold a medical gel made of ozonated olive oil. 

The way was paved for the therapeutic application of O3, and the efficacy of O3 in 
treating different pathological conditions (e.g., severely infected wounds, periodontitis, 
proctitis, and chronic colitis) was practically established thanks to the pioneering works 
by physicians such as E. Payr, E. Fish, P. Aubourg, and H. Wolff. In 1929, Thauerkauf and 
Luth [14] opened an institute for oxygen therapy in Berlin, which was the first in the 
world. However, for therapeutic use of O3 to become increasingly popular and more 
widely applied as an adjunctive medical treatment [15–21], it was necessary to wait until 
the 1950s (with the advent of O3-resistant plastics) and the 1990s (when O3 generators able 
to precisely measure gas concentrations in real time were made commercially available). 

Nowadays, medical O3 is commonly applied as a gaseous O2-O3 mixture, as ozonated 
oil or ozonated water, and may be administered both systemically (via bloodstream, rectal 
insufflation, or orally) and locally (via injection or topical application). Regardless of the 
formulation and the administration route, modern therapeutic applications of O3 are 
based on the low-dose concept according to Viebahn-Hänsler et al. [22,23]. In fact, exper-
imental findings (detailed in the following sections) demonstrated that beneficial effects 
occur only within a range of low O3 concentrations (generally from 10 to 50 µg O3/mL O2); 
under these conditions, moderate oxidative stress is induced, which stimulates antioxi-
dant and anti-inflammatory responses without causing cell damage [24]. This is consistent 
with the evidence that oxidative stress is not only responsible for deleterious effects (so-
called distress) but may also act as a favourable messenger activating defensive pathways. 
This latter condition is defined as eustress [25,26], which occurs when stressors induce an 
adaptive, protective response through the alteration or modulation of gene expression. In 
fact, low levels of oxidative stress were found to enhance the defence capability of cells 
and tissues by increasing the expression of antioxidant compounds [27,28]. The concept 
of eustress has also been applied to medical low-dose O3 and is recognised as a master 
mechanism of action at the root of cascades of biological events leading to therapeutic 
effects [29,30]. 

3. Methods and Scope of the Present Review 
Information on studies investigating the molecular pathways accounting for the ben-

eficial effects of medical O3 administration was obtained from the PubMed database. Only 
articles in English dealing with medical O3 (i.e., used for therapeutic purposes) were se-
lected. No studies using high O3 concentrations were considered; instead, only low doses 
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After it was demonstrated that O3 is an allotropic form of oxygen [7,8], the correct molecular
formula for O3 was finally due to Andrews and Tait [9].

2. A Brief History of Medical Ozone

Contrary to its beneficial effects when in the stratosphere, O3 exerts a quite opposite
role in the troposphere because of its highly oxidative power, which may be harmful to
health, particularly breath. This was already reported by Schönbein [10], who observed
that O3 at high concentrations affected breathing and caused chest pains and irritation of
the mucous membranes in both humans and animals (mice and rabbits).

In 1857, von Siemens constructed the first technical unit for O3 production [11]. Since
then, the use of such devices allowed better comprehension of the effects of O3 on living
organisms. Fox [12] discovered that O3 is able to eliminate microorganisms, and this
disinfectant action was later confirmed by Kellogg [13].

In 1896, Nikola Tesla was issued a patent for an O3 generator (US Patent 568,177;
22 September 1896); after the Tesla Ozone Company had been established in 1900, O3
generators were made available to medical doctors for practical use, and the company also
produced and sold a medical gel made of ozonated olive oil.

The way was paved for the therapeutic application of O3, and the efficacy of O3 in
treating different pathological conditions (e.g., severely infected wounds, periodontitis,
proctitis, and chronic colitis) was practically established thanks to the pioneering works
by physicians such as E. Payr, E. Fish, P. Aubourg, and H. Wolff. In 1929, Thauerkauf
and Luth [14] opened an institute for oxygen therapy in Berlin, which was the first in
the world. However, for therapeutic use of O3 to become increasingly popular and more
widely applied as an adjunctive medical treatment [15–21], it was necessary to wait until
the 1950s (with the advent of O3-resistant plastics) and the 1990s (when O3 generators able
to precisely measure gas concentrations in real time were made commercially available).

Nowadays, medical O3 is commonly applied as a gaseous O2-O3 mixture, as ozonated
oil or ozonated water, and may be administered both systemically (via bloodstream, rectal
insufflation, or orally) and locally (via injection or topical application). Regardless of the
formulation and the administration route, modern therapeutic applications of O3 are based
on the low-dose concept according to Viebahn-Hänsler et al. [22,23]. In fact, experimental
findings (detailed in the following sections) demonstrated that beneficial effects occur only
within a range of low O3 concentrations (generally from 10 to 50 µg O3/mL O2); under
these conditions, moderate oxidative stress is induced, which stimulates antioxidant and
anti-inflammatory responses without causing cell damage [24]. This is consistent with
the evidence that oxidative stress is not only responsible for deleterious effects (so-called
distress) but may also act as a favourable messenger activating defensive pathways. This
latter condition is defined as eustress [25,26], which occurs when stressors induce an
adaptive, protective response through the alteration or modulation of gene expression. In
fact, low levels of oxidative stress were found to enhance the defence capability of cells
and tissues by increasing the expression of antioxidant compounds [27,28]. The concept
of eustress has also been applied to medical low-dose O3 and is recognised as a master
mechanism of action at the root of cascades of biological events leading to therapeutic
effects [29,30].

3. Methods and Scope of the Present Review

Information on studies investigating the molecular pathways accounting for the
beneficial effects of medical O3 administration was obtained from the PubMed database.
Only articles in English dealing with medical O3 (i.e., used for therapeutic purposes) were
selected. No studies using high O3 concentrations were considered; instead, only low
doses were considered because the point of the present review is to illustrate the eustress-
driven biological effects of O3. Moreover, no clinical studies were considered, and only
experimental investigations performed in in vitro, ex vivo (animals and humans), and
in vivo (animals) systems were selected. In fact, while clinical observational studies are
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irreplaceable for assessing the therapeutic efficacy of O3, only experimental studies allow
understanding and mechanistic explanations of the cellular and molecular processes due
to the use of strictly controlled test conditions and refined analytical techniques, which
can hardly be applied to patients. For Sections 4–8, only research articles were considered;
articles describing molecular mechanisms are reported in detail, while articles reporting
observational results are cited in a limited number. For Sections 1, 2, and 9, review articles
and book chapters were also used.

The aim of the present review is to provide an overview of the current knowledge
on the cellular and molecular mechanisms responsible for the effects of low O3 doses on
some physiological or pathological conditions that have extensively been investigated
over the last three decades; namely, the impact of O3 administration on cell oxidant–
antioxidant status, anti-inflammatory and analgesic properties, efficacy in improving tissue
regeneration, and potential anticancer action.

4. Ozone and Oxidative Stress

Key information on the molecular mechanisms responsible for the impact of low
O3 concentrations on oxidant–antioxidant status was obtained from in vitro studies on
human blood.

Bocci et al. [31–33] demonstrated that O3 administered ex vivo to whole human blood
generated reactive oxygen species (ROS), with hydrogen peroxide (H2O2), lipid oxidation
products, and oxidised thiol groups being mostly present in albumin. Moreover, O3 reduced
glutathione (GSH) while concomitantly increasing its oxidised form (GSSG) in erythrocytes.
All these modifications were transient, and normal values were restored in a short time
(from 1 to 20 min), demonstrating that blood contains antioxidant factors that effectively
quench the formation of ROS and can regenerate oxidised antioxidants. These events
were observed in the concentration range of 10 to 80 µg O3/mL O2; lower concentrations
were ineffective because of the instant O3 quenching by blood antioxidants, while higher
concentrations were harmful because they overwhelm the blood antioxidant capacity. The
authors concluded that, at appropriate doses, O3 may induce safe oxidative reactions
generating several messengers (including H2O2 and 4-hydroxynonenal (4-HNE)), which
can exert important biological activities without damaging blood components.

Subsequently, a metabolomic study on human blood treated ex vivo with O3 revealed
an increase in formate, allantoine, acetoacetate, and acetate and a decrease in pyruvate.
These modifications were correlated to the direct oxidant activity of O3 on plasma compo-
nents such as pyruvate, carbohydrates, and uric acid [34]. A further metabolomic study on
ex vivo-treated human blood demonstrated that O3 induced changes in plasma antioxidants
(bilirubin, biliverdin, pyroglutamic acid, and dihydroxyvitamin D3), an increase in lactic
and pyruvic acid (indicating an increased rate of glycolysis), and a rise in lipid oxidation
products, lysophospholipids, and oxidised forms of phosphatidylcholines (as markers of
oxidative stress) [35]. Recently, metabolomic analyses added further information on the
molecular effects induced ex vivo by O3 in blood by revealing changes in metabolites of
amino acids (e.g., N-acetyl-L-alanine, 5-hydroxytryptophan, L-glutamic acid, maleic acid),
carbohydrates (e.g., D-glucose, glutaric acid, malic acid, aceturic acid), lipids (e.g., behenic
and stearic acid, pimelic acid, oleic and linoleic acid, erythrono-1,4-lactone, arachidic acid,
valeric acid), and nucleotides (e.g., niacinamide, glyceric acid, uridine), which are mostly
involved in antioxidant and anti-inflammatory pathways, as well as energy production [36].

In vitro studies using cell lines allowed deepening of the knowledge of the antioxidant
response induced by O3 treatment. By using a human T lymphoma cell line, it was
demonstrated that O3 induces a dose-dependent increase in the activity of superoxide
dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase, while glucose-
6-phosphate dehydrogenase (G6PDH) showed a peak following exposure to a concentration
of 12 µg O3/mL O2 [37]. By treating in vitro human vascular endothelial cells with ozonated
human plasma, Bocci et al. [38] reported upregulation of haeme oxygenase-1 (HO-1, also
known as HMOX1, which plays a key role in antioxidant defence) and Heat Shock Protein 70
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(Hsp-70, which is involved in cell protection from various stresses), which was accompanied
by a rise in nitric oxide (NO, known to modulate HO-1 activity). Accordingly, pathway
analysis of all the genes modulated by different O3 concentrations showed that in human
SH-SY5Y neuronal cells, the only common pathway was the signalling associated with
HO-1, which indicates that this enzyme plays a primary role in the cellular response to O3
treatment [39].

Extensive demonstrations of the O3-driven antioxidant response were also obtained
in vivo. León et al. [40] demonstrated that O3 rectal insufflation prevented rats from the free-
radical-mediated hepatic injury induced by carbon tetrachloride poisoning by maintaining
several biochemical parameters at control levels, i.e., transaminase, cholinesterase, SOD,
catalase (CAT), phospholipase A, calcium-dependent adenosine triphosphatase (ATPase),
GSH, and G6PDH, and lipid peroxidation. In the following decades, many experimental
studies confirmed and extended the notion that O3 administration is able to protect several
organs from the damage caused by various oxidizing agents or in experimentally induced
pathological conditions; such a protection depends on the enhanced activity of antioxidant
enzymes not only in the liver (e.g., [41–44]) but also in the kidney (e.g., [45–48]), heart
(e.g., [49]), urinary bladder (e.g., [50]), testis (e.g., [51–53]), intestine (e.g., [43,54,55]), stom-
ach (e.g., [56]), oesophagus (e.g., [57]), pancreas (e.g., [58,59]), lung (e.g., [42,60]), nervous
tissue (e.g., [61]), and skin (e.g., [62]).

Similarly, pre- and post-treatment with O3 proved to enhance the antioxidant en-
zyme activity in several organs undergoing ischaemia–reperfusion, thus limiting oxidative
stress injury in the liver (e.g., [63–65]), kidney (e.g., [66,67]), intestine (e.g., [68,69]), heart
(e.g., [65,70]), muscle (e.g., [71]), bone (e.g., [72]), nervous tissue (e.g., [73,74]), cochlea
(e.g., [75]), retina (e.g., [76]), ovary (e.g., [77,78]), and testis (e.g., [79]).

Ageing is characterised by chronic oxidative stress, and O3 was found to alleviate the
age-associated imbalance of the redox state in various experimental models. O3 admin-
istration for twelve months to rats proved to ameliorate some age-related alterations in
the cerebral cortex. In detail, after O3 treatment, the GSH content, the adenosine triphos-
phate (ATP):adenosine diphosphate (ADP) ratio, and mitochondrial SOD and complex
IV (cytochrome-c oxidase) activities were normalised, the glutathione redox index and
the activities of mitochondrial complex I (nicotinamide adenine dinucleotide-ubiquinone
oxidoreductase) and NO synthase (mtNOS) were improved, and the increases in the levels
of malondialdehyde (MDA, an end product of membrane lipid peroxidation) and mito-
chondrial protein carbonyl (PCO) were limited [80]. Long-term pre-ageing administration
of O3 to rats also proved to counteract age-related oxidative stress in the liver and kidneys
by reducing MDA and PCO levels, restoring normal levels of GSH and GPx, and decreasing
lipofuscin deposition. Similar, though less pronounced, effects were obtained by treating
aged rats with O3 for one month [81]. In the heart and hippocampus of aged rats treated
for twelve months with O3, decreases were observed in MDA, PCO, and GSH levels, while
GPx activity was normalised; in addition, O3 reversed age-associated decreases in ATP
and the ATP:ADP ratio in both tissues, restored the attenuated Na+, K+-ATPase activity
in the hippocampus, and the decreased cytosolic Ca2+ levels in the heart [82]. In aged
rats, two-month-long O3 treatment was able to reduce oxidative stress and apoptosis, as
demonstrated by downregulation of inducible NOS (iNOS) and caspase-3 (a pro-apoptotic
factor), respectively. In parallel, O3-treated old rats showed increased levels of Mab2 (a
marker of neurogenesis) according to an increased number of Purkinje cells and decreased
levels of the astrocyte marker, glial fibrillary acidic protein [83].

In vitro and in vivo studies demonstrated the key role of the nuclear factor erythroid
2-related factor 2 (Nrf2) in the antioxidant response generated by low O3 concentrations.
By treating a human endothelial cell line with ozonated human serum, Pecorelli et al. [84]
observed increases in the levels of Nrf2 protein and Kelch-like ECH associated protein
1 (Keap1) in the nucleus and concomitant decreases in their contents in the cytoplasm.
Importantly, these effects were only detected at concentrations ranging from 20 to 80 µg
O3/mL O2, whereas no effect was observed at higher O3 doses. When the cells were
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treated with 4-HNE or H2O2 (i.e., with molecules that are generated by the reaction of
O3 with serum components), nuclear translocation of Nrf2 took place, as it occurs after
exposure to ozonated serum, which suggests that these messenger molecules are the main
responsible entities for Nrf2 activation. Moreover, ozonated serum also induced increases
in the protein levels of HO-1 and nicotinamide adenine dinucleotide phosphate quinone
oxidoreductase 1 independent from extracellular signal-regulated kinase (ERK) 1/2 and
p38 (both belonging to the mitogen-activated protein kinase (MAPK) family). Accord-
ingly, activation of Nrf2 pathway and promotion of antioxidant enzymatic systems was
observed in healthy humans submitted to systemic administration of low-dose gaseous
O3 [85]. A mechanistic demonstration for these events was provided by Galiè al. [86];
by applying transfection methods to an in vitro cell model, low O3 concentrations were
found to promote the nuclear translocation of Nrf2 to active transcription sites, massively
inducing the expression of antioxidant response element (ARE)-driven genes, which en-
code detoxification enzymes and cytoprotective proteins, including HO-1. Moreover, the
expression of the Nrf2-specific inhibitor Keap1 was found to revert O3-induced ARE acti-
vation, thus unequivocally demonstrating the role of the Nrf2 pathway in the O3-driven
antioxidant response.

In a rat model of streptozotocin-induced pancreatic damage, systemic O3 treatment
improved pancreas functionality by increasing Nrf2 and glutathione-s-transferase and re-
ducing the levels of 4-HNE and poly(ADP-ribose) polymerase-1 (PARP-1, which is involved
in chromatin remodelling and apoptosis), thus demonstrating that both the antioxidant
and anti-apoptotic processes were efficiently activated [87]. Ding et al. [88] established an
in vivo mouse model of ischaemia–reperfusion injury and an in vitro cardiomyocyte model
of hypoxia-reoxygenation injury to investigate the mechanism accounting for the protective
action of O3 on the myocardium. They demonstrated that O3 not only promoted nuclear
translocation of Nrf2 but also inhibited ferroptosis (a form of oxidative cell death) and
induced the expression of the antioxidant factors solute carrier family 7 member 11 (Slc7a11)
and GPx4. Since Nrf2 gene silencing reversed the protective effects of O3, it was evident
that Nrf2 activation was the main responsible event for such a response. By using a rat
model of kidney transplantation, Qiu et al. [89] found that the expression of Nrf2 and HO-1
increased in O3-treated animals, suggesting that the mechanism by which O3 alleviates ox-
idative stress injury in renal transplantation may be related to activation of the Nrf2/HO-1
signalling pathways and inhibition of apoptosis in tubular epithelial cells. In a rat model of
chronic kidney disease, O3 attenuated tubulointerstitial injury, restored Nrf2 activation, and
inhibited the pathway of the nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB, which plays a key role in the cell response to harmful stimuli and in regulation
of the immune response) [90]; O3-driven modulation of Nrf2 and NF-κB also resulted
in upregulation of antioxidation enzymes (SOD, CAT, and GSH) and downregulation of
oxidation products (MDA and PCO) and inflammatory cytokines (interleukin (IL)-1β, IL-6,
tumour necrosis factor (TNF)-α, and intercellular adhesion molecule-1). In a rat model
of lung ischaemia–reperfusion injury, O3 was found to drastically reduce oxidative stress,
inflammation, and apoptosis [91]. The molecular mechanisms underlying this protective
effect included increased expression of Nrf2 and decreased levels of NOD-like receptor
family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein con-
taining a caspase activation and recruitment domain (ASC), procaspase-1, caspase-1, and
IL-1β. Finally, using a rat model of cerebral ischaemia–reperfusion injury, Zhu et al. [92]
demonstrated that O3 can limit neuronal damage by reducing ferroptosis through the
Nrf2/SLC7A11/GPx4 pathway, particularly by increasing the nuclear translocation of Nrf2
and the expression of SLC7A11 and GPx4.

Studies on different experimental models submitted to oxidative stress have demon-
strated that O3 treatment alleviates oxidative damage not only by increasing the activity of
antioxidant enzymes through Nrf2 but also through other molecular pathways.

In a rat model of experimentally induced seizures, O3 treatment was found to mitigate
seizure severity and improve survival; besides increasing lipid peroxidation and reduc-
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ing SOD activity, O3 increased adenosine availability to activate A1 adenosine receptors,
which is known to have antiepileptic and neuroprotective functions [93]. Consistently, in a
rat model of liver ischaemia–reperfusion, O3 was found to limit increases in NO, NF-κB,
TNF-α, and Hsp-70 in hepatic tissue while activating A1 adenosine receptors [94]. This
suggested that O3 may protect the liver from oxidative injury through activation of A1
adenosine receptors, promoting cellular signalling for preservation of the cellular redox
balance. In kidneys undergoing ischaemia–reperfusion, O3 proved to increase NO and
NOS expression and to inhibit the depletion of SOD, GSH, and GPx in renal tissue [95,96],
suggesting that the antioxidant protective effect of O3 is closely related to NO production
following increases in its endothelial NOS and iNOS expression. On the other hand, in a rat
model of skeletal muscle ischaemia–reperfusion, administration of O3 decreased the muscle
contents of NO, iNOS, MDA, and IL-1β, while the levels of SOD and GPx increased, thus
indicating that O3 may counteract both oxidative and nitrosative stress [97]. An in vivo
and in vitro study of kidney ischaemia–reperfusion demonstrated that O3 can also inhibit
the activation of MAPK, resulting in protection against apoptosis and oxidative stress [98].
Moreover, O3 was found to attenuate kidney tubulointerstitial fibrosis by downregulating
α-smooth muscle actin (α-SMA, which is involved in myofibroblastic differentiation), trans-
forming growth factor β1 (TGF-β1, which is involved in cell proliferation, differentiation,
and apoptosis), and phospho-small mother against decapentaplegic (SMAD) 2 protein (a
main signal transducer for receptors of the TGF-β superfamily) [99]. O3-induced inhibition
of autophagy was observed in a rat model of cerebral ischaemia, where O3 administration
decreased the expression of Beclin-1 (involved in the regulation of autophagy and cell death)
and microtubule-associated protein 1A/1B-light chain 3 (LC3) (involved in autophagy) and
increased the expression of p62 (known to decrease when autophagy is induced) [100]. This
is consistent with observations in an in vitro model of the myocardium undergoing oxygen-
glucose deprivation/reperfusion: here, O3 pre-treatment prevented decreases in the ratio
of B-cell lymphoma 2 (Bcl-2)/Bcl2-associated X protein (Bax) and cleaved caspase-3 (which
plays key roles in apoptosis regulation and execution) while reducing the LC3-II/LC3-I
ratio and the levels of Beclin-1 and autophagy protein 5 (Atg5, which is essential for au-
tophagic vesicle formation) [101]. These findings suggested that O3 is able to counteract the
oxidative stress induced by oxygen–glucose deprivation/reperfusion through inhibition of
the autophagy pathway. Finally, in an ex vivo rabbit model of heart ischaemia–reperfusion,
O3 significantly increased the expression of IL-10 and hypoxia inducible factor-1α (HIF-1α,
a transcription factor that regulates the cell response to hypoxia), decreased the expression
of IL-6, and reduced the concentrations of creatine kinase-MB and troponin T (which are
markers of myocardium damage) [102]. After treatment with a specific inhibitor of HIF-1α,
the protective action of O3 was reversed completely, so the authors hypothesised that the
observed effects of O3 rely on the upregulation of HIF-1α, which is vital for attenuating
mitochondrial damage, maintaining normal mitochondrial respiratory energy metabolism,
and reducing the generation of mitochondrial ROS.

Since mitochondria play a central role in ROS generation and in the maintenance of
the cell oxidant/antioxidant balance, some experimental studies focussed on the effects
of O3 on mitochondrial function. In a rat model of endotoxaemic shock characterised by
hypoxia, O3 treatment partially restored the decreased mitochondrial function in the liver
and heart by increasing the activity of the respiratory enzymes succinate dehydrogenase
and ATPase and by decreasing lactate dehydrogenase (LDH) [103]. In a rat model of
noise-induced hearing loss, Nasezadeh et al. [104] investigated the protective effect of
O3 on mitochondria from the brain and cochlea. O3 treatment prevented the decrease in
GSH and the increase in GSSG induced by noise, enhanced the activity of CAT, SOD, and
GPx, and decreased the MDA level. In isolated mitochondria from O3-treated animals,
ROS production and cytochrome c release decreased, membrane potential and ATP levels
increased, and mitochondrial swelling induced by noise was reverted. In an in vitro
study [105], treatment of mouse myoblasts with different concentrations of O3 did not
alter mitochondrial structure and reduced ROS production at the lowest dose, whereas a
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higher dose induced mitochondrial swelling and increased ROS production; in addition,
O3 proved to modulate the association of Nrf2 with the outer mitochondrial membrane.
Oliveira et al. [106] investigated the response of hepatic mitochondria to O3 treatment in
mice: under the tested experimental conditions, O3 reduced mitochondrial respiration
by inhibiting the activity of electron transport chain complexes I and II/III. In addition,
the activity of SOD and GPx increased, while the GSH content decreased. Since ATP
levels remained unchanged, the authors hypothesised that such mitochondrial inhibition
prevented mitochondrial ROS production without affecting the energy charge.

A schematic presentation of the mechanisms reported in this section is given
in Figure 1.
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5. Ozone and Inflammation

As reported in the previous section, O3 is able to exert anti-inflammatory effects.
Therefore, many studies have been performed to investigate changes in cytokines, ILs, and
other factors involved in inflammation following treatment with low O3 concentrations (as
gas or ozonated water/oil).

The first observations were made on blood. After treatment with O3 ex vivo, hu-
man whole blood showed increases in IL-1β, IL-2, IL-6, granulocyte-macrophage colony-
stimulating factor, interferon (IFN)-β, IFN-γ, TNF-α [31,107], TGF-β1 [108], and IL-8 [109].
Human leukocytes treated with O3 released IFN-γ [110] and TNF-α [111] and inhibited the
release of IL-4, IL-6, and IL-10 [112]. After O3 treatment, human platelets were found to
release platelet-derived growth factor (PDGF), TGF-β1, and IL-8 [113]. In addition, treat-
ment with O3 of human platelet-rich plasma (PRP) proved to increase the platelet release
of IL-2, IFN-α, epidermal growth factor, fibroblast growth factor 2 (FGF-2, a mitogenic
factor involved in cell growth, morphogenesis, and tissue repair secreted by inflammatory
cells, endothelial cells, and myofibroblasts), and vascular endothelial growth factor (VEGF,
which plays a key role in vasculogenesis and angiogenesis) [114]. Blood ozonation also
induced a transient increase in TNF-α in rabbits in vivo [115]. By treating in vitro-cultured
human endothelial cells with ozonated human serum, the release of IL-8 was stimulated,
while E-selectin (a protein expressed by inflamed endothelial cells) was inhibited [116].

Besides blood cells, O3 demonstrated anti-inflammatory effects in vitro on a human
colon cancer cell line by inducing the expression of TNF-α, matrix metalloproteinase (MMP)-
2, and MMP-9 (both of which are involved in the breakdown of extracellular matrix and
activation/cleavage of cytokines such as TGF-β and IL-1β) while reducing the production
of IL-1β, IL-6, and IL-8 [117].

O3 also proved to significantly reduce pro-inflammatory cytokines (e.g., IL-1β, IL-2,
IL-6, IL-12, IFN-γ, TNF-α) and increase anti-inflammatory ILs (e.g., IL-10) in vivo when
administered to animal models of pathological conditions or ischaemia–reperfusion, as
reported in the liver (e.g., [118,119]), kidney (e.g., [120–122]), joints (e.g., [123,124]), lung
(e.g., [125]), intestine (e.g., [126]), uterus (e.g., [127,128]), mammary glands (e.g., [129]), eye
(e.g., [130,131]), skin (e.g., [132]), and brain (e.g., [133]).

Some in vitro and in vivo studies therefore focused on the mechanisms and molecular
pathways involved in the anti-inflammatory effect of O3. In a rat model of adenine-induced
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chronic kidney disease, O3 was found to limit inflammation injury in the tubulointerstitium.
O3 suppressed the expression of toll-like receptor 4 (TLR4) and phosphorylated NF-κB p65
(p-NF-κB p65), which both stimulate inflammation cascades when excessively activated.
In addition, TLR4 levels positively correlated with monocyte chemoattractant protein-1,
TNF-α, IL-1β, and IL-6, which were found to decrease after O3 treatment. These findings
suggested that O3 alleviates tubulointerstitial inflammation injury through modulation
of TLR4 [134]. Similarly, in a rat model of cerebral ischaemia, O3 inactivated the NF-κB
signalling pathway by decreasing the protein levels of TLR4, phosphorylated inhibitor of
NF-κB kinase subunits α and β (p-IKBα and p-IKKβ), and phosphorylated p65 (p-p65),
thus reducing inflammation [100]. O3 was also found to suppress activation of TLR4/NF-κB
signalling in a rat heart myoblast line treated with doxorubicin, thus leading to reductions
in IL-1β, IL-6, TNF-α, MMP-2, and MMP-9 expression [135].

O3 induced an anti-inflammatory response in a human melanoma cell line by reducing
activation of p65/NF-κB, which is involved in the inflammatory signalling pathway and
is responsible for the genesis of many pro-inflammatory ILs. Consequently, there was a
decrease in the production of IL-1, IL-6, IL-8, IL-9, IL-17, IL-19, TNF-α, TGF-β, VEGF, MMP-
2, and MMP-9 [136]. Accordingly, O3 mitigated the cytotoxic and pro-inflammatory effects
of doxorubicin on cultured human skin fibroblast cells and human foetal cardiomyocytes
by reducing the expression of the pro-inflammatory factors p65/NF-κB and leukotriene
B4. Moreover, O3 enhanced Nrf2 expression; as a result, the production of IL-1, IL-8, IL-6,
TNF-α, MMP-2, and MMP-9 induced by doxorubicin was markedly reduced [137]. A
reduction in the expression of p65/NF-κB following O3 treatment has also been reported in
the kidney of a rat model of renal transplantation, which was accompanied by a decrease in
high-mobility group box-1 (HMGB1) protein, a chromatin-associated regulator of nuclear
transcription involved in inflammatory events. Accordingly, the serum levels of IL-6, IL-
18, and cyclooxygenase (COX)-2 (responsible for the production of immune-suppressive
prostaglandins) were lowered in transplanted rats treated with O3 [67]. Reduced levels of
NF-κB p65 were found in a rat endotoxic shock model treated with O3, where morphological
signs of decreased inflammation were observed in hepatic tissue [138]. NF-κB modulation
in the O3-driven anti-inflammatory action has been reported in an in vitro model of human
lung alveolar cell injury induced by H2O2 oxidative stress [139]. O3 was in fact found to
suppress the expression of NF-κB, TNF-α and Bax genes, thus reducing inflammation and
cell death. In addition, O3 significantly increased mRNA levels of SOD, CAT, and GPx,
thus improving cell antioxidant defence.

Besides suppression of NF-κB, Nrf2 stimulation was also found to play a role in the
anti-inflammatory action of O3.

In lipopolysaccharide (LPS)-stimulated human colonic epithelial and monocytic cell
lines, ozonated oil increased the expression of Nrf2 and reduced various pro-inflammatory
factors, including IL-1β, TNF-α, NOS2, and MMP-2 [140]. In vitro studies on human
fibroblast [141] and microglia [142] cell lines revealed that O3 differentially modulates
the release of IL-6, TNF-α, and TGF-β1 in LPS-activated and non-activated cells. This
effect was in turn related to the differential O3-driven activation of Nrf2 in activated and
non-activated cells. In rats experiencing lung ischaemia–reperfusion, O3 increased the
expression of Nrf2 and decreased the levels of the NLRP3 inflammasome, thus reducing
oxidative stress and inflammation. These processes were accompanied by anti-apoptotic
effects based on reductions in ASC, procaspase-1, caspase-1, and IL-1β [91].

Yu et al. [143] further investigated the role of the NLRP3 inflammasome in the reno-
protective effect of O3 in chronic kidney disease. Using nephrectomised rats, the authors
observed that IL-1β levels positively correlated with decreased expression of NLRP3
following O3 treatment. It was therefore hypothesised that O3 exerts anti-inflammatory
activity through modulation of the NLRP3 inflammasome. Similarly, Wang et al. [144]
investigated the effects of ozonated triglyceride (a component of ozonated oil) in a mouse
model of sepsis and in vitro using primary peritoneal macrophages and a human acute
monocytic-leukaemia cell line. They demonstrated that ozonated triglyceride suppressed
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activation of NLRP3 inflammasome, which explained the observed inhibition of caspase-1
cleavage and the reduced release of the inflammasome-related cytokines IL-1β and IL-18.

Other inflammation-related signalling pathways have been found to be modulated
by O3.

Yan et al. [145] investigated the anti-inflammatory potential of O3 on sepsis-induced
acute lung injury using a mouse in vivo model and primary cultures of mouse bone marrow
cells. They found that O3 treatment induced significant decreases in the levels of IL-1β,
MMP-9, and tissue factor (TF, which is involved in pro-inflammatory and pro-angiogenic
pathways) in lung tissue and promoted the phagocytic function of macrophages by up-
regulating the expression of the Class A1 scavenger receptor (SR-A1) gene through 5′

adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. SR-A1 is
a pattern recognition receptor that functions in synergy with TLR4 and may promote
anti-inflammatory responses. Based on these findings, the authors hypothesised that O3 al-
leviates septic lung injury via the AMPK/SR-A1 pathway, thus enhancing the phagocytosis
of neutrophil extracellular traps (NETs) by macrophages.

Kim et al. [146] demonstrated that ozonated oil is able to reduce IL-1β and NO levels
in an LPS-treated mouse macrophage cell line and the serum levels of IL-1β, TNF-α, NO,
iNOS, and immunoglobulin E (IgE) in a mouse model of atopic dermatitis. Moreover,
in mouse skin, the levels of IL-4, thymic stromal lymphopoietin (TSLP, a cytokine that
regulates T-cell activity), phosphorylated signal transducer and activator of transcription 3
(STAT3, an inflammation-related transcriptional factor), and ERK were significantly reduced
by ozonated oil treatment, while filaggrin (a keratin-bound protein in epithelial cells) levels
increased. It is known that in keratinocytes of atopic dermatitis, IL-4 activates STAT3
to promote the transcription of TSLP, which in turn inhibits the expression of filaggrin
by upregulating the STAT3/ERK pathway. Therefore, these findings suggested that the
protective effects of ozonated oil on the skin barrier are mediated through inhibition of
the IL-4/STAT3 signalling pathway. In addition, phosphorylated c-Jun N-terminal kinase
(p-JNK, which is responsible for STAT3 phosphorylation), p38 (which belongs to the MAPK
family), NF-κB, and Nrf2 were found to be decreased by ozonated oil. Since MAPK and
NF-κB regulate the pro-inflammatory cytokines IL-1β and TNF-α, it was inferred that O3
exerts its anti-inflammatory effects by downregulating the phosphorylation of p38 and JNK
and the expression of NF-κB. The reduction in Nrf2 expression was interpreted as a further
effect of the anti-inflammatory properties of O3 since in atopic dermatitis, this protein is
upregulated due the inflammatory response of skin.

A schematic presentation of the mechanisms reported in this section is given in
Figure 2.
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6. Ozone and Pain

Experimental evidence for the biological mechanisms accounting for the analgesic prop-
erties of O3 is quite limited despite the extensive use of O3 as a painkiller in clinical practice
and numerous retrospective clinical studies and case reports in the scientific literature.

In 2009, a preliminary study [147] demonstrated that a subcutaneous injection of O3 in
a mouse neuropathic pain model (i.e., spared nerve injury of the sciatic nerve) decreased
mechanical allodynia and reduced the expression of caspase-1, caspase-12, and caspase-8
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genes, as well as the levels of IL-1β in the orbito-frontal cortex. These results suggested that
O3 may modulate allodynia by regulating the expression of the genes that play a pivotal
role in the onset and maintenance of this pain type.

A study was performed combining mathematical models of the intervertebral disc
space, in vitro ozonolysis experiments using glycosaminoglycans from Chinese hamster
ovary cells, and in vivo percutaneous intradiscal administration of O3 in Yucatan miniature
pigs [148]. It was demonstrated that O3-fragmented disc proteoglycans, which reduce disc
volume and compression on the nerve root, alleviated related pain. Moreover, O3 increased
the levels of IL-1β, IL-6, IL-8, and TNF-α, likely contributing to improved symptomatology
through their anti-inflammatory activity.

In order to elucidate the mechanisms underlying the painkilling potential of O3 in
chronic radiculitis and mechanical allodynia after noncompressive lumbar disc herniation,
Wang et al. [149] established a chronic radiculitis rat model: after intrathecal administration
of O3, behavioural tests showed decreased pain, while molecular analyses demonstrated
downregulation of spinal TNF-α, IL-1β, and IL-6, decreased mRNA and protein levels
of spinal phosphodiesterase 2A (PDE2A, an enzyme catalysing the degradation of cyclic
nucleotides and contributing to the processing of inflammatory pain) and NF-κB p65, and
increased expression of cyclic guanosine monophosphate (cGMP) and cyclic adenosine
monophosphate (cAMP). These findings suggested that O3 modulates pain through the
PDE2A-cGMP/cAMP-NF-κB/p65 signalling pathway. The same research group demon-
strated that O3 administered to a radiculoneuritis rat model decreased the expression of
caspase-3, LC3, Beclin-1, PDE2A, and NF-κB p65, leading to inhibition of both autophagy
and apoptosis in nerve root cells [150].

Lu et al. [151] used a rat model of chronic constriction injury of the sciatic nerve and
a mouse macrophage cell line to demonstrate that peri-sciatic nerve injection of O3 was
able to reduce neuropathic pain and normalise the phosphorylation of protein kinase C γ

(expressed exclusively in brain spinal cord neurons and is involved in neuropathic pain
development), N-methyl-D-aspartate receptor (a glutamate receptor), and ERK levels while
reducing microglia activation. Importantly, all these events depended on the activation
of AMPK, which was found to be phosphorylated during O3 treatment. Accordingly, Fan
et al. [152] demonstrated that O3 is able to increase AMPK phosphorylation and the release
of growth arrest-specific (Gas)-6 protein (involved in cell proliferation) to upregulate the
proto-oncogene tyrosine-protein kinase MER (MerTK, which codes for transmembrane
receptors that promote macrophage phagocytic activity) and cytokine signalling 3 (SOCS3,
which regulates cytokine or hormone signalling to control inflammation homeostasis) and
to reduce MMP-9 expression in a gouty mouse model and a mouse macrophage cell line.
The authors concluded that the reduction in inflammation and pain takes place through
activation of AMPK, which in turn upregulates the Gas6/MerTK/SOCS3 signalling path-
way. Upregulation of the AMPK–SOCS3 axis induced by O3 treatment was also found to
be responsible for the alleviation of neuropathic pain in a mouse oxaliplatin chemotherapy-
induced peripheral neuropathy model [153]. In detail, O3 activated AMPK and induced
SOCS3 expression, which decreased TF, c-Fos (involved in many functions concerning cell
proliferation, differentiation, and survival) and calcitonin gene-related peptide (a potent
vasodilator implicated in pain pathways) and inhibited microglial activation.

The mechanisms accounting for the pain-alleviating effect of O3 were investigated in
a chronic constriction injury model of the sciatic nerve in rats. Behavioural test proved that
intrathecal injections of O3 were able to lessen neuropathic pain by drastically reducing
the expression of spinal glutamate receptor 6 (GluR6), IL-1β, IL-6, TNF-α, and NF-κB/p65,
thus indicating a key role of GluR6 in the mitigation of neuropathic pain through the
GluR6-NF-κB/p65 signalling pathway [154].

By using a transcriptomic and metabolomic approach, Yang et al. [155] investigated
the effect of O3 treatment in the brainstem and hypothalamus of a rat model of neuropathic
pain. They reported significant modifications in the expression of various genes, the most
prominent of which being dorsal column stenosis 1 (involved in neural development and
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the regulation of neuropathic pain) and allograft inflammatory factor 1-like (involved
in inflammation and immune responses). The levels of several other metabolites, such
as aconitic acid, L-glutamic acid, uridine diphosphate-glucose, and tyrosine, were also
modified, suggesting O3-induced modulation of energetic pathways and the production of
pain-related neurotransmitters.

Yue et al. [156] reported that overexpression of the small nucleolar RNA host gene
16 (Snhg16, a regulator of cell proliferation, migration, and apoptosis) in a mouse model
of chronic constriction injury diminished the efficacy of O3 treatment for neuropathic
pain by binding to microRNA (miR)-719 and increasing the expression of sodium voltage-
gated channel alpha subunit 1 (SCN1A). This finding suggested that the Snhg16/miR-
719/SCN1A axis may represent a therapeutic target to improve the curative effects of O3 in
neuropathic pain.

Using a rat model of monoiodoacetate-induced osteoarthritis, Xu et al. [157] demon-
strated by behavioural tests that intra-articular injection of O3 was able to alleviate pain.
In parallel, the levels of TNF-α, IL-6, collagen-2, and autophagy-related protein LC3II
were found to increase, while MMP-13 (an enzyme with a potent proteolytic capacity
that is markedly expressed in osteoarthritis and rheumatoid arthritis) and p62 expression
decreased, suggesting upregulation of chondrocyte autophagy. Subsequently, the same
group demonstrated that in rat primary chondrocytes treated with IL-1β (i.e., in an in vitro
model of osteoarthritis), O3 improved autophagy by activating the pathway of peroxisome
proliferator-activated receptor γ (PPARγ)/mechanistic target of rapamycin (mTOR) (both
involved in autophagy regulation) [158].

A schematic presentation of the mechanisms reported in this section is given in
Figure 3.
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7. Ozone and Regeneration

Many studies performed on different experimental models in vivo and in vitro have
demonstrated the efficacy of O3 in improving tissue regeneration when applied as gas or
ozonated oil/water to treat wound healing (e.g., [159–163]), bone healing (e.g., [164–166]),
nerve regeneration (e.g., [167,168]), and cornea healing (e.g., [169]) in association with other
therapies (drugs, hyperbaric oxygen, laser, PRP, photobiomodulation) (e.g., [170–173]).

On the other hand, studies on the biological mechanisms accounting for the regenera-
tive potential of O3 are less numerous.

Some experimental evidence indicates the antioxidant and anti-inflammatory effects of
O3 as a key contributing factor to tissue regeneration. In an in vitro model consisting of an
established line of human keratinocytes, ozonated saline proved to accelerate cell wound
closure, inducing the formation of 4-HNE protein adducts, increasing the protein levels of
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proliferating cell nuclear antigen (PCNA, which plays a key role in DNA replication and
repair), activating Nrf2, and upregulating HO-1 gene expression [174].

In partially hepatectomised rats after ischaemic/reperfusion injury, O3 precondition-
ing showed a stimulatory effect on liver cell regeneration, decreased serum TNF-α levels,
and maintained high levels of IL-6 [175]. The authors suggested that the reduction in
TNF-α production, likely due to the antioxidant properties of O3, may attenuate liver injury
due to ischaemia–reperfusion, while IL-6 may exert protective and pro-proliferative effects
on hepatocytes.

Using a zebrafish model submitted to caudal fin resection, Hao et al. [176] demon-
strated that treatment with O3 promoted tissue regeneration by decreasing the levels of
TNF-α and modulating IL-10, IL1β, and STAT3 expression. Ozonated oil improved healing
of resected caudal fin and cutaneous wounds that had been experimentally generated and
inflamed in zebrafish, and O3 was able to reduce tissue ROS production and serum IL-6
levels [177]. O3 prominently accelerated healing of experimentally, surgically induced
wounds in rabbits and reduced serum levels of TNF-α and IL-6 [178]. Similarly, ozonated
oil markedly improved healing of skin ulcers in rats, reducing serum levels of MDA and
TNF-α [179].

Beneficial effects of O3 administration on anastomotic healing were observed in a rat
peritonitis model [180]. In animals treated with O3, the levels of TNF-α and IL-1β from
blood serum decreased to control values in comparison to those in untreated animals, and
the same trend was observed for colonic tissue levels of MDA, myeloperoxidase (MPO,
an enzyme abundantly expressed in neutrophils), IL-1β, VEGF, and antigen Kiel 67 (Ki-
67, a nuclear protein marker of cell proliferation). The authors therefore concluded that
O3 promoted anastomotic healing of the colon in the presence of peritonitis through its
anti-inflammatory and antioxidative properties. Accordingly, Taşdöven et al. [181] found
higher hydroxyproline (a main component of collagen) and SOD levels and lower MDA
levels in colonic tissue from rats undergoing O3 treatment before radiotherapy and colon
anastomosis in comparison to untreated ones. These findings accounted for the more
efficient anastomosis healing observed in O3-treated rats, supporting the hypothesis that
this beneficial effect relies on the antioxidant properties of O3.

By submitting rats to sciatic nerve cut injury, Ogut et al. [73] demonstrated that post-
surgical treatment with intraperitoneal injections of O3 improved functional and structural
recovery of the nerve. Moreover, O3 was found to increase GPx, SOD, and CAT activity and
decrease MAD levels in plasma. Since the ischaemic and inflammatory processes caused
by injury induced free radicals and lipid peroxidation, the authors hypothesised that the
regenerative effect of O3 relies on its capability to counteract the adverse effects of damage-
related oxidative stress on nerve tissue. Accordingly, in a rat model of experimental spine
injury, post-surgical treatment with O3 or O3 combined with methylprednisolone improved
structural and functional recovery by decreasing oxidative stress (the total oxidant status
was reduced), inflammation (IL-6 levels were lowered), and apoptosis [182].

Wu et al. [183] used models of osteoarthritis in vitro (a mouse chondrogenic cell line
and a mouse macrophage cell line) and in vivo (mice experimentally undergoing knee
osteoarthritis) and demonstrated that injectable O3-rich nanocomposite hydrogel promoted
chondrocyte proliferation and increased the expression of collagen II and aggrecan (both
components of cartilage matrix). Moreover, VEGF, IL-1β, IL-6, TNF-α, and iNOS signifi-
cantly decreased, thus counteracting cartilage destruction and synovial inflammation.

The reference drug for the treatment of leishmaniasis lesions, Glucantime®, was
associated with local and systemic ozonated saline in a mouse model [184]: O3 association
ameliorated the drug’s leishmanicidal action and accelerated wound healing. In peripheral
blood, O3 reduced the number of leukocytes to the level in non-infected animals; similar
decreases were found for aspartate aminotransaminase and LDH (which are both released
following cell damage). In peritoneal macrophages, O3 diminished NO secretion, increased
arginase activity, and inhibited TNF-α and IL-1 secretion. It was therefore hypothesised
that O3 downmodulates anti-inflammatory activity both locally and systemically, thus
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reducing cell damage and improving the healing process. Accordingly, a more recent
study performed in cutaneous leishmaniasis lesions in mice under Glucantime® treatment
demonstrated the efficacy of ozonated oil in improving both leishmanicidal activity and
wound healing, likely through an immunomodulatory action leading to decreased TNF
levels and a reduced number of blood leukocytes [185].

In an in vitro study, O3 was demonstrated to significantly limit the degradation of
explanted murine adipose tissue maintained in culture [186]. The O3-treated tissue showed
increased levels of Nrf2 protein and overexpression of its target gene HO-1, while a metabo-
lite analysis of culture medium demonstrated a low efflux of glycerol (a major alcohol in
adipocyte lipids) and higher glutamate intake (required to maintain the function of the
tricarboxylic acid cycle). These findings suggested that O3-driven antioxidant processes,
together with the pro-adipogenic potential of O3 [187], may play a primary role in adipose
tissue preservation, thus inviting interesting perspectives on regenerative medicine in
limiting reabsorption after fat grafting.

Other experimental findings pointed to O3-driven stimulation of fibroblast activity.
In an in vitro study, Borges et al. [188] reported an increased migration capability of

fibroblasts exposed to low O3 concentrations, which could contribute to the beneficial effect
of O3 in wound healing.

By combining in vivo and in vitro investigations, Xiao et al. [189] demonstrated that
ozonated oil applied to excisional wounds in mice significantly improved healing. O3
was found to increase the migration capability of fibroblasts, as it upregulated collagen I,
α-SMA, and TGF-β1 mRNA and protein expression. O3 also upregulated fibronectin (a
matrix glycoprotein that plays a major role in cell adhesion, growth, migration, and differ-
entiation), vimentin (an intermediate filament protein mainly expressed in mesenchymal
cells), N-cadherin (a transmembrane protein that mediates cell–cell adhesion), MMP-2,
MMP-9, insulin-like growth factor (IGF) binding protein (IGFBP)-3, IGFBP-5, and IGFBP-6
(modulators of IGF signalling). Moreover, O3 downregulated the expression of the ep-
ithelial marker E-cadherin and the cellular senescence marker p16 while increasing the
phosphorylation of some kinases involved in the epithelial–mesenchymal transition (i.e.,
phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), mTOR) and repressing increases
in TNF-α and IL-6 in injured fibroblasts. Taken together, these data demonstrated that O3
promotes wound healing via the PI3K/Akt/mTOR signalling pathway, which increases
fibroblast migration and the epithelial–mesenchymal transition.

Interestingly, an in vitro study [141] demonstrated that O3 treatment is able to mod-
ulate fibroblast proliferation, surface protrusion formation (needed for cell motility),
Nrf2/HO-1 expression, and IL-6 and TGF-β1 secretion depending on the activation state
of cells and O3 concentrations, which may lead to differential fibroblast responsiveness
to O3 in different phases of wound healing and could explain apparent inconsistencies in
scientific results obtained in different experimental conditions. Moreover, O3 proved to
be able to induce proliferation and shape modifications in non-activated fibroblasts but
not in the already activated ones, suggesting that O3 does not pose a risk of fibroblast
overactivation or dysregulation, which could potentially lead to keloid formation.

Soares et al. [190] quantified FGF-2 and α-SMA during wound healing in rats that were
subcutaneously treated with O3, and the higher levels of FGF-2 together with the higher
amount of myofibroblasts observed suggested that FGF-2 overexpression may contribute
to the accelerated repairing process induced by O3.

Ozonated oils were found to promote acute cutaneous wound healing in the SKH1
mouse model by increasing tissue levels of 4-HNE, NF-κB, VEGF, and PCNA [191]. The au-
thors hypothesised that the cell signalling molecule 4-HNE modulated the redox-sensitive
transcription factor NF-κB, which in turn induced VEGF and PCNA expression, both of
which are involved in the regulation of proliferation during wound healing. Accordingly,
ozonated oil proved to accelerate healing of cutaneous wounds in guinea pigs by increasing
collagen deposition and fibroblast proliferation [192]. However, increased expression of
PDGF, TGF-β, and VEGF (but not FGF) was found in healing tissue. Since tissue samples



Int. J. Mol. Sci. 2024, 25, 12657 14 of 26

were taken after 7 days from injury, the authors hypothesised that FGF may undergo
upregulation in the early healing phase, supporting the notion that O3 provides beneficial
effects in the healing process due to its stimulation of fibroblasts.

Finally, some studies suggested that the regeneration potential of O3 may rely on its
capability of modulating and balancing the expression of catabolic and anabolic factors.
In a rat model of intestinal ischaemia–reperfusion, O3 proved to attenuate the intestinal
mucosal injury and enhance intestinal recovery by upregulating the expression of the pro-
proliferation factor phosphorylated (p)-ERK while decreasing the expression of caspase-
3 [193].

A rabbit model of surgery-induced osteoarthritis was used to investigate the impact of
O3 and PRP treatment in limiting cartilage damage [194]. Associating O3 with PRP yielded
better results, with increased expression of type II collagen and decreased levels of MMP-1
(also known as fibroblast collagenase) in cartilage tissue and significant downregulation of
the mRNA expression of surgery-induced bone morphogenetic protein 2 (BMP-2, a cartilage
factor that promotes matrix turnover and repair) in joint fluid. The authors concluded
that PRP combined with O3 may prevent cartilage destruction by restoring homeostasis
between anabolism and catabolism of cartilage extracellular matrix in osteoarthritis. This
synergistic effect is consistent with the finding that the addition of O3 to PRP drastically
increases the secretion of platelet-derived factors, thus enhancing the beneficial effects of
PRP [114].

A schematic presentation of the mechanisms reported in this section is given in
Figure 4.
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8. Ozone and Cancer

O3 has largely been used to limit the unpleasant side effects of radio- or chemotherapy
in oncologic patients, and the mechanisms underlying its beneficial effects have been
experimentally investigated both in vitro and in vivo (see the Sections 4–6). Furthermore,
the potential antitumour effects of O3 have also been explored.

The potential anticancer effect of O3 was evaluated in vitro in hepatocellular carcinoma
cell lines [195]. The study showed positive results since O3 reduced cell proliferation and
migration while inducing cell cycle arrest by modulating the protein levels of p53, p21,
cyclin D1, cyclin B1, cell division cycle 2 (cdc2), and CDK-4 (all involved in cell cycle
regulation). O3 also induced ROS accumulation and GSH decreases. The authors concluded
that O3 exerted its antitumour activity by inactivating the PI3K/AKT/NF-κB pathway. In
addition to these data, a further study on hepatocellular carcinoma cells demonstrated that
O3 treatment induced apoptosis, reduced the mitochondrial membrane potential, reduced
Bcl-2 expression, and increased cleaved PARP-1, cytochrome c, caspase-3, caspase-9, and
p-JNK expression, suggesting that mitochondrion-driven apoptosis may play a primary
role in the O3 antitumour action [196]. The anticancer effectiveness of O3 towards liver
carcinoma cells was also explored by using ozonated water [197], which induced ROS
accumulation and decreased cell viability, motility, and invasion. The observed lower
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expression levels of p65, NF-κB, STAT3, TNF-α, IL-6, janus kinase 2 (JAK2, which is
involved in cytokine signalling), Slug (a regulatory transcription factor involved in the
epithelial–mesenchymal transition of cancer cells), Twist (a transcription factor implicated
in cell differentiation and cancer metastasis), vimentin, MMP-2, MMP-9, and HMGB1
suggested that the inhibition of proliferation, invasion, and metastasis may occur via
regulation of the HMGB1/NF-κB/STAT3 signalling pathway.

Human breast adenocarcinoma cells treated with O3 in vitro showed an enhanced
death rate (mainly due to an increased apoptotic incidence) and a reduced migration
capability together with higher mRNA expression levels of pro-apoptotic genes [198].

Treating human neuroblastoma cell lines with O3 resulted in an increased apoptotic
rate via caspase-3 activation and PARP cleavage, with increased pro-apoptotic Bax protein.
Cell cycle arrest was also increased due to altered expression and activity of the cyclin
B1/CDK-1 complex and increased levels of CDK-1 and Wee1 proteins (both regulators of
cell cycle progression) [199].

The efficacy of O3 in treating malignant liver ascites was investigated in a tumour-
bearing mouse model induced by inoculation with H22 murine hepatocellular carcinoma
cells [200]. O3 proved to reduce NET-associated guanine histone H3 and MPO in the
intestinal tissue, while in the ascites, O3 increased the levels of circulating free DNA, IL-6,
IFN-γ, MMP-9, VEGF, and TNF-α, as well as the expression of p-AMPK and SR-A proteins.
O3 therefore reduced peritoneal fluid production by activating AMPK and upregulating
SR-A phagocytosis, thus inviting interesting perspectives for its use to treat malignant
ascites in hepatocellular carcinoma.

A papillomavirus-associated auricular VX2 carcinoma rabbit model was used to in-
vestigate the antitumourigenic effects of O3 treatment on the pneumoperitoneum [201].
Tumour tissues from treated animals exhibited increased levels of cluster of differenti-
ation (CD)3+ T cells and enhanced expression of genes encoding receptors involved in
pattern recognition (i.e., factors regulating ongoing immune responses such as CD80/CD28,
CD86/CD28, CD40/CD154 (CD40L), CD4, and CD1d), together with increased levels of
related downstream signalling molecules (e.g., myeloid differentiation primary response
gene 88-like). IL-2, IL-10, IL-18, and IFN-γ were upregulated, while the expression of
COX-2 was downregulated. It was concluded that O3 stimulated immune cells as a result
of the induced oxidative stress.

O3 was found to stimulate necrotic cell death in two human pancreatic ductal ade-
nocarcinoma cell lines [202]. Genomic analysis demonstrated that O3 reduced cell cycle
progression by downregulating cyclins, CDKs, and the transcription factors E2F1 and E2F3
while upregulating the expression of CDKN2A. O3 also downregulated rat sarcoma virus
(Ras)-associated pathway genes, which are correlated with various oncogenic signals, such
as the proliferation, chemoresistance, and migration of pancreatic ductal adenocarcinoma
cells. O3 treatment was also effective in reducing the expression of NF-κB, Rel, Ras ho-
molog family member A (all involved in immunity and inflammation processes), and the
PI3K/AKT pathway, thus contributing to reduced inflammation and cellular migration.
Notably, the O3 anticancer effect was enhanced when O3 was administered in combination
with cannabidiol, which increased the anti-tumoural effects of gemcitabine and paclitaxel.

A rat model of non-muscle invasive bladder cancer was used to study the preventive
effect of O3 administered by intravesical instillation, which demonstrated that O3 increased
the antioxidant response by increasing SOD levels [203].

In a mouse xenograft model of oesophageal carcinoma [204], O3 improved radiosen-
sitivity by inhibiting NETs. In fact, O3 administration was found to lower the peripheral-
blood levels of circulating free DNA (cfDNA, i.e., the degraded DNA fragments that in
advanced cancer are increasingly released into body fluids), IFN-γ, MPO-DNA complexes,
TNF-α, IL-6, HIF-1α, and MMP-9 while increasing p-AMPK and SR-A protein expression
in tumour tissues. Accordingly, previous studies on a tongue cancer rat model [205] and on
a mouse model of peritoneal carcinomatosis [206] demonstrated higher survival rates after
combined treatment with radiotherapy and medical O3.
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The anticancer potential of O3 on various cell lines has also been explored in association
with chemotherapeutic drugs such as doxorubicin [207] or 5-fluorouracil and cisplatin [117].
In these studies, the combined treatment demonstrated enhanced anticancer efficiency by
increasing apoptosis, activating the expression of TNF-α, MMP-2, and MMP-9 and decreas-
ing IL-1β, IL-6, and IL-8 production. This invites interesting perspectives for the use of O3
as a complementary treatment to manage the pro-inflammatory cancer microenvironment.

O3 has been tested as an anticancer agent and also as ozonated olive oil encapsulated
into a niosomal vesicular nanoplatform to improve transdermal penetration [208]. The
permeation capability of this nanosystem was assessed ex vivo in explanted rat skin, while
anticancer activity was tested in vitro in a human melanoma cell line. The authors ob-
served higher permeation of the encapsulated form compared to free ozonated oil, with
a resultant significant increase in the rate of melanoma cell death. A further nanoformu-
lation consisting of a perfluorotributylamine core and a lipid monolayer encapsulated in
a thermoresponsive hydrogel has been fabricated to load O3. This ozonated nanoemul-
sion sprayed in the surgical cavity proved to significantly reduce tumour recurrence in
hepatocellular carcinoma-bearing mice by regulating the expression of several genes, such
as GPx4, acyl-CoA synthetase long-chain family member 4, and CDKN1A, that promote
ferroptosis and apoptosis [209]. Recently, an oleogel loaded with O3 and doxorubicin was
fabricated for local skin tumour treatment in association with radiotherapy [210]. When
mouse melanoma cells were treated in vitro with this oleogel, significant reductions in
viability and GSH contents and a concomitant ROS increase were observed. In a melanoma-
bearing mouse model, the oleogel decreased tumour cell proliferation, increased apoptosis
and DNA damage, and induced ROS accumulation, while immune cells (e.g., CD3+ and
CD8+ T cells) increased, suggesting stimulation of the immune response. Combination
with radiotherapy increased the production of intracellular free radicals, thus enhancing
the anticancer efficacy of the oleogel.

Doubts have been raised as to the administration of O3 to oncological patients since
the role of Nrf2 in cancer initiation, progression, and treatment is controversial (reviewed
in [211]), and interference between O3 and doxorubicin was observed in a human breast
cancer cell line [212]. Recent studies provided experimental in vitro evidence that O3 at
low concentrations does not induce cytokinetic effects on tumour cells or reduce drug cyto-
toxicity; the proliferation and motility of human cervical and breast cancer cells were not
affected by O3 administration [213], and when O3 was combined with an anti-tumour agent
(tamoxifen) acting through induction of oxidative stress, no reduction in drug cytotoxicity
was observed as Nrf2 was not overstimulated [214].

A schematic presentation of the mechanisms reported in this section is given in
Figure 5.
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9. Conclusions

There is still incertitude within the medical community as to the therapeutic efficacy of
O3. This is due to several reasons, namely, the considerable heterogeneity of administration
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routes, procedures and protocols, the lack of internationally endorsed guidelines, the small
number of pre-clinical and clinical trials, and incomplete knowledge of the O3 impact on
biological pathways. These limitations are even more evident if medical O3 is compared, for
instance, with long-established anti-inflammatory and painkilling pharmacological agents
such as corticosteroids. In fact, the experimental and clinical literature on corticosteroid
therapy is very wide (reviews in, e.g., [215,216]), providing a robust base for guidelines and
protocols. Therefore, further scientific studies on medical O3 are needed, and experimental
research is essential to mechanistically elucidate the molecular bases of the observed
beneficial effects of low O3 concentrations on patients. This knowledge will also be crucial to
improve the present clinical protocols and to design novel therapeutic strategies considering
individual and pathological variability.

Some basic mechanisms accounting for the therapeutic effects of eustress-inducing low
O3 concentrations have already been established. It has been demonstrated that O3 counter-
acts oxidative stress by activating Nrf2 and promotes cell survival by upregulating HIF-1α
and inhibiting apoptosis and autophagy. O3 exerts its anti-inflammatory effect by modu-
lating many cytokines, inhibiting matrix metalloproteinases, and enhancing macrophage
phagocytosis. The painkilling action of O3 is related to these anti-inflammatory effects, to
the inhibition of apoptosis and autophagy, and to the modulation of genes regulating neuro-
pathic pain. The regenerative potential of O3 depends on its antioxidant, anti-inflammatory,
anti-apoptotic, and pro-proliferative capabilities, as well as fibroblast stimulation. The O3
anticancer potential is based not only on its oxidant and anti-inflammatory properties but
also on its ability to inhibit cell proliferation, invasion, and migration while promoting
cell death.

Notably, some recent clinical studies supported these experimental findings by report-
ing that, e.g., ozonated saline/gel treatment reduced inflammation and pain in patients
undergoing dental implant surgery [217]; O3 combined with articular injection of sodium
hyaluronate decreased inflammatory factors in the joint fluid of patients affected by knee
osteoarthritis [218]; intraarticular injection of O3 reduced pain and decreased inflammatory
markers in adhesive capsulitis of the shoulder joint [219]; O3 treatment reduced ulcer size
and healing time in diabetes-related foot ulcer [220]; and O3 in association with concen-
trated growth factors increased the secretion of growth factors and cytokines in stimulated
stem cells, thus improving angiogenesis and tissue regeneration in alveolar osteitis [221].
However, in all these studies, the number of enrolled patients and analysed markers was
generally small, so the clinical evidence remains limited.

As the present review showed, the current knowledge on O3-driven molecular effects is
still incomplete, fragmentary, and seldom characterised by conflicting findings in different
experimental models and conditions. This is certainly due to the high complexity of
the molecular and cellular mechanisms triggered by low O3 concentrations and their
nonuniform impact on different physiological and pathological situations. The mechanisms
accounting for the effects of O3 in modulating mitochondrial activity and the cytoskeleton
dynamic organization (which are crucial for its anticancer and regenerative properties)
have rarely been investigated. Similarly, there is incomplete knowledge on the O3-altered
molecular pathways in adipogenic differentiation (which is of great interest in regenerative
medicine) and cell conduction (which is central to understanding the nerve and muscle cell
interactions for pain management and restoration of sensorimotor function).

The response to the current concerns on the therapeutic efficacy of medical O3 adminis-
tration will only come from scientific research through refined experimental investigations
on the action mechanisms and from larger-scale clinical trials.
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