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Abstract: The roles of dielectric materials in adjusting the electromagnetic wave (EMW) absorption
performance of an EMW absorber are as crucial as the EMW absorbents. The commonly used
cement-based materials, such as mortar, are typical composites of multiple dielectric materials, such
as quartz sand and air in the pores. This study investigates the EMW-absorption performances
within the frequency range of 2 GHz to 18 GHz of cement paste and mortar samples with different
sand-to-cement ratios (S/C), water-to-cement ratios (W/C), and thicknesses. The bow-frame method
is used to measure the EMW reflection loss (RL) curves of slab-like samples. The coaxial method
is used to record the electromagnetic parameters of the sample powders, which are also used to
calculate the EMW RL curves. The results prove that the EMW-absorption performances of a slab-like
mortar sample are monotonically related to the S/C ratio and the actual air volume, which is closely
related to the thickness.

Keywords: mortar; electromagnetic absorption; thickness; cement-to-sand ratios; water-to-cement ratios

1. Introduction

Electromagnetic radiation is a common form of radiation in the atmosphere. With
the rapid development of wireless communication systems, high-frequency electrical
products have provided great convenience for people’s health but also made the urban
electromagnetic fields more and more complex. Electromagnetic radiation in urban cities is
becoming increasingly severe [1–3], and has become the fourth most significant source of
pollution in the world [4], and is hazardous to human health, electronic equipment [5–7],
and military stealth applications [8–10]. Cementitious materials are the commonly used
building materials in military protection buildings and infrastructure constructions, and
they have excellent mechanical properties, durability, and affordability [11]. Some building
materials have varying degrees of potential to absorb EMWs (electromagnetic waves), such
as conductive fiber-reinforced concrete [12–14], ferrocene-based geopolymers [15,16], and
gypsum composites [17,18]. To better reduce the harm caused by electromagnetic radiation,
researchers are committed to designing building materials that absorb EMWs.

The EMW transmission properties of cementitious materials are affected by many
factors, including the combined effect of the cementitious matrix, dielectric phases and
the electromagnetic phases, dielectric constant [19], magnetic permeability [20], and pore
structure [21,22]. Good impedance-matching properties are also crucial for materials to
achieve efficient EMW-absorption properties [23]. The larger the mixing ratio of the dielec-
tric phases with a low dielectric constant to cement, the lower the overall dielectric constant
of the composite and the better the EMW transmission properties [24]. Therefore, adding
some dielectric materials, such as expandable polystyrene [25,26], polyvinyl alcohol, SiO2
fibers, hollow glass microspheres [27], and glass powders [28], to cementitious materials
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can improve the impedance-matching properties of composites, resulting in better EMW
transmission and absorption properties.

Quartz sand, a typical dielectric material with a low dielectric constant, like air, is
a critical component of modern concrete. In general, sand is always used to improve
the strength of hardened concrete. However, the wave absorption properties of mortar
reported in the literature are poor [13,29–32], and the effective bandwidth values of slab-
like mortar samples are smaller than 5 GHz, as shown in Table 1. In theory, quartz sand
can regulate the dielectric properties of cementitious composites, which may improve
the impedance-matching results of the composites and enhance the absorption of EMWs.
However, the sand-to-cement ratios in regular mortars are relatively fixed, which may
cause an impedance mismatch in the matrix and result in poor EMW absorption. The
impedance-matching behaviours of cement mortar samples should be considered as the
combined effects of quartz sand, the pore structure in the hardened slurry, and cement
hydration products.

Table 1. The effective bandwidth Be and minimum values in reflectance curves (RLmin) of slab-like
mortar samples in the literature.

Reference W/C S/C Thicknesses
(mm)

Be
(GHz)

RLmin
(dB)

[13] 0.30 0.24 20 1.28 −19.47
[29] 0.33 1.5 20 2.31 −13.70
[30] 0.30 1.5 25 1.54 −14.47
[31] 0.50 3 10 - −7.70
[32] 0.20 1 20 4.25 −23.07

In this work, the influences of quartz sand and air in pores on the EMW-absorption
performance of cementitious materials are investigated. The contents of quartz sand
and the air in the mortar matrix are adjusted by changing the water-to-cement ratios
(W/C) and the thickness of the samples. The absorption polarity properties of mortar
samples are analyzed by determining electromagnetic parameters. The results of the study
will provide new strategies for the development of high-performance electromagnetic
absorption cementitious materials.

2. Experimental
2.1. Materials and Sample Preparation

The P.II 42.5 cement powders and ISO standard quartz sand were used to prepare
samples. The chemical composition of cement was measured by X-ray fluorescence (Axios,
Malvern Panalytical Ltd., Malvern, UK), and the results are listed in Table 2. The X-ray
powder diffraction (SmartLab9, Rigaku, Tokyo, Japan) spectrum of the cement powders is
displayed in Figure 1. The particle size distribution curve of cement powders (Figure 2) was
tested by a laser particle analyzer (Mastersize 3000, Malvern Panalytical Ltd., Malvern, UK).
In order to regulate the state of the cement paste, an appropriate amount of hydroxypropyl
methylcellulose (HPMC) was added during the test. After dry mixing cement, quartz sand,
and HPMC powders, the mixed water was added to the mortar mixer to mix for another
5 min. The slurry was cast into samples of three different sizes (200 × 200 × 10 mm3,
200 × 200 × 20 mm3, and 200 × 200 × 30 mm3). Samples were de-molded after 24 h and
cured for 28 d in a curing chamber at a temperature of 20 ± 2 ◦C and relative humidity
higher than 95%. Mortar samples with five water-to-cement mass ratios (W/C), four sand-
to-cement mass ratios (S/C), and three thicknesses were designed, and the mix proportions
of samples in each group are shown in Table 3.



Materials 2024, 17, 5795 3 of 20

Table 2. Chemical composition of silicate cement (wt.%).

Components Na2O MgO Al2O3 SiO2 P2O5 SO3 Cl K2O CaO TiO2 Fe2O3 Others

Content 0.80 4.52 5.31 21.01 0.17 3.67 0.15 1.18 58.90 0.28 3.81 0.22
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Figure 2. Particle size distribution of cement powders.

Table 3. Mix proportions of cementitious samples.

Group W/C S/C Thicknesses (mm)

Ref-0.40-10 0.4 3 10
Ref-0.40-20 0.4 3 20
Ref-0.40-30 0.4 3 30
Ref-0.45-10 0.45 3 10
Ref-0.45-20 0.45 3 20
Ref-0.45-30 0.45 3 30
Ref-0.50-10 0.5 3 10
Ref-0.50-20 0.5 3 20
Ref-0.50-30 0.5 3 30
Ref-0.55-10 0.55 3 10
Ref-0.55-20 0.55 3 20
Ref-0.55-30 0.55 3 30
Ref-0.60-10 0.6 3 10
Ref-0.60-20 0.6 3 20
Ref-0.60-30 0.6 3 30
Ref-0.40-30 0.4 3 30
Ref-0.40-30 0.4 2 30
Ref-0.40-30 0.4 1 30
Ref-0.40-30 0.4 0 30
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2.2. Methods
2.2.1. EMWs Reflection Loss (RL) Performance

The absorption properties of cementitious composites for EMWs are usually evaluated
by RL values [33]. A vector network analyzer (ZNB43, Rohde&Schwarz, Columbia, MD,
USA) was used to test the absorption performance of EMWs from 2 GHz to 18 GHz using
the bow-frame method [27,34]. The measuring system of RL curves of slab-like samples
is shown in Figure 3. It is important to ensure that all samples are dried at 55 ◦C for 48 h
in order to remove the impact of free water on the results of the wave-absorbing property
test [35,36].
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The transmitter and receiver antennas of the test system are mounted on a segment of
a circular frame, with the center of the sample plate coinciding with the center of the circle
of the bowed frame. The vector network analyzer was calibrated prior to the test, after
which the samples were positioned on a metallic reflector plate. The area surrounding the
reflector plate was lined with pyramid-shaped absorptive foam to minimize interference.
The EMW signals produced by the equipment were emitted via one horn antenna and
captured by the other horn antenna. All data represent the average of three test results for
each sample. The system was intended to measure the reflected power from a reflective
metal plate (Pm) and the sample (Pa). The reflective loss of the test sample was calculated
by the formula [36]:

RL(dB) = 10lg
Pm

Pa
(1)

The EMW-absorption characteristics are studied through the measurement of RL
curves. Based on the reflection principle [37], if the values of RL curves are smaller than
−10 dB, more than 90% of the electromagnetic energy is effectively absorbed. In this study,
the frequency range where the RL value is below −10 dB was designated as the effective
bandwidth (Be) for the sample being tested.

2.2.2. Measurement and Simulation of Electromagnetic Parameters

(1) Measurement

The electromagnetic parameters (complex permittivity and complex permeability) of
mortar samples were measured using the coaxial transmission method with the vector
network analyzer (N5222B, Keysight Technologies, Santa Rosa, CA, USA). The samples
were ground into powder and dried at 50 ◦C for 24 h. The sample powders were mixed
with paraffin wax at a mass ratio of 9:1. The mixture was pressed into a mold with an inner
diameter of 3.04 mm and an outer diameter of 7.00 mm to complete the sample making.

(2) Simulation of RL curves
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According to the transmission line theory [38–40], the RL value was calculated using
the following equation:

RL(dB) = 20lg
∣∣∣∣Zin − Z0

Zin + Z0

∣∣∣∣ (2)

Zin = Z0

√
µ′ − jµ′′

ε′ − jε′′
tanh

[
j
(

2π f t
c

)√
(µ′ − jµ′′)(ε′ − jε′′)

]
(3)

Z0 =

√
µ0

ε0
(4)

where Zin and Z0 denote the input impedance at the surfaces of samples and the impedance
in free space, respectively; f, t, and c stand for the frequency of EMWs, the thickness of
the material, and the speed of light, respectively. ε′ and µ′ represent the real parts of
permittivity and permeability, while ε′′ and µ′′ represent their imaginary parts. Lastly,
ε0 and µ0 correspond to the permittivity and permeability of free space. Meanwhile,
Equations (3) and (4) indicate that the impedance of the absorbing material should closely
match that of free space to maximize the absorption of incident EMWs. This implies that
the permittivity and permeability of the material should be similar to those of free space.
Consequently, the minimum RL is achieved when the input impedance (Zin) is nearly
equal to the impedance of free space (Z0). For a perfect microwave absorber, RL should be
infinitesimal [41]. Reflection loss can be influenced by numerous factors, such as impedance
matching [25,42], the electromagnetic and physical properties of the absorber [43–45], the
thickness and structural configuration of the samples [46–48], and the frequency of the
EMWs [49]. For EMWs to be absorbed, they must first enter the samples.

As indicated in Equations (3) and (4), the electromagnetic properties of the material
also influence the absorption of EMWs [50,51]. The dielectric constant reflects the ability to
polarize in response to an electric field of a material, which includes two components: the
real part (ε′) and the imaginary part (ε′′). The tangent of the loss angle (tan δε) is determined
using Equation (5).

tanδε =
ε′′

ε′ (5)

where tan δε represents the tangent of the loss angle, indicating the capability of a material
to dissipate electromagnetic energy during the polarization process. ε′ denotes the real
component of the dielectric permittivity, which reflects the ability to store and release
electromagnetic energy of a material. The ε′′ signifies the imaginary part of the dielectric
constant, reflecting the ability to dissipate electromagnetic energy of a material. A higher
ε′ suggests poorer impedance matching between free space and the material surface. In-
creased values of ε′′ and tan δε indicate greater dissipation of electromagnetic energy by the
material [52].

The measured parameters of magnetic permeability include the real part (µ′) and
the imaginary part (µ′′). The magnetic loss angle tangent (tan δµ) is determined using
Equation (6).

tanδµ =
µ′′

µ′ (6)

where tan δµ denotes the tangent of the magnetic loss angle, µ′ signifies the real part of
magnetic permeability, which reflects the magnetization level of the material; µ′′ represents
the imaginary part of magnetic permeability, indicating the electromagnetic loss due to the
creation and reorientation of magnetic dipoles of a material. A lower µ′′ and tan δµ imply
reduced magnetic and eddy current losses in the material. Conversely, higher values of µ′,
µ′′, and tan δµ correlate with enhanced EMW-absorption properties of the material.

2.2.3. Oven-Dry Porosity

At an age of 28 days, the samples were submerged in water at (20 ± 2) ◦C for 24 h. The
water surface should be higher than the top surface of the sample for 25 mm. The water
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on the surfaces of the samples was wiped off with a wet towel, and then the masses of the
samples were weighed. After that, the samples were dried in an oven at (50 ± 5) ◦C for
24 h. Again, the samples are weighed. The sample oven-dry porosity can be calculated in
accordance with the following formula:

P0 =
m1 − m0

ρwV0
× 100(%) (7)

where m1 represents the mass of the sample after immersing in water for 24 h; m0 represents
the mass of the sample after drying; V0 represents the volume of the sample; and ρw
represents the density of water.

3. Results
3.1. Electromagnetic Reflection Loss
3.1.1. Effects of Sand-to-Cement Ratios

Figure 4 shows the effects of variation of sand-to-cement ratios (S/C) on the EMW-
absorption properties of cementitious composites in the range of 2 GHz to 18 GHz. In the
RL curves, the more negative the value of RL, the stronger the absorption of EMWs. If the
value of RL is below −10 dB, the width of the absorption band is referred to as the adequate
absorption bandwidth when 90% of the energy of the EMWs is absorbed. The effective
absorption bandwidths of samples with different S/C ratios are shown in Figure 5.
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As shown in Figure 4, when the thickness is 30 mm, the samples with different S/C
ratios show a relatively wide bandwidth of the EMWs. It can also be observed that all
the samples can realize the effective absorption of the C band (4 GHz to 8 GHz) and X
band (8 GHz to 12 GHz) EMWs, and the absorption of the X band and Ku band (12 GHz
to 18 GHz) EMWs is slightly insufficient. From Figure 4, it can be observed that when the
quartz sand content is lower (S/C = 1, 2), the RL curves have an upward trend in the S
band (2 GHz to 4 GHz) and C band, a downward trend in the X band, and an upward
trend in the Ku band compared with that of the blank sample (without sand). When the
addition of quartz sand in the mortar samples is relatively high (S/C = 3), the absorption
effect of the samples on the EMWs from 2 GHz to 12 GHz is enhanced, but the absorption
of the samples on the EMWs from 12 to 18 GHz is much weakened. That is, the addition of
quartz sand reduces the EMW absorption of the mortar samples in the low-frequency band.
A larger S/C ratio can enhance the EMW absorption of mortar in the low-frequency band
and weaken that in the high-frequency band.

Before the addition of quartz sand, the hardened cement paste sample had one RL
peak at 4.82 GHz and 12 GHz, with peak values of −18.2 dB and −25.97 dB, respectively.
After the addition of quartz sand, there were also two RL peaks in the RL curves of mortar
samples near 5 GHz and 12 GHz when S/C = 1 and 2, respectively. The results of EMW
absorption of mortar samples shown in Figure 4 are pretty good compared with the data in
the literature. For example, in reference [30], the RL values of the mortar sample are about
−8 dB in the EMW frequency ranges of 1 GHz to 6 GHz. In reference [53], the Be of the
mortar sample is only 1.54 GHz within the EMW frequency of 2 GHz to 18 GHz, and the
minimum RL value is −14.47 dB. However, it is worth noting that when the S/C ratio of
the mortar sample is three, there is another RL peak at 10.46 GHz with a peak value of
−29.69 dB. Therefore, the addition of quartz sand not only affects the values of peaks in the
RL curves of samples, but also affects the number of RL peaks.

As can be seen from Figure 5, for the sample with a thickness of 30 mm, when the
cement–sand ratio is increased from 0 to 3, the effective absorption bandwidth of the sample
is above 10 GHz, and all of them can realize the full-band effective absorption of the C band
and the X band. The absorption of samples with the S/C ratios of 1 and 2 on the Ku band
EMWs is not very satisfactory. Meanwhile, the absorption of samples with S/C ratios of 0
and 3 on Ku band EMWs is improved. The effective absorption bandwidth of the sample
with the S/C ratio of 3 is the largest, at 13.36 GHz. The effective absorption bandwidth
values of the samples with the S/C ratios of 1 and 2 are similar, which are 10.45 GHz and
10.69 GHz, respectively. The effective absorption bandwidth of the sample without sand is
12.78 GHz. From the RL curves, this difference is mainly due to the absorption of EMWs by
samples in the high-frequency band of 16 GHz to 18 GHz. As mentioned in the previous
section, the addition of quartz sand weakens the absorption of the mortar sample of the
EMWs with a high-frequency band.

3.1.2. Effects of the Thickness of the Samples

Changes in sample thickness also alter the actual quantity of quartz sand and the
propagation distance of EMWs within the mortar, thereby affecting the scattering and RL
curves. Figure 6 shows the effects of the thicknesses on the RL curves for the sample with
the same sand-to-cement ratio. Figure 7 shows the effective absorption bandwidth values
of all samples for this set of tests.

The impact of varying thickness on the wave absorption properties of cementitious
composites with a water-to-cement (W/C) ratio of 0.40 is illustrated in Figure 6a. The
peak of the curve of the sample with a thickness of 10 mm is −31 dB, but the effective
absorption bandwidth is only 2.96 GHz (Figure 6). The appearance of absorption peaks
can be attributed to the fact that each microwave-absorbing component exhibits specific
frequency selectivity and possesses inherent absorption peaks within the wider frequency
range. When the thickness of the sample is 20 mm or 30 mm, the RL curves of the sample
tend to be flat, and start to change abruptly at 13 GHz and 12 GHz. Compared to the



Materials 2024, 17, 5795 8 of 20

sample with a thickness of 10 mm, the mortar sample with a thickness of 20 mm shows
a reduced peak RL curve and has barely any effective bandwidth. The RL curve of the
sample with a thickness of 30 mm decreases compared with that of the sample with a
thickness of 20 mm. The RL values are first enhanced and then decreased with the change
in frequency; the peak value of RL curves can reach −25.78 dB and the effective absorption
bandwidth is 13.3 GHz (Figure 7). As shown in Figure 6b–e, the mortar samples with
higher W/C ratios present similar EMW-absorption properties to the mortar with the W/C
ratio of 0.4. That is, the effects of thickness variation on the sample EMW RL curves seem
not to be affected by the variation in W/C ratios of mortar samples. Thus, when designing
absorbing cement-based materials, one can adjust the effective absorption band by altering
the thickness of the samples.
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ratio of 3.
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The reason for the flattened EMW RL curves as the thickness of the mortar sample
increases needs to be noted. Coherent loss occurs when two EMWs with the same frequency
and a specific wave path difference are the main reason for the formation of the peaks
of the EMW RL curves of the tested sample. When the reflectance of the absorber is
measured using the bow-frame method, the EMWs can penetrate the thinner sample to
form a secondary reflection wave, providing interference loss. With the increase in sample
thickness, EMWs cannot penetrate the matrix effectively, resulting in an interference loss.
When the thickness of the mortar sample is 30 mm, the EMWs in the frequency range
of 2 GHz to 12 GHz are effectively absorbed, but the absorption capacity of EMWs in
the frequency range of 12 GHz to 18 GHz sharply decreases. This is mainly because the
low-frequency EMWs have a more robust penetration performance than the high-frequency
EMWs and can enter into the sample, resulting in a stronger interference loss. In the
frequency range of 12 GHz to 18 GHz, the interference loss is much higher than that of
high-frequency EMWs, meaning EMWs are reflected on the sample surface.

3.1.3. Effects of Water-to-Cement Ratios

In general, an increase in the water-to-cement ratios (W/C) of cement-based materials
tends to elevate both their dielectric constant and electrical conductivity. The influence of
the change in W/C ratios on the EMW-absorption performance of mortar test blocks with
different thicknesses is shown in Figure 8. The electromagnetic RL curves of mortar samples
with the same W/C and different thicknesses are similar for the absorption performance of
EMWs in the frequency band from 2 GHz to 18 GHz. For mortar specimens with the same
thickness, the change in W/C ratios has little effect on the EMW-absorption performance
of mortar samples. The change in sand contents directly affects the dielectric constant
and magnetic permeability of the cementitious materials. At the same time, the addition
of quartz sand also affects the microstructure of the test matrixes and the reflection and
scattering process of EMWs in the cementing materials. When the S/C ratio is fixed, the
change in W/C ratios mainly affects the hydration process of cement and the microstructure
in the hardened sample, but its influence on the EMW-adsorption property of the hardened
mortar sample is limited.

It is worth noting that the RL curve of the mortar sample with a thickness of 10 mm and
a W/C of 0.55 is significantly changed. This may be because the changes in pore structure
and hydration products caused by the W/C ratio have obvious effects on the frequency
selectivity of EMWs at the thickness of 10 mm. When the thickness of the test sample is
30 mm, the EMW RL curve of the mortar sample with W/C of 0.40 shifts down in the Ku
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band, and the peak value of the RL appears at 16.8 GHz with a value of −14.8 dB, which
indicates that the sample also has a certain absorption ability to EMWs in the Ku band.
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Figure 8. RL curves of mortar samples with different W/C ratios and thicknesses, and the same S/C
ratio of 3.

3.2. Electromagnetic Parameters
3.2.1. Samples with Different Sand-to-Cement Ratios

Figure 9a–d shows the variation of ε′ and ε′′ (Figure 9a), µ′ and µ′′ (Figure 9b), tan δε

(Figure 9c), and tan δµ (Figure 9d) for samples with different sand-to-cement ratios in the
EMW ranges of 2 GHz to 18 GHz.

In Figure 9a, all ε′ curves tend to be straight lines, and their values fluctuate between
3.5 and 4.0. The largest value of ε′ close to 4.0 was found for the sample without sand,
and the smallest value of ε′ was found for the mortar sample with the S/C = 1. There is
a slight peak appearing at an EMW frequency of 15 GHz, and the value of ε′ decreases
first and then increases with the increase in the content of quartz sand in mortar samples,
which suggests that the incorporation of quartz sand enhances the dielectric constants of
the samples but the improvement is limited. All ε′′ curves fluctuate around 0.2, and there is
no obvious rule of change with the change in frequency. But the ε′′ curves of the samples
with S/C= 0 and 1 show two gentle peaks at EMW frequencies of 12 GHz and 15 GHz.
This implies that cementitious materials possess specific polarization capabilities in an
electromagnetic field; however, the electromagnetic losses resulting from the reorientation
of electric dipoles remain relatively limited. The curves of tan δε of the sample with
S/C = 0 and 1 are relatively flat in the EMW frequency range of 2 GHz to 10 GHz, as shown
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in Figure 9c, with only two slight peaks in the EMW frequency range of 10 GHz to 18 GHz,
which is caused by the two slow peaks of the ε′′ curves in the same EMW frequency range.
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It is worth noting that the tan δε curves (Figure 9c) of the mortar samples with W/C of
0.4 and S/C of 1 have a large shift compared with other samples in the EMW frequency
range of 2 GHz to 18 GHz. This may be because the addition of quartz sand makes the
ε′′ value of the samples increase, but the ε′ value basically does not change, resulting in
a significant shift in the tan δε curves. This experimental phenomenon shows that in the
mortar samples with the S/C of 0 and 1, the dielectric loss effect is more substantial. That
is, the EMW loss through the medium is greater than that of the mortar samples with S/C
of 2 and 3.

The dielectric loss in cement-based materials primarily results from electromagnetic
losses due to polarization (polarization loss). In the absence of an external electromagnetic
field, the dipoles on the sample surfaces are randomly oriented. When exposed to an
electromagnetic field, these dipoles continuously realign as the field’s direction changes,
leading to the absorption of electromagnetic waves. Cement hydrates contain defect sites
and isolated chemical groups, for example, irremovable intermediate active hydroxyl
groups on the surface of calcium silicate hydrate gel (C-S-H) [54], which can play roles in
permanent dipole polarization centers with inherent dipole moments [55]. The presence of
cement hydrates gives cement-based materials a specific dielectric loss capacity.

In Figure 9b, the µ′ value of mortar test blocks with different cement–sand ratios
fluctuates up and down from 1.1, while the µ′′ value is mostly close to 0, which indicates
that the tested mortar samples are basically non-magnetic. That is, under the action of an
electromagnetic field, the electromagnetic loss caused by the rearrangement of the electric
dipole moment in mortar samples is minimal, so the magnetic properties of the sample are
very weak, and the magnetic loss capacity is extremely low. The tan δµ values (Figure 9d)



Materials 2024, 17, 5795 12 of 20

of mortar samples fluctuate randomly and irregularly with the EMW frequency, indicating
that the sample has basically no eddy current loss and magnetic loss ability. It is worth
noting that a large peak appears in the tan δµ curve of the mortar sample with S/C of 2,
which the metal oxides in cementitious materials may cause.

Figure 10 shows the theoretically calculated EMW RL curves of samples with different
S/C ratios, the same thickness of 30 mm, and the same W/C ratio of 0.4. Table 4 shows
the effective absorption bandwidth of the theoretical calculation of the electromagnetic
RL curve. In Figure 10, with the increase in quartz sand content, the EMW RL curves of
the test samples move first downward and then upward, indicating that the addition of
quartz sand improves the EMW-absorption capacity of the hardened mortar. In the middle
and low-frequency EMW bands with a frequency of 2 GHz to 8 GHz, the RL curves of
the samples basically coincide without obvious deviation, indicating that the change in
electromagnetic parameters of the mortar by changing the quartz sand contents has little
influence on the absorption of EMWs. In the range of EMW frequency from 8 GHz to
18 GHz, the RL curves of the samples show a trend to the left. According to the theoretical
calculation of EMW RL curves, all the tested cement-based samples have poor absorption
effects on EMWs. As shown in Table 4, mortar samples show slight absorption properties
only in the high-frequency band. The maximum effective absorption bandwidth value is
smaller than 4.6 GHz, but the RL value of the mortar sample can be as low as −37.69 dB.

Materials 2024, 17, x FOR PEER REVIEW 13 of 22 
 

 

noting that a large peak appears in the tan δµ curve of the mortar sample with S/C of 2, 
which the metal oxides in cementitious materials may cause. 

Figure 10 shows the theoretically calculated EMW RL curves of samples with differ-
ent S/C ratios, the same thickness of 30 mm, and the same W/C ratio of 0.4. Table 4 shows 
the effective absorption bandwidth of the theoretical calculation of the electromagnetic RL 
curve. In Figure 10, with the increase in quartz sand content, the EMW RL curves of the 
test samples move first downward and then upward, indicating that the addition of quartz 
sand improves the EMW-absorption capacity of the hardened mortar. In the middle and 
low-frequency EMW bands with a frequency of 2 GHz to 8 GHz, the RL curves of the 
samples basically coincide without obvious deviation, indicating that the change in elec-
tromagnetic parameters of the mortar by changing the quartz sand contents has little in-
fluence on the absorption of EMWs. In the range of EMW frequency from 8 GHz to 18 
GHz, the RL curves of the samples show a trend to the left. According to the theoretical 
calculation of EMW RL curves, all the tested cement-based samples have poor absorption 
effects on EMWs. As shown in Table 4, mortar samples show slight absorption properties 
only in the high-frequency band. The maximum effective absorption bandwidth value is 
smaller than 4.6 GHz, but the RL value of the mortar sample can be as low as −37.69 dB. 

Table 4. Theoretical calculations result in an effective absorption bandwidth and RLmin. 

Group S/C W/C Thickness (mm) Be (GHz)  RLmin (dB) 
Ref-0.40-0-30 0 0.40 30 2.35 −37.69 
Ref-0.40-1-30 1 0.40 30 3.71 −22.04 
Ref-0.40-2-30 2 0.40 30 3.35 −34.89 
Ref-0.40-3-30 3 0.40 30 2.75 −26.34 
Ref-0.45-3-30 3 0.45 30 3.47 −31.26 
Ref-0.50-3-30 3 0.50 30 4.51 −38.38 
Ref-0.55-3-30 3 0.55 30 4.55 −59.12 
Ref-0.60-3-30 3 0.60 30 3.79 −28.92 
Ref-0.40-3-10 3 0.40 10 0 −5.80 
Ref-0.40-3-20 3 0.40 20 1.96 −20.34 

 
Figure 10. Theoretically calculated RL curves of samples with different S/C ratios, the same W/C of 
0.4, and the same thickness of 30 mm. 

3.2.2. Samples with Different Water-to-Cement Ratios 
Figure 11a–d shows the change curves of ε′ and ε″ (Figure 11a), µ′ and µ″ (Figure 

11b), tan δε (Figure 11c), and tan δµ (Figure 11d) of samples with different W/C ratios in 
the range of EMW frequencies from 2 GHz to 18 GHz. 

2 4 6 8 10 12 14 16 18

−40

−30

−20

−10

0

R
ef

le
ct

io
n 

lo
ss

 (d
B)

Frequency (GHz)

Thickness is 30mm,
W/C=0.4

 S/C= 0
 S/C= 1
 S/C= 2
 S/C= 3

Ku band X band C band S band

Figure 10. Theoretically calculated RL curves of samples with different S/C ratios, the same W/C of
0.4, and the same thickness of 30 mm.

Table 4. Theoretical calculations result in an effective absorption bandwidth and RLmin.

Group S/C W/C Thickness
(mm) Be (GHz) RLmin (dB)

Ref-0.40-0-30 0 0.40 30 2.35 −37.69
Ref-0.40-1-30 1 0.40 30 3.71 −22.04
Ref-0.40-2-30 2 0.40 30 3.35 −34.89
Ref-0.40-3-30 3 0.40 30 2.75 −26.34
Ref-0.45-3-30 3 0.45 30 3.47 −31.26
Ref-0.50-3-30 3 0.50 30 4.51 −38.38
Ref-0.55-3-30 3 0.55 30 4.55 −59.12
Ref-0.60-3-30 3 0.60 30 3.79 −28.92
Ref-0.40-3-10 3 0.40 10 0 −5.80
Ref-0.40-3-20 3 0.40 20 1.96 −20.34

3.2.2. Samples with Different Water-to-Cement Ratios

Figure 11a–d shows the change curves of ε′ and ε′′ (Figure 11a), µ′ and µ′′ (Figure 11b),
tan δε (Figure 11c), and tan δµ (Figure 11d) of samples with different W/C ratios in the
range of EMW frequencies from 2 GHz to 18 GHz.
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From Figure 11a, it can be seen that the change in W/C ratios influences the dielectric real
part ε′ of cementitious materials. With the increase in the W/C ratios of the test samples, ε′

shows a trend of first increasing and then decreasing, which may be because of the change in
cement hydration product contents, which affects the electromagnetic parameters of the mortar.
When the W/C ratio is greater than 0.5, the dielectric real part ε′ of the mortar is favorable. The
values of the dielectric real part ε′ fluctuate in the range of 3.2 to 4.2, and an inflexion point
appears at the EMW frequency of 15 GHz. Although the values of the dielectric virtual part ε′′

fluctuate near 0, and a slow peak appears at the EMW frequency of 15 GHz, indicating that the
mortar samples have a specific polarization ability under the action of the magnetic field, the
leading dielectric loss is limited. In the EMW frequency range of 2 GHz to 8 GHz, the dielectric
loss angle tan δε curves (Figure 11c) of mortar samples are generally relatively gentle. When
the W/C ratio is 0.6, the tan δε curve of the mortar sample has two apparent peaks in the EMW
frequency range of 8 GHz to 18 GHz, while the curves of the mortar samples with W/C of 0.50
and 0.55 have only one peak.

It can be seen from Figure 11b that the µ′ value of mortar samples with different W/C
ratios fluctuates above and below 1.1, and µ′′ is close to 0, indicating that the mortar sample has
very weak magnetism and extremely low magnetic loss capacity. The tan δµ values fluctuate
randomly and irregularly with the increase in EMW frequencies, which further indicates that
the mortar sample basically has no eddy current loss and magnetic loss ability.

Figure 12 shows the theoretical curves of electromagnetic RL of mortar samples with
different thicknesses when the W/C ratio is 0.4 and S/C is 3. When the thickness of the
sample is 10 mm, the theoretically calculated curves show that the sample cannot effectively
absorb EMWs. When the thickness increases to 20 mm and 30 mm, the absorption peaks
of the RL curves of the samples move downward within the range of 2 GHz to 18 GHz.
Meanwhile, the absorption effects of EMWs are gradually enhanced. At the same time, the
absorption peak numbers increase while the primary absorption peaks shift to the low-
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frequency range. The quarter-wavelength theory can explain those phenomena [56–58], as
shown in Equation (8).

d =
(2n + 1)λ

4
=

(2n + 1)c
4 fm

√
εrµr

(n = 1, 2, 3 . . .) (8)

where d represents the matching thickness of the mortar sample, λ represents the wave-
length in the mortar sample, fm represents the matching frequencies of the absorbing peaks,
c represents the light velocity, and µr and εr are the complex relative permeability and per-
mittivity, respectively. The relationship between the absorption peak of mortar samples and
their thicknesses accords with the theoretical equation. With the increase in the thickness
of the sample, the frequency of the impedance-matching electromagnetic wave decreases,
causing the reflection peak to shift to the low-frequency range of the electromagnetic wave.
Therefore, the effective absorption band of cement-based electromagnetic wave-absorbing
material can be adjusted by changing the thickness of the sample.
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Figure 12. Theoretically calculated RL curves of mortar samples of different thicknesses and the same
W/C of 0.4 and S/C of 3.

Figure 13 shows the theoretical curve of RL of mortar samples with different W/C
ratios at a thickness of 30 mm in the EMW frequency range of 2 GHz to 18 GHz. In Figure 13,
the RL curves of the samples in the middle- and high-frequency ranges of EMWs shift to
the left, but their effective absorption bandwidth values are not ideal. The average effective
absorption bandwidth of all samples is only 3.81 GHz, while the absorption of EMWs is
mainly concentrated in the middle and high-frequency region of 8 GHz to 18 GHz. When
the W/C of mortar is 0.55, the minimum absorption peak at the EMW frequency of 12 GHz
can reach −59.12 dB.
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4. Discussions

By comparing the RL data in Sections 3.1 and 3.2, for the mortar samples, there
is a significant difference between the actual RL curves and the theoretical calculation
results. The most significant difference between the calculated RL curves by the parameters
obtained by the coaxial method and the measured RL curves by the bow-frame method
is the roles of the porous structure and the air in the pores. According to Figure 14, the
oven-dry porosity values of cement-based samples with a certain W/C ratio decrease with
the increase in S/C ratios, proving that the open pore (containing air) volumes in the
sample are affected by the contents of quartz sand. In Figure 15, it is easy to find that when
the S/C ratio is constant, the oven-dry porosity values of the mortar samples increase with
the increase in W/C ratios. Here, it should be noted that the thicknesses of mortar samples
also influence the oven-dry porosities of the samples with the same S/C and W/C ratios.
These may be the systematic errors caused by the molding of mortar samples.
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The influence of pore structure on the EMW-absorption performance of mortar is
mainly reflected in the following aspects. Firstly, the interface between the air in the pores
and the mortar matrix will cause EMW scattering and multiple reflections, increasing the
propagation paths of EMWs in the mortar and enhancing the absorption performance of
EMWs. Secondly, the pore sizes in the hardened mortar also affect the EMW-absorption
performance of the sample. Pores of a specific size can resonate with EMWs at a spe-
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cific frequency, thereby increasing the energy dissipation of EMWs. Larger pores can act
as resonators, strongly absorbing EMWs of specific frequencies. Finally, the pore shape
and volumes are also important factors affecting the EMW-absorption performance of the
sample. Irregular pores can increase the scattering and reflection of EMWs, improving
the EMW-absorption performance of mortar. Needle-like and elongated pores can guide
EMWs in a specific direction inside the cementitious materials, increasing EMW reflectance
loss [59]. Based on the similarity principle, the presence of air reduces the relative propor-
tion of high dielectric constant components (such as cement hydrates) in the mortar and
reduces the overall dielectric constant of the sample.

However, the EMW RL curves of the cement-based samples calculated from the elec-
tromagnetic parameters measured by the coaxial method assume that the tested powders
are dispersed evenly in the paraffin (the tested samples are dense and uniform without
pores). Thus, this work supposes that the actual measured electromagnetic RL curves of
cementitious materials with sand are the comprehensive results of the porous structure and
the electromagnetic parameters of the matrix. Figure 16 presents the Spearman’s correlation
matrix image of the measured EMW effective bandwidth of cement-based specimens and
the actual air volume in the samples, thickness, porosity, S/C, and W/C. Spearman’s corre-
lation coefficient is a metric that quantifies the strength of a monotonic relationship between
two ranked variables. Spearman’s correlation coefficients take a range of values from −1 to
+1. For example, a value closer to +1 (the deep orange), as shown in the upper right triangle
of the matrix Figure 16, indicates a strong monotonic positive correlation between those
two variables in the horizontal axis and vertical axis. The asterisks in the subtriangular
grids of Figure 16 indicate p-values from the statistical analysis, denoting the significance
levels of the factors on the horizontal axis with respect to those on the vertical axis. One
asterisk means the p-value is less than 0.05, two asterisks mean the p-value is less than 0.01.
While three asterisk mean the p-value is less than 0.001. As to the meanings of colour in
Figure 16, the shape of circles’ colour in the matrix represents the sizes of the correlation
coefficient of the factors on the horizontal axis with respect to those on the vertical axis. In
Figure 16, the change in Measured Be positively linearly correlates to the actual air volume
in the sample, the thickness of the sample, and the S/C ratio, where the significant level of
the S/C ratio is smaller than that of the other two. This is because quartz sand, as a typical
dielectric material, can reduce the dielectric constant of the cementitious material when
added (Figure 9a), thus enhancing the impedance matching between the cementitious mate-
rial and free space. The distribution of quartz sand in cementitious materials can also cause
multiple reflections and scattering of EMWs, complicating the path of EMW propagation
within the cementitious material. This increases the chances of EMWs interacting with the
cementitious material, thus improving the EMW-absorption performance.

According to the previous analysis, the influences induced by the air in the porous
structure of mortar cause the difference between the theoretically calculated and the mea-
sured EMW RL curves. Nevertheless, this difference also provides a reference for the design
of cement-based EMW absorbers. In the field of building materials, it is often necessary
to consider the balance between the cost, mechanical properties, durability, and EMW
absorption properties. Porosity can be adjusted by controlling the preparation process of
the mortar to obtain good electromagnetic absorption properties. However, it should be
noted that excessive porosity may lead to a decline in the mechanical properties of the
material [60]. The results of this study suggest that EMW-absorption properties of mortar
can be controlled by changing the amount of quartz sand. The relatively low cost of quartz
sand also provides strong support for its large-scale engineering practice.
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the sample, thickness, porosity, S/C, and W/C of cement-based samples.

Based on this, the mortar electromagnetic radiation-absorbing plate proposed in this
study has broad application prospects in civil and military fields. It is suitable for buildings
close to electromagnetic radiation sources, such as communication base stations, buildings
near high-voltage lines, and places with special requirements for electromagnetic environ-
ments, such as precision medical equipment rooms and scientific research laboratories in
hospitals. In addition, well-designed mortar slabs can be used to build storage, providing
better EMW protection for weapons and equipment.

5. Conclusions

This work investigated the influences of quartz sand on the EMW-absorption per-
formance of cementitious materials with different sand-to-cement (S/C) ratios, water-to-
cement (W/C) ratios, and thicknesses of samples. The EMW RL curves were derived using
the test measurement and theoretical calculations from the electromagnetic parameters of
the sample powders. The following conclusions can be drawn:

1. The content variation of quartz sand in mortar samples with a constant W/C ratio
significantly affects the EMW-absorption effective bandwidth values. The presence of
quartz sand in the hardened cement-based materials regulates the oven-dry poros-
ity values of samples, resulting in the change in air volumes in the matrix and the
impedance-matching behaviours between cementitious materials and the EMW trans-
parent phases (sand and air in the pores). The threshold of the S/C ratio of mortar
is 3; that is, when the S/C ratio is larger than 3, the absorption of EMWs in the
high-frequency band decreases sharply.

2. The thicknesses of the mortar with the same S/C ratio and W/C ratios significantly
influence the absorption performance of EMWs because of the changing of actual air
volumes in the mortar. It was found that a mortar sample with a thickness of 30 mm
obtained good EMW absorption with a larger effective absorption bandwidth. This
indicates that the optimization of sample thickness is an essential factor in improving
the absorption performance when designing EMW-absorbing materials.

3. When the S/C ratio of a mortar sample is fixed, the change in W/C ratios will have
little influence over the EMW-absorption performance of the mortar samples with the
same thickness values. The variation in actual air volume values induced by higher
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W/C ratios in this work is not as much as that induced by the quartz sand contents in
the mortar samples.

4. The air within the porous structure and the sand in the solid skeleton of the mortar
samples influence the EMW effective bandwidth in a coordinated way. The calculated
electromagnetic parameters of mortar powder samples can qualitatively describe the
effects of solid matrix variation caused by S/C and W/C ratios on EMW-absorption
performance. The effective bandwidth of EMW absorption of a mortar sample is
positively linearly related with the S/C ratios and the thicknesses of the sample.
Therefore, the calculated EMW RL curves can hardly precisely describe the real
EMW-absorption performance of mortar samples.
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