
Citation: Anwar, K.; Thaller, G.;

Saeed-Zidane, M. Sperm-Borne

Mitochondrial Activity Influenced by

Season and Age of Holstein Bulls. Int.

J. Mol. Sci. 2024, 25, 13064. https://

doi.org/10.3390/ijms252313064

Academic Editor: Wanxi Yang

Received: 15 October 2024

Revised: 28 November 2024

Accepted: 3 December 2024

Published: 5 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Sperm-Borne Mitochondrial Activity Influenced by Season and
Age of Holstein Bulls
Khurshaid Anwar, Georg Thaller and Mohammed Saeed-Zidane *

Molecular Genetics Group, Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel,
24118 Kiel, Germany
* Correspondence: mzidane@tierzucht.uni-kiel.de

Abstract: Sperm mitochondria are vital organelles for energy production and pre- and post-fertilization
sperm functions. The potential influence of the age of the bull and season on the sperm-borne mito-
chondrial copy number and the transcription activity has not yet been investigated. Therefore, the
expression patterns of all protein-coding mitochondrial genes were identified throughout the year
along with mitochondrial copy numbers in young and old bulls’ spermatozoa. For that, high-quality
semen samples (n = 32) with more than 80% quality for the morphological parameters, from young (n
= 4, aged 18–24 months old) and old (n = 4, aged 40–54 months old) Holstein bulls, were collected
during the four seasons (n = 4 samples each animal/season). The DNA and RNA were isolated
from sperm cells and subjected to the DNA copy number and expression analyses using qPCR. Fur-
thermore, an in silico analysis using gene ontology online tools for the abundantly expressed genes
was utilized. The data were statistically analyzed using Prism10 software. There was a significant
reduction in the mitochondria copy number of young bulls’ spermatozoa compared to their old
counterparts during the summer (29 ± 3 vs. 51 ± 6, p < 0.001) and winter (27 ± 3 vs. 43 ± 7, p <
0.01) seasons. However, sperm-borne mitochondrial protein-coding genes were transcriptionally
higher in young bulls throughout the year. Within the same group of bulls, unlike the old bulls,
there was a significant (p < 0.05) induction in the transcription activity accompanied by a significant
(p < 0.05) reduction in the mitochondrial copy numbers in the summer (29 ± 3) and winter (27 ± 3)
compared to the spring (42 ± 9) and autumn (36 ± 5) seasons in young bulls. Additionally, the
pathway enrichment of the top six expressed genes differed between age groups and seasons. In
conclusion, under the same quality of semen, the early stages of age are associated with mitochondrial
biogenesis and transcription activity dysregulation in a season-dependent manner.

Keywords: male fertility; environmental factors; sperm-mitochondrial DNA; protein-coding gene;
pathway enrichment

1. Introduction

Fertility, which generally refers to the ability to conceive offspring, is a complex and
multifactorial trait that greatly influences the livestock industry [1]. The wide use of ar-
tificial insemination technology where the semen of one bull can be used to inseminate
multitudinous cows makes bull fertility critical in cattle breeding [2]. Bull subfertility
includes poor semen quantity and quality significantly attributable to reproductive fail-
ures [3]. Several factors such as genetics [4,5], age [4,6], nutrition [7], body condition
score [8], management [4], and environmental factors [4,6,9] are found to have influences
on semen quality. Conception rate, service per conception, and non-return rate are used
to evaluate bull reproductive efficiency; however, the variable conception rate is still de-
termined for bulls with good semen quality [10]. Thus, the so-far used semen quality
evaluation parameters still do not fully and accurately estimate male fertility [11]. The com-
mon parameters used in semen quality evaluation include sperm concentration, motility,
viability, velocity, membrane integrity, acrosome integrity, DNA integrity, and structure
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abnormalities [12–15]. Bull fertility estimation based on semen quality evaluation with
sensitive approaches such as mRNA profiles is needed [16]. The integration of transcription
profiles and dynamics is associated with a better understanding of sperm function and
quality to predict potential bull fertility [11,17].

Mitochondria are well-known as central cellular organelles that maintain cellular
functions and homeostasis in all cell types. They are mainly involved in energy production
but also play vital roles in signal transduction, cell differentiation, apoptosis, and cell cycle
control and growth [18–21]. There is an increasing interest in sperm physiology studies
for the implication of the mitochondria as sperm fertility biomarker [22–25]. Sperm mito-
chondrial malfunction was reported to be a main contributor in many cases of idiopathic
male infertility [26]. Although energy production as the main function of the sperm mi-
tochondria determines sperm motility as a male fertility indicator, sperm mitochondria
are also crucial for various sperm characteristics including capacitation, acrosome reaction,
hyperactivation, acrosin activity, and DNA integrity [27,28]. Mammalian sperm has a
range of 50–75 mitochondria with one copy of mitochondrial DNA (mtDNA) in each [29].
According to genetic databases (NCBI and Ensembl), bovine mtDNA is a double-stranded
circular molecule of approximately 16.5 kilobases that exists independently of the nuclear
genome and codes for 13 protein-coding genes, 22 tRNAs, and 2 rRNAs.

So far, it is known that the transcription process remains inactive in the mature
sperm head for the nuclear DNA; however, the central dogma including transcription and
translation processes remains active for the sperm mtDNA. Mature sperm carries different
types of RNAs that were found to be released into the oocyte and play a vital role in embryo
development [30–36]. Numerous studies demonstrated the correlation between sperm-
borne RNA and fertility, conception rate, and pregnancy success in bovine [11,17,30,37–41].
Previous studies reported the potential translation of the sperm-borne mRNA by the
mitochondrial ribosomes, and the translated proteins have roles in sperm capacitation,
motility, and pre and post-fertilization processes [30,31,42–44]. The mtDNA activity and
copy number were found to be influenced by several factors including genetics, age, stress,
nutrition, management, cryopreservation, and the quality of the sperm itself [45–47]. For
instance, mutations in mtDNA genes, namely, CYTB and ATP6, have been shown to have
a major influence on motility, quality, and fertilization capacity [26,48,49]. Furthermore,
higher levels of reactive oxygen species were found in spermatozoa with compromised
mitochondria and insufficient ATP production. Additionally, there is a correlation between
age and the mtDNA copy number with an increased copy number in the sperm cells of
old males [50]. The mtDNA copy number may be marked as a sensitive biomarker for
semen quality and mitochondrial dysfunction under stress conditions [51–54]. The sperm
mtDNA copy number does not indicate successful fertilization [55]; however, spermatozoa
of low-quality semen showed a significant increase in the mtDNA copy number and a
decrease in mtDNA integrity [56]. mtDNA content is important for normal sperm function
and may help identify markers of male fertility [57].

Moreover, there is considerable interest in genomic selection to identify the desired
bull at young ages [58,59]. Moreover, it is highly demanded to collect semen as early as
possible from the selected bulls. However, the standard semen quality parameters for
young bulls’ semen are not as good compared to the older ages [6,60,61]. Moreover, at the
transcriptional level, unlike the young bulls, the old bulls’ spermatozoa showed higher RNA
levels of sperm-borne antioxidant transcripts associated with high antioxidant capacity [62].
Although there have been intensive studies on semen quality at phenotypic and molecular
levels, limited data about the criteria of accepted semen from young bulls have been
reported. Moreover, the potential influence of age and season on the mtDNA transcription
activity of young and old bulls’ spermatozoa has not been reported. Therefore, to address
these points, this study was conducted on semen samples collected from young and old
Holstein bulls during the four seasons of the year and subjected to sperm-borne RNA
quantification of the thirteen bovine mitochondrial protein-coding genes. The influence
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of age and season on the mtDNA copy number and its correlation with the mtDNA
transcription activity was also investigated.

2. Results
2.1. Variation in mtDNA Copy Number Between Young and Old Bulls’ Spermatozoa

A quantitative analysis of the spermatozoa mtDNA copy number was conducted
between the spermatozoa collected from young and old bulls throughout the year. For this
purpose, the mean copy number derived from the analysis of two mtDNA genes (ND2 and
CYTB) was determined. First, we looked at the pattern of the mtDNA copy number in the
sperm cells between different ages of bulls, which was significantly reduced in the summer
(29 ± 3 vs. 51 ± 6, p < 0.001) and winter (27 ± 3 vs. 43 ± 7, p < 0.01) spermatozoa of
young bulls compared to their old counterparts (Figure 1A). Moreover, group-wise analysis
(Figure 1B) revealed that the summer season induced the mtDNA copy number of old bulls’
spermatozoa but significantly reduced it in the young bulls’ counterparts. Moreover, there
was a significant reduction in the mtDNA copy number of the young bulls’ spermatozoa
during autumn compared with the spring season (Figure 1B).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 3 of 16 
 

 

influence of age and season on the mtDNA copy number and its correlation with the 
mtDNA transcription activity was also investigated. 

2. Results 
2.1. Variation in mtDNA Copy Number Between Young and Old Bulls’ Spermatozoa 

A quantitative analysis of the spermatozoa mtDNA copy number was conducted be-
tween the spermatozoa collected from young and old bulls throughout the year. For this 
purpose, the mean copy number derived from the analysis of two mtDNA genes (ND2 
and CYTB) was determined. First, we looked at the pattern of the mtDNA copy number 
in the sperm cells between different ages of bulls, which was significantly reduced in the 
summer (29 ± 3 vs. 51 ± 6, p < 0.001) and winter (27 ± 3 vs. 43 ± 7, p < 0.01) spermatozoa of 
young bulls compared to their old counterparts (Figure 1A). Moreover, group-wise anal-
ysis (Figure 1B) revealed that the summer season induced the mtDNA copy number of 
old bulls’ spermatozoa but significantly reduced it in the young bulls’ counterparts. More-
over, there was a significant reduction in the mtDNA copy number of the young bulls’ 
spermatozoa during autumn compared with the spring season (Figure 1B). 

 
Figure 1. Differential analysis of sperm-borne mitochondrial copy number between the old and 
young bulls’ spermatozoa (A) and between seasons among each group of bulls (B). Values are pre-
sented as geometric mean ± geometric standard deviation. ** Refers to significant differences, p < 
0.01; *** refers to significant differences, p < 0.001. Different letters refer to significant differences, p 
< 0.05. 

2.2. Differential mRNA Expression Patterns of Mitochondrial Protein-Coding Genes in Old and 
Young Bulls’ Spermatozoa 

To study the consequences of the age of the bull during semen collection on mito-
chondrial transcription activity during all seasons, we quantified the expression profile of 
all protein-coding mtDNA genes (13 genes). Therefore, the expression levels between 
comparable semen samples collected at the same time point from young (n = 4, aged 18–
24 months old) and old (n = 4, aged 40–54 months old) were analyzed. The results pre-
sented in Figure 2, indicated that the transcription patterns of mitochondrial genes were 
higher in young bulls’ spermatozoa throughout the year. All analyzed mitochondrial 
genes except the ND1 gene exhibited significantly high levels in young bulls’ spermatozoa 
during winter (Figure 2). Furthermore, young bulls’ spermatozoa showed significantly 
high mRNA levels of all genes except for the ND1, ND3, and COX3 genes during the sum-
mer season and the ND1, COX1, COX2, and COX3 genes during the autumn season (Fig-
ure 2). However, during the spring season, only the ND4L and COX1 genes showed sig-
nificantly high sperm-borne mRNA levels of young bulls’ spermatozoa (Figure 2). The 
ND1 gene exhibited non-significant high levels in young bulls’ spermatozoa compared to 
old bull counterparts throughout the year (Figure 2). Furthermore, data presented in Table 

Figure 1. Differential analysis of sperm-borne mitochondrial copy number between the old and young
bulls’ spermatozoa (A) and between seasons among each group of bulls (B). Values are presented
as geometric mean ± geometric standard deviation. ** Refers to significant differences, p < 0.01;
*** refers to significant differences, p < 0.001. Different letters refer to significant differences, p < 0.05.

2.2. Differential mRNA Expression Patterns of Mitochondrial Protein-Coding Genes in Old and
Young Bulls’ Spermatozoa

To study the consequences of the age of the bull during semen collection on mito-
chondrial transcription activity during all seasons, we quantified the expression profile
of all protein-coding mtDNA genes (13 genes). Therefore, the expression levels between
comparable semen samples collected at the same time point from young (n = 4, aged
18–24 months old) and old (n = 4, aged 40–54 months old) were analyzed. The results
presented in Figure 2, indicated that the transcription patterns of mitochondrial genes
were higher in young bulls’ spermatozoa throughout the year. All analyzed mitochondrial
genes except the ND1 gene exhibited significantly high levels in young bulls’ spermatozoa
during winter (Figure 2). Furthermore, young bulls’ spermatozoa showed significantly high
mRNA levels of all genes except for the ND1, ND3, and COX3 genes during the summer
season and the ND1, COX1, COX2, and COX3 genes during the autumn season (Figure 2).
However, during the spring season, only the ND4L and COX1 genes showed significantly
high sperm-borne mRNA levels of young bulls’ spermatozoa (Figure 2). The ND1 gene
exhibited non-significant high levels in young bulls’ spermatozoa compared to old bull
counterparts throughout the year (Figure 2). Furthermore, data presented in Table 1, for
the co-expression score for the significant genes throughout the year, showed that ND4 and
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ND5 genes had the highest co-expression score, while a moderate co-expression score was
pointed for the ATP8 and COX1 genes.
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the different seasons of the year in the spermatozoa of old and young bulls. Values are presented as
geometric mean ± geometric standard deviation. * Refers to significant differences, p < 0.05.

Table 1. Bos taurus mitochondrial protein-coding genes, displayed from highest to lowest values of
co-expression score.

Node1 Node2 Score Node1 Node2 Score Node1 Node2 Score

ND5 ND4 0.989 COX3 COX1 0.942 ND6 COX3 0.322

ND4 CYTB 0.989 COX1 COX3 0.942 COX3 ND6 0.322

ND4 ND2 0.989 ND4 COX1 0.940 ND1 ATP8 0.311

ND4 ND5 0.989 ND3 ND1 0.940 ATP8 ND1 0.311

ND2 ND4 0.989 ND1 ND3 0.940 ND5 ATP8 0.302

CYTB ND4 0.989 COX2 COX1 0.940 ATP8 ND5 0.302

ND5 ND2 0.985 COX1 ND4 0.940 CYTB ATP8 0.285

ND2 ND5 0.985 COX1 COX2 0.940 ATP8 CYTB 0.285

CYTB COX3 0.985 CYTB COX1 0.938 COX2 ATP8 0.273

COX3 CYTB 0.985 COX1 CYTB 0.938 ATP8 COX2 0.273

ND5 CYTB 0.984 ND5 ATP6 0.936 ND6 COX1 0.212

ND4 COX3 0.984 ATP6 ND5 0.936 COX1 ND6 0.212

ND2 CYTB 0.984 ND3 ND2 0.914 COX3 ATP8 0.205

CYTB ND5 0.984 ND2 ND3 0.914 ATP8 COX3 0.205

CYTB ND2 0.984 ND6 ND5 0.910 COX1 ATP8 0.123

COX3 ND4 0.984 ND5 ND6 0.910 ATP8 COX1 0.123

ND4 ATP6 0.979 ND4L ND4 0.891 ND2 COX3 0.109

ND2 ND1 0.979 ND4 ND4L 0.891 COX3 ND2 0.109

ND1 ND2 0.979 ND5 ND3 0.884 ND2 ND3 0.103

ATP6 ND4 0.979 ND3 ND5 0.884 ND3 ND2 0.103
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2.3. Comparative Expression Analysis of All Mitochondrial Protein-Coding Genes Among Each
Age Group of Bulls Throughout the Year

To identify whether the mitochondria transcriptional level of each protein-coding
gene was influenced by the season, the mRNA expression was analyzed by comparing the
differences between the four seasons within each group of young and old bulls separately.
The results revealed that the season had no significant influence on the transcription level
of each mitochondrial gene in spermatozoa collected from old bulls. However, the young
bulls during the spring showed low sperm-borne RNA levels of all mitochondrial genes
compared to the other three seasons (Figure 3). Moreover, the young bulls’ spermatozoa
during summer compared to spring and autumn showed significantly higher levels of the
COX2 gene. However, during autumn, the mRNA level of sperm-borne ATP6 was highly
significant compared to spring and summer in young bulls’ spermatozoa (Figure 3).
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Figure 3. Differential expression analysis of sperm-borne mitochondrial protein-coding genes be-
tween the seasons of the spermatozoa of old and young bulls. Values are presented as geometric mean
± geometric standard deviation. * Refers to significant differences, p < 0.05; ** refers to significant
differences, p < 0.01.

2.4. Differential Abundance of the Mitochondrial Expressed Genes in Old and Young Bulls
Throughout the Year

To illustrate the abundance of the genes in each bull group during the same season
the analyzed genes were sorted according to their delta Ct (cycle threshold) values. The
analysis demonstrated that the abundance of the genes differed between old and young
bulls within the same season; moreover, it differed between seasons within the same bull
group (Figures 4 and 5). The mRNA of the ND1 gene was the most abundant among
the thirteen genes in spermatozoa of old bulls throughout the year. However, ND4 and
ATP6 were the most abundant transcripts, while ND2 and ND5 were the lowest abun-
dant ones among the sperm-borne analyzed genes in young bulls throughout the year
(Figures 4 and 5).
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2.5. Gene Ontology Analysis of the Top 6 Abundant Protein-Coding Mitochondrial Genes
Throughout the Year of Old and Young Bulls’ Spermatozoa

The in silico analysis for the top six abundant expressed genes in each bull group for
every season using gene ontology and protein–protein interaction online tools showed
eleven protein-to-protein interactions in old and young bulls (Figure 6). The ND1 had the
highest number of interactions in old bulls throughout the year. However, in young bulls,
the ND4 showed high interactions with the other 10 proteins (Figure 6). Furthermore, the
pathway enrichment analysis of these top six abundant genes showed nine signaling path-
ways including oxidative phosphorylation, aerobic respiration, cellular respiration, aerobic
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electron transport chain, ATP-synthesis-coupled electron transport, electron transport chain,
the generation of precursor metabolites and energy, proton transmembrane transport, and
energy derivation by the oxidation of organic compounds that were differentially enriched
by their p-value for the top five biological pathways between the seasons and age groups
(Figure 7).
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the purple line represents the experimental evidence; the yellow line represents the text-mining
evidence; the light blue line represents the database evidence; and the black line represents the
co-expression evidence.
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3. Discussion

The increased improvement in genomic selection accompanied by the vast use of
cryopreserved semen in artificial insemination and in vitro embryo production applica-
tions increased the interest in semen collection from young bulls at early stages [58,59]. It
has been reported that semen quality determines male fertility [10,11,63]. In sperm cells,
mitochondria are involved in sperm motility, capacitation, acrosome reaction, and other
functions that maintain sperm functionality [25,26,64]. They are considered biomarkers for
fertility and sperm fertilization ability [22–24]. In the same line, the current study aimed
to determine the mtDNA copy number in young (n = 4, aged 18–24 months old) and old
(n = 4, aged 40–54 months old) Holstein bulls and its association with the transcription
activity of all mitochondrial protein-coding genes. Furthermore, the influence of the season
on the spermatozoa mtDNA copy number and expression activity was investigated. The
mtDNA copy number has been defined as the number of mtDNA copies per nuclear DNA
copy and is correlated to the mitochondrial function [52]. In germ cells, the mitochondrial
DNA copies are about 150,000 copies in the oocyte; however, they present with a lower
number (100 copies) in sperm cells [65]. The reduction in the mtDNA copy number is vital
for sperm growth, maturation, and subsequent sperm functions [65]. In agreement with
that, the mtDNA copy number in the present study was within the normal mtDNA copy
number range of 50–75 mtDNA for good, motile sperm [29]. However, the young bulls’
spermatozoa in our study showed a lower number than old bulls, and there was a high
significant reduction in the mtDNA copy number of young bulls’ spermatozoa during
summer and winter than was found in old counterparts (Figure 1A,B). Previous studies
demonstrated that the mtDNA copy number is dramatically influenced by age changes [47].
The low mtDNA copy number is associated with mortality [66]. Moreover, the mtDNA
copy number is influenced by the stress [66,67]. The results shown in Figure 1 illustrated
that the summer season had an influence on increasing the mtDNA copy number in old
bulls’ spermatozoa unlike in young ones, which indicates the potential normal function-
ality of the mitochondria in the supposed old bulls in the current study. The mtDNA
copy number directly correlates with energy reserves, oxidative stress, and mitochondrial
membrane potentiality [67]. The mtDNA copy number indicates the mitochondrial func-
tion, activity, and biogenesis [65]. The reduction in mtDNA copy number was found to
be associated with cellular dysfunction [68]. The mtDNA replication is one main base for
mitochondrial biogenesis where the replication process relies on nuclear protein-coding
genes. Peroxisome-proliferator-activated receptor gamma coactivator 1 alpha (PGC-1D)
induces the expression of nuclear erythroid-related factor 2 (NRF2), nuclear respiratory
factor 1 (NRF1), and mitochondrial transcription factor A (TFAM) genes, which regulate
mitochondria biogenesis [69]. Our previous results showed significantly high sperm-borne
RNA content of NRF2 transcripts in old bulls’ spermatozoa compared to young ones, which
could be in agreement with higher mtDNA copy number in old bulls compared with young
ones in the present study [62]. It was reported that the change in the mtDNA copy number
is correlated with the transcription activity of mitochondrial protein-coding genes [70].

At the transcription level, the mature sperm cell is known to have an absence of
transcription and translation processes [36,71]. However, these processes are active for
sperm mitochondrial DNA to maintain mitochondrial functions [72]. In the present study,
we quantified the sperm-borne mRNA content of all mitochondrial protein-coding genes
(13 genes) in young and old bulls’ spermatozoa. All mitochondrial protein-coding genes
were detected in spermatozoa of both young and old bulls (Figure 4). However, the results
revealed that throughout the year generally, the young bulls’ spermatozoa had higher
mRNA levels of all analyzed genes (Figure 2). The data indicate an increase in the transcrip-
tion activity in young bulls’ sperm-borne mitochondria, which may be a consequence of
transcription dysregulation through the loss of epigenetic regulation mechanisms such as
DNA methylation. In agreement with this hypothesis, during the summer and winter sea-
sons, there was a significant reduction in mtDNA copy number in young bulls’ spermatozoa
(Figure 1) associated with a significant increase in the expression levels of mitochondrial
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genes (Figure 2). There is evidence indicating that both mitochondrial DNA transcription
and replication could be regulated through epigenetic mechanisms [73]. Another study
has suggested that DNA methylation as an epigenetic mechanism may have a potential
role in regulating the sperm mtDNA copy number [74]. Furthermore, mtDNA methylation
may be influenced by environmental factors [75]. In the same study, a negative correlation
was found between mtDNA methylation and gene expression level [75]. Our findings
revealed that the season had a higher influence on the expression patterns of the studied
genes in young bulls than determined in old ones (Figure 3). Although the differences
were non-significant, the spring season associated with low mRNA levels of sperm-borne
mitochondrial genes (Figure 3). However, a significantly high level of the COX2 gene was
detected in young bulls’ spermatozoa during summer compared to spring and autumn.
Additionally, in the same bull group, the sperm-borne mRNA level of the ATP6 gene was
significantly reduced during summer compared to autumn (Figure 3). The mitochondrial
cytochrome c oxidase (COX) protein family is the primary set of oxygen consumption
and is central in ATP synthesis through aerobic energy generation [76]. Previous studies
demonstrated the presence of the COX2 gene in normal male reproductive cell types and
spermatozoa; however, higher levels of the gene were determined under pathological
conditions and low fertile individuals [77,78]. The ATP6 gene encodes for the ATP synthase
membrane subunit 6 protein, which is an enzyme involved in oxidative phosphorylation,
electron transport chain, and proton transmembrane transport biological pathways for
normal mitochondrial function [79,80]. Reduction in the expression level of ATP6 was
associated with cellular dysfunction and low maturation in bovine oocytes [81].

The abundance of a particular gene within a gene cluster indicates the alteration of
a specific pathway or biological process [82]. For instance, the mRNA transcript of the
nuclear gene YWHAZ was one of the most abundant genes in bovine spermatozoa [83] as it
has a role in regulating spermatogenesis and acrosomal reactions [84]. Furthermore, the
mRNA along with the protein of the mitochondrial COX1 gene was abundant in bovine
spermatozoa [83], and the alteration of the mitochondrial genes results in mitochondrial
dysfunction and impaired fertility [85]. In the current study, all mitochondrial protein-
coding genes under investigation were detected in RNA isolated from the spermatozoa of
both young and old bulls (Figure 4). However, the abundance of the mRNA of these genes
differed between bull groups and seasons. As shown in Figure 4, the delta Ct values were
low (high abundant) for a particular gene in one group and high (low abundant) in another
group. Accordingly, we sorted the genes by their Ct values (Figure 5). Throughout the year,
the mRNA of the ND1 gene was the topmost abundant compared to other genes in old
bulls’ spermatozoa. Complex I (NADH: ubiquinone oxidoreductase) is a mitochondrial
enzyme complex responsible for proton generation and electron transport in the mitochon-
drial inner membrane essential for oxidative phosphorylation and ATP production [86].
The dysregulation of NAD1 protein was found to adversely influence complex I activity,
resulting in low energy production and subsequently sperm motility [87]. However, the
ND4 and ATP6 genes were the topmost abundant throughout the year while the ND2
and ND5 were the least abundant compared to other genes in young bulls’ spermatozoa
(Figure 5). All studies demonstrated the impact of mitochondrial expression gene loss;
however, suggestions regarding higher expression are limited. Therefore, in the current
study, the mRNA analysis together with the mtDNA copy number can suggest that the
imbalance between mitochondrial genes may result in mitochondrial dysfunction and the
loss of sperm function. Moreover, the season influenced the differential abundance between
the mitochondrial genes (Figure 5) particularly in old bulls’ spermatozoa, indicating the
potential use of the mitochondrial transcript abundance as a biomarker for sperm quality.
Furthermore, an in silico analysis was performed for the protein–protein interaction and
pathway enrichment for the top six abundant genes in each group of bulls during every
season. The results showed eleven protein-to-protein interactions where the ND1 for the
old bulls and ND4 for the young bulls showed high interactions with the other 10 proteins
(Figure 6). Moreover, these top six abundant genes in each group showed the involvement



Int. J. Mol. Sci. 2024, 25, 13064 10 of 16

of the same pathways linked with mitochondrial function and energy metabolism differ-
entiated by age and season (Figure 7). The current study was limited by the number of
animals and relied on −80 ◦C frozen semen. Therefore, further analyses using more bulls
and sperm phenotypes on fresh and cryopreserved semen could help to identify particular
balanced mitochondrial transcription abundance as a biomarker for sperm quality within
young bulls.

In conclusion, our study was the first to investigate the association between the mtDNA
copy number and the transcription activity of all mitochondrial protein-coding genes in
young and old bulls’ spermatozoa throughout the year. There was a significant negative
influence of summer and winter seasons on young bulls’ sperm-borne mitochondrial
regulation, which resulted in a low copy number and the transcription dysregulation of all
mitochondrial protein-coding genes and the subsequent biological pathways enrichment.
Further investigations are ongoing on the mtDNA epigenetic regulatory mechanisms
associated with mtDNA replication and transcription activity.

4. Materials and Methods
4.1. Experimental Design

The study investigations were performed on Black Holstein semen samples collected
and cryopreserved at the RSH (Rinderzucht Schleswig-Holstein, Neumünster, Germany)
station. The semen was collected from eight healthy bulls including young (n = 4, aged
18–24 months old) and old (n = 4, aged 40–54 months old) bulls during winter (January),
spring (April), summer (August), and autumn (November) seasons using artificial vagina
protocol. All morphological parameters for sperm quality before cryopreservation were
examined at the RSH station. All selected samples were pointed with good semen quality
parameters of more than 80%. The semen samples were cryopreserved using the protocol by
the RSH station and stored in liquid nitrogen. Thereafter, straws were transferred to the lab
and kept at −80 ◦C until use. The straws were thawed in the lab, and the semen samples
were washed twice in PBS (phosphate buffer saline). The washed spermatozoa were
subjected to the sperm-borne DNA and RNA extraction. After that, the mitochondrial DNA
copy number analysis was performed using the extracted DNA and qPCR (quantitative
polymerase chain reaction). In parallel, the RNA was subjected to cDNA synthesis and
mRNA expression analysis of the sperm-borne 13 mitochondrial protein-coding genes.
According to the results, the genes were sorted according to their delta Ct values. Then the
top six abundant genes were used for protein–protein interaction and pathway enrichment
analyses using gene ontology online tools.

4.2. DNA Extraction and Quality Control

The DNA from sperm cells (one straw per animal) was extracted using a manual
protocol. Briefly, the straws were thawed at 37 ◦C and diluted with PBS then centrifuged at
13,000 rpm for 10 s. Thereafter, the pellets were washed twice with PBS before resuspension
in with a lysis buffer containing 100 mM NaCl, 10 mM Tris-base pH 8.2, 2 mM EDTA
pH 8.2, 0.5 M DTT, 10% SDS, and proteinase K. The samples suspended in the lysis
buffer were incubated overnight at 65 ◦C. The lysate was then mixed with 6 M NaCl
(V/V) and centrifugated for 13 min at 13,000 rpm. The clear supernatant was transferred
into a new tube and mixed with 100% ethanol and centrifuged for 1 min at 13,000 rpm.
Finally, the supernatant was discarded, and the pellets were dissolved in 37 ◦C Tris EDTA
buffer. The DNA was then subjected to quality and quantity assays. For that, the DNA
concentration and purity were performed using a NanoDrop 1000 Spectrophotometer
(PEQLAB Biotechnologie GmbH, Erlangen, Germany). Furthermore, the integrity of the
DNA was performed by loading 100 ng from each DNA sample on 1% agarose gel run at
80 voltages for 1 h. Finally, the pictures were developed using a gel documentation device
(Bio-Rad Laboratories, Inc., Hercules, CA, USA).
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4.3. RNA Extraction and cDNA Synthesis

The sperm-borne total RNA was extracted using the RNeasy Mini Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions with some modifications. Briefly,
the straws (two straws per animal) were thawed at 37 ◦C and diluted with PBS then cen-
trifuged at 13,000 rpm for 10 s. The pellets were washed twice with PBS and incubated with
Qiazol buffer with beta-mercaptoethanol for 15 min followed by the kit manufacturer’s
instructions. After the washing steps, the columns were subjected to DNase I treatment
and incubated for 15 min to remove residual DNA contamination. Subsequently, after the
washing steps, the RNA was eluted in 50 µL elution buffer. The RNA concentration and
purity were determined using a NanoDrop 1000 Spectrophotometer (PEQLAB Biotech-
nologie GmbH, Erlangen, Germany). Afterward, the RNA samples were standardized for
120 ng using RNAse-free water for cDNA synthesis. The cDNA was synthesized by reverse
transcription using the first strand cDNA synthesis kit (Thermofisher Scientific, Dreieich,
Germany), following the manufacturer’s instructions.

4.4. Mitochondrial DNA Copy Number

The mitochondrial DNA (mtDNA) copy number of old and young bulls’ spermatozoa
was identified by quantification analysis using the extracted DNA. The amplification of
DNA was performed via qPCR and SsoAdvanced Universal SYBR® Green Supermix (Bio-
Rad Laboratories GmbH, Feldkirchen, Germany) using primers (Table 2) designed for
the nuclear (n) (GAPDH) and mitochondrial (mt) (ND2 and CYTB) genes. For that, serial
concentrations (10, 30, 50, and 70 ng) of DNA were used in a total amplification volume of
20 µL for each gene. The relative mtDNA copy number was calculated using the following
equation: mtDNA copy number = 21+(Ctn_gene-Ctmt_gene) [88].

Table 2. List of forward (F) and reverse (R) primers used for the mt-DNA copy number and the
sperm-borne mRNA analyses.

Symbol Gene Name Primer Sequence (5′-3′) Size (bp)

ND1 NADH Oxidoreductase Core Subunit 1 F: 5′CACTACGACCCGCTACATCT3′

R: 5′AGTTGGAAGCTCAGCCTGAT3′ 195

ND2 NADH Oxidoreductase Core Subunit 2 F: 5′ATCACAACCCACGAGCTACA3′

R: 5′GATGCCCTGTGTTACTTCTGG3′ 227

ND3 NADH Oxidoreductase Core Subunit 3 F: 5′ATCGCATTCTGACTTCCCCA3′

R: 5′CAGTGGTAGGAGGAGTGCAA3′ 168

ND4 NADH Oxidoreductase Core Subunit 4 F: 5′GGAAACCAAACAGAACGCCT3′

R: 5′AGGTAGTCAAAGGTGGAGGC3′ 243

ND4L NADH Oxidoreductase Core Subunit 4L F: 5′AGCAGCCCTAACAATCCTCA3′

R: 5′AGCATTGGAGTAAGTTGAGGTT3′ 167

ND5 NADH Oxidoreductase Core Subunit 5 F: 5′TGAGAAGGCGTCGGAATCAT3′

R: 5′GGATTTTCCGGTTGCAGCTA3′ 243

ND6 NADH Oxidoreductase Core Subunit 6 F: 5′ACTGGCTTGTTGATGGAGTTC3′

R: 5′TAAAGCCGCAATCCCTATGG3′ 156

CYTB Cytochrome B F: 5′TACCCATATCTGCCGAGACG3′

R: 5′TGGTGATGACTGTTGCTCCT3′ 245

COX1 Cytochrome C Oxidase Subunits I F: 5′AGGAGCCATCAACTTCATTACA3′

R: 5′AGGTTCCGGTCTGTTAATAGCA3′ 168

COX2 Cytochrome C Oxidase Subunits II F: 5′CCAGGGGAGCTACGACTATT3′

R: 5′GACCCGCAAATTTCTGAGCA3′ 218

COX3 Cytochrome C Oxidase Subunits II F: 5′ATCCGAGAAAGCACCTTCCA3′

R: 5′TGTTGAGCAGTGGGACTTCT3′ 217
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Table 2. Cont.

Symbol Gene Name Primer Sequence (5′-3′) Size (bp)

ATP6 ATP Synthase Membrane Subunits 6 F: 5′ACCCACTCCACTAATCCCAATA3′

R: 5′GCAAGTGTAGCTCCTCCGAT3′ 141

ATP8 ATP Synthase Membrane Subunits 6 F: 5′CCGCAACTAGACACGTCAAC3′

R: 5′TGTTTCTCAAGGGGTGTTTTGT3′ 156

GAPDH Glyceraldehyde-3-phosphate dehydrogenase F: 5′CCCAGAATATCATCCCTGCT3′

R: 5′CTGCTTCACCACCTTCTTGA3′ 369

B2M Beta-2-microglobulin F: 5′TCCAGCGTCCTCCAAAGATT3′

R: 5′CCTTGCTGTTGGGAGTGAAC3′ 222

4.5. Sperm-Borne mRNA Expression Analysis

The sperm-borne mRNA levels of all the thirteen protein-coding mitochondrial genes
named ND1, ND2, ND3, ND4, ND4L, ND5, ND6, CYTB, COX1, COX2, COX3, ATP6, and
ATP8 were determined using primers listed in Table 2, designed for each gene using the
Primer3 online tool version 4.1.0. The amplification was performed by qPCR using the
synthesized cDNA and SsoAdvanced Universal SYBR Green Supermix (Bio-Rad Laborato-
ries GmbH, Feldkirchen, Germany). A total reaction of 20 µL was run using the following
program: 95 ◦C for 3 min (1 cycle), followed by incubation at 95 ◦C for 15 s, and then at
60 ◦C for 45 s (40 cycles). Finally, a melting curve was performed. The relative mRNA
expression analysis was performed using the delta–delta Ct (2−△△CT) method and the
GAPDH and B2M genes as endogenous normalizers.

4.6. Gene Ontology Enrichment and Protein–Protein Interaction Analysis Network

The gene enrichment and protein–protein interaction between the sperm-borne abun-
dant mitochondrial protein-coding genes were analyzed using g:Profiler (https://biit.cs.ut.
ee/gprofiler/gost, accessed on 1 October 2024) and STRING 12.0 (https://string-db.org,
accessed on 26 September 2024) online tools. All the pathway enrichment and protein–
protein interactions were created using text mining, experiments, databases, co-expression,
neighborhood, gene fusion, and co-occurrence with a high confidence level.

4.7. Statistical Analysis

The mRNA expression and mtDNA copy number data were represented using the
geometric mean ± geometric standard deviation. Statistical analyses were performed
using the GraphPad Prism10 software. The statistical differences between the four different
seasons within the same age group of bulls were analyzed using one-way ANOVA followed
by a multi-comparison Tukey test. However, statistical differences between young and old
bulls within each season were analyzed using a student t-test (unpaired and two-tailed).
Statistical significance was considered at p < 0.05.
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