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Abstract: Vascular calcification (VC) is a biological phenomenon characterized by an accumulation
of calcium and phosphate deposits within the walls of blood vessels causing the loss of elasticity
of the arterial walls. VC plays a crucial role in the incidence and progression of chronic kidney
disease (CKD), leading to a significant increase in cardiovascular mortality in these patients. Different
conditions such as age, sex, dyslipidemia, diabetes, and hypertension are the main risk factors
in patients affected by chronic kidney disease. However, VC may occur earlier and faster in these
patients if it is associated with new or non-traditional risk factors such as oxidative stress, anemia, and
inflammation. In chronic kidney disease, several pathophysiological processes contribute to vascular
calcifications, including osteochondrogenic differentiation of vascular cells, hyperphosphatemia and
hypercalcemia, and the loss of specific vascular calcification inhibitors including pyrophosphate,
fetuin-A, osteoprotegerin, and matrix GLA protein. In this review we discuss the main traditional
and non-traditional risk factors that can promote VC in patients with kidney disease. In addition, we
provide an overview of the main pathogenetic mechanisms responsible for VC that may be crucial to
identify new prevention strategies and possible new therapeutic approaches to reduce cardiovascular
risk in patients with kidney disease.

Keywords: vascular calcification; chronic kidney disease; cardiovascular risk; aortic stenosis; preci-
sion medicine

1. Introduction

Vascular calcification (VC) is a common pathological condition in patients with chronic
kidney disease (CKD), characterized by the accumulation of calcium and phosphate de-
posits in the walls of blood vessels [1]. This process leads to the loss of arterial elasticity,
increasing the risk of cardiovascular damage. CKD patients exhibit a significantly higher
risk of cardiovascular mortality compared to the general population, primarily due to their
increased predisposition to vascular calcification [2].

The pathogenesis of VC in CKD patients is complex. It involves both traditional risk
factors, such as hypertension, diabetes, and dyslipidemia, and non-traditional risk factors,
including chronic inflammation and mineral metabolism disorders [3]. In particular, dys-
function of calcium and phosphate metabolism, typical of CKD patients, promotes mineral
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deposition in the arterial wall, leading to vascular stiffness and subsequently increasing
blood pressure [4]. These factors contribute to the acceleration of VC by promoting the
trans-differentiation of vascular smooth muscle cells (VSMCs) into an osteoblast-like pheno-
type, resulting in the formation of bone tissue within blood vessels [5]. The degradation of
elastin, along with the loss of proteins such as matrix GLA protein (MGP) and fetuin-A, nat-
ural calcification inhibitors, further accelerates disease progression [6,7]. Given the severity
of this condition, it is essential to deepen our understanding of the pathophysiological
mechanisms underlying VC to develop more effective therapeutic options for managing
and preventing this condition in CKD patients [1]. Currently, available therapeutic options
are limited and present conflicting results. Although drugs such as phosphate binders and
statins are commonly used in the management of comorbidities associated with chronic
kidney disease, they show variable effects on VC progression. Moreover, certain treatments,
such as vitamin K antagonists, may even worsen vascular calcifications, highlighting the
need for more targeted therapeutic strategies [8].

The management of VC in CKD patients requires, therefore, a multidisciplinary ap-
proach, which not only addresses calcium and phosphate metabolism but also takes into
account inflammation and other cardiovascular risk factors [9].

In this review, we will examine the main pathogenic mechanisms of VC in CKD
patients, highlighting both traditional and non-traditional risk factors, as well as discussing
potential therapeutic strategies to reduce cardiovascular risk in this population.

2. Vascular Calcification (VC) in Chronic Kidney Disease Mineral-Bone Disorder
(CKD-MBD)

VC is one of the most significant complications in CKD. CKD is a global health problem
with increasing prevalence, affecting 697.5 million people worldwide. The mortality rate
for chronic kidney disease increased by 41.5% between 1990 and 2017 [10]. Patients with
CKD may have various types of calcifications that cause different pathological conditions,
contributing to the progression of kidney disease and a high risk of cardiovascular mortal-
ity [11]. Indeed, cardiovascular disease is the leading cause of morbidity and mortality in
patients with end-stage renal disease undergoing hemodialysis, and vascular calcifications
are one of the main associated causes [12,13]. In particular, renal dysfunction leads to the
deposition of calcium and phosphate salts in the walls of blood vessels, transforming them
into rigid and less elastic bone-like structures [14]. One of the most serious complications of
CKD is the development of VCs. VCs can develop in the two main layers of blood vessels:
the intimal layer or the medial layer. Although calcium deposition within the vessels is the
main pathological process in both cases, the molecular and cellular mechanisms involved
are different [15]. Calcification of the intima is a pathological condition associated with
the formation of atherosclerotic plaques within the walls of arteries [16]. Atherosclerosis is
prevalent in patients with chronic kidney disease, and its progression is strongly associated
with the development of atheroma [17]. The deposit of lipids and inflammatory cells in
the innermost layer of the vessel leads to the formation of atherosclerotic lesions, resulting
in lumen obstruction, rupture, and ischemia. Inflammatory cells, such as macrophages,
release pro-inflammatory cytokines that stimulate smooth muscle cells and endothelial cells
to produce pro-calcifying factors. The accumulation of oxidized lipids in atherosclerotic
plaques promotes calcification, probably through the induction of oxidative stress and cell
death [18]. Calcification of the medial layer mainly involves muscle cells of the middle tunic
and is a malignant condition linked to increased cardiovascular mortality and a higher risk
of amputation in patients with type 2 diabetes mellitus and end-stage renal disease [19].
Mechanisms involved in the development of medial calcification are heterogeneous and
vary with different etiologies [7]. The result of medial calcification is an increase in the
rigidity of the vascular wall, resulting in increased blood pressure and a higher risk of
cardiovascular mortality. In CKD, hyperphosphatemia and decreased functionality of
calcification-regulating proteins such as MGP and fetuin-A contribute to the development
of medial calcification [20]. Several studies have shown that elastin, a key component of the
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extracellular matrix of elastic arteries secreted by VSMCs, contributes to the tensile strength
of blood vessels and has calcium-binding properties that may facilitate the development of
medial arterial calcification [21]. The decrease in intracellular and extracellular magnesium
also increases oxidative stress and vasospasms, promotes inflammation, alters endothelial
function, and accelerates atherogenesis [22]. Understanding the pathogenetic mechanisms
behind vascular calcifications is a crucial challenge for managing patients with CKD and
developing effective intervention strategies to improve their prognosis.

3. Risk Factors Associated to VC in CKD

VC is more prevalent in patients with CKD compared to the general population and
can develop even at a young age in this context. Once VC has developed in dialysis
patients, it progresses rapidly, particularly at the coronary level [23–26]. Several risk factors
associated with VC have been identified. These are typically classified into traditional risk
factors, which are common for both the general and CKD population, and non-traditional
risk factors (Table 1). The latter predispose CKD patients to earlier and more accelerated
calcification and are thought to contribute to the additional cardiovascular risk that is not
captured by the Framingham risk equation in this population [27–30].

Table 1. Risk factors for vascular calcification.

Traditional Risk Factors Non-Traditional Risk Factors

Ageing Dialysis vintage

Sex Disordered mineral metabolism: calcium, phosphate

Smoking Oxidative stress and inflammation

Diabetes

Others: FGF-23 soluble Klotho, osteopontin, osteoprotegerin,
bone morphogenic proteins, matrix Gla protein gene, fetuin-A,

calciprotein particles (CPP), magnesium, zinc, microbiome,
uremic toxin, and advanced glycation end-products

Hypertension

Dyslipidemia

Traditional risk factors. Aging is a significant risk factor for cardiovascular disease
and is closely related to VC, which represents a hallmark of vascular aging. Conditions such
as renal failure, bone loss, and VC are reported both in individuals with CKD and in normal
aging, suggesting that tissue dysfunction and vascular remodeling may be linked through
common changes in physiology, metabolism, or cellular function induced by aging [31].
Aging is also intrinsically associated with prolonged exposure to other risk factors for the
development of VC.

Being male is associated with an increased risk of VC compared to being female,
probably due to the protective effects attributed to estrogenic action [32,33]. A recent study
showed that males have a threefold higher risk of coronary artery calcification (CAC) com-
pared to females, with a more diffuse distribution of calcification in men. The calcification
process in women was shown to be delayed by approximately 10 years [34]. Smoking is
associated with VC and a higher risk of cardiovascular disease in the general population.
However, few studies have investigated this association in CKD populations [35–38]. Some
studies suggest that smoking may not be a significant risk factor for VC progression in
CKD patients [39,40]. However, relatively short-term assessments might not be sufficient
to observe significant changes in VC. A recent study showed that current smokers with
CKD had a higher prevalence of VC and an increased relative risk for VC progression.
Moreover, smoking cessation for more than 10 years was associated with a significantly
lower prevalence of VC compared to current smokers, regardless of smoking dose [41]. The
available evidence is likely insufficient for a thorough analysis of the role of smoking in the
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CKD population, and future studies with larger cohorts and longer follow-up periods may
help clarify this issue.

In the CKD population affected by diabetes, VCs have been reported to be more
common and severe compared to non-diabetics [42], with significant prognostic implica-
tions [43]. Several studies suggest that hyperglycemia and diabetes promote the dedif-
ferentiation of VSMCs into an osteoblast-like phenotype through various pathways. In
a high-glucose environment, cultured VSMCs exhibit increased expression of osteoblast-
related transcription factors, which promote matrix calcification [44]. In vivo studies have
documented that arterial TNF-alpha signaling activates osteogenic expression programs,
driving medial calcification during the onset of diabetes [45,46]. Hyperglycemia and di-
abetes also significantly enhance BMP signaling in endothelial cells in vitro and in the
aortic wall in vivo. Elevated vascular BMP activity has been observed in diabetic animal
models, and it has been correlated with increased expression of osteogenic markers and
medial calcification [47,48]. Recent studies in animals and humans with obesity or glu-
cose intolerance have shown that the expression of stromal proteoglycans synthesized
by VSMCs is increased in adipose tissue, suggesting that hyperglycemia may promote
the transformation of VSMCs into osteoblast-like cells in both animals and humans with
obesity or glucose intolerance [49,50]. Additionally, hyperglycemia promotes the produc-
tion of reactive oxygen species (ROS), while protein kinase C (PKC) activates the polyol
pathway and stimulates the production of pro-inflammatory cytokines contributing to the
development of VC and endothelial damage [51–54].

The prevalence of hypertension tends to increase as renal function declines, affecting
more than 80% of patients with stage 4 to 5 chronic kidney disease (CKD) [55]. Several
studies indicate that hypertension is associated with significant alterations in the extracel-
lular matrix structure and vascular cell differentiation. Vascular tissue remodeling due to
hypertension may create a favorable environment for calcium deposition within the arteries.
The renin-angiotensin system is involved in VSMC apoptosis, growth, and differentiation,
and may therefore play a role in the development of VC [56]. Vascular smooth muscle cell
apoptosis plays a critical role in the process of vascular calcification, which is a significant
contributor to cardiovascular disease. The loss of VSMCs through apoptosis leads to a
reduction in the cellular environment that normally inhibits calcification, promoting an
osteogenic phenotype in the remaining cells. This shift is characterized by increased expres-
sion of bone-associated markers and the release of matrix vesicles, which facilitate mineral
deposition. Consequently, the disruption of VSMC homeostasis through apoptosis not only
accelerates the calcification process but also contributes to the overall rigidity and dysfunc-
tion of the vascular wall [16]. In vitro studies suggest that elevated levels of phosphate and
calcium are responsible for inducing VSMC apoptosis through the inactivation of Bcl-2
and activation of the Bcl-2-associated death promoter, BAD. This pro-apoptotic protein
triggers the activation of caspase-3, leading to cell death [57]. Following programmed cell
death, VSMCs can release apoptotic bodies, increasing intracellular calcium accumulation,
which further contributes to calcification [58]. Additionally, VSMC apoptosis can result
in the loss and degeneration of VSMCs in the vascular media, as well as changes in the
extracellular matrix composition, stimulating the release of calcium phosphate crystals
that may contribute to vascular mineralization [59]. In vitro studies have also shown that
inhibiting apoptosis with caspase inhibitors significantly reduces the degree of VSMC
mineralization, limiting vascular calcification [60].

In animal models, calcified arteries exhibited increased expression of bone-associated
proteins and downregulation of alpha-smooth muscle actin, indicating a phenotypic shift
of VSMC to an osteoblast-like state. Additionally, upregulation of angiotensin II type
1 receptors and elevated levels of angiotensin II and aldosterone were observed. Fur-
thermore, treatment with angiotensin receptor blockers significantly inhibited arterial
calcification [61,62].

Dyslipidemia is highly prevalent among CKD patients. Generally, these are secondary
forms linked to altered hepatic production of apolipoproteins and impaired catabolism of
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triglyceride-rich lipoproteins [63–65]. Retrospective cross-sectional studies have shown
either no correlation or a paradoxical association between low serum cholesterol levels
and increased mortality in hemodialysis patients [66]. In 1990, researchers identified a U-
shaped relationship between cholesterol levels and mortality, with higher overall mortality
observed at lower total serum cholesterol levels [67]. A more recent study suggested that
the association between low total cholesterol levels and increased mortality in dialysis
patients is likely due to the cholesterol-lowering effects of systemic inflammation and
malnutrition, rather than a protective role of high cholesterol levels [68]. In contrast to
total cholesterol levels, the correlation between high triglyceride levels and low HDL-C
concentrations with the rapid progression of VC in dialysis patients is clearer [69]. However,
in a randomized trial, hemodialysis patients treated with sevelamer, a non-calcium- and
non-metal-containing phosphate binder, showed an improvement in VC and a significant
reduction in plasma LDL cholesterol levels. It is therefore possible that the slower rate of
VC progression observed in this study may have resulted from the significant lowering of
LDL levels by sevelamer [25,70].

Non-traditional risk factors. Time on dialysis is associated with an increased preva-
lence of VC [65,71], particularly in medium-caliber arteries. Data reported in the literature
indicate an estimated 15% increase in the risk of developing VC for each year spent on
renal replacement therapy [72].

Advanced CKD predisposes individuals to calcium and phosphate retention, espe-
cially with high dietary intake, which can promote calcification through distinct effects on
VSMCs [73–78]. One study found that a 1 mg/dL increase in serum calcium corresponds to
an increase in calcification equivalent to more than five years of dialysis, while a 1 mg/dL
increase in serum phosphorus corresponds to nearly 2.5 years [73]. It has been clearly
demonstrated that high calcium and phosphate levels act synergistically to induce miner-
alization in in vitro models. In the presence of elevated phosphate concentrations, even
modest increases in calcium can significantly exacerbate mineralization [79]. Additionally,
high phosphate levels may influence mortality and cardiovascular risk by decreasing 1,25-
dihydroxyvitamin D or increasing circulating intact parathyroid hormone (iPTH) [74,80].
iPTH has also been identified as an independent determinant of VC, inflammation, and
oxidative stress [81].

Oxidative stress, characterized by an excess of free radicals, is prevalent in various
conditions and is marked by increased reactive oxygen species (ROS) in the vascular wall, a
typical feature of atherosclerosis [82]. In patients with CKD, oxidative stress is heightened
due to the reduced effectiveness of antioxidant systems and increased pro-oxidant activity
associated with aging, a high prevalence of diabetes, the uremic syndrome, and the bio-
incompatibility of dialysis membranes and solutions [83]. Inflammation plays a critical role
in atherosclerosis and the calcification process [84]. C-reactive protein (CRP), a well-studied
inflammatory marker, has been suggested to influence vascular wall calcification [79,85],
with most CKD patients exhibiting CRP levels >1.1 mg/dL [81].

The hormone fibroblast growth factor 23 (FGF23) is predominantly expressed in os-
teocytes and plays a crucial role in mineral homeostasis by inducing hyperphosphaturia,
inhibiting calcitriol synthesis, and suppressing parathyroid hormone (PTH) secretion [86].
Several studies have demonstrated an association between FGF23 levels and VC in CKD
patients [87,88]. However, the precise mechanisms by which FGF23 influences VC re-
main unclear.

Emerging evidence indicates that VC is influenced by complex, not yet fully elucidated,
tissue-specific cellular mechanisms and circulating mediators, with osteopontin, osteopro-
tegerin, bone morphogenic proteins, matrix Gla protein gene, and fetuin-A being among
the most frequently reported [89–91]. In hemodialysis patients, cathepsin-K, a cysteine
protease essential for bone and extracellular matrix remodeling, has recently been identified
as a crucial contributor to the development of several conditions linked to cardiovascular
disease, such as atherosclerosis, obesity, diabetes, and vascular calcification [92,93]. In
kidney transplant recipients, lower cathepsin-K levels indicate a time-related improvement
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in the uremic environment, cardiac adaptations, and, most notably, the extent of subclinical
atherosclerosis. Therefore, measuring cathepsin-K in renal transplant patients could be
valuable for enhancing early cardiovascular risk assessment [94].

An increasing number of studies have highlighted the importance of cathepsin K
(CatK) protease in bone remodeling [95]. In mice models characterized by deficiency of
cathepsin K, an osteopetrotic phenotype is observed, with ultrastructural alterations of
the osteoclasts, caused by the inability of the latter to reabsorb bone tissue. The lack of
cathepsin K inhibits the activity of osteoclasts, leading to the accumulation of bone matrix
and development of ectopic calcifications [96]. In addition, increasing evidence suggests
that cathepsin K also plays a role in early arterial calcification. It has been shown that the
activity of cathepsin K precedes osteogenesis already at 20 weeks of age and is located in
areas of calcification of mice with apolipoprotein deficiency E (apoE-/-) at 30 weeks.

Other strong evidence shows that calciprotein particles (CPPs), nano-sized mineralized
structures, play a crucial role in the process of VC. These particles form as a result of
abnormal calcium and phosphate metabolism and are particularly prevalent in CKD. CPPs
serve a protective role by sequestering excess phosphate and preventing calcification, but
their accumulation can contribute to vascular stiffness and dysfunction. Finally, CPPs are
active players that influence smooth muscle cell differentiation and inflammatory responses
within the vascular wall, triggering pathways that promote osteogenic differentiation,
leading to a feedback loop that exacerbates the calcification process [97]. Some nutritional
factors are considered as non-traditional risk factors for VC formation. As an example,
magnesium regulates vascular smooth muscle contraction and endothelial function, and
its deficiency has been linked to an increased risk of calcification. It helps inhibit vascular
smooth muscle cell differentiation into osteoblast-like cells, thereby reducing the deposition
of calcium in the vasculature [98]. Deficiencies in zinc have been linked with increased
inflammation and vascular oxidative damage, thus promoting calcification [98]. Relevant
studies show that a higher magnesium to zinc ratio is linked to increased coronary artery
calcification risk, potentially due to elevated IL-6 levels [99].

4. Pathogenetic Mechanisms of Vascular Calcification in Chronic Kidney Disease (CKD)

VC is a critical pathological condition among patients with CKD. Despite its severe
clinical implications, the molecular mechanisms underlying this process remain poorly
understood [100]. A deeper understanding of these mechanisms is essential for developing
targeted therapeutic strategies to mitigate the deleterious effects of vascular calcification in
CKD [101] (Figure 1).

Hyperphosphatemia and VSMCs transdifferentiation. Maintaining a correct balance
between calcium and phosphorus is crucial, as their elevation not only induces calcification
but is also closely associated with increased mortality [102]. In CKD, reduced renal capacity
to eliminate phosphate leads to elevated blood levels [103]. Hyperphosphatemia and
hypercalcemia stimulate VC by promoting the deposition of calcium salts in the vessel walls,
particularly in the medial layer [104]. Under pro-osteogenic conditions, vascular smooth
muscle cells (VSMCs) acquire an osteoblast-like phenotype, initiating the production of
bone matrix within vascular walls. Calcification of the medial layer is preceded by elastin
degradation mediated by esterases and metalloproteinases [105]. Elastin fragmentation
is an early event in VC, and resulting elastin fragments can act as nucleation sites for
hydroxyapatite formation. Osteo/chondrogenic transdifferentiation is characterized by
the expression of osteogenic and chondrogenic transcription factors, including Runx2,
RANK-L, alkaline phosphatase (ALP), type 2 collagen, osteocalcin, sclerostin, and low
levels of magnesium [106]. Activation of the Wnt/β-catenin pathway regulates cellular
differentiation and tissue homeostasis, promoting VSMC transdifferentiation and calcium
deposition during CKD [107]. Moreover, elevated phosphate levels appear to increase PTH,
which further stimulates calcification by overexpressing RANKL.
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Figure 1. Pathogenic mechanisms of vascular calcification (VC) in chronic kidney disease (CKD).
Hyperphosphatemia and hypercalcemia with loss of calcification inhibitors such as fetuin A, osteopro-
tegerin, and matrix GLA protein (MGP) promote osteochondrogenic differentiation of vascular cells.
VC is, furthermore, influenced by traditional risk factors (e.g., aging, smoking) and non-traditional
factors related to calcium-phosphorus metabolism dysfunction and increased FGF23. The accumu-
lation of minerals in the arterial walls and the degradation of elastin lead to progressive vascular
stiffness. Inflammation and the accumulation of oxidized lipids in plaques further promote calcifica-
tion, negatively affecting vascular compliance and increasing the risk of cardiovascular complications
(aortic and mitral valve calcifications, left ventricular hypertrophy).

Inflammation. Several factors contribute to VC, including inflammation and oxidative
stress with increased ROS production. Patients with CKD exhibit elevated inflammatory
markers such as IL-6, IL-1, and CRP [101,108]. In vitro studies suggest that TNF and ox-
idized low-density lipoproteins alter gene expression, inducing a phenotypic switch in
VSMCs toward an osteogenic phenotype. Inflammation promotes osteogenic transdifferen-
tiation by activating the BMPR-JANK pathway. CKD patients also show reduced levels
of NRF2 and superoxide dismutase, resulting in increased NADPH oxidase activity [109].
These mechanisms compromise antioxidants, leading to increased ROS production and
inflammation [110].

Endothelial dysfunction. CKD patients also experience mitochondrial dysfunction,
contributing to the acetylation of mitochondrial proteins. Sirt3 protein appears to regulate
these acetylation levels, contributing to mitochondrial homeostasis [111]. Atherosclero-
sis and albuminuria are common in CKD and contribute to endothelial dysfunction by
increasing von Willebrand factor levels. Additional factors include ADMA and indoxyl
sulfate, which inhibit eNOS and increase FGF23, with reduced expression of Klotho. The
relationship between Klotho and FGF-23 is characterized by a regulatory feedback loop;
higher FGF-23 levels usually correspond to lower Klotho levels and vice versa. This inter-
play is crucial for maintaining phosphate and calcium balance, and disturbances in this
balance can have significant pathological implications. FGF23 is crucial for phosphate and
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vitamin D metabolism; reduced Klotho in CKD compromises its function, contributing
to hyperphosphatemia and calcification. FGF23 and increased phosphate compromise
vasodilation by increasing ROS and reducing NO synthase. Further reduction in Klotho
exacerbates NO synthesis impairment [112].

Klotho is considered a protective protein with antioxidant and antiapoptotic properties,
and its depletion is associated with premature vascular aging in CKD patients. The loss of
Klotho in aortic endothelial and smooth muscle cells even correlates with decrease in SIRT1
(sirtuin-1), which shares similar protective properties [113]. SIRT1 inhibits ROS production,
while its blockade leads to a pro-inflammatory state and impaired endothelial function.
Beyond combating inflammation and oxidative stress, SIRT1 may also protect against vas-
cular calcification, positioning it as a potential therapeutic target in CKD management [114].
Last but not least, production of uremic toxins and gut microbiome alterations can play a
significant role in influencing VC by disrupting normal metabolic processes and promoting
inflammatory pathways [115].

Loss of vascular calcification inhibitors. Among molecules acting as inhibitors of
vascular mineralization, matrix Gla protein (MGP) holds significant importance as one
of the most potent natural inhibitors of arterial calcification, belonging to the vitamin-
K-dependent protein (VKDP) family [116]. MGP requires vitamin K as a cofactor for
γ-carboxylation and post-translational phosphorylation to become biologically active.
Vitamin K is involved in regulating bone metabolism, blood coagulation, and vascular
health. In various patients, the inactive form of MGP has been observed, indicating
a deficit in vitamin K, which influences VC development [117,118]. Among the most
significant inhibitors of calcifying activity in vascular walls are fetuin-A and osteoprotegerin
(OPG). Fetuin-A is well known for inhibiting osteogenesis and thereby preventing vascular
calcification [119].

Fetuin-A is a glycoprotein found in serum and primarily synthesized by the liver. It
experiences significant post-translational modifications that enhance its biological function
and interacts with calcium and phosphate, preventing their accumulation within the vascu-
lar system [120,121]. On the other hand, OPG acts by inhibiting osteoclast differentiation,
regulating bone resorption through its interaction with RANKL receptor [122]. Increased re-
duction of these inhibitors promotes microcalcification formation in vascular walls, thereby
increasing VC and the risk of cardiovascular complications in CKD patients.

5. Clinical Impact and Management Strategies of CV in CKD

The onset of cardiovascular disease (CVD) is common in patients with CKD. Individu-
als with CKD have a significant increased risk of cardiovascular events: 50% of patients
with stage 4/5 CKD develop CVD. Moreover, cardiovascular mortality in advanced forms
of renal failure accounts for about 40–50% of all deaths [123]. Coronary artery disease (CAD)
is linked to both traditional and non-traditional CVD risk factors, as well as dialysis-related
factors; additionally, vascular calcifications (VC) rise with decreasing glomerular filtration
rate (GFR) and are linked to mortality in end-stage kidney disease [124–126].

Patients may have varying degrees of calcification in different tissues, and this can
have an impact on cardiovascular outcomes. As a result, calcification-targeting therapy
strategies will probably need customized regimens depending on each patient’s character-
istics (Figure 2). According to autopsy investigations, CKD patients have more advanced
atherosclerotic plaques and calcified atherosclerotic lesions compared to patients without
CKD [127,128].
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Figure 2. Clinical management of vascular calcifications in CKD patients and intervention strategies
to delay the progression.

Calcifications of coronary arteries, abdominal aorta, aortic valve, and superficial
femoral arteries are prevalent in patients with end-stage CKD [129–135]. Medial artery
calcification, once thought to be a benign feature and unrelated to stenosis, it is now rec-
ognized as a malignant feature, associated with an increased cardiovascular mortality.
Medial calcification appears distributed along elastic fibers, promoting an increased arterial
stiffness, rather than atherosclerosis. Furthermore, it involves more peripheral arteries, with
an increased risk of limb ischemia and adverse outcomes [136–138]. Medial calcification,
in patients without traditional atherosclerotic risk factors, is strongly associated with high
blood triglycerides, calcium-phosphate disorders, and duration of dialysis. This may be due
to a specific response to kidney disease, as in younger subjects there is rarely calcification
of the tunica media [139,140]. VC can also accumulate in the tunica intima of the vessel,
promoting vasal remodeling and accelerated plaque formation, with collagen production
and chronic inflammation. Traditionally, a low collagen content in the fibrous cap is linked
to plaque vulnerability [141]. Younger subjects are more likely to experience microcalcifica-
tions (<5 µm) in the tunica intima, linked to inflammation and plaque instability that may
result in acute coronary syndromes (ACS), while elderly individuals with multivessel and
stable CAD are more likely to develop macrocalcifications (>50 µm) in the tunica intima
that decrease plaque vulnerability and promote plaque stabilization (Figure 3). However,
although large calcifications can stabilize plaques temporarily, they can also cause vessel
stenosis and consequently reduced blood flow and elevated systemic resistance [142]. The
presence of microcalcifications at the coronary CT is a high-risk criterion of instability [143].
At the cardiac CT, an elevated coronary artery calcium score (CAC) is correlated with
the severity of CAD and increased cardiovascular morbidity [144–147]. In fact, calcified
coronary lesions present specific challenges, are characterized by higher complication rates,
and require a dedicated therapeutic approach [148].
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In more complex scenarios of extensive coronary artery disease, chronic total occlu-
sions (CTOs), patients with chronic kidney disease have a higher likelihood of presenting
heavy calcification patterns, which significantly increase procedural complexities [149].
New methods to detect coronary calcification are under development, which might further
simplify the assessment of calcification and the integration of this information in the clini-
cal management of patients [150]. Lipid lowering is the therapeutic cornerstone in these
patients. Abnormal levels of lipids are frequently observed in patients with CKD; therefore,
since CKD is a risk factor, an aggressive LDL-C lowering is justified if renal function is
impaired [151]. An LDL-C reduction was shown to substantially decrease cardiovascular
risk and all-cause mortality in the CKD population [152]. However, the cardiovascular
benefit of lowering LDL-C decreases at the same time as reduced kidney function; this is
possible as the presence of other risk factors contribute to this condition, such as inflam-
mation and oxidative stress [153,154]. Statins have advantages that extend beyond their
ability to decrease cholesterol; in fact, they promote the release of IL-1 beta by macrophages,
an inflammatory cytokine that stimulates vascular muscle cells to take on an osteogenic
phenotype. This results in greater plaque stability [155–157]. Hence, the management of
dyslipidemia in chronic kidney disease (CKD) can be particularly challenging. In fact, the
characterized profile associated with CKD of elevated triglycerides, reduced HDL, and a
shift towards small, dense LDL particles, which are more atherogenic, leads to an even
higher risk profile. In addition, lipoprotein(a) is often elevated, and lipoprotein catabolism
is impaired due to reduced enzyme activity and receptor function. CKD-associated in-
flammation and oxidative stress lead to further modification of lipoproteins, increasing
cardiovascular risk. Uremia and dialysis, particularly peritoneal dialysis, exacerbate lipid
abnormalities. Medications used in CKD management and conditions like nephrotic syn-
drome can also worsen dyslipidemia. Despite this, statins may have reduced efficacy in
advanced CKD, particularly in dialysis patients, necessitating comprehensive management
of both lipid and non-lipid risk factors [158,159].
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Calcifications can also accumulate in the heart valves, causing increased valve stiff-
ness and altered hemodynamics. Calcific aortic valve disease causes aortic stenosis with
systemic flow impairment and an increased cardiac afterload [160]. In a similar way, calcifi-
cations can accumulate on the mitral valve causing flow obstruction and increased filling
pressures [161]. In fact, patients with aortic stenosis in the presence of a bicuspid aortic
valve present a characteristic modulation of the epigenetic pathways regulating calcifi-
cation [162]. Transcatheter aortic valve replacement (TAVR) has improved outcomes in
patients with severe aortic stenosis, although the asymmetric distribution of calcifications
could make the procedure more complicated [163] (Figure 3).

In rat models, several drugs used to treat mineral disturbances have protective effects;
nevertheless, no medication has been proven to reliably lower cardiovascular calcifications
and improve cardiovascular outcomes in CKD patients [8]. Furthermore, some drugs
such as vitamin K antagonists used in patients with end-stage CKD and atrial fibrillation
appear to be involved in VC, through mechanisms that include matrix Gla protein (MGP)
inhibition and the γ-carboxylation of other proteins that regulate mineralization [7].

However, some of the medications used in the treatment of secondary hyperparathy-
roidism and hyperphosphatemia are far from beneficial, as they promote the formation
of vascular calcifications. For example, certain calcium-based phosphate binders, such as
calcium carbonate, or even the supplementation of calcitriol, encourage the presence of
free calcium ions in the blood, which tend to precipitate in the walls of blood vessels and
promote calcifications [164,165]. Thus, while the intent to regulate calcium-phosphorus
metabolism is made possible through calcium and vitamin D supplementation, the side
effects related to vascular calcifications promoted by these medications should also be
considered. In a recent study involving stage 5 CKD patients, those using calcium-based
phosphate binders showed a higher dose-dependent risk of coronary heart disease and CV
compared to nonusers [166]. Other trials have linked the use of calcitriol with cardiovascu-
lar abnormalities including intima-media thickness and coronary artery calcification, even
in patients affected by CKD since childhood [167]. Moreover, some studies performed in
rat models with CKD revealed that calcitriol administration at doses as low as 20 ng/kg
can exacerbate the severity of vascular calcification, independent of vitamin K levels [168].
On the other hand, some other drugs have been revealed to be protective in this sense. It
was demonstrated that in hemodialysis patients, calcimimetics not only address excessive
PTH secretion but also reduce vascular calcification, influencing the activity of the vascular
calcium sensor [169].

6. Platelet Aggregation and Adhesion in Vascular Calcifications

Although platelet dysfunction in CKD is established, the information regarding the
type of dysfunction is not entirely consistent. CKD has been linked to endothelial cell
activation and elevated levels of von Willebrand factor. Furthermore there is an imbalance
between platelet modulators such as adenosine diphosphate (ADP), serotonin, and cyclic
adenosine monophosphate (Camp); a decrease in thromboxane A2 production; and an
increase in intracellular calcium [170,171]. Lastly, there is a decreased bioavailability of nitric
oxide, a powerful dilatator and inhibitor of platelet adhesion and aggregation [172–174].
There are many pathophysiological factors that can cause a dysregulation of platelets,
including uremia toxins and inflammatory cytokines, which can promote the formation of
platelet microvesicles and the production of thrombin. These factors can mediate platelet-
monocyte aggregation and be directly absorbed by VSMc, which further contributes to VC
in patients with CKD [175]. The interaction between VSMc and inflammatory cytokines
causes a phenotypic switch of VSMc, resulting in an osteogenic phenotype that facilitates
the formation of VC [176].

Platelets also express osteocalcin, a protein produced primarily by the osteoblasts dur-
ing bone formation, which seems to be directly related to the formation of VC [177,178]. In
addition, platelets can secrete numerous chemokines that promote VC and atherosclerosis,
including chemokine ligand 5 (CCL5), chemokine ligand 4 (CXCL4), chemokine ligand 12
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(CXCL12), and chemokine ligand 16 (CXCL16), which may induce a local inflammatory
state, with recruitment of leukocyte. These mechanisms improve the interaction between
leukocytes and endothelial cells, thereby indirectly enhancing atherosclerosis and vascular
fibrosis [179–181].

In summary, the increased aggregation and platelet adhesion in CKD, due to increased
production of proinflammatory factors and an imbalance of platelet modulators, promote
fibrosis, VC, and atherosclerosis.

7. Lifelong Risk of CKD: Impact of Heterotopic Calcification

VC refers to a process that leads to a pathological accumulation of calcium in the
intima and media layers of the vessel wall [179]. Intimal calcifications are associated with
classic atherogenic risk factors, such as ageing, dyslipidemia, diabetes, hypertension, and
cigarette smoking, and are associated with the development of atherosclerotic plaque [182].
Although not specifically linked with chronic kidney disease (CKD), the decline of renal
function may act as an accelerator of the atherosclerotic process [183]. Medial calcifi-
cation appears instead to be associated with calcium-phosphate levels, altered mineral
metabolism, and CKD stage; it tends to be more diffuse and located in regions usually
spared from atherosclerosis [184]. Medial calcification generally appears uniformly dis-
tributed along elastic fibers and does not generally coexist with the lipid and inflammatory
remodeling mechanisms observed in atherosclerosis [182]. This pathological mechanism
induces arterial stiffening and increase the risk of fibrosis, inflammation, and oxidative
stress [101]. VC has a greater incidence among patients with CKD if compared to non-CKD
patients [185]. CKD patients with confirmed medial vascular calcification have significantly
higher rates of all-cause and cardiovascular mortality compared patients without medial
calcification [124]. A reduction in vascular compliance determines higher systolic blood
pressure, which increases cardiac work, leading in turn to left ventricular hypertrophy, a
common finding in the advanced stages of CKD (3 or more). This also provides the basis
for the augmented rates of heart failure and atrial fibrillation observed in these groups
of patients [186]. There is also a correlation between renal disease and coronary artery
disease; in particular, CKD patients present greater coronary artery calcium (CAC) score
values than controls [187], with the mean value of the score related to the grade of renal
impairment [188]. A large prospective cohort study showed that, among patients with
impaired renal function, being 1 standard-deviation log higher in CAC score was signif-
icantly associated with a 40% higher risk of cardiovascular disease, a 44% higher risk
of myocardial infarction, and a 39% higher risk of heart failure after adjusting for risk
factors [189]. Another study involving 133 patients with type 2 diabetes mellitus found
that medial VCs were an independent and powerful predictor of cardiovascular mortality,
with a stronger impact than intimal VCs. Medial calcifications can also be detected in
peripheral arteries, where they are related to limb ischemia, foot ulcers, increased risk
of amputation, and other adverse outcomes [136,138]. CKD associates with the calcifica-
tion of cardiac valves, in particular the aortic valve leaflets and mitral valve anulus [190].
Valve calcification is associated with a significantly increased risk for all-cause mortality
in hemodialysis patients, especially if calcification of both valves is present [191]. A great
percentage of hemodialysis patients presents calcification of the abdominal aorta [134], the
severity of which has been shown to be a strong predictor of adverse outcomes, including
all-cause mortality and both fatal and non-fatal cardiovascular events [192]. Measuring
breast arterial calcification gives indirect information about medial calcification, because
these vessels are not generally affected by atherosclerosis [193], and recent findings suggest
that it is strongly and independently associated with peripheral artery disease in women
with end-stage CKD and may be predictive of adverse clinical events [194].

8. Diagnosis and Management of VCs in CKD

Different clinical studies have sought to better understand the above-mentioned risk
factors for vascular calcifications and translate findings into better diagnostic tools and man-
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agement strategies for VC in CKD patients. Techniques such as computed tomography (CT)
scanning and ultrasound are often used to quantify VC, with CT being the most sensitive
technique for evaluation of VC [195]. Recent studies have focused on identifying specific
imaging biomarkers that correlate with overall cardiovascular risk. Various biomarkers are
under investigation, including serum levels of osteocalcin, Klotho, and FGF23, which may
help identify patients at higher risk of developing VC [112]. Various trials assessing the
effects of phosphate binders, vitamin D analogs, and calcimimetics have been conducted to
see if they can slow the progression of VC in patients with CKD [196]. Other drugs such as
calcimimetic agents increase the sensitivity of CaSR to extracellular calcium and decrease
PTH secretion [197]. Calcitriol is associated with hypercalcemia and hyperphosphatemia,
so some patients may not benefit from its use. Moreover, parathyroidectomy could be
taken into consideration for several conditions, such as hyperparathyroidism that does not
respond to calcimimetics, hyperparathyroidism in dialysis patients who resists medical
therapy, refractory hyperphosphatemia, and calciphylaxis [198]. Moreover, phosphate
binders could help since they form a non-absorbable complex in the gastrointestinal tract,
preventing phosphate absorption [199]. Finally, tenapanor, an experimental phosphate
absorption inhibitor, blocks the intestinal sodium/hydrogen exchanger isoform 3 [200].
Addressing traditional risk factors through lifestyle changes, such as diet and smoking
cessation, is integral to managing VC [201]. As an example, the diet of patients affected by
CKD should not include processed food, because food additives contain inorganic highly
absorbable phosphate, and dietary phosphate should be less than 800 mg daily in patients
with CKD under dialysis. Dietary calcium intake should be around 1000 mg/day, and
calcium-containing drugs should be avoided [202].

Ongoing research into agents targeting specific pathways involved in VC may provide
new options for managing this complication in CKD.

9. Conclusions

Vascular calcification in chronic kidney disease is a multifaceted condition influenced
by a mix of traditional and novel risk factors, making it a critical area of research with
significant implications for patient outcomes. An enhanced understanding of these risk
factors through clinical studies can inform improved diagnostic approaches and manage-
ment strategies, ultimately reducing the cardiovascular risk associated with CKD. Future
advancements in this field are expected to focus on innovative imaging techniques and
biomarkers that allow for the early diagnosis of VC, enabling more accurate assessments
of calcification processes. Additionally, there is a growing emphasis on exploring novel
pharmacological agents and dietary interventions that may help mitigate the progression
of calcification while addressing the mineral and bone disorders commonly seen in CKD.
Integrating insights from basic research into the mechanisms underlying VC, such as the
roles of inflammation, oxidative stress, and various signaling pathways, could pave the
way for developing targeted therapies. Future research should continue to investigate
potential therapeutic interventions that effectively address VC in the context of CKD.
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