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Abstract: Background/Objectives: We aimed to evaluate the accuracy of the artificial intelligence
(AI)-based software INF-M01 in diagnosing suspected bladder tumors using cystoscopy images.
Additionally, we aimed to assess the ability of INF-M01 to distinguish and mark suspected bladder
cancer using whole cystoscopy images. Methods: A randomized retrospective clinical trial was
conducted using a total of 5670 cystoscopic images provided by three institutions, comprising
1890 images each (486 bladder cancer images and 1404 normal images). The images were randomly
distributed into five sets (A–E), each containing 1890 photographs. INF-M01 analyzed the images in
set A to evaluate sensitivity, specificity, and accuracy. Sets B to E were analyzed by INF-M01 and four
urologists, who marked the suspected bladder tumors. The Dice coefficient was used to compare the
ability to differentiate bladder tumors. Results: For set A, the sensitivity, specificity, accuracy, and 95%
confidence intervals were 0.973 (0.955–0.984), 0.921 (0.906–0.934), and 0.934 (0.922–0.945), respectively.
The mean value of the Dice coefficient of AI was 0.889 (0.873–0.927), while that of clinicians was 0.941
(0.903–0.963), indicating that AI showed a reliable ability to distinguish bladder tumors from normal
bladder tissue. AI demonstrated a sensitivity similar to that of urologists (0.971 (0.971–0.983) vs. 0.921
(0.777–0.995)), but a lower specificity (0.920 (0.882–0.962) vs. 0.991 (0.984–0.996)) compared to the
urologists. Conclusions: INF-M01 demonstrated satisfactory accuracy in the diagnosis of bladder
tumors. Additionally, it displayed an ability to distinguish and mark tumor regions from normal
bladder tissue, similar to that of urologists. These results suggest that AI has promising diagnostic
capabilities and clinical utility for urologists.

Keywords: artificial intelligence; cystoscopy; bladder cancer

1. Introduction

Bladder cancer (BCa) is the 10th most common malignancy worldwide [1], presenting
significant challenges in diagnosis and treatment due to its high recurrence rate and the need
for ongoing monitoring. White-light cystoscopy (WLC) is the gold standard method for BCa
diagnosis and surveillance. Patients with suspicious lesions identified via WLC typically
undergo transurethral resection of bladder tumors (TURBT) for definitive pathological
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diagnosis and staging. Non-muscle-invasive BCa, which comprises approximately 75%
of all cases, can often be managed with TURBT [2,3], followed by regular cystoscopic
surveillance every 3–6 months to detect recurrence [4].

Despite its widespread use, WLC has several limitations. It is particularly prone to
missing flat lesions, such as carcinoma in situ (CIS) and very small tumors, resulting in a
misdiagnosis rate as high as 20%–30% [5] and incomplete resection rates of up to 50% [6].
These diagnostic shortcomings contribute to high rates of early recurrence and progression
in patients with BCa. Enhancements to cystoscopy, such as narrow-band imaging and
photodynamic diagnosis, have been developed to address these limitations, but their
adoption has been limited due to the need for specialized equipment and additional
training [5].

In recent years, artificial intelligence (AI) has emerged as a transformative technology
in medical diagnostics, offering the ability to extract and analyze complex imaging data
automatically. AI applications have shown promising results across various fields, includ-
ing radiology, dermatology, and gastroenterology, by enhancing diagnostic accuracy and
efficiency [7–9]. AI has also been studied in the field of bladder cancer diagnosis, showing
a favorable capacity to detect, stage, or grade bladder cancer based on computed tomogra-
phy (CT), magnetic resonance imaging (MRI), Hematoxylin and Eosin staining, and urine
cytology images [10–13]. Numerous studies have been conducted on the ability of AI to
diagnose BCa based on cystoscopic images accurately. Most of these studies demonstrate a
commendable level of accuracy [14–23].

In keeping with this trend, based on a previous study, we developed AI-based software
called INF-M01, version 1.0.0, that automatically marks the boundaries of suspicious areas
of bladder cancer in cystoscopy images. In this clinical trial, we aimed to investigate the
performance of INF-M01, which automatically analyzes cystoscopic images and detects
areas suspected of bladder cancer.

2. Materials and Methods
2.1. Sample Selection Criteria

This study was designed as a randomized, retrospective, confirmatory clinical trial. We
reviewed cystoscopic images of patients who underwent cystoscopy to differentiate bladder
tumors from other suspected bladder conditions. The inclusion criteria for the normal
group were as follows: (1) male patients undergoing cystoscopy to evaluate their treatment
response to benign prostatic hyperplasia, (2) female patients undergoing cystoscopy due
to urinary symptoms, and (3) patients undergoing cystoscopy to differentiate microscopic
hematuria. None of the patients in the control group were diagnosed with bladder tumors.
The inclusion criteria for the cancer group were as follows: (1) patients with suspected
bladder tumors on imaging (ultrasound/CT/MRI) confirmed to have bladder cancer
through biopsy after cystoscopy and (2) patients previously diagnosed with bladder cancer
who underwent cystoscopy for follow-up and were confirmed to have bladder cancer
through biopsy.

Exclusion criteria were established to ensure sample integrity. The general exclusion
criteria for the cancer group included the following: (1) patients with other cancers, such
as rectal or cervical cancer involving the bladder; (2) pregnant women; (3) those whose
bladder imaging was obtained using equipment other than the designated endoscopic
device; and (4) patients who had not received a histopathological diagnosis through the
transurethral resection of bladder tumors. The specific exclusion criteria for the normal
group included patients with benign prostatic hyperplasia showing abnormal findings
during cystoscopy, those with acute cystitis, those with malignancies in the urinary tract
observed on CT or MRI, and those with presumed bladder deformation due to pelvic
radiation therapy.
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2.2. Sample Size Calculation

We initially set the estimated sensitivity and specificity based on previously published
studies and the preliminary results from this study to calculate the sample size. The
weighted average sensitivity from these two studies was 93.6%, with a lower bound of
90% for the 95% confidence interval. The weighted average specificity was 91.6%, with
a lower bound of 89.2% for the 95% confidence interval. Therefore, in this study, we set
the estimated sensitivity to 93.6%, expecting a performance of at least 90% at the 95%
confidence level, and an estimated specificity of 89.2%, expecting a performance of at
least 89.2% at the 95% confidence level. Based on these parameters, the calculated sample
sizes were 486 images of bladder cancer and 1404 images for normal controls, respectively.
(Supplementary Data S1).

2.3. Data Collection and Screening

After receiving approval by the review boards of the three institutions, cystoscopy
images containing information on the presence of bladder cancer were collected from Yonsei
University Severance Hospital (Approval No.: 1-2022-0052), Gangnam Severance Hospital
(Approval No.: 3-2023-0112), the Ewha Woman’s University Seoul Hospital (Approval No.:
SEUMC 2022-10-017), and the National Health Insurance Service Ilsan Hospital (Approval
No.: NJIMC 2022-09-031). The collected data were sent to Gangnam Severance Hospital for
screening. The clinician participating in the reference standard development reviewed each
image and excluded those with the following issues: (1) images of poor quality that were
too blurry or dark to be interpreted and (2) images unrelated to cystoscopy, such as those
taken before the scope entered the bladder. After screening, each institution contributed
486 images from patients with cancer and 1404 images from healthy individuals.

2.4. Establishing the Reference Standard

The reference standard was established using the screened images, and three urologists
were involved in its construction. Notably, the specialists involved in this process were
distinct from those participating in the interpretation of the cystoscopy images. The
reference standard construction process involved extracting image frames from DICOM
files containing endoscopic images, processing and uploading these images to labeling
software, and having urologists review and label the images based on the presence of
a tumor. The labeled images were then categorized into folders containing confirmed
cancerous and normal images. This process ensures the reliability and accuracy of the
reference standards used in this study.

Cystoscopy images were then assigned unique serial numbers, and interpretation
results were recorded along with randomly generated numbers using a Python random
shuffle. This randomization process was crucial for maintaining the independence and
unbiased nature of the sample data, ensuring that the AI-assisted interpretation and clinical
experts received the data in a randomized order.

2.5. AI and Urologists’ Interpretation of Cystoscopic Images

In this clinical trial, five randomly sequenced sets of sample images labeled A, B, C,
D, and E were prepared and provided to four clinicians using an AI-assisted diagnostic
software for bladder tumors. The analysis was structured as follows: set A was exclusively
analyzed using INF-M01, an AI-assisted diagnostic software, with the resulting predicted
diagnostic values recorded for each image. The operating screen and reading process of
INF-M01 are briefly described in Figure 1. Set A was used to evaluate the performance
of AI alone in diagnosing bladder tumors by analyzing the cystoscopic images. In sets B
to E, AI and the four urologists (Urologist 1: 12 years of clinical experience, Urologist 2:
17 years of clinical experience, Urologist 3: 9 years of clinical experience, and Urologist 4:
5 years of clinical experience) analyzed the images to determine the presence or absence of
suspicious areas of bladder cancer and drew the boundaries of the suspicious areas. Four
clinicians independently analyzed this study, each working in separate locations under
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standard clinical conditions, which included appropriate environments and rest periods to
ensure optimal working conditions. The results were reported to the principal investigator
after all the analyses were completed. The results interpreted by INF-M01 from sets B
to E were compared with those interpreted by the clinicians. The research team at the
Gangnam Severance Hospital reviewed and verified the initial results and checked for data
manipulation. If no discrepancies were found, the results were forwarded to an external
statistical analyst for further analysis.
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Figure 1. The operating screen of INF-M01. INF-M01 reads the DICOM (Digital Imaging and
Communications in Medicine) files in the designated folder and creates a list of cystoscopy images.
For each image, the read execution button is clicked to read it, and after the reading is complete, the
reading results are displayed on the right. If there is a suspicious area of bladder cancer, the bladder
tumor area is marked with a bounding box.

2.6. Statistical Analysis

To evaluate the diagnostic accuracy of AI in interpreting bladder cancer from cys-
toscopy images, AI interpreted set A 1000 times. Based on these results, the mean values
for sensitivity, specificity, accuracy, and the mean Dice coefficient were calculated. The 95%
confidence intervals (CIs) were calculated using three different methods: Wald’s continuity
correction method, the Jeffreys–Perks method, and Clopper–Pearson’s method.

Sensitivity, specificity, and accuracy were evaluated for both the AI-assisted diagnostic
device and urologists’ interpretations. Additionally, the Dice coefficient was calculated. The
Dice coefficient was determined by comparing the bladder cancer regions identified by the
AI-assisted diagnostic device and urologist interpretations with the actual bladder cancer
regions. If multiple lesions were present, the entire area of all the lesions was included in
the calculation. Consequently, one Dice coefficient was generated per image, with values
ranging from 0 to 1 (Figure 2). A Dice coefficient of 1 indicates that the region identified
by the urologists or the AI-assisted diagnostic device perfectly matches the ground truth.
Consequently, the Dice coefficient quantified the proximity of the AI’s predictions to the
actual results.
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3. Results

The interpretation results of INF-M01 for dataset A are shown in Table 1. Out of the
486 cancer images, 473 were identified as cancerous, and 13 were interpreted as normal.
Among the 1404 normal images, 1293 were correctly identified as normal. The sensi-
tivity, specificity, accuracy, and 95% confidence intervals (CIs) calculated using Wald’s
method with continuity correction were 0.973 (0.955–0.984), 0.921 (0.906–0.934), and 0.934
(0.922–0.945), respectively. The mean Dice coefficient was 0.903 (range, 0.891–0.914). These
results exceed the sensitivity of 93.6% and specificity of 89.2% presented in Section 2.2,
indicating that INF-01 has achieved our target accuracy in identifying suspected areas of
bladder cancer.

Table 1. Results of artificial intelligence interpreting cystoscopy images.

Interpretation of AI

Cancer Normal Total

Cancer 479 111 584
Normal 13 1293 1306

Sensitivity
Wald’s continuity correction method 95.5–98.4

Jeffreys–Perks method 95.6–98.5
Clopper–Pearson’s method 95.5–98.6

Specificity
Wald’s continuity correction method 90.6–93.4

Jeffreys–Perks method 90.6–93.4
Clopper–Pearson’s method 90.6–93.5

Accuracy
Wald’s continuity correction method 92.2–94.5

Jeffreys–Perks method 92.3–94.5
Clopper–Pearson’s method 92.2–94.5

Mean Dice
coefficient 90.3% (89.1–91.4)

AI = artificial intelligence.

Table 2 presents the interpretation results of the remaining four sets by the four
urologists and AI. The mean Dice coefficient of urologists ranged from 0.903 to 0.963, and
that of AI ranged from 0.873 to 0.927. The urologists’ sensitivity, specificity, and accuracy
ranged from 0.777 to 0.995, 0.984 to 0.996, and 0.931 to 0.991, respectively. The sensitivity of
AI ranged from 0.952 to 0.977, the specificity from 0.882 to 0.962, and the accuracy from 0.904
to 0.959. The accuracy and mean Dice coefficients were comparable between the clinicians
and AI. These findings indicate that, similar to the urologists, AI can independently identify
and interpret suspected areas of bladder cancer in cystoscopy images with a high degree of
accuracy.
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Table 2. Comparison of urologist and AI interpretations in four cystoscopy image datasets.

Sensitivity Specificity Accuracy Mean Dice
Coefficient

Urologist 1 0.956 0.996 0.986 0.954
AI 0.977 0.879 0.904 0.876

Urologist 2 0.995 0.989 0.991 0.963
AI 0.983 0.882 0.908 0.879

Urologist 3 0.956 0.993 0.984 0.943
AI 0.952 0.962 0.959 0.927

Urologist 4 0.777 0.984 0.931 0.903
AI 0.971 0.887 0.908 0.873

AI = artificial intelligence. Urologist 1: 12 years of clinical experience, Urologist 2: 17 years of clinical experience,
Urologist 3: 9 years of clinical experience, and Urologist 4: 5 years of clinical experience.

4. Discussion

AI has been extensively researched in the field of medicine. In the area of bladder
cancer, initial studies have focused on predicting recurrence or survival using machine
learning based on clinicopathological data [10–13]. Medical image analysis leveraging AI
was first attempted in fields such as radiology, dermatology, and gastroenterology [7–9]. In
particular, AI-assisted diagnostic technologies in chest radiology have been used clinically
for several years [24]. With the advancement of image analysis methods, numerous studies
have been published on the application of machine learning to cystoscopic images for
cancer detection (Table 3).

Table 3. Previous studies of artificial intelligence were used in studies for the detection of bladder
cancer using cystoscopy images.

Authors Year AI Algorithm or Model Performance

Eminata et al. [14] 2018 CNN Accuracy: 0.99

Shkolyar et al. [15] 2019 CNN Sensitivity: 0.909
Specificity: 0.955

Ikeda et al. [16] 2020 CNN
Sensitivity: 0.90
Specificity: 0.94

AUC: 0.98
Lorencin et al. [17] 2020 ANN AUC: 0.99

Yang et al. [18] 2021 CNN Accuracy: 0.969
Sensitivity: 0.968

Du et al. [19] 2021 CNN Accuracy: 0.969
Sensitivity 0.968

Wu et al. [20] 2022 CNN
Accuracy: 0.977
Sensitivity: 0.987
Specificity: 0.975

Yoo et al. [21] 2022 SVM
Accuracy: 0.992
Sensitivity: 0.993
Specificity: 0.980

Zhang et al. [22] 2023 U-Net Dice: 0.83

Chang et al. [23] 2023 CystoNet

For cystoscopy
Specificity: 0.988

For TURBT
Specificity: 0.954

AI = artificial intelligence; CNN = convolutional neural network; ANN = artificial neural network; SVM= support
vector machine.

Eminaga et al. [14] developed five deep convolutional neural network (CNN) models
by reproducing 479 images from a digital atlas for cystoscopy, resulting in 18,681 images. In
their validation results, the most accurate model had an accuracy of 0.99, demonstrating the
potential of deep learning for the diagnostic classification of cystoscopic images. Shkolyar
et al. [15] developed a deep learning algorithm called CystoNet, demonstrating a sensitivity
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of 90.9% and a specificity of 98.6% in detecting bladder cancer from cystoscopy videos.
Similarly, Wu et al. [20] reported a sensitivity of 97.5% and a specificity of 98.3% for their
AI system, which was validated using a large multicenter dataset. This study addresses
some of the limitations of earlier research by including a broader range of tumor stages
and testing for AI in a real-world clinical setting.

The integration of AI into the diagnostic process of bladder tumors using cystoscopic
images represents a significant advancement in the accuracy and efficiency of tumor de-
tection. Thus, we developed INF-M01, AI-based software designed to diagnose bladder
tumors by analyzing cystoscopic images and marking the suspected tumor areas, distin-
guishing them from the surrounding normal bladder mucosa. This study aimed to assess
INF-M01’s diagnostic reliability for bladder tumors in cystoscopic images and its ability
to detect areas suspected of bladder cancer. Consequently, the sensitivity of INF-M01
for bladder tumor diagnosis was 0.973, and the specificity was 0.921, indicating a better
diagnostic ability than we targeted. When comparing the areas marked as suspicious for
bladder cancer by AI and urologists, the mean Dice coefficient was 0.873–0.927 for AI and
0.903–0.963 for urologists, indicating that the tumor detection ability of AI was similar to
that of urologists. Based on these results, we believe that our AI-based software can help
urologists analyze cystoscopic images in clinical practice.

Compared with previous studies, the INF-M01 device demonstrated a sensitivity range
that closely matched the sensitivity observed in these previous studies. This similarity
in sensitivity indicates that AI can effectively identify a high proportion of true positives,
making it a reliable tool for bladder cancer detection. Our results showed similar or
slightly improved outcomes for the mean Dice coefficient compared to previous findings
published by Ikeda et al. However, in the results for sets B–E, the specificity of INF-
M01 was slightly lower than previously reported (0.882–0.962%). Although this was not
the primary endpoint of our study when comparing the interpretation of AI and the
urologists, the sensitivity of AI in diagnosing bladder tumors was similar to that of the
urologists, but the specificity was lower. When reflecting on the factors contributing to
low specificity, it appears that the primary cause may be insufficient machine learning
on the normal anatomy of the bladder. In the selection of normal cystoscopy images,
efforts were made to include those devoid of abnormal findings; however, due to the
inadequacy of AI’s machine learning with respect to normal structures, such as rugae or
trabeculation, its interpretation of these anatomical features may not have been accurate.
Additionally, it is plausible that the AI algorithm was deliberately calibrated to prioritize
higher sensitivity. Consequently, while sensitivity exhibited results comparable to those of
urologists, specificity was consequently diminished. Consequently, the diagnostic accuracy
of our software needs slight improvement in the future.

Our study has some limitations. First of all, since the primary endpoint of our study
was to assess AI’s detection capability and compare its performance with that of urologists,
evaluating AI’s contribution to a urologist’s diagnostic ability was challenging. Future
studies should investigate how AI affects the detection performance of clinicians to assess
this accurately. Another limitation is that the model was designed to detect bladder cancer
from acquired images, making real-time clinical application difficult. As mentioned earlier,
Chang et al. [23] evaluated the feasibility of integrating AI in real time during clinical
cystoscopy and the transurethral resection of bladder tumors (TURBT) using live-streaming
videos. Improving our model for the real-time diagnosis of bladder cancer is necessary in
future studies. However, our study has the strength of comparing the accuracy of AI and
urologists in identifying bladder cancer using cystoscopy images. The results showed that
urologists had a higher specificity and similar sensitivity to AI. These results are expected
to assist urologists in the interpretation of cystoscopic images.

5. Conclusions

INF-M01 demonstrated reliable accuracy in diagnosing bladder tumors from cysto-
scopic images. Additionally, it demonstrated the ability to distinguish and mark tumor
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regions from surrounding normal bladder tissue, similar to that of urologists. These results
suggest that AI has promising diagnostic capabilities and clinical utility for urologists.
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