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Abstract: Metabolomic data often present challenges due to high dimensionality, collinearity, and
variability in metabolite concentrations. Machine learning (ML) application in metabolomic analyses
is enabling the extraction of meaningful information from complex data. Bringing together domain-
specific knowledge from metabolomics with explainable ML methods can refine the predictive
performance and interpretability of models used in atherosclerosis research. In this work, we
aimed to identify the most impactful metabolites associated with the presence of atherosclerotic
cardiovascular disease (ASCVD) in cross-sectional case–control studies using explainable ML methods
integrated with metabolomics domain knowledge. For this, a subset from the FLEMENGHO cohort
with metabolomic data available was used as the training cohort, including 63 patients with a
history of ASCVD and 52 non-smoking controls matched by age, sex, and body mass index from
the same population. First, Partial Least Squares Discriminant Analysis (PLS-DA) was applied
for dimensionality reduction. The selected metabolites’ correlations were analyzed by considering
their chemical categorization. Then, eXtreme Gradient Boosting (XGBoost) was used to identify
metabolites that characterize ASCVD. Next, the selected metabolites were evaluated in an external
cohort to determine their effectiveness in distinguishing between cases and controls. A total of
56 metabolites were selected for ASCVD discrimination using PLS-DA. The primary identified
metabolites’ superclasses included lipids, organic acids, and organic oxygen compounds. Upon
integrating these metabolites with the XGBoost model, the classification yielded a test area under
the curve (AUC) of 0.75. SHAP analyses ranked cholesterol, 3-methylhistidine, and glucuronic acid
among the most impactful features and showed the diversity of metabolites considered for building
the ASCVD discriminator. Also using XGBoost, the selected metabolites achieved an AUC of 0.93 in
an independent external validation cohort. In conclusion, the combination of different metabolites has
the potential to build classifiers for ASCVD. Integrating metabolite categorization within the SHAP
analysis further enhanced the interpretability of the model, offering insights into metabolite-specific
contributions to ASCVD risk.

Keywords: atherosclerotic cardiovascular diseases; metabolomics; explainable machine learning;
domain knowledge

1. Introduction

Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of morbidity
and mortality worldwide, largely due to complications like ischemic heart disease (IHD),
stroke and peripheral arterial disease. These conditions arise from a combination of genetic
predisposition, lifestyle factors (such as a poor diet, lack of exercise, and smoking), and other
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comorbidities like obesity, diabetes, and hypertension [1,2]. Identifying biomarkers and
molecular profiles that contribute to atherosclerosis can significantly enhance diagnostic
and therapeutic strategies.

Metabolomics, the high-throughput quantification of circulating metabolites in biolog-
ical systems, is emerging as a critical domain in this effort, as metabolites are often reflective
of real-time physiological and pathological states [3,4]. In atherosclerosis, metabolites can
reveal critical insights into disease pathways, inflammatory markers, lipid profiles, and
oxidative stress markers, leading to a better understanding of disease mechanisms and
improving the risk stratification [5].

Previous studies have shown that metabolite-based biomarkers, particularly lipid
profiles, offer added prognostic value for assessing the cardiovascular (CV) risk. For
instance, McGranaghan et al. [6] showed that the cardiac lipid panel was significantly
associated with fatal CV outcomes in patients with symptomatic heart failure. Other
studies also demonstrated that lipid metabolites, particularly sphingolipids and ceramides,
have shown promise as biomarkers for the diagnosis and prognosis of CV disease [7].

Metabolome data, however, are highly complex and often present challenges due to
high dimensionality, collinearity, and variability in metabolite concentrations. Because of
the complexity of the data, a metabolomic analysis often requires integrating various statis-
tical and machine learning (ML) approaches to identify meaningful biological information
and potential biomarkers. ML application in metabolomic analyses is increasing rapidly,
enabling the extraction of meaningful information from complex and high-dimensional
data [8]. Supervised learning methods like Random Forest, Support Vector Machines,
eXtreme Gradient Boosting (XGBoost), and Partial Least Squares Discriminant Analysis
(PLS-DA) are commonly used for classification tasks and feature selection, helping to
distinguish between health and disease states based on metabolite profiles [9,10].

However, many ML models lack transparency, and are often termed “black box” models.
Explainable ML addresses this issue by providing methods to make predictions more inter-
pretable, which is essential in clinical contexts where understanding the reasoning behind a
prediction can affect treatment decisions [11]. For tabular data, the SHapley Additive exPlana-
tions (SHAP) method has been applied to enhance model interpretability [12,13]. Although
SHAP can add information about individual metabolites, up to now, metabolites’ interactions
and categorizations have not been directly integrated with explainable ML analyses.

Bringing together domain-specific knowledge from metabolomics with explainable
ML methods can refine the predictive performance and interpretability of models used in
atherosclerosis research. Given that domain knowledge can improve explainability and
scientific consistency [14], this study has two main goals: (1) to identify the most impactful
metabolites associated with the presence of ASCVD in cross-sectional case–control studies,
and (2) to investigate the integration of metabolite categorization on top of the process of
explainable ML by SHAP analyses.

2. Results
2.1. Characteristics of the Training Cohort

Table 1 lists the important clinical characteristics of cases and controls selected from the
FLEMENGHO cohort. The two groups demonstrated similar distributions in terms of sex and
BMI. However, the case group was slightly older than the control group (66 vs. 62 years old)
and reported a higher prevalence of anti-hypertensive drug and statin use (Table 1).

Table 1. Clinical characteristics of the training cohort (FLEMENGHO).

Characteristics Controls
(N = 52)

Cases
(N = 63) p-Value

Anthropometrics
Age, years 62 ± 8 66 ± 8 0.01
Females, n (%) 21 (40.4) 19 (30.2) 0.25
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Table 1. Cont.

Characteristics Controls
(N = 52)

Cases
(N = 63) p-Value

BMI, kg/m2 26.3 ± 3.8 27.2 ± 2.8 0.16
Estimated lean body mass, kg 48.4 ± 9.9 48.4 ± 8.7 1.00
Systolic blood pressure, mmHg 139.7 ± 18.6 139.4 ± 21.2 0.94
Diastolic blood pressure, mmHg 84.7 ± 9.5 80.7 ± 10.5 0.03

Medications
Anti-hypertensive drugs, n (%) 15 (28.8) 37 (58.7) 0.001

Beta-blockers, n (%) 4 (7.7) 17 (27.0) 0.01
Calcium channel blockers, n (%) 7 (13.5) 13 (20.6) 0.31
ACE/ANGR1 blockers, n (%) 9 (17.3) 19 (30.2) 0.11
Diuretics, n (%) 3 (5.8) 16 (25.4) 0.005

Statins, n (%) 12 (23.1) 26 (41.3) 0.04

Data are presented as means ± standard deviations or numbers of subjects (%). Abbreviations: body mass index
(BMI); angiotensin-converting enzyme (ACE); angiotensin receptor type 1 (ANGR1). p-values lower than 0.01
are bolded.

2.2. Metabolites Selected by PLS-DA

The distribution of missing data is presented in Supplemental Table S2. Overall, 5 metabo-
lites were excluded in Step 1a, 14 in Step 1b and 15 in Step 1c, resulting in 216 metabolites to
be analyzed. The metabolites excluded in each step are listed in Supplemental Table S3.

In the training dataset, PLS-DA indicated that the optimal number of latent factors
was three. These three latent factors collectively explained 64.22% of the variance be-
tween groups and 33.86% of the variance within the predictors (metabolites). This model
achieved a robust performance, yielding an ROC AUC of 0.90 across the entire dataset. A
total of 56 metabolites were identified as the most significant contributors to the model’s
predictive capability. The complete list of the most important metabolites is given in
Supplemental Table S4.

Among the 56 selected metabolites, a diverse array of metabolic pathways was repre-
sented, encompassing eight superclasses and twenty-three subclasses. As expected, the
majority of these metabolites belonged to the lipids superclass, with a notable representation
of fatty acids and glycerophosphocholines. Other prominent superclasses included organic
acids, which were primarily composed of amino acids, peptides, and their analogues, as
well as organic oxygen compounds, mainly carbohydrates, as illustrated in Figure 1A.
Homogeneous non-metal compounds and alkaloids were minimally represented, with only
one metabolite each, phosphoric acid and trigonelline, respectively.

The correlation network (Figure 1B) highlighted complex interconnections among
metabolites, supporting the application of ML to manage these intricate interactions. Of
note, the strongest correlations were not confined to metabolites within the same superclass.
For example, isovaleric acid showed a strong correlation with glutamic acid, despite
belonging to different superclasses. Similarly, shikimic acid displayed high correlations
with diverse organic acids, such as 2-oxoglutaric acid and hypotaurine, as well as with lipids
like isovaleric acid and 9,10,13-TriHOME. These cross-superclass relationships underscore
the interconnected nature of the analyzed metabolic pathways.

2.3. XGBoost General Modeling of the Training Cohort

In the analysis of the FLEMENGHO cases and controls using the selected metabolites,
the optimal hyperparameter settings for XGBoost resulted in a cross-validation ROC AUC
of 0.85 ± 0.10. In the test set, the performance metrics showed an ROC AUC of 0.75 and
F1-score of 0.76. The cross-validation demonstrated stability with a moderate variance.
These results indicated a good performance on the test set.
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Figure 1. The selected metabolites’ (A) superclass distribution and (B) Spearman’s correlation 
network. In the network, the nodes correspond to the metabolites and the edges depend on the 
strength of their Spearman’s correlation between two nodes. Thicker and darker edges indicate a 
higher pairwise correlation, whereas thinner and lighter colors indicate a lower correlation. Red 
edges correspond to negative correlations and blue edges to positive ones. The node colors specify 
the metabolite superclass, and its size increases according to the absolute strength of the edges con-
nected to it. Metabolites marked with * represent those available also in the external validation da-
taset. For visualization purposes, the correlations were powered to 4 but kept the original signal. In 
this figure, CA stands for caproic acid. 

The correlation network (Figure 1B) highlighted complex interconnections among 
metabolites, supporting the application of ML to manage these intricate interactions. Of 
note, the strongest correlations were not confined to metabolites within the same 

Figure 1. The selected metabolites’ (A) superclass distribution and (B) Spearman’s correlation
network. In the network, the nodes correspond to the metabolites and the edges depend on the
strength of their Spearman’s correlation between two nodes. Thicker and darker edges indicate a
higher pairwise correlation, whereas thinner and lighter colors indicate a lower correlation. Red
edges correspond to negative correlations and blue edges to positive ones. The node colors specify the
metabolite superclass, and its size increases according to the absolute strength of the edges connected
to it. Metabolites marked with * represent those available also in the external validation dataset. For
visualization purposes, the correlations were powered to 4 but kept the original signal. In this figure,
CA stands for caproic acid.

The SHAP beeswarm plots’ patterns (Figure 2) were very similar for both the training
and test sets derived from the FLEMNGHO cohort. In this analysis, lower levels of
metabolites like cholesterol, 3-methylhistidine, hexacosanoic acid, and putrescine were



Int. J. Mol. Sci. 2024, 25, 12905 5 of 16

associated with a higher likelihood of classification as ASCVD. Conversely, for metabolites
such as glucuronic acid, capric acid, citrulline, homoserine, and S-adenosylhomocysteine,
elevated levels were positively correlated with the cases. Notably, each of the top three
ranked metabolites—cholesterol, 3-methylhistidine, and glucuronic acid—belonged to a
distinct superclass, indicating a diverse metabolic impact. Additionally, many of these
top-ranking metabolites presented lower cumulative correlations, as reflected by their node
areas, underscoring their unique roles in the classification model (Figure 1B).
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ing model in the FLEMENGHO cohort with the 56 selected features. Positive SHAP values are pos-
itively associated with the ASCVD classification. Metabolites marked with * represent those that are 
also available in the external validation dataset. The colors of the metabolites correspond to their 
superclasses, as shown in Figure 1. 

We observed that several metabolites had a SHAP value of zero (Figure 2), indicating 
they did not significantly contribute to the XGBoost model’s predictive power when eval-
uated together with other features. Interestingly, many of the lower-ranked metabolites 
were highly correlated with one another and clustered within the central region of the 
correlation network (Figure 1B). This suggests that these metabolites likely provided re-
dundant information, adding little novel value to the model. Notably, phosphoric acid 
demonstrated no impact (zero SHAP value) and was most strongly correlated with 

Figure 2. Metabolites’ superclass-informed Shapley analysis (SHAP) of the eXtreme Gradient Boosting
model in the FLEMENGHO cohort with the 56 selected features. Positive SHAP values are positively
associated with the ASCVD classification. Metabolites marked with * represent those that are
also available in the external validation dataset. The colors of the metabolites correspond to their
superclasses, as shown in Figure 1.
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We observed that several metabolites had a SHAP value of zero (Figure 2), indicat-
ing they did not significantly contribute to the XGBoost model’s predictive power when
evaluated together with other features. Interestingly, many of the lower-ranked metabo-
lites were highly correlated with one another and clustered within the central region of
the correlation network (Figure 1B). This suggests that these metabolites likely provided
redundant information, adding little novel value to the model. Notably, phosphoric acid
demonstrated no impact (zero SHAP value) and was most strongly correlated with choles-
terol, which emerged as the primary feature, further underscoring the limited influence of
highly correlated metabolites.

2.4. XGBoost Superclass-Specific Modeling of the Training Cohort

The superclass-specific models for lipids and organic acids, while yielding slightly
lower performance compared to the general model, demonstrated the importance for
ASCVD discrimination (Figure 3). In the lipids-specific model, cholesterol and capric acid
emerged as the top features, consistent with their impacts in the general model. Despite
having a relatively minor role in the general model, 9,10,13-TriHOME displayed substantial
importance in the lipids-specific model.
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Figure 3. Shapley analysis (SHAP) of eXtreme Gradient Boosting per the metabolite’s superclass
in the training FLEMENGHO set. Positive SHAP values are positively associated with the ASCVD
classification. Other superclasses in the panel include organoheterocyclic compounds (pink); organic
nitrogen compounds (grey); nucleosides, nucleotides, and analogues (blue); homogeneous non-metal
compounds (purple); and alkaloids and derivatives (red). The values in the subtitles correspond
to the weighted ROC AUC during cross-validation of the training set and after hyperparameter
optimization of the test set. Metabolites marked with * represent those that are also available in the
external validation dataset.

A similar trend was observed in the organic acids-specific model. Both 3-methylhistidine
and citrulline ranked as top features in both the general and organic acids-specific models.
N-acetylputrescine, however, was identified among the top features only in the organic
acids-specific model. Other superclasses did not show a good performance in the test set,
despite achieving a cross-validation ROC AUC above 0.75 for the training set, suggesting
limitations in their predictive capability when isolated from the broader model context.
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2.5. External Validation Results

In the external validation cohort (MetaCardis), we analyzed 162 control participants
alongside 173 patients with IHD. Compared to controls, the IHD group was older and
had a higher average BMI, although the sex distribution remained similar. Statistically
significant differences in medication use were observed between groups, with a greater
proportion of IHD patients on anti-hypertensive and lipid-lowering (statins) medications
(Table 2).

Table 2. Clinical characteristics of the external validation cohort (MetaCardis).

Characteristics Controls
(N = 162)

Cases
(N = 173) p-Value

Anthropometrics
Age, years 58 ± 10 61 ± 8 0.003
Females, n (%) 102 (63.0) 119 (68.8) 0.26
BMI, kg/m2 22.6 ± 1.8 28.3 ± 5.4 <0.001
Systolic blood pressure, mmHg 127.8 ± 15.9 127.4 ± 15.8 0.82
Diastolic blood pressure, mmHg 70.3 ± 9.4 69.9 ± 9.7 0.70

Medications
Anti-hypertensive drugs, n (%) 13 (8.0) 158 (91.3) <0.001

Beta-blockers, n (%) 5 (3.1) 140 (80.9) <0.001
Calcium channel blockers, n (%) 1 (0.6) 31 (17.9) <0.001
ACE/AT2 inhibitors, n (%) 6 (3.7) 100 (57.8) <0.001
Diuretics, n (%) 1 (0.6) 67 (38.7) <0.001

Statins, n (%) 8 (4.9) 161 (93.1) <0.001

Data are presented as means ± standard deviations or numbers of subjects (%). Abbreviations: body mass index
(BMI); angiotensin-converting enzyme (ACE); angiotensin type 2 (AT2). p-values lower than 0.01 are bolded.

Since the MetaCardis and FLEMENGHO cohorts came from independent studies,
there was a discrepancy in the metabolites available for analysis in each dataset. Specifically,
MetaCardis did not have access to all 56 metabolites selected by PLS-DA in FLEMENGHO.
As a result, only a subset of 39 common metabolites was included in the analysis of the
MetaCardis cohort.

The external validation results supported the transferability of the identified metabo-
lites from the FLEMENGHO cohort to the MetaCardis cohort. After tunning the XGBoost
model, the ROC AUC and F1-score of the test set were 0.929. Given that cholesterol was
among these key metabolites and that lipid-lowering medication use was significantly
different between groups, we tested a modified model excluding cholesterol. This model’s
performance was slightly lower but remained robust (test set ROC AUC/F1-score: 0.843),
indicating that cholesterol’s influence, while significant, was not solely responsible for the
model’s predictive strength.

3. Discussion

This study aimed to leverage explainable ML and metabolomic domain categorization
to identify and examine metabolites that distinguish ASCVD cases from controls within
the FLEMENGHO cohort. Our findings revealed that lipids and organic acids were the
most prominent superclasses, consistently demonstrating strong performance both within
their respective groups and in combination with other metabolites. These superclasses,
through their diversity and distinct roles, contributed significantly to the model’s capacity
to differentiate between cases and controls. Our results were confirmed in an external vali-
dation cohort, reinforcing the robustness and transferability of the metabolite-based model
developed in this study. The validation demonstrated that the key metabolites identified in
the FLEMENGHO cohort retained their discriminatory power in an independent dataset,
underscoring their potential applicability across diverse populations.

In our study, within the lipids superclass, fatty acids and glycerophospholipids
emerged as the most abundant metabolites distinguishing cases from controls. Fatty
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acids are known to impact CV disease through various mechanisms, including influencing
cardiac metabolism, contributing to lipotoxicity, altering the electromechanical properties
of cardiomyocytes, and modulating inflammation [15]. These multifaceted roles underscore
the significant influence of fatty acids on ASCVD risk and progression, reinforcing their
importance as key metabolites in our analysis.

In our analysis, SHAP values highlighted two key lipids: cholesterol and capric acid.
For cholesterol, lower levels were unexpectedly associated with ASCVD, which contrasts
with its traditional role as a risk factor for metabolic conditions and CV disease [16–18].
This paradox may be explained by the complex interactions within our dataset, partic-
ularly the influence of lipid-lowering treatments that could artificially lower cholesterol
levels in patients with existing CV disease. On the other hand, while a high cholesterol
level is generally linked to an increased risk of ASCVD, some studies suggest exceptions
to this association. For instance, Ravnskov [19] noted cases where elevated total choles-
terol levels were protective against ASCVD. Similarly, research by Bae et al. [20] and
Turusheva et al. [21] identified a U-shaped relationship between total cholesterol levels and
mortality, suggesting that both low and high cholesterol levels could be associated with
adverse outcomes. In addition, our analysis lacked detailed lipid profile data to distinguish
between low- and high-density lipoproteins (LDL and HDL). This distinction is critical, as
low levels of HDL are strongly associated with an elevated risk of coronary heart disease
and other CV conditions [22].

In our analysis, higher SHAP values for capric acid, also known as decanoic acid, were
positively associated with the presence of ASCVD. This finding contrasts with earlier stud-
ies, where capric acid and other short- to medium-chain saturated fatty acids (SFAs) showed
no significant association with the IHD risk [23]. In another study by Praagman et al. [24],
capric acid was grouped with other short-chain SFAs, such as butyric, caproic, and caprylic
acids, due to their low dietary intake, and this composite was associated with a slightly re-
duced IHD risk. In a recent study involving 10,197 men, Oravilahti et al. [25] demonstrated
that lower levels of capric acid were inversely associated with mortality, with CV disease
accounting for 25% of the observed deaths. Given these mixed findings, more research is
needed to clarify the direct impact of specific circulating levels of capric acid on the CV
disease risk in humans.

In the organic acids superclass, 3-methylhistidine emerged as the most significant
metabolite, with lower values being positively associated with ASCVD. Elevated serum
levels of 3-methylhistidine are generally associated with better lean muscle mass and over-
all nutritional status, and low levels of this metabolite have been identified as a strong,
independent predictor of CV events, particularly in patients undergoing maintenance
hemodialysis [26]. However, the findings are also mixed. Kouzu et al. [27] reported that
higher 3-methylhistidine levels were linked to lower event-free survival rates in patients
with symptomatic heart failure, suggesting a potentially complex role of this metabolite in
the CV risk across different patient populations. This discrepancy highlights the need for
further research to clarify how 3-methylhistidine levels impact the CV disease risk, poten-
tially by differentiating patient subgroups or accounting for underlying health conditions.

While the lipids- and organic acids-specific models performed well in our analysis,
the diversity of the most impactful features identified in SHAP analyses suggests that the
general model benefited from a broader array of metabolites across different superclasses.
This diversity likely enabled the general model to capture complex molecular interactions
that superclass-specific models alone may miss. By integrating metabolites from various
superclasses, the general model achieved a more nuanced differentiation between cases and
controls, indicating that a holistic approach is advantageous for accurately modeling the
underlying biochemical distinctions associated with ASCVD. For example, gluconic acid,
categorized under the organic oxygen compound superclass (i.e., not a lipid nor an organic
acid), was shown to be associated with conditions like hypertension and ischemic stroke
and has also been linked to social determinants of health [28]. In addition, Lu et al. [29]
also identified gluconic acid as a core metabolite in a multiclass diagnostic model for IHD.
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Moreover, examining the model’s results and SHAP values alongside the correlation
network suggests that isolating a single metabolite as a reliable biomarker for ASCVD
discrimination is challenging. The intricate web of metabolic interactions implies that a
multi-metabolite approach may be more effective, leveraging complementary information
from various metabolites to enhance classification performance. This complexity also
raises important questions about how targeted interventions to modify specific metabolite
levels might influence these interdependent relationships and, consequently, the perfor-
mance of classification models. Adjusting one metabolite could have cascading effects
on others, potentially altering the overall metabolic profile and impacting the disease
prediction, underscoring the need for an integrated perspective in biomarker development
and therapeutic strategies.

In cardiology, efforts to enhance the explainability of ML models have included meth-
ods such as class activation maps for image analysis [30] and SHAP values for survival
analysis [31]. Within the realm of metabolomics and ASCVD-related data, the application
of SHAP has been relatively limited. Existing studies have utilized SHAP to uncover key
features influencing ML models, including the cholesterol efflux capacity [32], dilated
cardiomyopathy [33], hypertension [34], and ASCVD risk in woman-specific datasets [35].
Our approach not only contributes to extending the use of explainable ML in metabolomics
for ASCVD classification but also introduces an innovative integration of metabolite cat-
egorization with SHAP visualizations. This additional layer of information enriches the
interpretability of the analysis. Since SHAP is model agnostic, this approach can readily be
applied to alternative ML models beyond XGBoost in future research.

Metabolomic data are high-dimensional, making it crucial to avoid overfitting in
ML models. Therefore, testing models on multiple datasets from different populations
can confirm the robustness and generalizability of the ML insights. In our study, the
strong results achieved in the external MetaCardis cohort validated our methodology for
identifying potential metabolite biomarkers for ASCVD detection. Although IHD is a
subset of ASCVD, 52.4% of cases in the FLEMENGHO cohort were identified as IHD-
specific. As a result, features associated with the broader ASCVD were applied to a more
specific condition, such as coronary atherosclerosis. Interestingly, the MetaCardis model
outperformed the model based on the FLEMENGHO cohort. This difference in performance
may be attributed to several factors: the larger sample size in MetaCardis, the selection of
only patients with IHD, and the pronounced differences between cases and controls in the
validation cohort. These included higher medication usage and a greater prevalence of
CV-related risk factors, which likely enhanced the model’s capacity to differentiate cases
from controls. In this sense, further studies with more homogenous cohorts (for instance,
an IHD-specific cohort or those with matched characteristics) are needed to validate this
metabolomic signature.

4. Limitations

The present study must be interpreted within the context of its limitations and
strengths. Regarding the training FLEMENGHO cohort, apart from being a case–control
study, ASCVD cases included a mix of atherosclerotic events such as IHD, revasculariza-
tion, peripheral arterial diseases, and cerebrovascular diseases, which might have different
metabolite affinities. The FLEMENGHO cohort had a relatively small sample size, which
limited the study’s statistical power and conducting subgroup analyses. The relatively
small training cohort size may have led to the identification of certain features that are
specific to the sample rather than generalizable to broader populations.

Due to discrepancies in available metabolites between the FLEMENGHO training
cohort and the external validation MetaCardis cohort, a subset analysis was conducted
within the FLEMENGHO cohort using only the metabolites that matched across both
datasets. After hyperparameter optimization, the model achieved a mean ROC AUC of
0.84 ± 0.09 in the FLEMENGHO cohort. In the test set, the model’s ROC AUC decreased to
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0.68, with an associated F1-score of 0.69. This adjustment allowed for a fairer performance
comparison between cohorts but led to a slight reduction in model performance.

The reduced model performance for the training cohort using only the simultaneously
available metabolites highlights the potential impact of excluding some metabolites initially
included in the training FLEMENGHO cohort, suggesting that certain metabolites may
have played a significant role in enhancing the original classification strength. Nonetheless,
the model still demonstrated robust predictive ability with the subset of shared metabo-
lites, showing that the core model was largely generalizable, despite these adjustments.
Future studies should focus on validating models in diverse cohorts with standardized
measurement protocols to better evaluate the generalizability.

Although we did not perform specific adjustments for medication use, we acknowl-
edge this as a limitation. Statins are known to lower cholesterol-related metabolites, while
antihypertensive drugs may affect pathways related to vascular and renal function, po-
tentially impacting metabolomic profiles. The observed associations might partly reflect
the metabolic effects of these drugs rather than solely underlying disease processes. For
example, the strong associations with cholesterol-related metabolites could be amplified by
the widespread use of statins among cases.

Finally, while SHAP provides valuable insights into feature importance by explaining
how each metabolite contributes to the model’s predictions, it is inherently correlational,
not causal. SHAP shows how variations in specific metabolites affect the output of the clas-
sification model but does not reveal whether those metabolites are directly involved in the
biological mechanisms of ASCVD. Moreover, further studies that consider different ASCVD
events separately could also compare and evaluate the generalizability of our findings.

5. Methods
5.1. Study Population

The training cohort was derived from a general population cohort from northern Bel-
gium (FLEMENGHO: Flemish study on Environment, Genes and Health Outcomes) [36]
The FLEMENGHO study received ethical approval from the Ethics Committee of the Uni-
versity of Leuven (S64406, S67011). In the current study, a subset from the FLEMENGHO co-
hort that had metabolomic data available was used in a retrospective case–control scenario.
We identified 63 patients with a history of ASCVD or evidence of advanced atherosclerotic
lesions and 52 non-smoking controls matched by age, sex, and body mass index (BMI) from
the same population.

External validation cohort—Open access metabolomic data from the MetaCardis project
(https://www.metacardis.net/, accessed on 15 May 2024) was used to derive the external
validation cohort [37]. It included 162 healthy controls and 173 patients with IHD, aged 18
to 75, recruited from Denmark, France, and Germany between 2013 and 2015. IHD cases
included patients with a first occurrence of acute coronary syndrome, patients with chronic
IHD and normal heart function, and patients with IHD and heart failure, as confirmed
by echocardiography showing a left ventricular ejection fraction below 45%. The control
group was matched with cases by sex and age (within 5 years match).

5.2. Metabolomic Profiling

For the training cohort, metabolomic data were acquired using UHPLC 1290/Triple
Quadrupole Agilent 6470, GC-Triple Quadrupole 7000C Agilent HP5MS, and UHPLC
U3000 Dionex/q-Exactive Orbitrap Thermo Reverse Phase systems following quality con-
trol steps. The mass spectrometer was set to automatic tune, and chromatography followed
a daily check for analytical suitability and carryover control.

To evaluate sample stability and analytical drifts, non-specific interactions were re-
moved by multi-injections of the quality control pooled sample pre-acquisition, and a
repeated quality control pooled sample was injected to monitor and correct the batch. After
that, 250 metabolites were available for analysis. For each of them, the area was log2
transformed and centered on the mean of the samples.

https://www.metacardis.net/
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The process to acquire metabolomic data from the external validation cohort was
described elsewhere [37]. In their study, metabolomic profiling was performed using
proton nuclear magnetic resonance, gas chromatography coupled to mass spectrometry,
targeted UPLC–MS/MS, and untargeted UPLC–MS.

5.3. Metabolite Data Preprocessing and Selection

For the analysis, we built the computational pipeline illustrated in Figure 4. R 4.4.1
was used for PLS-DA (mdatools) and Python 3.11.5 for missing value imputation (miceforest),
XGBoost model training (scikit-learn and xgboost) and explainability (networkx and shap).
The scripts related to these analyses are publicly available at https://github.com/HCVE/
ascvd_metabolomics, accessed on 29 October 2024.
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Figure 4. Analysis pipeline. In the training cohort (FLEMENGHO), we first identified relevant
metabolites to distinguish between atherosclerotic cardiovascular disease (ASCVD) cases and controls.
The metabolites were selected from Partial Least Squares Discriminant Analysis (PLS-DA) and then
used in eXtreme Gradient Boosting (XGBoost). Next, explainable machine learning of Shapley values
(SHAP) with metabolites’ categorization was explored. After that, in an external cohort, we evaluated
the same metabolites to distinguish between ischemic heart disease (IHD) cases and controls. In the
figure, M stands for the number of metabolites.

The first step of the pipeline was metabolites’ preselection. In Step (1a), metabolites
with more than 20% of missing values both in controls and in ASCVD cases were removed
following the “modified 80% rule” [38]. To avoid redundant predictors and multicollinear-

https://github.com/HCVE/ascvd_metabolomics
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ity problems, in Step (1b), metabolites that were very strongly correlated with multiple
biomarkers (absolute Pearson’s or Spearman’s correlation > 0.9 with 2 or more variables)
were also removed [39]. For the remaining pairs of metabolites whose absolute Pearson’s
or Spearman’s correlation was >0.9, one metabolite was kept for analyses (Step 1c). A
high cutoff was used to not exclude variables that might be similar but that carry different
information and might also be involved in distinct interactions.

Missing values were imputed with Multiple Imputation by Chained Equations (MICE)
per class. MICE uses chained equations to iteratively fill in missing data by modeling each
feature with missing values as a function of the others [40]. Five multiple imputations were
averaged to obtain the final one.

PLS-DA, a classical method for dimensionality reduction, was used to select key
metabolites associated with ASCVD. PLS-DA is widely applied in biological and chemical
data analysis, and it combines dimensionality reduction and discrimination by project-
ing data onto components maximizing variance and class separation [41]. The PLS-DA
model was built using 5-fold stratified cross-validation to ensure the stability of the results.
Data were centered and scaled, and the optimal number of latent factors was determined
automatically using Wold’s criterion [42], testing up to 10 latent factors. This criterion
compares the Predictive Residual Sum of Squares (PRESS) values between successive
components, selecting the number of latent factors when the ratio of PRESS for the cur-
rent component to the next one indicates minimal improvement in the predictive ability.
A variable importance in projection (VIP) threshold of 1.2 was used to select the most
discriminant metabolites [43].

5.4. Domain Knowledge Categorization

The distribution of the selected metabolites was analyzed in terms of their super-
class categorization, which groups the metabolites according to general composition or
shape [44]). For simplicity, some superclasses will be mentioned in a short version through-
out the text (“lipids and lipid-like molecules” will be referred to as “lipids”, “organic
acids and derivatives” as “organic acids”, and “alkaloids and derivatives” as “alkaloids”).
Information was retrieved based on the Human Metabolome Database (HMDB) [45].

We also analyzed the metabolites’ interactions via a correlation network. The nodes cor-
responded to the selected metabolites and the edges’ thicknesses depended on the strength
of their Spearman’s pairwise correlations. Nodes were placed using the Fruchterman–
Reingold force-directed algorithm.

5.5. Machine Learning Modeling and Explainability

After dimensionality reduction with PLS-DA, XGBoost [46] was used to assess the
validity of the selected features to distinguish ASCVD cases and controls from the FLE-
MENGHO cohort with a non-linear approach since it is a tree-based ensemble method.
The dataset was split into training (75%) and test (25%) sets. The training set was used to
compute the centering and scaling parameters, which were then applied to both the training
and test sets. Similarly, the imputation was applied to the test set using the parameters
derived from the training set.

To optimize the XGBoost model, a grid search was conducted using 5-fold stratified
cross-validation of the training set. The model was optimized for the weighted area under
the receiver operating characteristic curve (ROC AUC). The hyperparameters included in
the grid search are presented in Supplemental Table S1.

Once the best set of hyperparameters was identified, the XGBoost model was retrained
on the entire training set using these optimized settings. The final model was then applied
to the test set to evaluate its predictive performance on unseen data. Model performance
was assessed through weighted ROC AUC and F1-score.

Following the training and evaluation of the XGBoost model, the SHAP analysis was
applied, aiming at explaining the model’s predictions and understanding the contributions
of individual metabolites to the classification outcomes. SHAP beeswarm plots were
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generated to visualize the distribution of SHAP values across all samples in the test and
training sets. Each feature’s mean absolute SHAP values were computed and ranked on the
y-axis based on their contributions to the model’s predictions. Features with higher mean
SHAP values were considered more influential in driving the association with ASCVD. The
values on the x-axis represent the contribution of each feature to the prediction for each
sample, with positive values indicating a positive impact on predicting ASCVD cases.

To provide deeper insights into the metabolic features associated with ASCVD, we
added a modification to SHAP by aggregating metabolites’ superclass information to the
same plot in the form of color code. Besides deriving a single model considering all selected
features, we also built separate models considering the metabolites’ superclasses.

5.6. External Validation

We investigated the validity of the metabolites identified in the training FLEMENGHO
cohort using the MetaCardis cohort. The same modeling strategy for training and evalu-
ating XGBoost was used, allowing us to obtain optimal hyperparameters for the external
validation dataset, and the performance was evaluated in terms of the weighted ROC AUC
and F1-score of the test set.

5.7. Statistical Analysis

For statistical analyses, we used Python 3.11 (scipy and statsmodels libraries). Com-
parisons between groups were performed using a two-sided t-test for the means of two
independent samples (in the case of continuous variables) or the z-test for proportions (in
the case of binary variables), with a significance level of 0.01.

6. Conclusions

The combination of different metabolites has the potential to build classifiers for AS-
CVD. Integrating metabolite categorization within the SHAP analysis further enhanced
the interpretability of the model, offering insights into metabolite-specific contributions to
the ASCVD risk. Thus, integrating metabolomics domain knowledge with explainable ML
techniques holds significant promise in advancing the understanding and management
of ASCVD. The integration of metabolite categorization facilitated a more structured and
interpretable analysis, making it easier to contextualize the roles and relative significance
of different metabolite groups in ASCVD discrimination. Future work should continue to
address the challenges in data quality, interpretability, and clinical validation to fully realize
the benefits of this integrative approach in precision medicine for CV disease. In addition,
these findings require further confirmation and validation in larger prospective popula-
tion studies where the effects of specific demographics, anthropometrics, and medication
characteristics on the output might be minimized as much as possible.
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