
Citation: Jászberényi, M.; Thurzó, B.;

Jayakumar, A.R.; Schally, A.V. The

Aggravating Role of Failing

Neuropeptide Networks in the

Development of Sporadic Alzheimer’s

Disease. Int. J. Mol. Sci. 2024, 25,

13086. https://doi.org/10.3390/ijms

252313086

Academic Editor: Katalin

Prokai-Tatrai

Received: 12 October 2024

Revised: 27 November 2024

Accepted: 2 December 2024

Published: 5 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

The Aggravating Role of Failing Neuropeptide Networks in the
Development of Sporadic Alzheimer’s Disease
Miklós Jászberényi 1,* , Balázs Thurzó 1,2, Arumugam R. Jayakumar 3 and Andrew V. Schally 3

1 Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary;
thurzo.balazs@med.u-szeged.hu

2 Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6,
H-6725 Szeged, Hungary

3 Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine,
Miami, FL 33136, USA; ajayakumar@med.miami.edu (A.R.J.); aschally@med.miami.edu (A.V.S.)

* Correspondence: cleofide1731@gmail.com

Abstract: Alzheimer’s disease imposes an increasing burden on aging Western societies. The disorder
most frequently appears in its sporadic form, which can be caused by environmental and polygenic
factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of
cases, Alzheimer’s disease represents an aggravated form of the natural aging of the central nervous
system. It can be characterized by the decreased elimination of amyloid β1–42 and the concomitant
accumulation of degradation-resistant amyloid plaques. In the present paper, the dysfunction of
neuropeptide regulators, which contributes to the pathophysiologic acceleration of senile dementia, is
reviewed. However, in the present review, exclusively those neuropeptides or neuropeptide families
are scrutinized, and the authors’ investigations into their physiologic and pathophysiologic activities
have made significant contributions to the literature. Therefore, the pathophysiologic role of orexins,
neuromedins, RFamides, corticotrope-releasing hormone family, growth hormone-releasing hormone,
gonadotropin-releasing hormone, ghrelin, apelin, and natriuretic peptides are discussed in detail.
Finally, the therapeutic potential of neuropeptide antagonists and agonists in the inhibition of disease
progression is discussed here.

Keywords: Alzheimer’s disease; neuropeptide; ghrelin; apelin; RFamides; neuromedin; orexin;
urocortin; CRF; GHRH; GnRH

1. Sporadic Alzheimer’s Disease as an Accelerated Form of the Aging of the Central
Nervous System (CNS)

Alzheimer’s disease is the most frequent form of the proteinopathies of the central
nervous system (CNS), in which various undigestible protein derivatives accumulate in
the brain and cause severe neurodegeneration. These proteinopathies include the prion
diseases (PrDs) (e.g., Creutzfeldt–Jakob disease), the synucleinopathies (e.g., Parkinson’s
disease), the amyloidoses (e.g., Alzheimer’s disease, early stage), and the tauopathies
(e.g., amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease, late stage). In some
disorders, rarer protein types (e.g., huntingtin, ataxin, and superoxide dismutase (SOD))
deposit first in specific CNS regions (in the striatum, the prefrontal cortex, the spinal cord,
and the cerebellum) and then in the whole CNS. Ultimately, they manifest themselves as
Huntington’s disease, ALS, frontotemporal lobar degeneration (FTD), and spinocerebellar
ataxia, respectively [1,2].

In these diseases, monomeric proteins with an α-chain structure misfold, gain β-pleat
conformation, and aggregate [1]. The formation of the β-pleat variant can be attributed
to three factors, which also determine the main etiologic groups of the disorders. In the
congenital group, which represents the smallest portion of familial cases, the β-pleat is
formed due to monogenic mutations of complete penetrance. The onset of the disease
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is markedly early, and the progression is relentlessly fast. They all represent familial
Alzheimer’s disease (FAD) with the clinical appearance of early-onset Alzheimer’s disease
(EOAD). Personality changes, anxiety, mood swings, memory loss, impaired thinking,
blurred vision, difficulty speaking, sudden and jerky movements, and increased startle
response are the common initial symptoms [3,4]. Then, complete mental deterioration
develops in months and the patient succumbs to death in less than a year. However,
monogenic conditions of incomplete penetrance, such as certain apoE polymorphisms, may
give rise to late-onset Alzheimer’s disease (LOAD) [5,6].

In sporadic Alzheimer’s disease (SAD), a specific constellation of polygenic and
environmental factors is required to facilitate β-pleat formation. This combination sets
off a pathophysiologic chain reaction, leading to untimely cognitive decline. This cascade
process is attributed to a biochemical blind alley; although both the α-chain and the β-pleat
variants are stable thermodynamically, the free energy level of the β-pleat conformation is
lower and it is also resistant to proteases [7]. Therefore, if the α-chain variant is facilitated
“to jump over” the energy barrier, the β-pleat isomer inevitably accumulates over time. This
conformational change can be accelerated by several factors [7]. The necessary momentum
to bypass the energy barrier can be provided by kinetic impulses such as repeated cerebral
contusions and concussions from traumatic brain injuries (TBIs) giving rise to chronic
traumatic encephalopathy (CTE) [8,9]. A gel–sol shift in the cytoplasm may also speed
up these conformational changes [7]. Organic solvents (e.g., general anesthetics and
organic solvents in glue) and head traumas are the most frequent reasons for such a
gel–sol shift. But general anesthetics (especially smaller-sized volatile agents) can directly
initiate misfolding and oligomerization giving rise to the clinical syndrome of postoperative
cognitive dysfunction (POCD) [10]. Ultimately, metallic ions [(aluminum (Al3+), manganese
(Mn2+), and copper (Cu+)] and acquired β-pleat isoforms can act as catalysts, reducing
the height of the energy barrier [7]. From then onward, the β-pleat templates operate as
autocatalysts for misfolding and the initial foci later stimulate propagation in a vicious
cycle [7]. The progression of these secondary forms is more insidious, and the symptoms
become apparent much later, which makes a differential diagnosis more complicated,
especially the separation from chronic vascular dementia based upon clinical findings.

The autocatalytic property of the β-pleat templates is also responsible for the conta-
gious nature of some variants of these diseases [11,12]. Ingestion or inoculation of β-pleat
templates is accountable for nidus formation and propagation of the pathobiochemical
conformation in the infectious group. These proteinaceous, infectious particles were named
prions, and later, they were verified to represent the pathophysiologic β-pleat variant
(PrPsc) of α-helical chaperon molecules (PrPc) [13]. That is why prions were once consid-
ered unique transmissible agents, but recent progress in the research has revealed that the
β-pleat variants of several common proteins (α-synuclein, amyloid, tau protein, huntingtin,
ataxin, and SOD1) share the pathophysiologic properties of prions, such as protease resis-
tance, catalytic template activity, propensity to aggregation, and infection-like spread [1].
Similar to the monogenic forms, the infectious form progresses dramatically fast.

The spread of protein misfolding operates at different levels during the pathogenesis
of neurodegenerative disorders [2]. It includes intermolecular, cell-to-cell, and brain region-
to-brain region stages. As mentioned above, misfolding can also spread from individual
to individual as has been demonstrated in the case of PrDs. Contagious spread is usually
related to inoculation of contaminated human tissues (extracted growth hormone (GH),
corneal transplant, and dural graft), deep cortical EEG procedure, or consumption of
infected proteins, such as kuru or bovine spongiform encephalopathy (BSE) and the variant
of human Creutzfeldt–Jacob disease (vCJD)] caused by scrapie [14]. In addition, vCJD
infectious spread has already been suspected in Parkinson’s disease, Alzheimer’s disease,
and ALS [15]. This is why a new concept is being elaborated on, which assigns a general
etiopathogenetic role to protease-resistant catalytic β-pleat conformations [16].

In the case of Alzheimer’s disease, several etiological factors have been implicated in
its pathogenesis (Figure 1) [17,18].
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young patient twice, taking the soul first. The genetic background of EOAD is well known, 
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Figure 1. The outline of the pathophysiology of Alzheimer’s disease. APP: amyloid precursor
protein; Aβ: amyloid-β; α2-MG ↑: increase in α2-macroglobulin; BACE: β-site APP-cleaving en-
zyme (β-secretase); COVID-19: coronavirus disease; Down sy: Down syndrome; GOF: gain of
function; EOAD: early-onset Alzheimer’s disease; LOAD: late-onset Alzheimer’s disease; FAD: famil-
ial Alzheimer’s disease; SAD: sporadic Alzheimer’s disease; CTE: chronic traumatic encephalopathy;
TBI: traumatic brain injury.

It was mentioned that epidemiologically, Alzheimer’s disease exists in familial and
sporadic forms. FAD represents 20% of the cases, and it clinically may appear as LOAD
or the most-feared EOAD. LOAD cases of FAD usually can be attributed to monogenic
conditions of incomplete penetrance, such as apoE polymorphism, and they account for
circa 15–20% of the cases. EOAD represents only a small fraction (1–5%) of the cases.
However, due to its complete penetrance, it develops below 65 years and kills a relatively
young patient twice, taking the soul first. The genetic background of EOAD is well known,
and we have several animal models to examine it [19–21]. This variant is transmitted in an
autosomal-dominant manner and results from increased formation of amyloid-β1–40 and
amyloid-β1–42, a process which results from a pathobiochemical metabolism of amyloid
precursor protein (APP) [17,18].

Normally, APP is sequentially cleft by α- and γ-secretases and the process yields
soluble APP-α (SAPP-α) [17]. Actually, the α-secretase name refers to a whole group of
enzymes, which belong to the ADAM (“a disintegrin and metalloprotease domain”) group
(ADAM9, ADAM10, ADAM17, and ADAM19) of peptidases. The α-secretases, in addition
to cleavage of APP, cut further important biologically active peptides such as tumor necrosis
factor-α (TNF-α; cleft by ADAM17), L-selectin (cut by ADAM17), cadherins (e.g., ephrin
processed by ADAM10), the triggering receptor expressed on myeloid cells 2 (TREM2, cut
by ADAM10 and ADAM17), and Notch peptide (cleft by ADAM10 or ADAM17). ADAM17
is also called tumor necrosis factor-α-converting enzyme (TACE) [22–24]. SAPP-α repre-
sents the normal, physiologic variant. It is neuroprotective and regulates axonal transport,
synapse formation, synaptic repair, and neural plasticity [25–27]. Equally important is
that the tandem activity of ADAMs and the γ-secretase is also required for the proper
signaling in the Notch pathway [28]. Similar to the processing of SAPP-α, cleavage of the
Notch protein by an ADAM is followed by γ-secretase-mediated proteolysis. According to
experimental data, the Notch pathway plays an essential role in neurogenesis and synaptic
and dendritic remodeling even in the adult brain. That is why mutation or oversaturation of
γ-secretase can also contribute to the development of Alzheimer’s disease through the fail-
ure of Notch signaling [29,30]. Perhaps that is the reason for the failure of clinical trials with
γ-secretase inhibitors, which repeatedly returned disappointing results [29]. In contrast, in
pathophysiologic circumstances, an abnormal cleavage of APP by the β-site APP-cleaving
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enzyme-1 (BACE1) happens prior to the action of γ-secretase [17]. BACEs normally cleave
voltage-gated sodium channels, neuregulin, and pre-melanosome protein [31,32]. How-
ever, in the processing of APP, BACE1 activity results in serious neurotoxic amyloid-β
(Aβ) derivatives [33]. Recently, several other enzymes such as meprin-β, cathepsin B,
and ADAMTS4 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif,
member 4) have been identified as alternative β-secretases [34].

In EOAD, several dominantly inherited abnormalities have been discovered as causative
factors [17,35,36]. The APP is coded by chr. 21; therefore, sufferers of Down syndrome have
an extra copy of the APP. This way, unavoidably, in their CNS, the overproduction of Aβ can
be observed and the disease develops in patients when they are in their early forties. Another
reason is when APP mutations render the APP inaccessible to α-secretases, APP can be
processed only by BACEs. Regarding theγ-secretase activity, two rival hypotheses have gained
popularity among researchers. Supporters of the gain-of-function (GOF) mutation hypothesis
argue that the GOFs that affect the catalytic presenilin (PSEN) sub-domains of the γ-secretase
lead to acceleration in both the physiologic and the pathophysiologic pathways. Obviously,
over time, the insoluble, oligomers of Aβ derivatives (Aβ1–40 and especially the even more
toxic Aβ1–42) [37] will inevitably accumulate at the expense of the soluble, decomposable
conformation [38]. On the other hand, those who measured decreased activity of the γ-
secretase, suggest that loss-of-function mutations (LOF) are responsible for this form of FAD.
In their view, not the Aβ aggregation but decreased Notch signaling must be blamed as the
culprit [29,30]. That is why they dismiss the concept ofγ-secretase inhibition [29]. Theoretically,
resistance to α-secretase should represent a more serious abnormality of APP metabolism than
the GOF mutations of the PSEN, if an exclusive pathophysiologic role is attributed to amyloid-
β overproduction and oligomer burden. It is because GOF mutations of PSEN increase both
the physiologic SAPP-α and the toxic Aβ production, while APP mutations at α-secretase
cleavage points simply exclude SAPP-α formation and allow only Aβ secretion. However,
several lines of evidence suggest that PSEN mutations have more severe consequences than
those phenotypes with α-secretase resistance [39,40]. This finding therefore supports the
view that the failure of Notch signaling, caused by LOFs of PSENs, is a more important
causative factor in those monogenic forms of Alzheimer’s disease, which are brought about
by γ-secretase mutations. Increased cleavage of APP at the β-site by BACE1 represents the
last known monogenic forms of FAD. These mutations make the APP more accessible to
BACE1, and the Aβ processing is accelerated by 10- to 50-fold. To a lesser extent, epigenetic
upregulation of BACE1 expression can lead to similar consequences [33]. Aβ production
increases and pathobiochemical alterations may oversaturate the γ-secretases. This disrupts
the Notch pathway, seriously compromising the process of normal neurogenesis [29,30].

In the past few decades, studying EOAD has greatly improved our understanding
of the underlying pathophysiological processes of Alzheimer’s disease. However, these
experiments shed light only on the consequences of Aβ and hyperphosphorylated tau
accumulation. We could hardly learn anything from them about the prevention and
management of the sporadic form of Alzheimer’s disease (SAD), which represents the lion’s
share of the cases (75–85%) and usually manifests itself clinically in late-onset Alzheimer’s
disease (LOAD) [19–21]. LOAD accounts for 95–99% of the cases [19,20] and can be
attributed to a few monogenic and numerous polygenic and environmental factors [38].
The penetrance of LOAD is far less than that of EOAD since familial clustering is 3-
fold higher in EOAD than in LOAD [19,20]. Further, while in EOAD the increase in Aβ

production is the characteristic alteration, LOAD predominantly reflects the abnormality
of the opposite end of Aβ metabolism. Namely, not the formation, but the decomposition
is affected by environmental factors or several minor mutations which aggravate each
other’s consequences.

In the cell, Aβ can either be broken down by microglial cells (phagocytosis) or by
neural elements. In the latter, astrocytes take up Aβ by receptor-mediated processes and
try to decompose it intracellularly [17]. The breakdown of Aβ is a cumbersome process.
Intracellularly, it happens in the endosomes, lysosomes, and proteasomes after Aβ is taken
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up and transported by multivesicular bodies to the place of degradation. Extracellularly, Aβ

is cleared by ubiquitous peptidases, with different efficiency. The most effective enzymes
are angiotensin-converting enzyme (ACE), endothelin-converting enzyme (ECE), insulin-
degrading enzyme (IDE), neprilysin (NEP), several matrix metalloproteases (MMPs), and
plasmin [17,41,42].

As outlined above, in LOAD, the clearance process can be impaired by monogenic
mutations of incomplete penetrance and polygenic and environmental factors. Obviously,
in several conditions, the contribution of individual risk factors cannot be exactly quantified,
because in the pathophysiologic processes, their impact is completely interwoven. Other
than age, more than 60 factors have been suggested so far [43]: with the most prevalent
that have been connected to the disease being repeated head injuries, lipid metabolism
disorders, type II diabetes mellitus (type II DM), vascular diseases (e.g., hypertension),
stressful conditions (e.g., major depression), chronic inflammatory diseases, female gender
and menopause, and disruption of the glymphatic circulation [19,20,43–46].

The most important monogenic factor of incomplete penetrance, which has been indi-
rectly linked to LOAD, is apolipoprotein E4 (apoE4) hetero- and homozygosity. However,
carrying such a mutation does not necessarily mean a “death sentence”. In general, apoE4
carriers are several (three for heterozygotes and six for homozygotes) times more prone to
develop the disease, while apoE2 homozygosity represents a protective phenotype [5,6].
In the CNS, the most significant receptor group for apoEs is the low-density lipoprotein
receptor-related proteins (LRPs). LRPs are responsible for cholesterol and Aβ uptake into
the neurons and astrocytes. Since apoE4 shows the highest and apoE2 confers the lowest
affinity to their receptors, the apoE4-Aβ complex increases the receptor-mediated uptake
of Aβ into the neural elements and leads to intracellular aggregation [5,6,17]. Further,
apoE4 was demonstrated to disrupt Aβ clearance at the blood–brain barrier (BBB) in an
isoform-dependent manner (ApoE4 > ApoE3 > ApoE2) and to promote cerebral amyloid
angiopathy pathogenesis [47].

Polygenic conditions, metabolic syndrome, and type II DM appear to be the most
important risk factors [48]. Nevertheless, the exact pathophysiological mechanism behind
this epidemiologic association has not yet been clarified. It seems that at the beginning
of type II DM, which is characterized by hyperinsulinemia, oversaturation of IDE, and a
decrease in Aβ clearance can be a significant contributing factor [49,50]. It seems highly
probable since IDE is one of the most important enzymes, which are responsible for the
breakdown of Aβ. However, non-enzymatic glycation of Aβ and increased neuronal
uptake by the receptors for advanced glycation end products (RAGE) can also aggravate
the pathophysiologic process [17]. Later, in the so-called spent-out phase, a decrease
in insulin secretion and hypoglycemia of the insulin-dependent phagocytes will impair
the microglial scavenge of Aβ, which precipitously increases the intracellular burden by
aggregates. This ultimately causes neuronal inflammation and overproduction of acute-
phase proteins such as α2-macroglobulin (α2MG). Like apoE, α2M functions as a chaperone
and accelerates especially the neuronal uptake and intracellular aggregate formation of
Aβ by the LRPs [17,38]. Through neuroinflammation [43,51,52], several infectious (e.g.,
herpes simplex infection) [53] or non-infectious (e.g., multiple sclerosis (MS) [54] and/or
major depression [55]) diseases can make the brain more susceptible to developing amyloid
rafts. Moreover, in chronic inflammatory processes, such as atherosclerosis, a common
finding is the upregulation of plasminogen activator inhibitors (PAIs), which aggravate
the development of “inflammatory sludge”. However, in this way, in the CNS, they can
also inhibit the activity of plasmin and the removal of Aβ [56]. An important caveat of
modern pharmacology is the inadvertent application of MMP inhibitors to delay the spread
of chronic inflammatory or metastatic processes. Some of them (such as Periostat) [57] are
already approved by the FDA, but their application raises concerns from theoretical points
of view, since in the long term, they may also interfere with the degradation of Aβ.

In hypertension, ACE activity can be impaired by the condition itself or by therapy.
Both in the primary and secondary forms of hypertension, those conditions which are
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associated with high renin activity may lead to oversaturation of ACE [58]. Since ACE2 is
the specific receptor for COVID-19 binding [59], COVID-19 infection can also impair the
proper degradation of Aβ by ACE2 [59,60].

Infections by neurotropic viruses, as triggering factors in the development of neu-
rodegenerative disorders (e.g., post-encephalitic Parkinsonism after encephalitis lethargica
caused by influenza) have already been suggested [61–63]. It appears especially important
in those infections that are associated with anosmia, though some authors suggest that anos-
mia and neuroinvasion may reflect two independent processes [64]. Retrograde olfactory
neuroinvasion is a common finding in COVID-19 [65], and this process was also described
in the case of herpes and influenza virus infections [66] and may lead to direct neuronal
loss due to the cytopathic action of the virus. This phenomenon invokes two important
neurological parallels. First, practically in all forms of neurodegenerative disorders [most
typically in Lewy body dementia, Parkinson’s disease, Alzheimer’s disease, FTD, and
progressive supranuclear palsy (PSP)], anosmia can be an early warning sign of insidious
disease progression [3,4,67]. Second, the olfactory cortex possesses unique connections to
the amygdala and the hippocampus, and both regions are the most severely affected by
neurodegeneration [68]. Therefore, it is intriguing to surmise that cell-to-cell propagation
of the direct cytopathic viruses, or the secondary metabolic derangement through the ma-
nipulation of ACEs, can initiate the pathophysiological cascade of neurodegeneration. Not
only infections but also inflammatory conditions with high levels of mediator release can
contribute to Alzheimer’s disease. ACE dysfunction may also aggravate these processes,
as ACE also functions as a degrading enzyme of such inflammatory mediators such as
bradykinin and Substance P [69]. In inflammation, ACEs can also be oversaturated, and the
breakdown of Aβ consequently decreases. This way, theoretically, even antihypertensive
therapy could impair Aβ degradation, since ACE inhibitors belong to the most common
group of antihypertensives. This especially goes for those promising antihypertensive
combinations, which aim to inhibit both NEP and ACE in heart failure. NEP inhibition is
beneficial since NEP breaks down natriuretic peptides (NPs). This way, in addition to the
decrease in peripheral resistance (afterload) caused by ACE, the elimination of systemic
edemas by NPs, through increased diuresis, will decrease the preload [70].

The glymphatic system is responsible for waste clearance in the CNS [44–46]. It is pro-
pelled by the heart, and its waves coincide with the pulse waves. A decline in cerebrospinal
fluid (CSF) production, failure of perivascular aquaporin-4 (AQP4) polarization, and gliosis
all directly impede directional glymphatic flow and debris removal. However, indirectly,
other factors seem to play an equally important role. Increased atrial pressure (e.g., in
atrial fibrillation, mitral valve diseases, and left ventricular failure), sleep deprivation,
and decline in sleep quality (e.g., obstructive sleep apnea and substance abuse) give rise
to the stagnation of glymphatic flow with diminished brain fluid clearance. In normal
aging, all the aforementioned problems can be observed in patients [44–46]. Retention of
extracellular protein debris facilitates protein aggregation in a vicious cycle. The spread
strikingly follows the routes of the glymphatic circulation reflecting that its failure is a
marked contributing factor to the progress of the disease [44–46].

Female gender and menopause [71,72], as well as stressful conditions and neuropsy-
chiatric disorders [73–76], all appear to be very important epidemiologic factors. However,
in their pathophysiology, neuropeptides are the lion’s share and their contribution will be
discussed in the following chapters.

Among exclusively environmental contributors that can accelerate the progress of
Alzheimer’s disease, the above-discussed viral infections [53], CTE [8,9], and intoxications
received the most attention [10,77]. CTE caused by single or repeated TBI represents by far
the most important causative factor. It directly impairs the especially vulnerable choliner-
gic [78,79] and monoaminergic afferents [80,81], which originate in the basal ganglia, the
thalamus, and other regions of the limbic system and target the glutamatergic pyramidal
cells of the hippocampus. Moreover, CTE can lead to inflammation and increased formation
and aggregation of β-pleats. As for intoxications, organic solvents, heavy metals (lead,
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arsenic, cadmium, and mercury), Al3+, Mn2+, and Cu+ have been implicated in the patho-
genesis [10,77]. Toxic metals have a well-known deleterious effect on astrocytes [82] and
macrophages such as the microglial cells. These can inhibit phagocytotic removal and intra-
cellular decomposition of Aβ and shift the activity of macrophages into a proinflammatory
direction [83,84]. Moreover, toxic metallic ions can form pathologic chelates with the classic
enzymes of the Aβ decomposition pathway, replacing the physiologic metallic cofactors
such as calcium (Ca2+), magnesium (Mg2+), and zinc (Zn2+) [23,42,85,86]. This impairs the
normal processing of APP, the signaling of the Notch pathway, and the decomposition of
Aβ. It is because both the ADAMs and the breakdown enzymes (IDE, ACE, ECE, NEP, and
MMPs) are all metalloproteases, [23,42,86]; therefore, their inhibition decreases both the
generation of SAPP-α and the decomposition of Aβ.

At a cellular level, Aβ first accumulates extracellularly, and then it forms insoluble
“rafts” in the cell membrane [17]. This damages the membrane-bound ATPases, stimulates
the N-methyl-D-aspartate (NMDA) receptors, and initiates the formation of membrane
attack complexes (MACs). This way, membrane conductivity increases, which results in
cytosolic calcium Ca2+ overload. Extracellular Aβ also directly inhibits glucose transporters
(GLUT1 and GLUT4). When Aβ gets into the synaptic cleft, it seriously interferes with
the normal synaptic transduction of operative and trophic signals. Aβ can bind to gluta-
mate (Glu) receptors such as the NMDA and the α-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid (AMPA) receptor, as well as the nicotinic acetylcholine (Ach) receptor and
the voltage-gated Ca2+ channel (VGCC). Therefore, it impairs synaptic transmission by
altering the balance between long-term potentiation (LTP) and long-term depression (LTD).
Aβ also binds to the p75 neurotrophin receptor (p75NTr) and tyrosin kinase A and B (TrkA
and TrkB) receptors. This way, both brain-derived neurotrophic factor (BDNF) and nerve
growth factor (NGF) secretion decreases [17]. In addition to inhibition, Aβ also causes
endocytosis and the downregulation of the aforementioned receptors.

As discussed above, undigested toxic Aβ can primarily enter the neurons via the
LRPs and RAGE receptors [17]. This receptor-mediated process is facilitated by chaperone
molecules such as apoE4 and α2M. On the one hand, cellular uptake of Aβ to microglial cells
and astrocytes results in their stimulation and the release of proinflammatory cytokines.
On the other hand, in the neurons, this gives rise to intracellular aggregation, neuritic
plaque formation, and neurotoxicity [17]. The neurotoxic process is centered around the
pathophysiological cascades caused by mitochondrial injury [17]. Once in the cell, Aβ

molecules will bind to the mitochondrial membrane and then get into the mitochondrion.
There, Aβ directly attacks electron transport complex IV and key Krebs cycle enzymes and
leads to the fragmentation of mitochondrial DNA (mtDNA). “Hijacking” of the electron
transport brings about excessive formation of reactive oxygen species (ROS) and reactive
nitrogen species (RNS). Their peroxidative attack on membrane lipids yields mitochondrial
toxins (hydroxynonenal, isoprostanes, and malondialdehyde), which inhibits complex I.
Furthermore, ROS and RNS are generated at complexes I/III. Mitochondrial membrane
polarity (MPP) collapses, and permeability transition pores (Ψm) open. The leakage of
compounds of prokaryote origins such as cytochrome-c and N-formyl-Methionine-Leucin-
Phenylalanine (FMLP) activates caspases and initiates apoptosis. Mitochondrial toxins also
inhibit GLUT1 and GLUT4 [17].

Together with energy deprivation and toxic derivative formation, excessive Ca2+ in-
flux and hyperphosphorylation play equally important roles in this pathophysiological
cascade [17]. Through Ca2+ entry and the formation of ROS, RNS, and lipid peroxida-
tion products, Aβ stimulates kinases such as the p38 mitogen-activated protein kinase
(MAPK), c-Jun N-terminal kinase (JNK), glycogen synthase kinase 3β (GSK-3β), and cyclin-
dependent kinase 5 (CDK5). While JNKs and p38 MAPK cause apoptosis, the stimulation of
GSK-3β and CDK5 together with its activator subunit p25 give rise to tau phosphorylation.
Subsequently, these steps hinder tau protein assembly and cause hyperphosphorylated
tau to detach. This leads to destabilization of microtubules and aggregation, disruption
of axonal transport, and aggregation of hyperphosphorylated tau proteins into neurofib-
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rillary tangles. Blockage of nutritional transport is accompanied by the failure of trophic
signaling in the synaptic cleft since Aβ directly inhibits BDNF and NGF release. Then,
microstructural changes follow, such as the reduction in the number of dendritic spines and
the decrease in hippocampal synapses, which lead to mild cognitive impairment. Later, the
progress of the disease brings about macrostructural changes due to widespread neuronal
death. Shrinkage of several brain regions (most significantly the cognitive centers like the
hippocampus) together with virtual enlargement of the ventricles is accompanied by a
serious decline in cognitive functions. Ultimately, bed-ridden patients succumb to death
caused by septic shock, which is brought about by aspiration pneumonia, decubitus, or
ascending urogenital infections [17].

In summary, we would say that the sporadic forms of neurodegenerative conditions
are not diseases, but inevitable consequences of the normal aging of the brain. In our
view, the increase in incidences can be attributed to increased longevity and the enormous
contemporary burden of environmental factors (stress, known or unknown forms of infec-
tions and intoxications, chronic diseases, psychiatric disorders, substance abuse, and sleep
deprivation) [44–46]. However, a decrease in the formation and increase in the clearance
of Aβ can significantly delay the progress of the condition. Since all the above-discussed
environmental factors first cause an imbalance in the intricate equilibrium of neuropeptide
control and the gut–brain axis [76,87,88], it is not a far-fetched idea that their modulation
offers a viable opportunity in the palliative treatment of neurodegenerative “diseases”.

2. Neuropeptides, the Modulators of Different CNS Processes

Neuropeptide research started with the discovery of the effects of vasopressin [89]
and oxytocin [90] and the identification of Substance P [91]. Since then, we have accumu-
lated enough knowledge to separate them from the classical neurotransmitters [92–95].
Neuropeptides are obviously much larger molecules, and their metabolism is completely
different from that of the small molecular transmitters. For instance, the available variety
of ligands is larger, as numerous splice variants can derive from the original gene [93].
The spectrum of ligands is further diversified by the fact that neuropeptides are not taken
back to the neuron by a specialized reuptake system. They are processed by peptidases,
which yields further biologically active compounds [94]. This way, their half-life is more
prolonged and especially their derivatives can diffuse far from their original release site.
Therefore, they can act in a paracrine, an autocrine (i.e., post- and presynaptically), and
an endocrine manner [94]. Due to the above-mentioned biochemical features, their effect
develops slowly, but it is longer-lasting, which strongly resembles the activity of hor-
mones [96,97]. That is why they are often referred to as neurohormones and their activity
is described as “neuromodulation” [92–94]. Another specific feature of neuromodulation is
that it is realized through a much broader array of receptors than that of the neurotransmit-
ters. Moreover, the heterodimerization of their receptors can yield an infinite number of
combinations and most versatile and flexible ways of signal transduction [93].

Thus, we can summarize that, from a functional point of view, neuromodulation
strikingly differs from neurotransmission in the following aspects. 1. Neuromodulation
is more flexible and resilient 2. It is not ephemeral, but much longer-lasting and often
more profound (it does not have a reuptake system, and the breakdown often yields
active metabolites) 3. It is more buffered, since one neuropeptide can easily take over
the function of another one (due to this functional overlapping, knock-out animals do
not show conspicuous symptoms). Moreover, it is very important to add that many
peptide hormones, which are expressed in the CNS, have completely different activities
than neuromodulators. For instance, ANP and BNP are potent regulators of salt–water
homeostasis in the periphery, while in the CNS, they harness the stress axis [98,99]. On
the other hand, vasopressin, the key regulator of fluid balance, has an opposite activity on
the stress response [100]. Furthermore, while GHRH as a hormone indirectly and directly
stimulates growth, as a neuromodulator, it is one of the most important regulators of the
sleep–wake cycle [101].
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The reaction of the CNS to challenges gives rise to a complete rewiring of the connec-
tome [97,102]. An alteration of neuropeptide expression represents one of the earliest steps
in the translational changes. The secretion of neurohormones is considerably altered by the
steps of normal aging, such as menopause and senescence. Pathophysiologic alterations,
which come with increased stress (processed or homeostatic challenges), will accelerate
the aging of the brain [103]. Moreover, disorders of food intake, obesity, metabolic syn-
drome [104,105], and alterations of the gut–brain axis [87,88] have also been proposed
as potential contributing factors. For instance, changes in corticotrophin-releasing factor
(CRF), luteinizing hormone-releasing hormone (LHRH or GnRH), and growth hormone-
releasing hormone (GHRH) secretion are apparently linked to neuroinflammation, obesity,
and hyperinsulinemia. All these pathophysiological processes play a well-established role
in the development of Alzheimer’s disease [106], though the details of causality are far from
being clarified. Altogether, dozens of neuropeptides or neuropeptide families have already
been implicated in the pathophysiology of Alzheimer’s disease [107]. However, in the
present review, we will focus exclusively on those neuropeptides or neuropeptide families
and their physiologic and pathophysiologic activities; these investigations conducted by
the authors have significantly contributed to the literature. Therefore, the pathophysi-
ologic role of orexins, neuromedins, RFamides, corticotrope-releasing hormone family,
growth hormone-releasing hormone, gonadotropin-releasing hormone, ghrelin, apelin, and
natriuretic peptides are discussed in detail.

3. GnRH

GnRH [108] and its receptor (GnRH-R) are not confined to the hypothalamic–pituitary
axis [109]. In the periphery, the LHRH system coordinates gonadal functions and serves
as a growth factor for many tumors [110,111]. In the CNS, a hypothalamic and an extra-
hypothalamic cell population can be separated [112,113], where dense immunostaining for
GnRH and GnRH-R can be demonstrated [112–114]. In addition to endocrine functions,
these cells are involved in the regulation of the olfactory system, feeding, reproductive
behavior, circadian rhythms [112,113,115], and the development of malignancies [116,117].
In vertebrates, both in physiologic and pathophysiologic circumstances, the actions of
GnRH are mediated by three types of GnRH receptors, among which GnRH-I and GnRH-II
are the mammalian variants. However, numerous splice variants can be detected in the
population, some of which are associated with malignancies [118,119]. These receptors can
activate either the Gαq/11 route or inhibit the cAMP-protein kinase A (PKA) signaling via
Gαi coupling.

The GnRH-positive subventricular zone [120] often shows not only steady hyperfunc-
tion [121] but also hypertrophy and hyperplasia, in the absence of steroid feedback, in
postmenopausal and andropausal subjects [114]. Since the subventricular zone [120] is a
frequent starting nidus of primary glioblastoma multiforme (GBM) and this age group
has the highest prevalence of GBM [122], these data suggest a potential role of the GnRH
system in CNS pathologies [116,117]. For instance, the majority of publications also sug-
gest an initiating role of the GnRH–gonadotropin axis in postmenopausal cognitive de-
cline [71,72,123]. It is well established that estrogen is neuroprotective, by maintaining
neurons in the hippocampus [124,125], while elevated levels of gonadotropins and GnRH
promote neurodegeneration [126]. Postmenopausal subjects, who suffer from a degener-
ation of LH receptor-expressing hippocampal neurons, shows an increase in plasma and
CSF levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and GnRH as
compared to controls [127]. Regarding the pathogenesis of Alzheimer’s disease, the most
notable signal transduction mechanism of the GnRH receptors appears to be the Gαq/11-
elicited stimulation of PLC and Ca2+ entry as well as the activation of phosphotyrosine
phosphatase (PTP) [119]. This ultimately may lead to Ca2+ toxicity, aberration of the cell
cycle, activation of CKD5, increased formation of Aβ rafts, and hyperphosphorylation of
tau protein [119,126,128]. The sequelae can be summarized as an increase in proliferation
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and failure of apoptosis of neoplastic cells and a concomitant decrease in autophagy and
senescence of healthy neurons (Figure 2).
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It is important to emphasize that not only the quantity of the hormone, but also the
rhythm of secretion is crucial in proper hypothalamic regulation in both genders. GnRH
is secreted in pulses, and higher frequencies favor LH, while lower frequencies support
FSH release [129]. The pathophysiologic alteration of pulse frequency alone can give rise
to common disorders such as polycystic ovary syndrome (PCOS) [130]. In the past few
decades, studies have revealed that the regulation of pulsatile GnRH release is dependent on
the activity of the intricate kisspeptin–dynorphin neuronal network, which is located in the
anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (ARC) [131]. While
kisspeptin alone appears to act as a memory booster in the short term [132], in the long
term, its failure appears to be responsible for the dysregulation of the GnRH–gonadotropin
axis and steady augmentation of GnRH release. Perhaps the maintenance or correction of
physiologic pulses would be even more beneficial in the prevention of neurodegeneration.
Nonetheless, it is important to emphasize again that even male patients are not spared and
those who receive androgen deprivation therapy are at risk of developing LOAD [133].

The modulation of the GnRH system is used for the treatment of several disorders,
especially cancers of the gonadal system. GnRH super-agonists are the mainstay in the
therapy of prostate cancer acting through the downregulation of GnRH-R [134]. Moreover,
our previous studies showed that the GnRH antagonist Cetrorelix [135] and the cytotoxic
analog AN-152 [136] can also be successfully used for the treatment of cancers of the
reproductive system [136] and of other organs [137–144]. Considering the feasible harmful
role of GnRH-R overactivation in the pathogenesis of Alzheimer’s disease, both animal
experiments [145,146] and clinical trials [147,148] with GnRH analogs were carried out
to check their effect on the progress of Alzheimer’s disease. Both forms of chemical
castration (by GnRH super-agonists [147,148] and GnRH antagonists [145,146]) showed
promising results.

Therefore, it appears that sexual steroid replacement therapy can be advantageous
in both sexes and may delay the development of LOAD [149,150] since exogenous go-
nadal steroids suppress GnRH release. Another important aspect of this thread is that
in the case of hormone deprivation therapy of gonadal cancers, in the long term, we
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should prefer chemical castration by GnRH agonist to treatment with antagonists of steroid
hormones [145–148].

4. RFamides

The group of RFamide peptides encompasses neuropeptide FF (NPFF), neuropeptide
AF (NPAF), neuropeptide SF [NPSF or gonadotropin-inhibitory hormone (GnIH)], prolactin-
releasing peptide (PrRP), and the pyroglutamylated RFamide (QRFP) peptide [151,152].
Usually kisspeptin and its derivatives are also included in the family, although some
recent publications dispute it [153]. The RFamide peptides all share an N-terminal se-
quence homology (Arg-Phe-NH2 motif at their C-terminus). Even though their distribution
patterns are broad and somewhat overlap in the CNS, their difference in structure and
receptor preference arms them with a unique activity spectrum. They bind to a whole
family of receptors, with somewhat different affinities: NPSF/GnIH to the neuropeptide
FF receptor 1 (NPFFR1 or GPR147), NPFF and NPAF to the neuropeptide FF receptor 2
(NPFFR2 or GPR74), QRFP to the pyroglutamylated RFamide peptide receptor (QRFPR
or GPR103), kisspeptins to the kisspeptin receptor (KISSR1 or GPR54), and PrRP to the
prolactin-releasing peptide receptor (PrRPR or GPR10) [151,152,154]. This way, despite
some functional overlapping, their physiological activity spectra differ remarkably. For
instance, while PrRP stimulates the hypothalamic–pituitary–adrenocortical (HPA) axis [6],
stereotyped behavior [7], and pressor response [8], NPAF, in addition to inducing an HPA
response and facilitating locomotor activity, decreases heart rate and core temperature [9].
These virtual discrepancies can be explained by the different receptor affinity of the pep-
tides in this family. NPFFRs inhibit the adenyl cyclase–PKA signaling and stimulate the
phospholipase C–inositol triphosphate–diacyl glycerolphosphate (PLC/IP3/DAG) route.
On the other hand, the KISSR1, QRFPR, and PrRPR appear to facilitate both pathways.
Ultimately, they can exert divergent actions on the MAPK-, JNK-, calcineurin-, and nuclear
factor κB (NFκB)-regulated transmissions [155–157].

Thus far, kisspeptin [151,152] has attracted the most attention from the scientific
community. This neurohormone [158] was isolated as the endogenous ligand of the orphan
G protein-coupled receptor GPR54 (KISS1R) [159,160]. However, later, it was also verified
to be able to bind to the NPFFR2 [161]. Kisspeptin mRNA is transcribed from the kiss-1
gene, and the complete, translated peptide contains 54 amino acids (KP-54). The cleavage
of the initial peptide gives rise to biologically active derivatives which consist of 14, 13,
or 10 amino acids. This way, they were christened kisspeptin-14 (KP-14), kisspeptin-13
(KP-13), and kisspeptin-10 (KP-10) [158,159]. Although it was originally isolated from the
human placenta, later studies demonstrated that kisspeptin and its receptors are widely
distributed in the CNS. They are especially abundant in the limbic system, the striatum, and
the hypothalamus, including the AVPV, the periventricular nucleus (PeN), the anterodorsal
preoptic nucleus (ADP), the ARC, and the paraventricular nucleus (PVN) [159,160,162–164].
Kisspeptin and KISSR1 expression are also remarkably high in the pituitary gland. The
inhibition of metastatic spread of malignant melanoma was the first physiological activity
of kisspeptin [165]. However, since then, it has become obvious that its major activity is
the regulation of the reproductive axis [131,166–169]. The kisspeptin, dynorphin-A, and
neurokinin-B cosecretory (KNDy) neurons of the ARC and the kisspeptin-positive (Kiss1)
neurons of the AVPV/PeN cooperate in the bimodal control of the GnRH neurons of the
preoptic area (POA). Later studies also verified the activity of the cerebral and spinal
kisspeptin networks in the control of the HPA axis, thermoregulation, pain sensation,
stereotyped behavior, food intake, and learning [131,170–174].

The central role of the kisspeptin–dynorphin system in the control of the HPG
(hypothalamic–pituitary–gonadal) axis [131,168] and the interaction between the kisspeptin
neurons and other neuropeptide systems [175] suggest that RFamide peptides may also
take part in the pathogenesis of neurodegenerative diseases. RFamide neurons together
with the orexin network may accelerate [176–179], or in cooperation with ghrelin, deceler-
ate [131,175,180,181] the progress of Alzheimer’s disease. Nonetheless, their direct effect
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appears unequivocally neuroprotective. Kisspeptin, PrRP, and QRFP appear to inhibit
different steps of neurodegeneration. In vitro, it was demonstrated that kisspeptin release
is stimulated by pretreatment with aggregation-prone proteins such as Aβ, prion protein,
and amylin in neural cell cultures. Kisspeptin inhibited the neurotoxicity of Aβ, prion
protein, and amylin. Further, the knockdown of the kiss-1 gene enhanced the toxicity of
the aggregation-prone peptides, while kiss-1 overexpression was neuroprotective [182].
In vivo, KP-13 was able to reverse the memory impairment induced by Aβ [132]. Moreover,
other RFamides also have beneficial effects. The long-term treatment of tau-overexpressing
mice by the lipidized analog of PrRP significantly preserved spatial memory, neurogenesis,
and synaptic plasticity. This lipoprotein also attenuated tau hyperphosphorylation, Aβ

plaque load, cortical microgliosis, and astrocytosis in the hippocampus. These effects
can be attributed to the tau-dephosphorylating activity of protein phosphatase 2A and
the inhibition of caspase 3 [183,184]. Finally, the QRFP-orexin heterodimer receptor has
proven to have strong neuroprotective activity via the activation of the extracellular signal-
regulated kinase 1/2 (ERK1/2) pathway [185]. It is equally important to emphasize that
acutely administered kisspeptin [132], NPAF [186], and QRFP [187] all enhance memory
and facilitate learning in different experimental models. KP-13 facilitated memory for-
mation and prolonged memory retention; NPAF improved the consolidation of passive
avoidance learning [186], while QRFP improved short-term memory consolidation in the
Morris water maze [187].

In conclusion, we can say that the RFamides seem to be promising targets of the
pharmaceutical chemistry. Both their acute [182,183,185] and chronic [131,180,181] admin-
istration can be beneficial in the treatment of neurodegenerative diseases. However, a
tremendous amount of work is required to separate the direct and indirect and acute and
chronic actions of the various ligands on their receptor spectrum.

5. GHRH

The concept of neuroendocrine regulation and our knowledge about the activity of
GHRH has changed dramatically over the past few years. The well-known hypothala-
mic trophormone GHRH has, apart from the stimulation of hypophyseal secretion, been
described to exert various physiologic extrapituitary functions [188] promoting cell differ-
entiation, wound healing, proliferation of immune cells, and sleep activation. It is very
important to emphasize that these sorts of versatile physiologic activities are carried out in
an autocrine, paracrine, and endocrine fashion and their receptors are located not only on
GH-positive cells but also on IGF-secreting and target cells. Moreover, GHRH also plays
an equally important role in pathophysiologic processes. Different forms of the GHRH
receptor (GHRH-R), the pituitary type and the splice variant 1 (SV1), are expressed in
several physiologic and pathologic cell types [189–192]. This way, GHRH can stimulate cell
growth and cellular activity by direct action on its receptors or indirectly via the release
of growth hormone (GH) and insulin-like growth factor-I (IGF-1) [188–193]. The direct
activity is mediated by the formation of cyclic adenosine monophosphate (cAMP) via the
coupling of the Gαs subunit and activation of adenylyl cyclase. However, the coupling of
Gαq induces the release and entry of Ca2+ [194]. The indirect activity is dependent on the
signal transduction of the GH receptor and the IGF receptor. The latter is a tyrosine kinase
receptor, while the intracellular domain of the GH receptor binds Janus kinase (Jak) 2, which
phosphorylates signal transducer and activator of transcription (STAT) proteins [195,196].

Recent experiments have shown GHRH to modulate cognitive processes in both phys-
iologic and pathophysiologic circumstances; exogenous GHRH impaired hippocampal
memory consolidation [197], while the inhibition of the GHRH-GH-IGF axis by GHRH
antagonists showed a positive impact on learning and memory [145,146,198–201]. Though
the literature reflects somewhat conflicting data regarding the etiopathogenetic role of the
GHRH-GH-IGF system in the development of dementia [202–206], the intrinsic resistance
to the action of the axis in Laron syndrome patients appears to confer a significant pro-
tection not only to cancers and diabetes but also to other detrimental consequences of
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aging [207,208]. We propose that the advantageous activity of GHRH antagonists can be
attributed to their potential to inhibit the secretion of IGF, the oversecretion of which can
be equally detrimental as the introductory hyperinsulinemic stage of type II DM [49,50].
This hypothesis was tested in multiple sets of experiments in which the top regulator of
the GHRH-GH-IGF axis was neutralized by MIA-690, a powerful GHRH antagonist. The
treatment successfully mitigated the progress of Alzheimer’s disease in FAD mice [50].
Functional memory tests using Morris water maze (MWM) [50] and morphological assays
using immunohistochemistry [209] both verified our concept.

It appears that in insulin resistance, the derailed activation of IGF receptors by hy-
perinsulinemia will dysregulate two important biochemical pathways and can explain
our findings [210–212]. The first is the pathophysiologic activation of the mammalian
target of Rapamycin (mTOR)—Unc (uncoordinated)-51-like autophagy-activating kinase
1 (ULK1) pathway. The most important activity of the mTOR-ULK1 cascade is the inhi-
bition of autophagy. The pathway is involved in normal cellular senescence, aging, and
pathophysiologic conditions such as oxidative, inflammatory, degenerative, and neoplastic
processes [17,192,201,203,204,206,213], including Alzheimer’s disease [210,214]. Second,
stimulation of the IGF receptors inhibits the Ak strain transforming (Akt)-mediated in-
hibition of GSK-3β [215], which, in normal circumstances, is one of the most significant
stimulators of autophagy [216]. Moreover, as it was detailed above, GSK-3β is the most
important culprit in tau hyperphosphorylation [217]. Further, it cannot be emphasized
enough that in Alzheimer’s disease, the disruption of beneficial autophagy is a key moment
of the pathogenesis and metabolic derangement can be observed early in the course of the
disease even in patients with mild cognitive impairment. This is because ROS generation
of damaged mitochondria activates the phosphoinositide 3 kinase (PI3K)/Akt/mTOR
pathway. This leads to the inhibition of the mitophagic removal of damaged mitochondria.
Since the source of ROS is the mitochondria themselves, suspension of the mTOR-ULK-1
pathway fundamentally impedes the mitophagic self-healing of neurons [17,216]. Moreover,
autophagic removal of misfolded intracellular rafts also appears to be a key component in
the prevention of Alzheimer’s disease [218]. Therefore, in hyperinsulinemia in prediabetes,
a reduction of insulin/IGF-I signaling can delay the onset of protein aggregation-mediated
neurotoxicity [203,204,213,219].

6. Ghrelin

In the field of neuroendocrinology, the discovery of ghrelin has been one of the most
important achievements of reverse pharmacology [220]. It has been identified as the en-
dogenous ligand for a previously known, but orphan G protein-coupled receptor [220].
After translation, the peptide undergoes post-translational modification by ghrelin O-
acyltransferase (GOAT), which yields the ultimate active form of acyl-ghrelin [221]. The
actions of acyl-ghrelin are mediated by the ghrelin receptor or growth hormone secre-
tagogue receptor (GHS-R), the splice variants of which (GSH-R1a and GSH-R1b) form
heterodimers with other receptors such as the somatostatin receptor 5, the dopamine recep-
tor type 2 (DRD2), the melanocortin-3 receptor (MC3R), and the serotonin receptor type
2C (5-HT2c) [222]. Nonetheless, even a single unit or a homodimer can stimulate multiple
signal transduction pathways through either the G proteins Gαq/11, Gα12/13, and Gαi/o or
recruiting β-arrestin. Subsequently, the coupling of Gαq/11 gives rise to Ca2+ release and
the activation of PKCβ, calcium calmodulin-dependent protein kinase IIα (CamKII), and
5′ adenosine monophosphate-activated protein kinase (AMPK). On the other hand, Gαi/o
coupling causes a stepwise induction of PKC then PKCε, PKA, and Akt, while recruiting
β-arrestin leads to the stimulation of ERK and Akt [223]. However, the picture is more
complex, since some studies demonstrated the effects of other splice variants (such as
obestatin) of the ghrelin gene and the intrinsic activity of des-acyl ghrelin itself, whose
actions are possibly mediated by the CRF receptors [224].

Initial experiments disclosed the role ghrelin plays in the regulation of feeding [225–227].
However, its widespread distribution in the CNS [228,229] clearly suggests that the peptide
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should serve as a much more general transmitter in neuroendocrine regulation. Especially
the expressions of ghrelin and its receptor in the hypothalamus and the pituitary gland [230]
pointed to a prominent role of this neuropeptide in the regulation of behavioral, endocrine,
and homeostatic processes. Since then, several publications have revealed that ghrelin is an
important regulator not only of feeding but also of hypothalamic–pituitary–target organ
axes, thermoregulation, and behavioral processes [231–234]. It is of special importance
that ghrelin has proven to improve memory in numerous experimental settings, and it
has significant neuroprotective features [235]. Further, hippocampal ghrelin and GOAT
expression [236] are significantly diminished in Alzheimer’s disease. Obviously, this may be
a simple consequence of neurodegeneration. However, the finding that point mutations of
the ghrelin gene were associated with the increased propensity to Alzheimer’s disease [237]
raised the possibility that deficiency of the ghrelinergic tone can be a causative factor of neu-
rodegeneration, especially in obese subjects who show a paradoxical resistance to ghrelin,
which, coupled with leptin and insulin resistance, reflects a decreased resilience of hy-
pothalamic body weight regulation [238]. This way, decreased ghrelin signaling can also be
blamed for the development of obesity-related neuropsychiatric conditions such as anxiety
disorders [239], schizophrenia [239], major depression [239,240], epilepsy [241], MS [242,243],
ALS [244], Parkinson’s disease [245,246], Huntington’s disease [245,247], and Alzheimer’s
disease [239,245,248]. Deprivation of ghrelin signaling can be harmful because ghrelin,
like apelin (see later), is cytoprotective [249]. It triggers autophagy [250–252] and activates
the ubiquitin–proteasome system (UPS) [250], which leads to the concomitant removal of
misfolded Aβ [250]. It also stimulates neuronal glucose uptake [253] and accelerates synap-
togenesis and neurogenesis [254,255]. These actions are mediated by the inhibition of the
GSK-3β-catenin [252,253,256–258] pathway [259]. Additionally, ghrelin inhibits the Nod-like
receptor protein 3 (NLRP3) inflammasome activity [260], apoptosis [251,261,262], Glu [263]
and Ca2+ toxicity [264,265], tau hyperphosphorylation [257], superoxide anion production,
and mitochondrial dysfunction [264,265]. Blockage of pathophysiologic NMDA signaling is
of special importance since it protects against a decrease in BDNF secretion, which is very
characteristic in major depression, Huntington’s disease, and Alzheimer’s disease [266–269].

Moreover, dysregulation of ghrelin homeostasis can also directly influence cholinergic
neurotransmission. Upregulation of butyrylcholinesterase (BChE) in obesity and conse-
quent ghrelin resistance has a two-pronged pathophysiologic effect. This is because BChE
not only acts as the major breakdown enzyme of acetyl-ghrelin, the active form of the
peptide [270], but also as an alternative acetylcholinesterase (AChE) [270,271]. Therefore,
BChE hyperactivity can, at the same time, decrease the beneficial neuroprotective tone of
ghrelin and block the essential cholinergic input to the hippocampus [78,79]. This way,
while treatment with ghrelin, acylated ghrelin, or synthetic agonists [181,253,256,272] ap-
pears advantageous in the long run, the inhibition of BChE [271,273] may provide both
long-term and short-term beneficial effects in Alzheimer’s disease. So far, animal experi-
ments have returned promising data. The administration of a ghrelin agonist or acylated
ghrelin decreased Alzheimer’s disease-related cognitive impairment [274], which may be
attributed to its beneficial activity against the harmful effects of Aβ on the LTP [275] and
the synaptic degeneration of cholinergic fibers [255].

7. CRF and Urocortins

The stress response or general adaptation syndrome (GAS) was described by Se-
lye [276] in 1935. Since then, it has been acknowledged as one of the most general
physiologic and pathophysiologic responses of living organisms. The GAS is controlled
by one of the central neuroendocrine axes later described by Schally’s and Guillemin’s
groups [277,278]. The input of the HPA system is diverse, and numerous neurotransmitters
and neuropeptides take part in the signal transduction toward the hypothalamus [279]. Cat-
echolamines, cytokines, NPY, neurotensin (NT), ghrelin, apelin, and endomorphins stimu-
late [234,279–284], while GABA, oxytocin, glucocorticoids, ACTH, endorphins, enkephalins,
and natriuretic peptides inhibit the system [98,99,285–287]. This plethora of mediators
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provides a versatile and flexible means to translate the modality (systemic and neurogenic
ones) and the schedule (acute, repeated, and chronic) of the challenges to the hypothala-
mus [98,99,288]. The systemic stressors (e.g., metabolic, osmotic, and immune) are directly
projected to the brainstem, while the neurogenic paradigms (fear, anxiety, and pain) are
processed by higher cerebral centers such as the components (amygdala, hippocampus,
etc.) of the limbic system [288]. In sharp contrast with the aforementioned features, the
output of the GAS is quite uniformly organized and can be simplified as a two-pronged
response. The CRF-positive neurons of the PVN mediate the responses to the acute and
processed stimuli, while the release of arginine vasopressin (AVP) from the parvocellular
groups in the PVN and the supraoptic nucleus (SON) are responsible for managing the
chronic, repeated, and homeostatic challenges [100]. AVP then activates different subtypes
of the vasopressin receptor 1 (V1R), especially the vasopressin receptor 1B (V1BR), which is
predominantly expressed in the pituitary gland [289,290].

A detailed experimental analysis of the CRF peptide family and the CRF receptors
(CRFRs) has revealed that the central regulation of the CRF pathway is more complex.
In humans, five further peptides of the family are released, which are called urotensin
II (UTN II), urotensin-related peptide (URP), urocortin 1 (UCN1), urocortin 3 (or stress-
coping, UCN3), and urocortin 2 (or stress-coping-related peptide, UCN2) [291,292]. The
members of the family bind to the urotensin 2 receptor (UR-II-R), the 2 CRFRs (CRFR1
and CRFR2), and their splice variants with distinct preference [291,293]. The spectrum
of the receptors is greatly expanded by numerous splice variants, among which soluble
versions of the receptors can be detected in the circulation [291,292]. This makes the whole
system extremely resilient. In general, we can say that CRF and UCN1 acting on the CRFR1
are the main stimulators of the HPA axis. It is also worth mentioning that one member,
UTN II, can elicit a significant central release of CRF [291,292]. A modulatory built-in
feedback mechanism of the system is mediated by CRFR2, which preferentially binds
UCN2 and UCN3. According to literature data, the latter ligands appear to dampen the
anxiogenic and GAS-inducing activity of the CRFR1-selective ligands [291,292]. That is
why UCN3 is also known as a stress-coping and UCN2 as a stress-coping-related peptide,
both of which appear to represent the first-line modulators of the HPA response. However,
these antagonistic actions must be related to the distinct distribution pattern of the ligands
and the receptors, because the signal transductions of the CRFR1 and the CRFR2 are
practically the same [294], which mainly involves the coupling of Gαs and the induction of
the PKA–ERK–MAPK pathway. The CRFRs can also couple with Gαq11, Gαi/o, Gαi1/2, and
Gαi/z. In general, these routes inhibit adenylyl cyclase and give rise to the activation of the
PLC/DAG/IP3 pathway and the concomitant increase in cytosolic Ca2+ and the stimulation
of ERK1/2 and PKC [294]. This above-described CNS mechanism is complemented by the
ultrashort, short- and long-loop feedbacks of CRF, ACTH, and cortisol [288]. Therefore,
the built-in dampening mechanism such as stress coping through UCN3, the plethora
of feedback loops, and the intrinsic antiphlogistic activity of the glucocorticoids protects
against the development of cytokine storms and the self-destructive, severe, inflammatory
response (SIRS) [288,294,295].

The widespread expression of CRF and AVP receptors in the CNS, especially in the
limbic system, also explains their robust behavioral activity. Their extremely important role
in the regulation of emotions, affections, anxiety, etc., is undeniable [296]. The CRF family,
due to its central role in anxiogenesis and the stress response, has been implicated in the
pathogenesis of numerous neuropsychiatric disorders such as major depression, bipolar dis-
ease, chronic anxiety, panic disorder, and obsessive–compulsive disorder (OCD) and in the
etiology of many neurodegenerative and neuroinflammatory diseases such as Alzheimer’s
disease, Huntington’s disease, Parkinson’s disease, progressive supranuclear palsy (PSP),
and MS [103,297,298]. The most important association has been known for decades: in ma-
jor depression, chronic anxiety, bipolar disease, and psychotic episodes of major psychiatric
disorders, the activity of the HPA system dramatically increases [299–301]. In addition to
general overactivity, the disruption of the normal circadian pattern is the most conspicuous
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finding. Additionally, the HPA axis of depressed patients cannot be suppressed by such
strong and long-acting synthetic glucocorticoids as dexamethasone [302]. This may reflect
a central resistance to glucocorticoid feedback [303], mainly due to mutations of the gluco-
corticoid receptor, NR3C1 (nuclear receptor subfamily 3, group C, member 1), and one of its
chaperone molecules the tacrolimus (FK506)-binding protein 51 (FKBP51) [304]. Therefore,
it is not surprising that hormonal changes precede and may predict the changes in clinical
status [305]. This way, the pharmacologically treated patients, who do not respond to a
given drug, can be shifted to a different antidepressant regime without unnecessary delay.
Owing to this temporal relationship, it is not surprising that the alterations of the HPA
system are suspected to play a causative role in chronic neuropsychiatric diseases. In the lit-
erature, the CRF family, AVP, the glucocorticoids, and the glucocorticoid receptors have all
been implicated in the pathogenesis of depression [303]. The flexibility and responsiveness
of the system are dramatically changed by early-life stress or somatic disorders, and these al-
terations will be branded in the patients’ genome by epigenetic alterations [299,303,304,306].
In sharp contrast with CRFR1, which appears to mediate adverse effects in neurodegenera-
tion, some lessons learned from the pathogenesis of Parkinson’s disease and ALS suggest
that CRFR2 activation may confer protection against neuronal apoptosis [307,308]. It is
especially important, owing to the fact that the hippocampus and the limbic system in
general boast one of the densest expressions of CRFR2 in the brain [294,296].

Regarding Alzheimer’s disease, even the earliest studies unveiled that CRF expression
and interstitial CRF levels are sharply decreased in the cortex of the patients, who suffered
from an advanced stage of the disease [309–311], which is not surprising, taking the massive
loss of neurons in the mesolimbicocortical structures into consideration. However, later
publications demonstrated that in the early stages, the opposite alterations can be observed.
Since then, the pathogenetic role of HPA axis overactivation and excessive CRF release
have been unequivocally accepted, though the exact pathomechanism is far from being
clarified. Some researchers argue that glucocorticoids themselves play the most important
pathogenetic role [312–314], while others report equivocal data [297,303]. However, recent
findings unambiguously support the view that the central overexpression of CRF and/or
ACTH is the culprit, which directly and/or indirectly (via glucocorticoid hypersecretion)
brings about detrimental consequences [315,316]. It is well known that glucocorticoids
inhibit cell renewal and proliferation owing to their catabolic and apoptosis-inducing prop-
erties [317] and they can inhibit the normal microglial elimination of Aβ debris [318]. On
the other hand, recent studies suggest that stress caused a decrease in synaptic plasticity
and the neurodegeneration in the mesolimbic structures can be attributed mostly to the
hyperactivity of the CRF neurons [319–321]. For instance, the triple transgenic mouse
model that overexpresses both CRF and APP showed a significant increase in Aβ plaques
in the cortex and hippocampus, as compared to APP mice. Moreover, the triple trans-
genic strain displayed substantial decreases in dendritic branching and dendritic spine
density in pyramidal neurons. This was confirmed by behavioral studies in which the
triple transgenic mice showed significantly impaired working memory and contextual
memory [322]. Another study similarly assigned a causative role of the CRF system to
Alzheimer’s disease. A double-transgenic mouse strain was crossed with CRFR1 null mice.
Knocking out CRFR1 significantly reduced the Aβ burden in the hippocampus and insular,
rhinal, and retrosplenial cortices [323]. Moreover, in a different study, CRFR1 antagonist
treatment mitigated Aβ deposition, impaired synapses, and delayed cognitive deficits in
a mouse model of Alzheimer’s disease [324]. In vivo studies also revealed that isolation
and restraint stress increase Aβ levels in a CRF-dependent manner [325]. It appears that
excessive CRF release in chronic stress gives rise to DNA damage in the CNS. Then, the
accumulation of DNA damage drives the upregulation of cell cycle checkpoint protein
kinase 1 (CHK1) and of cancerous inhibitor of protein phosphatase 2 (CIP2A), leading to Aβ

raft formation [326]. However, other researchers suggest that restraint, isolation, and swim-
ming stress accelerate neurodegeneration via mainly tau hyperphosphorylation [327,328].
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Moreover, mice exposed to chronic noise showed CRF and CRFR1 overexpression, which
caused GSK-3β activation and tau hyperphosphorylation [329,330].

8. Hypocretins/Orexins

The hypocretins/orexin system represents a complex and somewhat unique neuropep-
tide network in the CNS [331,332]. The cell bodies of the system are confined to a few
specific regions of the hypothalamus (the lateral, the dorsal, the dorsomedial, and the
perifornical areas). In sharp contrast, its receptors are scattered throughout the whole CNS
and its axon terminals reach distant regions [333–335].

The family consists of two ligands (orexin-A and orexin-B), which belong to the
structurally diverse incretin family [334,336]. Even orexin-A and orexin-B show only 50%
structural overlapping. They bind to two receptors (OX1R and OX2R) with significantly
different receptor affinities [334,336,337]. This can be attributed to the fact that the orexin
receptors (OXRs) are identical only in 64% of their primary structure [338,339]. At first,
the pharmacodynamic properties of orexin-A seemed more promising. It has a longer
half-life because it comprises an N-terminal pyroglutamate residue and two disulfide
bonds, which make it more resistant to proteolytic degradation. Orexin-A, since it is more
hydrophobic, can pass the BBB more effectively [340]. OX1R and OX2R share their signal
transduction mechanisms so the difference between their distribution pattern appears to be
responsible for their unique action. They are G protein-coupled receptors (GPCRs), and
their activation in the hypothalamus, via coupling to the Gαs, Gαq, and Gαi family proteins,
causes both cAMP and DAG-IP3 generation. Nonetheless, it is worth mentioning that the
orexin receptors can cause Na+ and Ca2+ influxes via direct stimulation of ion channels
such as the non-selective cation channels (NSCCs) or the Na+/Ca2+ exchanger (NCX) [341].

The first physiologic functions associated with orexins were the stimulation of he-
donic feeding [336,342] and arousal [334,343]. One of the most important outputs of the
orexin-positive cells targets several important centers of the ascending reticular activation
system (ARAS), such as the lateral dorsal tegmental (LDT) and the pedunculopontine
tegmental (PPT) nuclei in the mesopontine tegmentum (MT) as well as the locus coeruleus
(LC), the nucleus raphe (NR), and the periaqueductal grey (PG) [335,344]. Nevertheless,
the discovery was a milestone in neuroscience that narcolepsy and cataplexy observed
in dogs [345], mice [346], and even humans [347–349] can be caused by either congeni-
tal [345,346,350] or acquired defects [351] of the orexin-hypocretin system. The latter point
is especially important because it draws attention to the potential autoimmune impairment
of the system caused by infections or vaccination against influenza or COVID-19 [351,352].
Further studies verified that numerous arousal-related functions are under the circadian
control of the orexin system. In addition to food intake, the most important ones are fluid
intake [353–355], metabolism, thermoregulation [356], activity of the HPA axis [357–363],
reproduction [364,365], and threat-related adaptive behavioral processes [366–372]. Since
sleep disorders, obesity, type II DM, permanent anxiety, chronic stress, and PTSD are all im-
plicated in the pathogenesis of Alzheimer’s disease [73–76,373,374], it is not surprising that
numerous experiments have been conducted to clarify the putative role of orexins in the
development of Alzheimer’s disease [375,376]. Acutely, orexins are apparent memory boost-
ers [369–372,377] and the integrity of the orexin network is required for proper memory
consolidation [378]. However, chronic malfunction of the orexin network in Alzheimer’s
disease goes with Janus-faced consequences. It appears that the initial stage of Alzheimer’s
disease is characterized by a transient “flare” of the dying network. In this phase, increased
CSF concentrations of orexins can be measured, which are presumably released from the
injured neurons [379,380]. This is symptomatically reflected by agitation, restlessness, and a
disturbed sleep–wake cycle. It is especially important to emphasize that sleep/wakefulness
problems usually appear well before cognitive decline and sleep deprivation alone is a
well-known accelerating factor in the progress of Alzheimer’s disease [44,45,374]. In our
opinion, decreased glymphatic flow [44,45], alteration of gut microbiota [381], and direct
pathobiochemical consequences of orexinergic hyperstimulation synergistically decrease
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the elimination of Aβ and augment the formation of neurofibrillary tangles [261,374,382].
Indeed, augmented orexinergic tone was demonstrated to inhibit microglial phagocyto-
sis and the consequent Aβ degradation [176]. Then, increased membrane permeability
and decreased reuptake of excitatory amino acids lead to glutamate and Ca2+ toxicity,
hyperphosphorylation of tau protein, and apoptosis [17,374,382–384]. Another important
result of recent studies is that the orexins can activate both the BACE1 and BACE2 en-
zymes [177,178]; therefore, they can also stimulate Aβ formation. This way, at the early
stage of the disease, it appears that the treatment with an orexin antagonist may offer not
only palliative (restoration of the sleep–wake cycle) but also causative (decrease in Aβ

deposition) opportunities [338,373,385].
However, as mentioned above, the normal orexinergic tone is definitely neuropro-

tective [261,386] and increases hippocampal memory formation confirmed by numerous
experiments [369–372,377,378]. The neuroprotective activity may be exerted through RF-
amide receptors, to which the orexins show the highest structural similarity. The NPFF
receptors belonging to the RF-amide peptide family, showing approximately 30% homology
to OX1R and OX2R [34,35]. The heterodimerization of the orexin and the pyroglutamylated
RF-amide receptors (GPR103) apparently confer the highest neuroprotective activity [185],
through the stimulation of ERK/MAPK, NF-κB, PI3K-Akt, and Jak-STAT [185]. This way,
at later stages of the disease, the lack of the protective tone in the exhausted and then spent
network may have equally detrimental effects on neuronal viability as the original overex-
citation during “flare”. Nonetheless, as some of the presented studies have demonstrated
contradicting results on the role of orexins in Alzheimer’s disease, further experiments
are warranted to clarify the role of orexins in different stages of the pathogenesis and to
firmly establish the therapeutic opportunities offered by orexin analogs. Moreover, the
dysfunction of the orexin system was demonstrated not only in Alzheimer’s disease but
also in chronic neuropsychiatric conditions such as schizophrenia, bipolar disease, epilepsy,
and drug addiction; in neuroinflammatory diseases such as MS, neuromyelitis optica, and
autoimmune narcolepsy; and in numerous neurodegenerative disorders in addition to
Alzheimer’s disease, such as dementia with Lewy bodies, Parkinson’s disease, FTD-ALS
spectrum, and Huntington’s disease [375,387–393]. The orexin system, which consists of
only a limited number of units restricted to relatively small regions, appears to be specifi-
cally vulnerable to neurodegeneration. Several morphological studies have verified the
conspicuous loss of orexinergic neurons in these chronic CNS conditions [392,394]. That is
why some shared symptoms, which reflect the abnormality of arousal, may result from the
progressive failure of the orexin network. Changes in sleep patterns and vigilance are com-
monly found symptoms in MS and Alzheimer’s disease. Dysfunction of postural reflexes
and cataplexy are almost universal findings in Parkinson’s and Huntington’s diseases.
Rapid mood fluctuations, unaccountable anxiety, irrational fears, agitation, and extreme
irritability are the common behavioral symptoms [395,396] in all neurodegenerative dis-
eases. Later studies connected either the initial overexcitation or the spent-out phase of the
degeneration of the orexin system to the above-described protean symptoms [387,390].

9. Apelins

Apelin [397] was identified as the first endogenous ligand for the so-far orphan G
protein-coupled receptor, APJ [398]. Since then, the receptor has proven to bind apelin-36,
apelin fragments, and another neurohormone, Elabela [399]. Apelin-36 was isolated from
bovine stomach extracts and is processed from a 77 amino-acid precursor, preproapelin,
which is cleft into several molecular forms in different tissues. Synthetic C-terminal frag-
ments of preproapelin consisting of 13–19 amino acids were found to exhibit significantly
higher activity at the receptor than that of apelin-36 [397,400]. The expression of the rat
apelin receptor has been detected throughout the CNS [401]. Especially high concentra-
tions were found in the hypothalamus, the pituitary gland, and the limbic structures. In
the hypothalamus, the most intense expression is in the supraoptic and paraventricular
nuclei [402,403], which suggests a prominent role of apelin in the regulation of homeostatic,
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behavioral, and endocrine processes. The signal transduction of APJ is quite diverse due to
its several splice variants and its propensity to form heterodimers especially with the kappa
opioid receptor (KOR). Coupling to Gai/o inhibits the adenylyl cyclase and, in turn, PKA.
Parallel activation of phosphoinositide 3-kinase (PI3K) results in the stimulation of Akt and
endothelial nitric oxide synthase (eNOS) yielding nitric oxide (NO). Ultimately, coupling to
Gαq/11 activates phospholipase C (PLC) leading to the stimulation of the IP3/DAG/PKC
and the ERK1/2 routes, whose pathways, in turn, increase the cytosolic Ca2+ level. Differ-
ent splice variants, various G protein couplings, and the heterodimerization of APJ with
KOR can confer tissue-specific action to the action of different apelin isoforms (apelin-12,
apelin-13, apelin-17, and apelin-36) [404].

First, the effects of apelin on the circulation and the heart were described: the ad-
ministration of apelin-13 increased water intake [405,406], and it was demonstrated to
have an impact on blood pressure [405,407] and vasopressin release [406,408]. Then, other
studies verified their role in the control of appetite, thermoregulation, pituitary hormone
release, and behavior [283,406]. Regarding Alzheimer’s disease, perhaps the cytoprotective
activity and memory-enhancing effects of apelins are the most promising facets of their
functional spectrum [219,409,410]. They prevent the harmful consequences of oxidative
stress [219,411–413], exposition to cytotoxic agents [219,413], and inflammation [414,415].
These activities of apelin are mediated by the pro-survival signaling via IP3, PKC, and
mitogen-activated protein kinase 1/2 (MAP1/2) [416]. Apelin also inhibits excitotoxicity
by attenuating NMDA receptor signaling [417]. Therefore, it is not surprising that in the
past few years, several studies have been conducted to examine its putative, beneficial
activity in neurodegenerative diseases [418]. In general, apelin has proven to have strong
neuroprotective activity [418]. It promotes autophagy [219,413,419] while inhibiting apopto-
sis [219,412,413] and necroptosis [420]. Moreover, it stimulates the release of a well-known
neurotrophic factor, BDNF [421,422]. Its beneficial effects have been demonstrated in several
forms of chronic neuropsychiatric conditions, such as epilepsy [423], schizophrenia [424],
and depression [425,426]; neuroinflammatory diseases such as MS [427]; and neurode-
generative disorders such as Parkinson’s disease [428,429], Huntington’s disease [430],
Alzheimer’s disease [431], and ALS [432]. In Alzheimer’s disease, probably the most im-
portant component of its beneficial activity is the stimulation of mitophagic removal of the
damaged mitochondria and autophagic removal of Aβ [433]. Therefore, apelin derivatives
offer a viable therapeutic option for the treatment of these chronic progressive neuro-
logical conditions [418,425,433–435] such as Parkinson’s disease [436,437], Huntington’s
disease [430], Alzheimer’s disease [414], and ALS.

10. Neuromedins

Neuromedins represent a versatile group of neuropeptides. They belong to the
tachykinin family, and nowadays, some members are classified as brain–gut neuropep-
tides [438]. Since they are expressed in different organs and target different classes and
subclasses of receptors, their physiological activity spectrum differs remarkably [439].
The first members were isolated from porcine CNS [440,441]. Since then, they have been
classified according to their similarities to other tachykinins in structure and receptor
preference (K—kassinine-like, B—bombesin-like, N—neurotensin-like, etc.). The neu-
romedins are abundantly expressed in those CNS regions (the hypothalamus and the limbic
system) [442–444], which control the endocrine, the autonomic, and the behavioral pro-
cesses. In that sense, neuromedin-B is the poster child of the group [445,446]. Neuromedin-
N (NMN) seems to have a more specific activity spectrum. It was demonstrated to stimulate
the HPA axis [447,448] and also displayed marked action on thermoregulation [449]. The
first physiologic activity associated with neuromedin-U (NMU, U refers to the womb) was
the potent, smooth, muscle-stimulating effect exerted on uterine tissue [442]. However,
in complete agreement with its profound neural expression [450], NMU was verified to
play a significant role in the regulation of core temperature, feeding [451], circulation [452],
HPA axis [448,453], and behavior. Moreover, it increases overall locomotor activity, de-
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creases sleeping [451,453–455], facilitates learning [456], and stimulates anxiety-related
stereotyped behavior [453–455,457]. Neuromedin S (NMS) is a recent addition to this
peptide family [458]. Its designation derives from its localization, since the distribution of
NMS is confined to the suprachiasmatic nucleus (SCN) of the hypothalamus. NMS shows
the highest structural similarity to NMU, but they are coded by two different genes [458].
As a conclusion, we can state that from a neurobiological point of view, NMU and NMS
are the most important members of the group. Both peptides bind to the NMU-1R, which
may explain the overlap in their functional spectrum, but NMS shows a specifically high
affinity to the NMU-2R [458]. Therefore, NMU-2R appears to transmit the genuine activities
of NMS [459,460]. Upon stimulation by both NMU-1R and NMU-2R, there is predom-
inantly coupled Gαq/11 with some evidence of Gαi coupling, which suggest that their
primary action is the parallel inhibition of the cAMP–adenylyl–cyclase–PKA pathway and
the stimulation of the PLC-IP3/DAG-Ca2+-PKC signaling route [461]. The expression of
the NMU-2R is the highest in the hypothalamus [462,463], the thalamus, the cerebellum,
the amygdala, and the hippocampus [464]. This pattern suggested a physiologic activity
spectrum, which was later confirmed by functional studies. NMS was demonstrated to
influence the circadian rhythm [458,465], feeding [466,467], hypothalamic hormone (e.g.,
GnRH and CRF) secretion, circadian rhythm of temperature, and behavior [282,468].

Since the arousal-controlling orexin network receives its most important input from
the SCN [459,469,470], it is not far-fetched to suggest that the neuromedins may relay those
photic stimulations to the orexin neuron, which arrive at the SCN via the retinohypotha-
lamic pathway [458,471]. The significance of the orexin system, outlined in the previous
chapter, in the pathophysiology of Alzheimer’s disease and the disintegration of SCN
activity in neurodegenerative diseases [472,473], suggest a crucial role of the SCN and NMS
in the pathogenesis of dementias. Presumably impaired circadian rhythm generated by a
malfunctioning SCN might lead to an abnormal fluctuation of mood and sleep, which could
impair glymphatic flow and initiate neurodegeneration [474]. Although very little data are
available regarding the involvement of neuromedins in the development of Alzheimer’s
disease, it is noteworthy that mild cognitive impairment can be associated with increased
levels of neuromedin activity [475], despite the fact that neuromedins themselves appear
to be intrinsically neuroprotective [476]. This activity spectrum is strikingly like that of
orexins and confirms our hypothesis that the neuromedin–orexin networks cooperate in
their cognitive actions similarly to their feeding- [471] and arousal [477]—related functions.
Therefore, sleep disturbances appear not only secondary [44] but also primary, initiating
factors in the pathogenesis of neurodegenerative diseases. Nevertheless, due to scarcely
available and contradictory data [478], this aspect of tachykinin pathophysiology must be
further scrutinized experimentally.

11. Future Therapeutic Perspectives

In recent decades, experimental findings have significantly transformed our under-
standing of Alzheimer’s disease. As discussed in the first chapter, our group views the
disorder as a widespread, multi-etiologic process, with numerous individuals carrying
polygenic factors with incomplete penetrance. This conceptual shift has forced some
researchers to rework their experimental strategies, which earlier focused on direct in-
terventions targeting the production of Aβ and neurofibrillary tangles. In our opinion,
indirect approaches, which delay the inevitable deposition of β-pleats and preserve the
efficiency of physiologic removal, should have greater therapeutic potential. That is why
the neuropeptide segment of Alzheimer’s research has undergone dramatic changes. In the
past few decades, several neuropeptides and synthetic neuropeptide ligands have been pro-
posed to possess promising physiological and pharmaceutical actions [107,261]. Over time,
however, in most of the cases, their beneficial actions proved to be non-specific. It appears
that their effects can be attributed to non-specific neuroprotective or non-causal palliative
memory-enhancing effects. This goes for the promising actions of pituitary adenylate
cyclase-activating peptide (PACAP), neuropeptide Y (NPY), galanin, thyrotropin-releasing
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hormone (TRH), calcitonin gene-related peptide (CGRP), and neurotensin [107,261]. There-
fore, it appears that a dramatic conceptual revolution is required to harmonize the often
conflicting or dismissible data. To our mind, first, the harmful endogenous and exogenous
challenges, which initiate the neurodegenerative cascade, must be analyzed. If one or
more neuropeptides seem to play a disproportionately significant pathogenetic role in
Alzheimer’s disease, they could be potential targets of pharmaceutical studies and could
produce effective modulatory compounds.

Despite these contradictions, in the last few decades of Alzheimer’s research, three
firm pillars of neuropeptide pathophysiology have remained intact and have even gained
more attention. First, the overactivation of the GnRH system must be mentioned. It af-
fects almost the whole population due either to meno- and andropausal changes or to
the treatment of steroid receptor-positive tumors. It seems that in meno- and andropause,
careful sex steroid replacement therapy is beneficial even from a cognitive point of view,
which can be explained by the direct neuroprotective activity of sex steroids and the con-
comitant inhibition of GnRH release [149,150]. However, direct suppression of meno-,
postmeno-, and andropausal GnRH surges with pertinent GnRH analogs represent an-
other treatment option [138–141]. Further, in the case of gonadal tumors, both forms of
chemical castration (either with GnRH antagonists or with GnRH super-agonist) are better
alternatives than gonadal steroid antagonists when taking the neuropsychiatric side effects
into account [145,146]. Additionally, fine-tuning the system in the ill and the elderly with
RFamide analogs may provide more effective treatment with fewer side effects.

The second pillar is represented by the way in which chronic and early-life stress
makes the human brain more susceptible to chronic neuropsychiatric and neurodegen-
erative conditions [103,297,298]. By now, several experiments have verified the direct
pathogenic role of the CRF-CRFR system and the complementary adverse function of
ACTH and glucocorticoids in the development of depression and neurodegeneration [303].
Therefore, those neuropeptides, which can harness and modulate the HPA system, such
as the natriuretic peptides, oxytocin [288], or synthetic ligands may also confer benefi-
cial effects in the case of Alzheimer’s disease. As far as pharmaceutical derivatives are
concerned, the most promising molecules seem to be the CRFR1 antagonists [303,324]
and CRF-binding protein (CRFBP) analogs [479], the administration of which must be
commenced well before the development of irreversible morphological alterations. In the
future, the introduction of orally available CRFR1 or biologically engineered CRFBP could
open future therapeutic windows, if BBB-permeable peptide or non-peptide ligands are
developed. It is also worth mentioning that the HPA system-activating nature of some
cytoprotective neuropeptides (PACAP, neurotensin, etc.) [480,481] seem to hinder their
application, despite their verified NGF and BDNF release-stimulating activity [261].

The third pillar is the regulation of sleep, which through the discovery of glymphatic
circulation and progress in orexin pathophysiology is receiving more and more attention.
The orexins and some of those mediators (MCH, melatonin, and NMS) [482,483], which
cooperate in arousal and circadian rhythms, have been reported as promising targets for
modifying the pathophysiologic processes in Alzheimer’s disease. Especially the restoration
of the function of the orexin network and sleep hygiene appear as effective alternatives.
For that, the most suitable compounds are the orexin antagonist [483,484], because, like
melatonin [485], both the natural ligands and the pharmacological analogs can freely pass
the BBB [96,486]. That is why some orexin antagonists have already been approved by the
Food and Drug Administration (FDA) as insomnia medications [487].

However, since the discovery of the brain–gut axis [488], the chapters of neuropep-
tide research have been completely rewritten and a fourth pillar has been added to the
structure. Modification of the enteric microbiota gives rise to severe neuropsychiatric conse-
quences [489]. These changes are translated and transmitted to the nervous system by the al-
teration of the spectrum of the brain–gut neurotransmitters and neuropeptides. At present,
the most important participants are leptin, ghrelin, the GHRH-GH-IGF axis, incretins
(such as glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide
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(GIP), cholecystokinin (CCK), and NPY. The system is deeply altered in conditions such
as polygenic obesities, monogenic obesities (Prader–Willie and Kleine–Levin syndromes),
metabolic syndrome, type II DM, and PCOS [490]. The gastrointestinal modification of the
neuromodulatory tone to the CNS has already been implicated in several neuropsychiatric
conditions [489]. Recalling the old proverb “You are what you eat” and paraphrasing
Descartes’ aphorism “Sum ergo cogito”, we should arrive at the conclusion that our nu-
tritional habits determine our way of thinking. Recent modification and fine-tuning of
the brain–gut–enteric microbiota system have yielded some astonishing results, especially
with the incretin analogs [491]. They could be beneficial by suppressing the progress of
an insidiously developing metabolic or neuropsychiatric condition. For instance, GLP-1
agonists in addition to supporting weight and glycemic control, appear to have a direct
positive impact on the patients’ circulation and CNS function [491]. Moreover, restoration
of the gut microbiota and the function of the ghrelin-GHRH-GH-IGF axis may help prevent
several chronic neuropsychiatric conditions [381,489].

In summary, we would say that to covet a single panacea, the “philosopher’s stone”,
in order to cure Alzheimer’s disease is a rather futile effort. In our opinion, Alzheimer’s
disease is only the tip of the iceberg, a civilization phenomenon, which has become so
apparent in the past few decades, because environmental stress has increased and a longer
lifespan has opened a wider window to its detrimental consequences. Nevertheless, already
approved drugs, such as GLP-1 agonists, [492], orexin antagonists [493], and modulators
of the ghrelin system [494,495] can already be used for palliative or preventive purposes
in the treatment of Alzheimer’s disease. The ghrelin and orexin analogs are of special
merit since they pass the BBB [96,486,496]. Moreover, in our opinion, the restoration of
normal sleep hygiene, due to its immense positive impact on glymphatic circulation, is
one of the most important and viable options in the prevention of Alzheimer’s disease.
Furthermore, the orexin antagonists do not have the severe detrimental cognitive side
effects of the traditional soporific medications such as barbiturates and benzodiazepines.
In addition to their acknowledged hypnogenic activity, the orexin analogs are currently
under investigation for the treatment of anxiety, panic disorder, major depressive, and
binge eating disorder [487].

Modification of the availability of IDE by orally available GHRH, ghrelin analogs, and
BChE antagonists could open future therapeutic windows. Nonetheless, as physicians,
we should be very careful with some treatment regimens, which potentially tamper with
the neuropeptide metabolism, because several of them may interfere with the decompo-
sition of Aβ. For instance, both ACE and neprilysin take part in the breakdown of Aβ.
Therefore, their combined blockade by vasopeptidase inhibitors in order to increase the
level of vasodilators (kinins), decreases the formation of vasoconstrictors (angiotensin),
facilitates natriuresis (inhibiting aldosterone production and increasing NP level), and
can lead to unpredictable side effects [70,497]. Nonetheless, the picture is more complex
since angiotensin and CNP appear to stimulate [287,498], while ANP and BNP seem to
inhibit [99,498] the release of CRF, one of the peptidergic culprits in the pathogenesis of
Alzheimer’s disease. Another example of a potential negative side effect is the direct and
long-term inhibition of MMPs, while pharmacological stimulation of plasminogen can
advantageously accelerate Aβ breakdown. Obviously, the latter pathway cannot be utilized
in the long run. The potential sites of beneficial therapeutic interventions and adverse side
effects of present and future pharmacological ligands are summarized below in Table 1.

Table 1. Beneficial and adverse modulations of neuropeptide activities in Alzheimer’s disease.

Pathway Target Ligand or Substrate Drug with Reference * Potential Effect

HPA CRFR1 CRFR1 antagonists - +

GHRH-GH-IGF1 GHRH-R GHRH-R antagnists - +

HPG GnRH-R GnRH-R antagonists
or super-agonists - +
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Table 1. Cont.

Pathway Target Ligand or Substrate Drug with Reference * Potential Effect

insulin metabolism IDE insulin NA NA

RAAS ACE ACE inhibitors Captopril, etc. [499] - ?

NP metabolism NEP NEP inhibitors Sacubitril [500] - ?

matrix metabolism MMPs MMP inhibitors Periostat [57] - ?

GOAT-ghrelin
ghrelin-R ghrelin-R agonist Macimorelin [494] +

BChE non-selective BChE
inhibitors

Rivastigmine,
Huperzine-A [495] +

orexin OX1R, OX2R dual OXR antagnists Suvorexant, Daridorexant,
Lemborexant [501] +

* FDA-approved drugs capable of passing the blood–brain barrier. ?: potential side effect in the long run;
ACE: angiotensin convertase enzyme; BChE: butyrylcholinesterase; CRFR1: corticotrope-releasing factor re-
ceptor 1; GHRH: growth hormone-releasing hormone; GHRH-R: growth hormone-releasing hormone receptor;
ghrelin-R: ghrelin receptor; GnRH: gonadotropin-releasing hormone; GnRH-R: gonadotropin-releasing hormone
receptor; GOAT: ghrelin O-acyltransferase; IDE: insulin-degrading enzyme; NEP: neprilysin; NP: natriuretic
peptides; OXR: orexin receptor; OX1R: orexin 1 receptor; OX2R: orexin 2 receptor; RAAS: renin angiotensin
aldosterone system.
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Abbreviations

5-HT2c serotonin receptor type 2C
α2MG α2 macroglobulin
Aβ amyloid-β
ACE angiotensin convertase
Ach acetylcholine
AchE acetylcholinesterase
ACTH adrenocorticotropic hormone
ADAM disintegrin and metalloprotease domain
ADAMTS4 ADAM with a thrombospondin type 1 motif, member 4
ADP anterodorsal preoptic nucleus
Al aluminum
ALS amyotrophic lateral sclerosis
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
AMPK 5′ adenosine mono-phosphate-activated protein kinase
apoE apolipoprotein E
APJ putative receptor protein related to ATl
APP amyloid precursor protein
AQP aquaporin
ARAS ascending reticular activation system
ARC arcuate nucleus
AVP arginine vasopressin
AVPV anteroventral periventricular nucleus
BACE β-site APP-cleaving enzyme
BBB blood–brain barrier
BChE butyrylcholinesterase
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BDNF brain-derived neurotrophic factor
Ca calcium
cAMP cyclic adenosine monophosphate
CAMK II calcium calmodulin-dependent protein kinase II
CCK cholecystokinin
CDK cyclin-dependent kinase
CGRP calcitonin gene-related peptide
CHK1 cell cycle checkpoint protein kinase 1
CIP2A cancerous inhibitor of protein phosphatase 2
CJD Creutzfeldt–Jakob disease
CNS central nervous system
CRF corticotrope-releasing factor
CRFBP CRF-binding protein
CRFR CRF receptor
CTE chronic traumatic encephalopathy
Cu copper
CSF cerebrospinal fluid
DAG diacylglycerol
DRD2 dopamine receptor type 2
ECE endothelin-converting enzyme
eNOS endothelial nitric oxide synthase
EOAD early-onset Alzheimer’s disease
FAD familial Alzheimer’s disease
FDA Food and Drug Administration
FKBP51 tacrolimus (FK506)-binding protein 51
FMLP N-formyl-Methionine-Leucin-Phenylalanine
FSH follicle-stimulating hormone
FTD frontotemporal lobar degeneration
GAS general adaptation syndrome
GBM glioblastoma
GH growth hormone
GHS-R growth hormone secretagogue receptor
ghrelin-R ghrelin receptor
GHRH GH-releasing hormone
GHRH-R GHRH receptor
GnRH gonadotropin-releasing hormone
GnRH-R gonadotropin-releasing hormone receptor
GIP glucose-dependent insulinotropic polypeptide
GLP-1 glucagon-like peptide 1
Glu glutamate
GLUT glucose transporter
GOAT ghrelin O-acyltransferase
GnIH gonadotropin-inhibitory hormone
GOF gain of function
GPCRs G protein-coupled receptors
GSK-3β glycogen synthase kinase 3β
HPA hypothalamic–pituitary–adrenal cortex
HPG hypothalamic–pituitary–gonadal
IDE insulin-degrading enzyme
IGF insulin-like growth factor
IP3 Inositol triphosphate
Jak Janus kinase
JNK c-Jun N-terminal kinases
KNDy kisspeptin, dynorphin-A, and neurokinin-B cosecretory
KISSR1 kisspeptin receptor
KOR kappa opioid receptor
KP kisspeptin
LC locus coeruleus
LDT lateral dorsal tegmental
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LH luteinizing hormone
LHRH luteinizing hormone-releasing hormone
LOAD late-onset Alzheimer’s disease
LOF loss of function
LRP lipoprotein receptor-related protein
MAPK mitogen-activated protein kinase
MC3R melanocortin-3 receptor
MCH melanin-concentrating hormone
Mg magnesium
MMP matrix metalloprotease
Mn manganese
MS multiple sclerosis
MT mesopontine tegmentum
mtDNA mitochondrial DNA
mTOR mammalian target of rapamycin
MWM Morris water maze
NCX Na+/Ca2+ exchanger
NEP neprilysin
NGF nerve growth factor
NFκB nuclear factor κ B
NLRP3 Nod-like receptor protein 3
NMDA N-methyl-D-aspartate
NM neuromedin
NMN neuromedin N
NMS neuromedin S
NMU neuromedin U
NO nitric oxide
NP natriuretic peptide
NPAF neuropeptide AF
NPFF neuropeptide FF
NPFFR1 neuropeptide FF receptor 1
NPFFR2 neuropeptide FF receptor 2
NPSF neuropeptide SF
NPY neuropeptide Y
NR nucleus raphe
NRC3C1 nuclear receptor subfamily 3, group C, and member 1
NSCCs non-selective cation channels
NT neurotensin
OCD obsessive compulsive disorder
OXR orexin receptor
OX1R orexin-1 receptor
OX2R orexin-2 receptor
PACAP pituitary adenylate cyclase-activating peptide
PeN periventricular nucleus
PG periaqueductal grey
PKC protein kinase C
PLC phospholipase-C
POA preoptic area
POCD postoperative cognitive dysfunction
POMC pro-opiomelanocortin
PPT pedunculopontine tegmental nucleus
PrD prion disease
PrP prion protein
PrPc cellular prion protein
PrPp scrapie prion protein
PrRP prolactin-releasing peptide
PrRPR prolactin-releasing peptide receptor
PSEN presenilin
PSP progressive supranuclear palsy
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PTP phosphotyrosine phosphatase
PVN paraventricular nuclei
QRFP pyroglutamylated RFamide
QRFP-R pyroglutamylated RFamide peptide receptor
RAAS renin angiotensin aldosterone system
RAGE receptor for advanced glycation end products
RFamide arginine–phenylalanine–amide
ROS reactive oxygen species
SA sympathoadrenal
SAD sporadic Alzheimer’s disease
SAPP-α soluble APP-α
SCN suprachiasmatic nucleus
SIRS severe inflammatory response syndrome
SOD superoxide dismutase
SON supraoptic nucleus
SV splice variant
TBIs traumatic brain injuries
TNFα tumor necrosis-α
TRH thyrotropin-releasing hormone
TrK tyrosine kinase
UCN urocortin
Unc uncoordinated
ULK1 Unc-51-like autophagy-activating kinase 1
UPS ubiquitin–proteasome system
URP urotensin-related peptide
UTN urotensin
V1BR vasopressin 1B receptor
V1R vasopressin 1 receptor
vCJD variant Creutzfeldt–Jakob disease
Zn zinc
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