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Abstract: Intranasal immunization is one of the most effective methods for eliciting lung mucosal
immunity. Multiple intranasal immunization with bacterial polypeptide, termed as a modified
PnxIIIA (MP3) protein, is known to elicit production of a specific antibody in mice. In this study,
a nasal immuno-inducible sequence (NAIS) was designed to remove the antigenicity of the MP3
protein that can induce mucosal immunity by intranasal immunization, and was examined to induce
antigen-specific antibodies against the fused bacterial thioredoxin (Trx) as a model antigen. A NAIS
was modified and generated to remove a large number of predicted MHC (Major Histocompatibility
Complex)-I and MHC-II binding sites in parent protein PnxIIIA and MP3 in order to reduce the
number of antigen epitope sites. For comparative analysis, full-length NAIS291, NAIS230, and
NAIS61 fused with Trx and 6× His tag and Trx-fused 6× His tag were used as antigen variants for
the intranasal immunization of BALB/c mice every two weeks for three immunizations. Anti-Trx
antibody titers in serum and bronchoalveolar lavage fluid (BALF) IgA obtained from NAIS291-fused
Trx-immunized mice were significantly higher than those from Trx-immunized mice. The antibody
titers against NAIS alone were significantly lower than those against Trx alone in the serum IgG,
serum IgA, and BALF IgA. These results indicate that the NAIS contributes to antibody elicitation of
the fused antigen as an immunostimulant in intranasal vaccination vaccines. The results indicate that
the NAIS and target inactivated antigen fusions can be applied to intranasal vaccine systems.

Keywords: intranasal immunization; intranasal vaccine; nasal immune-inducible sequence

1. Introduction

Intranasal immunization is one of the most effective methods for inducing mucosal
immunity, without the need for special equipment. Intranasal immunization vaccines are
easily administered without needles. After T cells are activated by antigen presentation
from antigen presenting cells (APCs) in nasal-associated lymphoid tissue (NALT), B cells
differentiate into IgA plasma cells and induce secretory IgA (sIgA) production, which
can prevent pathogen entry [1,2]. The sIgA obtained from intranasal vaccines plays an
essential role in infection defense because it eliminates the invading pathogen itself. It
effectively prevents pathogen entry through the upper respiratory tract and provides strong
immunity against pathogens that invade with systemic antibodies, including organs such
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as the vagina and intestinal tract [1,2]. Thus, intranasal vaccines are the most effective for
protecting against infection if they function consistently.

Although intranasal vaccines generally use live attenuated vaccines and immunization
restrictions are imposed for safety reasons [3,4], using inactivated vaccines can improve
vaccine safety and expand the vaccination target range [5,6]. Bacterial toxins, includ-
ing cholera and heat-labile Escherichia coli toxin, have long been used as experimental
immunostimulants for intranasal vaccines; however, their safety is yet to be secured ade-
quately [7]. In addition, live viruses, polymers, and plant saponins have been devised as
adjuvant alternatives or a medium for transport systems and immune induction; however,
whether all carriers are appropriate for intranasal forms of inoculation or even for multiple
vaccinations is not fully clear [8–10]. All these systems have advantages, but further im-
provements may be necessary to increase their safety and antigenicity in experimental and
practical applications.

Since adjuvants or immunomodulators inoculated with antigens play important
roles during the intranasal vaccination of an inactivated candidate, we developed an
immunomodulatory bacterial outer membrane protein PnxIIIA with low cytotoxicity and
extracellular matrix adhesion properties from the genus Rodentibacter [11–13]. Although
this protein is a member of the RTX (repeat in structural toxin) toxin family of pore-forming
toxins secreted by the bacterial type I secretion machinery found in Pasteurellaceae, it is
less toxic than the previously found PnxIA, PnxIIA, and other RTX toxin members, and
is specialized for extracellular matrix adhesion in genus Rodentibacter [12,13]. Of the RTX
toxins produced by Rodentibacter, PnxIIIA is a high molecular weight protein of 250 kda
that is highly immunostimulatory to host cell responses and is solubilized and secreted
from the outer membrane of Rodentibacter species and E. coli [13]. Therefore, PnxIIIA is
also highly immunogenic, can be easily expressed in the E. coli expression system, and is
a candidate protein that was initially conceived as an adhesive mucosal vaccine model
for genus Rodentibacter [11,13]. Using PnxIIIA protein modified by removing the toxin
domain, non-adjuvanted recombinant modified PnxIIIA (MP3) protein elicited specific
serum IgG and sIgA responses after three or more intranasal vaccinations in a mouse study,
and experimental infections of the parent R. pneumotropicus showed that even opportunistic
infections were defensible in mice [11]. Therefore, MP3 proteins lacking antigenicity of
MP3 fused with target antigens may be used as immunomodulators in intranasal vaccines.
If inactivated vaccine antigens can be fused to this MP3 protein and induce antibodies as in
the previous study simply by intranasal inoculation, it could be applied to any pathogen
and be a paradigm shift in the vaccine system. To verify their efficacy, the antigenicity of
MP3 proteins should be reduced and animal experiments using antigen-fused proteins
should be conducted.

In this study, we re-designed MP3 protein as a nasal immune-inducible sequence
(NAIS) for intranasal vaccines and examined whether it can be used as an immunomod-
ulator for intranasal vaccine. For the target antigen, we used the E. coli thioredoxin (Trx),
which is also present in all organisms and is easily produced stably in a prokaryotic cell
expression system as a model antigen.

2. Results
2.1. Vaccine Design and Cytotoxicity

In this study, bacterial Trx was used as a model antigen. Typically, Trx is known
to be used to stabilize recombinant proteins expressed in neighboring genes because of
its protective effect against oxidative stress and reactive oxygen. NAIS could be stably
expressed in the Trx expression vector pBAD-DEST49, while it was also stably expressed in
the pE-SUMO (Small Ubiquitin-like Modifier) pro Amp vector, which does not express Trx.
The NAIS redesigned in this study is based on the protein reported by Sasaki et al. [11,13]
and is derived from a bacterial outer membrane protein with the predicted regions of MHC
(Major Histocompatibility Complex)-I and -II binding sites deleted (Figure 1). NAIS is a
protein composed of 230 and 61 amino acids that share the first 53 amino acid sequences
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at the N-terminus. For comparative analysis, full-length NAIS291, NAIS230, and NAIS61
proteins fused with Trx and 6× His tag and Trx-fused 6× His tag were used as antigen
variants for intranasal immunization (Figure 2). The cytotoxicity of NAIS toward to L929
cells determined by lactate dehydrogenase (LDH) assay was similar to that of BSA at
0.1–10 µM, indicating the low cytotoxicity of NAIS (Figure S1).
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Figure 1. (A) Schematic representation of primary structure of PnxIIIA [13], modified PnxIIIA
(MP3) [11] and nasal immuno-inducible sequence (NAIS), and binding sites for MHC-I and MHC-II
that were predicted by the immune epitope database (IEDB, https://www.iedb.org/ accessed on
25 November 2024) [14,15] in PnxIIIA and MP3. MHC-I and MHC-II binding sites shown relatively
summarize the top 50 predicted affinity sites. PnxIIIA in figure is based on GenBank accession
number BAJ09609.1, and numbers listed are shown with reference to the amino acid sequence of
PnxIIIA. Figure is not to scale. (B) SDS-PAGE analysis of MP3 and NAIS. (C) Comparison of collagen
type IV binding ability between MP3 and NAIS. There were no significant differences between MP3
and NAIS in collagen-binding ability (p ≥ 0.05).
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Figure 2. Schematic representation of (A) primary structure of intranasal immunized materials and
(B) amino acid sequence of nasal immune-inducible sequence (NAIS). In (A), Trx and 6× H tag
indicates the thioredoxin protein and 6× His tag, respectively. 1: 291, 2: 230, 3: 61, 4: Trx. In (B), Seq1
indicates the starting position of NAIS230 and NAIS291, and Seq2 indicates the starting position
of NAIS61.

2.2. Antibody Titers Against Trx

A generalized linear model (GLM) analysis revealed significant differences in all
antibody titers (p < 0.01, Figure 3), and serum IgG showed significantly higher anti-Trx
antibody titers in the group immunized intranasally with NAIS230-fused Trx (230) than
in the Trx group (p < 0.01, Figure 3A). In serum IgA, anti-Trx antibody titers obtained
from mice immunized intranasally with NAIS291-fused Trx (291) were significantly higher
than those of NAIS61-fused Trx (61) and Trx alone (p < 0.01, Figure 3B), and the antibody
titer of 230 was also higher than that of Trx (p < 0.01). For bronchoalveolar lavage fluid
(BALF) IgA, the anti-Trx antibody titers obtained after immunization with 291 were signifi-
cantly higher than those obtained after immunization with all other antigens (230 and Trx:
p < 0.05, 61: p < 0.01; Figure 3C). In a comparative analysis of the statistics, one-way analysis
of variance (ANOVA) revealed equal variances in serum IgG (p < 0.05), serum IgA (p < 0.01),
and BALF IgA (p < 0.01); the anti-Trx serum IgA antibody titers of 291 were significantly
higher than those of Trx alone by post hoc Tukey’s test (p < 0.01, Figure S2).
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Figure 3. Changes in thioredoxin (Trx)-specific antibody titers in sera and bronchoalveolar lavage
fluids (BALFs) determined by ELISA. (A) Serum IgG; (B) serum IgA; (C) BALF IgA. A statistical anal-
ysis was carried out using a generalized linear model. ** p < 0.01, * p < 0.05. Intranasal immunization
with antigen variant was carried out at 14-day intervals three times. All sample sera or BALFs were
confirmed to show higher antibody titers than untreated control sera or BALFs. The antibody titer on
the vertical axis indicates the dilution factor of the sample.

2.3. Antibody Titers Against NAIS

When immunized with NAIS fusion antigens, antigen recognition may be impaired if
antibodies are produced against NAIS alone. Therefore, anti-NAIS antibody titers were
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explored (Figure 4), and the GLM test showed significant differences between peptides
only for serum IgG (p < 0.05), while the post hoc test showed that serum IgG obtained from
230 immunized mice was significantly higher than that from 61- or Trx-immunized mice
(p < 0.05, Figure 4A).
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and bronchoalveolar lavage fluids (BALFs) determined by ELISA. (A) Serum IgG; (B) serum IgA;
(C) BALF IgA. A statistical analysis was carried out using a generalized linear model. * p < 0.05.
Intranasal immunization with antigen variant was carried out at 14-day intervals three times. All
sample sera or BALFs had higher antibody titers than untreated control sera or BALFs. The antibody
titer on the vertical axis indicates the dilution factor of the sample.

2.4. Comparison of Anti-Trx and Anti-NAIS Antibody Titers

To explore antibody production against NAIS and Trx, sera and BALFs from mice
immunized with the full-length Trx fusion protein 291 were compared (Figure 5). Trx
antibody titers were significantly higher than those of NAIS at for serum IgG and BALF
(p < 0.05) as well as serum IgA (p < 0.01). These results indicate that immune cells target
Trx rather than NAIS.
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Figure 5. Comparison of thioredoxin (Trx)- and nasal immuno-inducible sequence (NAIS)-specific
antibody titers in sera and bronchoalveolar lavage fluids (BALFs) obtained from NAIS291-fused Trx
protein immunized mice. (A) Serum IgG; (B) serum IgA; (C) BALF IgA. A statistical analysis was
carried out using a t-test. ** p < 0.01; * p < 0.05. Intranasal immunization with antigen variant was
carried out at 14-day intervals three times. All sample sera or BALFs were confirmed to be shown
higher antibody titers than untreated control sera or BALFs. The antibody titer on the vertical axis
indicates the dilution factor of the sample.

3. Discussion

With respect to the amino acid sequences used in the MP3 protein and NAIS, in vitro
and in vivo studies have shown adhesion to the extracellular matrix [11,13], but no signifi-
cant functional sequences have been found in the protein database (http://pfam.xfam.org/
accessed on 25 November 2024). Therefore, it was inferred that the sequences in NAIS have
unknown functions.

http://pfam.xfam.org/
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In this study, Trx was used as a model antigen and fused with NAIS, which was
developed by eliminating the predicted antigenicity site of the original bacterial protein.
The Trx used in this study is derived from E. coli strain K12 and is responsible for promoting
solubility by promoting the reduction of disulfide bonds formed by cysteine residues in
recombinant protein. Since NAIS is stably expressed even with SUMO tags, Trx itself is not
expected to have a significant effect on NAIS. In particular, Trx itself was used as a model
antigen for protein expression in prokaryotes because it is potent and easily expressed.
Although Trx is known to be present in all organisms, it is unlikely to affect antibody
production in mice due to low amino acid homology between prokaryotic and eukaryotic
cells. In this study, Trx from E. coli was placed at the N-terminus for efficient expression,
but when fusing nonprokaryotic proteins with NAIS, prokaryotic codon usages at the
N-terminus would be more efficient for expression in the E. coli system.

Multiple intranasal immunization with fusion protein of NAIS was observed to lead
to elicit specific antibodies in mice. These results have unique implications for intranasal
vaccination. In brief, intranasal vaccination with Trx fused with full-length NAIS elicited
IgA production more effectively than Trx alone, and anti-NAIS antibodies were produced
less effectively than the target antibody in mice. Furthermore, the humoral immunity
elicited by NALT via the intranasal route induces the production of systemic secretory
antibodies. Several unique bacterial proteins act as immunomodulators [14,15]. These
results suggest that NAIS may be responsible for immunomodulation and assist in the
immunostimulation of fused target antigens, such as bacterial proteins.

The activation of innate immunity, including antigen-presenting cells and Toll-like
receptors (TLRs), is essential for vaccines to be effective, and adjuvants play a role in
vaccine components [16]. Classical vaccines use aluminum hydroxide and aluminum
phosphate, which induce IgE; thus, classical adjuvants should be improved to increase
safety [17]. A recently developed vaccine design approach is a viral vector vaccine, in
which a specific antigen is inserted into the genome of a modified virus that can infect host
cells; the antigen, along with the viral particles, is recognized by the immune system as a
pathogenic signal, inducing an adaptive immune response. However, this system has a low
booster effect, that is, immune recognition of viral particles and transport carriers [17–19].
As the antibody titer of NAIS was lower than that of Trx at up to three doses, NAIS may
also have a superior booster effect. Among the antibodies against NAIS, IgA from the
BALF showed the highest antibody titer, indicating that NAIS-fused antigen inoculation
promoted B cell differentiation into IgA plasma cells.

Recently, various substrates have been developed as adjuvants and antigen carriers for
intranasal vaccines [1,2,6,8,20]. Among these, saponin-based adjuvants, including QS-21
and ISCOMATRIX (IMX), are functionally evident [8,21,22]. QS-21 binds to cell-surface
lectins via its carbohydrate domain, leading to antigen uptake by APCs and stimulation
of specific cytokines activating cellular and/or humoral responses [23]. In a recent report,
QS-21 was added to a vaccine formulation under development against Trichuris muris
infection and administered intranasally as a dual-adjuvanted vaccine to enhance both
humoral and cellular immunity against T. muris infection in the mouse intestinal tract [24].
IMX is a 40 nm particle composed of saponins and other substances that can elicit influenza
virus-specific sIgA in the intestinal tract, alveoli, and nasal cavity when administered
intranasally as an adjuvant with an inactivated influenza vaccine [22]. It has a negatively
charged surface, which may limit its binding to neutral or negatively charged hydrophilic
antigens [23]. These saponin-based adjuvants have potent immuno-inducing effects and
versatility for intranasal inoculation but require the step of conditioning them to be separate
from the antigen.

Although bacterial toxins, including heat-labile E. coli and cholera toxins, have been
developed experimentally as immunomodulator adjuvants, the early stage of adjuvants
has not been used clinically because of their pathogenicity and safety as intranasal vaccine
adjuvants in humans [25]. However, various modifications of bacterial enterotoxins have
been made and clinical studies have been conducted, and although no serious adverse reac-
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tions have occurred, moderate symptoms such as nausea and diarrhea have been reported
for oral vaccines and abnormal injection site symptoms for intramuscular injection [26].
Although there are no adverse reactions such as severe facial paralysis, nasal inoculation
with bacterial toxins will have to be pursued for further safety [26]. The cytotoxicity assay
of NAIS revealed a low equivalence to BSA, and NAIS was not notably pathogenic toward
mammalian cells. Bacterial cell walls and LPS are not immunogenic and enhance immune
responses but activate TLRs that mediate the host immune defense system [27]. When
utilizing this method, it is necessary to develop a method to remove bacteria LPS while
maintaining the protein level, since the effect of LPS on immune activity, which is one of
the issues in this study, is unavoidable. Bacterial proteins with such functions may be detri-
mental to the host during natural bacterial infections. However, these proteins may have
assistive functions in terms of immune stimulation. Bacterial polypeptides with unique
functions have been used as immune stimulation components in therapies for diseases
other than infectious diseases [28,29]. These results indicate that NAIS may be useful as not
only a vaccine for infectious diseases, but also a treatment for cancer, allergies, and other
conditions requiring immune stimulation. Although NAIS may act based on a mechanism
similar to that of bacterial components, this mechanism needs to be elucidated. This study
did not measure cellular immunity or the effect of infection prevention by experimental
infection, which will be an issue for future studies.

4. Materials and Methods
4.1. Intranasal Immunization Materials

In previous study, we designed an intranasal vaccine that retained the antigenicity of
MP3 properties of the original protein, PnxIIIA (GenBank accession no. BAJ09609.1) [13].
In this study, we re-designed a protein with low molecular weight and low antigenicity
while retaining the function of the original MP3 protein (Figure 1). In brief, the protein
structure was modified to remove a large number of predicted MHC-I and -II binding sites
in the PnxIIIA and MP3 proteins in order to reduce the number of antigen epitope sites.

Figure 2 shows the primary structure of the intranasally immunized materials (A) and
the amino acid sequence of the NAIS (B). NAIS is a 291 amino acid residue polypeptide
comprising two repeating sequences, without being responsible for pathogenicity [11]
and antigenicity removed by epitope prediction [30,31]. NAIS originates from an outer
membrane protein identified in the genus Rodentibacter [12,13]. To explore its immunoin-
ducibility, a fusion protein expressing Trx at the N-terminus and a 6× His tag at the
C-terminus were produced using the pBAD-DEST49 and BL21-AI E. coli protein expres-
sion systems (Thermo Fisher Scientific, Waltham, MA, USA), respectively. In brief, E. coli
BL21-AI carrying pBAD based plasmid were cultured overnight at 37 ◦C in LB (Luria–
Bertani) broth containing 100 µg/mL ampicillin (final concentration) with shaking, then
added to 30 mL fresh LB broth at 1% and further cultured for 2 h at 37 ◦C. After adding
0.002% L-arabinose (final concentration), the bacteria were cultured overnight at room
temperature (25 ◦C). The cells were then centrifuged at 5000× g for 10 min, suspended
in tris-buffered saline (TBS, pH7.4) containing 1 mM imidazole, and disrupted using a
sonicator, model THU-80 (AS ONE, Osaka, Japan). The soluble proteins were then pu-
rified using the Dynabeads His-Tag Isolation and Pulldown kit (Veritas, Tokyo, Japan)
according to the manufacturer’s instructions. To compare the indigenous NAIS repeat
sequences (Figure 2B), the immunoinducibility of the Trx fusion proteins with NAIS230
and NAIS61 was examined (Figure 2A). Bradford reagents (Merck, Rahway, NJ, USA) were
used to measure protein concentrations and to adjust protein concentrations for subsequent
testing. To measure antibody titers against NAIS alone, recombinant NAIS protein was
produced using the pE-SUMOpro Amp vector (Lifesensors, Malvern, PA, USA) and E.
coli BL21 (DE3) (New England Biolabs, Ipswich, MA, USA). In brief, the full-length NAIS
was inserted into the BsaI and SalI sites, expressed as described above using isopropyl
β-D-thiogalactopyranoside, then treated with SUMO protease 1 (Lifesensors) to remove the
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SUMO tag according to manufacturer’s instructions. Finally, NAIS treated with Dynabeads
(Veritas) was used for an enzyme-linked immunosorbent assay (ELISA).

4.2. Cytotoxicity Assay of NAIS Toward L929 Cells

To determine the cytotoxicity of NAIS, an LDH assay was performed using the mouse
fibroblast-like cell line L929 (RCB2619). In brief, L929 cells were adjusted to 3000 cells/well
(100 µL 3.0 × 104/mL) and diluted with RPMI1640 (Fujifilm wako pure chemical, Osaka,
Japan) containing 10% FBS medium (Biowest, Nuaillé, France) to final concentrations of
10 µM, 1 µM, and 0.1 µM BSA and NAIS. After 24 h of incubation, the cytotoxicity was
calculated using an LDH cytotoxicity assay kit (Nacalai Tesque, Kyoto, Japan). For the
LDH assay, the values are shown as the average of four replicates.

4.3. Intranasal Immunization of NAIS Fused Protein in Mice

The experimental schedule for intranasal immunization of BALB/c mice with the
NAIS-fused protein is shown in Figure 6. There were five test groups with five mice per
group: Groups 1–3 were immunized intranasally with 20 µL 3 µM NAIS291-, NAIS230-,
and NAIS61-fused Trx and 6× His tag, respectively; Group 4 was immunized intranasally
with 20 µL 3 µM Trx-fused 6× His tag alone; and a control group was untreated. Intranasal
immunization was performed three times every two weeks, and euthanasia was performed
two weeks after the third immunization by inhalation of isoflurane. Serum and BALF were
collected as described in a previous report [32] and analyzed. Groups 1 and 2 used 7-week-
old wild-type BALB/c female mice (Charles River Japan, Yokohama, Kanagawa, Japan),
while Groups 3–4 and the control used 8-week-old mice of the same strain. All mice were
maintained under specific pathogen-free (SPF) conditions and used in accordance with
the experimental animal guidelines of the IACUC of Juntendo University under accession
numbers 2023009 and 2023010.
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Figure 6. Experimental schedule for intranasal immunization of nasal immuno-inducible sequence
(NAIS)-fused protein in BALB/c mice. There were five test groups: Groups 1–3 were intranasally
immunized with three times for every two weeks 20 µL 3 µM NAIS291-, NAIS230-, and NAIS61-fused
thioredoxin (Trx) and 6× His tag, respectively; Group 4 was immunized intranasally with 20 µL 3 µM
Trx-fused 6× His tag alone; and a control group was untreated. Five mice were used per group. The
animals were euthanized by isoflurane inhalation two weeks after the third immunization. Serum
and bronchoalveolar lavage fluid were collected and analyzed. Groups 1 and 2 used 7-week-old
wild-type BALB/c female mice (Charles River Japan, Yokohama, Kanagawa, Japan), while Groups
3–4 and the control used 8-week-old mice of same strain. All mice were maintained under specific
pathogen-free (SPF) conditions and used in accordance with the experimental animal guidelines of
Institutional Animal Care and Use Committee (IACUC) of Juntendo University under accession no.
2023009 and 2023010.

4.4. ELISA

ELISA was used to determine collagen-binding ability and antibody titers. To deter-
mine collagen-binding ability, collagen type IV coating 96-well plate (Coning, Bedford, MA,
USA) was used. The method is the same as in the previous report [11], and HRP-conjugated
HisProbe (Thermo Fisher Scientific, Waltham, MA, USA) was used for quantifying plate-
binding MP3 and NAIS protein. The measurements were performed in triplicate, and the
average absorbance values (A600) are shown in results.



Int. J. Mol. Sci. 2024, 25, 12828 9 of 11

For serum and BALF samples, anti-Trx or anti-NAIS antibody titers were deter-
mined by ELISA using the following methods: 96-well microtiter plates were coated
with 0.5 µg/mL Trx-fused 6× His tag or NAIS and incubated overnight at 4 ◦C. Subse-
quently, the plates were blocked with protein-free blocking buffer (Thermo Fisher Scientific)
for 2 h, and serially diluted serum or BALF samples were incubated in each well for 1 h.
The plates were washed three times with phosphate-buffered saline with Tween 20 (PBS-
T), and 1:3000 horseradish peroxidase (HRP)-conjugated Affinipure goat anti-mouse IgG
(Proteintech, Rosemont, IL, USA) or IgA (Proteintech) diluted in PBS-T was then added
to each well, followed by incubation for 1 h. Subsequently, the plates were washed three
times with PBS-T and developed using 3,3′,5,5′-tetramethylbenzidine (TMB) solution (Atto,
Tokyo, Japan). The IgG and IgA titers were determined by comparing the absorbance
measured with a model Spectra Max 190 (Molecular Devices, San Jose, CA, USA) to that
of untreated control serum or BALF. In this procedure, the titer was set to 1024 when the
dilution was greater than 1024-fold. All sample sera or BALF samples had higher antibody
titers than the untreated control sera or BALFs. The antibody titer was measured once for
each animal, and when the absorbance was less than the mean of control, dilution factor
was used as antibody titer. Also, if the absorbance was less than the average of control
in two consecutive steps, the smaller dilution factor was used as results. All values are
presented as the results section as mean ± standard error of the mean (SEM).

4.5. Statistical Analysis

For statistical analysis of the results obtained from the antibody titers, a GLM was
employed. For the analysis of Trx-specific antibody titers, one-way ANOVA was performed
to compare statistical analyses and the results are shown in the Supplemental Material. For
comparison of Trx- and NAIS-specific antibody titers in the sera and BALF obtained from
NAIS291-fused Trx-vaccinated animals, a t-test was employed. Differences were considered
significant for p < 0.05 in the antibody titer assay.

5. Conclusions

In BALB/c mice, intranasal immunization with 291 amino acids of NAIS-fused Trx
induced higher IgA antibody production than with Trx alone. These results suggest that
NAIS has an immunostimulatory effect against the antigen and less antigenicity of NAIS
itself compared with fused antigen. The results also indicate that NAIS may provide a
new approach to mucosal immunity and facilitate the development of safe and effective
intranasal vaccine systems.
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