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Abstract: Background: Routine activated partial thromboplastin time (APTT) and prothrombin time
(PT) measurements do not indicate hypercoagulability in patients with acute myocardial infarction
(AMI) and acute cerebral infarction (ACI). Methods: Hypercoagulability in patients with AMI or
ACI was evaluated using a clot waveform analysis of the APTT or a small amount of tissue factor
activation assay (sTF/FIXa). In the CWA, the derivative peak time (DPT), height (DPH), width
(DPW), and area the under the curve (AUC) were evaluated. Results: The APTT did not indicate
hypercoagulability, but the second DPT of CWA-sTF/FIXa was significantly shorter in patients with
ACI than in healthy volunteers (HVs). The first DPH values of CWA-APTT and CWA-sTF/FIXa
in patients with ACI and AMI were significantly higher than in HVs. In the receiver operating
characteristic (ROC) analyses of ACI or AMI vs. non-thrombosis, the AUC was >0.800 in the DPHs
of CWA-APTT and CWA-sTF/FIXa. The AUC of CWA-APTT and CWA-sTF/FIXa in patients with
AMI and ACI was significantly higher than in HVs. The AUC/second DPT of CWA-APTT and
CWA-sTF/FIXa in patients with AMI and ACI was significantly higher than in HVs. Regarding
the ROC analyses of ACI or AMI vs. HVs, the AUC of ROC was higher than 0.800 in the AUC and
AUC/second DPT of CWA-APTT and CWA-sTF/FIXa. Conclusions: The AUC/second DPT of
CWA-APTT and CWA-sTF/FIXa may be a useful parameter for detecting a hypercoagulable state in
patients with AMI and ACI.

Keywords: CWA; APTT; sTF/FIXa; acute myocardial infarction; acute cerebral infarction

1. Introduction

Acute coronary syndrome (ACS) and acute myocardial infarction (AMI) are caused
by atherothrombotic coronary artery disease resulting from atherosclerotic plaque rupture
or erosion with a non-occlusive/occlusive thrombus [1,2]. AMI, including ST-elevation
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myocardial infarction (STEMI) [3,4], is generally diagnosed based on clinical symptoms,
electrocardiography, biomarkers such as troponin [5] and creatine phosphokinase-MB
(CKMB) [6], and coronary angiography [7]. After percutaneous coronary intervention [7],
patients with AMI are usually treated with antiplatelet therapy [8,9] and are not considered
hypercoagulable, except for those with cancer-related thrombosis (CAT) [10].

Acute cerebral infarction (ACI) [11,12] also includes atherosclerotic ACI [13], which
is due to arterial thrombosis; this differs from cardioembolic ACI, which is due to venous
thrombosis [14]. Although ACI is usually diagnosed using computed tomography, mag-
netic resonance imaging, and angiography in core hospitals, the differential diagnosis
between cardioembolic ACI and atherosclerotic or lacunar ACI may be difficult [15]. In
Japan, patients with atherosclerotic ACI are usually treated with antiplatelet agents [11,16]
after treatment with argatroban [17]. Therefore, platelet activation may play an important
role in the development of atherosclerosis, resulting in ACI or AMI [18]. In contrast, patients
with cardioembolic ACI are treated with warfarin or DOACs [19,20] for a hypercoagulable
state [21].

Regarding biomarkers, troponin T [22] and CKMB [6] are sensitive to AMI; however,
these biomarkers are for myocardial injury and not for arterial thrombosis. Biomarkers
for thrombosis may be more sensitive for myocardial injuries, suggesting that thrombotic
biomarkers can detect the early phase of AMI. Elevated D-dimer levels [23–25] suggest ve-
nous thromboembolism (VTE) and disseminated intravascular coagulation (DIC). Biomark-
ers for platelet activation may be useful for the diagnosis of arterial thrombosis (e.g., AMI
and ACI). Therefore, there have been reports on soluble C-type lectin receptor-2 [15], platelet
factor 4 [26], β-thromboglobulin [27], and P-selectin [28]. Furthermore, the detection of
hypercoagulability by a clot waveform analysis (CWA)-activated partial thromboplastin
time (CWA-APTT) and CWA-small amount of tissue factor (TF) induced FIX activation
assay (CWA-sTF/FIXa) has been recently reported in atherosclerotic ACI [21].

In this study, hypercoagulability in patients with AMI and ACI was examined using
a CWA, and its usefulness in the diagnosis of AMI and ACI was analyzed by a receiver
operating characteristic (ROC) analysis.

2. Materials and Methods

Patients with hemostatic abnormalities who were admitted to Mie Prefectural General
Medical Center from September 1, 2020 to April 30, 2024 were investigated. Patients with
AMI [n = 123; mean age ± standard deviation (SD), 68.4 ± 13.7 years; female, n = 26; male,
n = 97], ACI [n = 104; mean age, 75.6 ± 5.1 years; female, n = 29; male, n = 75], chronic
liver disease (CLD, n = 148; mean age, 75.6 ± 5.1 years; female, n = 73; male, 75), and
cancer (n = 162; mean age, 74.4 ± 12.1 years; female, 35; male, 127) were examined using a
CWA. CWA examinations were also performed on 50 healthy volunteers (HVs; mean age,
45.1 ± 18.0 years; female, n = 33; male, 17). Blood samples were obtained during days 1
and 14 post-admission. Patients who were treated with anticoagulants were excluded from
the study. Patients with ACI and AMI were treated with antiplatelet therapy. ACI was
diagnosed using clinical symptoms, physical examinations, medical history, and computed
tomography or magnetic resonance imaging findings. AMI was diagnosed based on clinical
symptoms, physical examinations, medical history, electrocardiograms, biomarkers such as
troponin T and creatine phosphokinase-MB, and coronary angiography. The study protocol
(O-0051) was approved by the Human Ethics Review Committee of the Mie Prefectural
General Medical Center, and informed consent was obtained from each participant. This
study was conducted in accordance with the principles of the Declaration of Helsinki.

Platelet-rich plasma (PRP) and platelet-poor plasma (PPP) were prepared via centrifu-
gation at 900 rpm and 3000 rpm, respectively, for 15 min [29]. The APTT using PPP was
measured using an APTT-SP® (Instrumentation Laboratory, Bedford, MA, USA) with an
ACL-TOP® (Instrumentation Laboratory), as previously reported [30,31]. The sTF/FIXa
assay using PRP was performed using 2000-fold diluted HemosIL RecombiPlasTin 2G (TF
concentration < 0.1 pg/mL; Werfen. A CWA was performed as follows: Three curves (navy,
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pink, and light blue lines) are displayed on the monitor of an ACL-TOP® system [30,31].
The fibrin formation (FF) curve (navy line) corresponds to the changes in the absorbance
observed while measuring the APTT. The first derivative peak (first DP) curve (pink line)
corresponds to the coagulation velocity. The second derivative peak (second DP) curve
(light blue line) corresponds to coagulation acceleration. The height and time of the FF, first
DP, and second DP curves are abbreviated as FFH and FFT, first DPH and DPT, and second
DPH and DPT, respectively.

The area under the curve of the CWA (AUC-CWA) of the first DP indicates the ability
of coagulation velocity instead of the peak time or height (Figure 1), and “half of the peak
height × peak width” may be similar to AUC-CWA. In addition, “AUC-CWA/second peak
time” may show the total coagulation ability, as shown by the APTT. The reference interval
was within the 95% confidence interval of the healthy volunteers.
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Figure 1. CWA-AUC and total ability of CWA-APTT. APTT, activated partial thromboplastin time;
navy line, fibrin formation curve; pink line, first derivative curve (velocity); light blue, second
derivative curve (acceleration); AUC, area under the curve.

Statistical Analyses

Data are expressed as the median (range). The significance of differences between
groups was examined using the Mann–Whitney U test. Cutoff values, determined as the
point at which the sensitivity and specificity curves intersected, were examined using a
ROC analysis. p-values of <0.05 were considered to indicate statistical significance. All
statistical analyses were performed using the Stat-Flex software program (version 6; Artec
Co., Ltd., Osaka, Japan).

3. Results

The reference interval of APTT (the second DPT of CWA-APTT) has been established
as 27.3–35.8 s from 120 HVs, but the establishment of a reference interval for other param-
eters of CWA-APTT and CWA-sTF/FIXa is still proceeding. The 95% CI of CWA-APTT
and CWA-sTF/FIXa in this study were as follows; for the second DPT, 30.7–41.9 s and
48.9–97.7 s, respectively, for the first DPT, 29.0–39.9 s and 68.1–125 s, respectively, for
the fibrin formation time, 26.4–49.4 s and 74.9–124 s, respectively, for the second DPH,
434–1007 mabs and 20.4–81.1 mabs, respectively, for the first DPH, 137–317 mabs and
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39.5–97.2 mabs, respectively, and for the FFH, 131–258 mabs and 175–519 mabs, respec-
tively. The APTT was not significantly shorter in the patients with ACI and AMI than in the
HVs, the patients with CLD, or the patients with cancer (Figure 2A), while it was signifi-
cantly longer in the patients with AMI and was significantly longer than that in the patients
with CLD, cancer, and ACI. The patients with AMI treated with percutaneous coronary
intervention may have been affected by heparin. The peak time of the first derivative in
CWA-sTF/FIXa was significantly shorter in the patients with CLD and the patients with
ACI than in the HVs (Figure 2B). CWA-APTT showed no significant difference (p < 0.01)
in peak times among the HVs and the patients with CLD, cancer, ACI, and AMI, and the
peak heights in the patients with CLD, cancer, ACI, and AMI were significantly higher than
those in the HVs (Figure 3A and Table 1). CWA-sTF/FIXa showed that the peak time of the
second derivative in the patients with CLD, ACI, and AMI was significantly shorter than in
the HVs and that the peak height of the first derivative in the patients with CLD, cancer,
ACI, and AMI was significantly higher than in the HVs (Figure 3B and Table 1). In the ROC
analyses of ACI or AMI vs. non-thrombosis, the AUC was >0.800 in the second DPH of
CWA-APTT (ACI or AMI vs. HVs), the first DPH of CWA-APTT and CWA-sTF/FIXa (ACI
or AMI vs. HVs), and the FFH of CWA-sTF/FIXa (AMI vs. HVs or CLD) (Table 2).
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Figure 2. Peak times of APTT (A) and sTF/FIXa (B) in HVs, and patients with CLD, cancer, ACI,
and AMI. APTT, activated partial thromboplastin time; sTF/FIXa, small amount of tissue factor-
induced FIX activation assay; HVs, healthy volunteers; CLD, chronic liver disease; ACI, acute cerebral
infarction; AMI, acute myocardial infarction; **, p < 0.01; ***, p < 0.001. Navy line, fibrin formation
curve; FF, fibrin formation; pink line, first derivative curve (velocity); first DPH, first derivative peak
height; light blue, second derivative curve (acceleration); second DPH, second derivative peak height;
solid line, patient; dotted line, control.
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Table 1. CWA-APTT and CWA-sTF/FIXa in HVs and patients with CLD, cancer, ACI, and AMI.

Second Derivative First Derivative Fibrin Formation

APTT Peak Time Peak Height Peak Time Peak Width Peak Height Peak Time Peak Height

HVs 36.8
(35.6–38.9)

731
(600–804)

34.7
(33.7–36.6)

36.0
(31.1–42.0)

231
(201–273)

36.8
(35.6–38.9)

196
(171–214)

CLD 35.8
(33.1–38.4)

888 ***
(752–1033)

33.8
(31.4–36.5)

35.0
(31.5–42.1)

292 ***
(246–339)

35.8
(33.1–38.4)

220 ***
(198–250)

Cancer 36.8
(34.1–38.2)

955 ***
(824–1168)

34.3
(31.8–36.1)

41.1 ***
(34.9–46.5)

315 ***
(268–394)

36.8
(34.1–38.2)

253 ***
(217–308)

ACI 35.8
(33.3–38.1)

997 ***
(853–1191)

33.7
(31.4–36.1)

37.7
(33.0–42.8)

327 ***
(276–404)

35.8
(33.3–38.1)

239 ***
(211–282)

AMI 39.2 **
(35.4–44.8)

1069 ***
(865–1374)

37.6 **
(33.6–42.0)

42.5 ***
(37.4–50.5)

400 ***
(324–495)

39.2 **
(35.4–44.8)

324 ***
(273–395)

sTF/FIXa Peak time Peak height Peak time Peak width Peak height Peak time Peak height

HVs 71.3
(65.1–79.2)

31.9
(28.7–40.0)

91.3
(85.8–98.0)

145
(134–158)

65.0
(55.4–71.9)

92.2
(86.9–97.8)

315
(255–373)

CLD 68.2 *
(61.5–64.7)

44.5 ***
(36.6–56.9)

84.5 ***
(78.8–90.4)

138 ***
(126–145)

83.6 ***
(71.3–101)

85.7 ***
(79.7–91.3)

330
(277–380)

Cancer 70.5
(62.7–79.3)

43.1 ***
(31.3–62.1)

90.1
(79.8–100)

152
(131–170)

88.3 ***
(73.2–114)

92.4
(81.7–102)

344 *
(284–432)

ACI 63.8 **
(54.3–74.0)

47.0 ***
(36.2–60.1)

85.3 **
(77.0–94.4)

142
(132–154)

91.1 ***
(75.6–118)

85.8 ***
(78.2–94.6)

347 **
(302–413)

AMI 68.1
(56.6–77.4)

46.8 ***
(33.0–60.2)

93.0
(84.0–107)

162 ***
(142–183)

112 ***
(81.1–138)

94.6
(84.5–108)

473 ***
(393–550)

CWA, clot waveform analysis; APTT, activated partial thromboplastin time; sTF/FIXa, small amount of tissue
factor activation assay; HVs, healthy volunteers; CLD, chronic liver disease, ACI, acute cerebral infarction; AMI,
acute myocardial infarction; *, p < 0.05; **, p < 0.01; ***, p < 0.001 in comparison to HVs.
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Table 2. Area under the curve of ROC in CWA-APTT and CWA-sTF/FIXa (AMI or ACI vs. with-
out thrombosis).

ACI vs. HVs CLD Cancer AMI vs. HVs CLD Cancer

CWA-
APTT

Second DPT 0.658 0.537 0.538 0.609 0.652 0.675

First DPT 0.620 0.523 0.523 0.660 0.677 0.710

First DPW 0.562 0.573 0.605 0.741 0.751 0.584

FFT 0.623 0.509 0.547 0.650 0.673 0.689

Second DPH 0.859 0.637 0.519 0.810 0.655 0.565

First DPH 0.857 0.646 0.530 0.901 0.774 0.681

FFH 0.809 0.625 0.558 0.963 0.876 0.738

CWA-
sTF/FIX

Second DPT 0.658 0.573 0.619 0.581 0.501 0.546

First DPT 0.649 0.513 0.599 0.543 0.694 0.568

First DPW 0.553 0.597 0.577 0.681 0.795 0.619

FFT 0.661 0.509 0.547 0.548 0.673 0.689

Second DPH 0.747 0.538 0.551 0.704 0.510 0.517

First DPH 0.867 0.594 0.537 0.870 0.699 0.643

FFH 0.636 0.589 0.515 0.844 0.826 0.750

CWA, clot waveform analysis; APTT, activated partial thromboplastin time; sTF/FIXa, small amount of tissue
factor activation assay; HVs, healthy volunteers; CLD, chronic liver disease, ACI, acute cerebral infarction; AMI,
acute myocardial infarction; DPT, derivative peak time; DPW, derivative peak width; FFT, fibrin formation time;
DPH, derivative peak height; FFH, fibrin formation height; a red number indicates area under the curve > 0.800.

The reference interval of the AUC of CWA-APTT and CWA-sTF/FIXa was
2471–7277 mabs × sec and 2831–8031 mabs × sec, respectively. The AUC of CWA-APTT
was significantly higher in the patients with cancer {6592 mabs × sec (5024–8628 mabs
× sec)}, AMI {8689 mabs × sec (6518–11,243 mabs × sec)}, and ACI {8419 mabs × sec
(4899–7921 mabs × sec)} than in the HVs {4343 mabs × sec (3382–4954 mabs × sec)}and
the patients with CLD {5257 mabs × sec (4213–6632 mabs × sec)}, and it was significantly
higher in the patients with AMI than in the HVs and the patients with CLD and cancer
(Figure 4A). The AUC of CWA-sTF/FIXa was significantly higher in the patients with
AMI {9216 mabs × sec (6890–10,748 mabs × sec)} than in the HVs {4643 mabs × sec
(3908–5357 mabs × sec)} and the patients with ACI {6530 mabs × sec (5288–8265 mabs
× sec)}, cancer {6626 mabs × sec (5377–8601 mabs × sec)}, and CLD {5883 mabs × sec
(4710–6955 mabs × sec)}, and it was significantly higher in the patients with ACI than in the
HVs and patients with CLD (Figure 4B). Regarding the AUC value in the ROC analyses of
ACI or AMI vs. non-thrombosis, the AUC of CWA-APTT and CWA-sTF/FIXa was >0.800
in AMI vs. HVs or CLD (Table 3A).

The reference interval of the AUC/second DPT of CWA-APTT and CWA-sTF/FIXa
was 70.8–231 mabs and 37.2–118 mabs, respectively. The AUC/second DPT of CWA-
APTT was significantly higher in the patients with cancer {212 mabs (165–278 mabs)}, AMI
{265 mabs (186–342 mabs)}, and ACI {212 mabs (156–258 mabs)} than in the HVs {135 mabs
(105–163 mabs)} and CLDs {165 mabs (133–210 mabs)}, and it was significantly higher in
the patients with AMIs than in the HVs, the patients with cancers, and the patients with
CLD (Figure 4C). The AUC/second DPT of CWA-sTF/FIXa was significantly higher in the
patients with AMI {128 mabs (103–176 mabs)} than in the HVs {64.4 mabs (57.0–75.9 mabs)}
and the patients with ACI {107 mabs (80.9–133 mabs)}, cancer {95.2 mabs (77.0–128 mabs)},
and CLD {86.3 mabs (72.0–100 mabs)}, and it was significantly higher in the patients with
ACI than in the HVs and the patients with CLD (Figure 4D). Regarding the AUC value
from the ROC analyses of the CWA-AUC/second DPT for ACI or AMI vs. non-thrombosis,
the CWA-APTT showed that it was >0.800 in patients with AMI or ACI vs. HVs, and the
CWA-sTF/FIXa showed that it was >0.900 in patients with AMI or ACI vs. HVs (Table 3B).
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Table 3. ROC analysis of the AUC (A) and AUC/second DPT (B) of CWA-APTT and CWA-sTF/FIXa
(AMI or ACI vs. without thrombosis).

(A) AUC Cutoff Sensitivity Odds Ratio

CWA-APTT

AMI vs. HVs 0.934 5362 85.6% 31.2

AMI vs. CLD 0.821 6526 74.3% 8.68

AMI vs. Cancer 0.679 7281 63.6% 3.03

ACI vs. HVs 0.812 4392 74.0% 4.82

ACI vs. CLD 0.648 5801 62.8% 2.93

ACI vs. Cancer 0.534 6479 51.2% 1.05

CWA-sTF/FIXa

AMI vs. HVs 0.929 5774 87.4% 42.5

AMI vs. CLD 0.816 6890 74.3% 7.25

AMI vs. Cancer 0.696 7712 67.0% 4.18

ACI vs. HVs 0.833 5336 74.0% 8.10

ACI vs. CLD 0.635 6157 58.5% 2.01

ACI vs. Cancer 0.506 6587 51.6% 1.16

(B) AUC/Second DPT Cutoff Sensitivity Odds Ratio

CWA-APTT

AMI vs. HVs 0.867 169 78.8% 13.2

AMI vs. CLD 0.783 106 74.3% 8.57

AMI vs. Cancer 0.603 222 55.8% 1.12

ACI vs. HVs 0.836 158 74.0% 8.09

ACI vs. CLD 0.665 188 62.0% 2.66

ACI vs. Cancer 0.526 212 49.6% 1.00

CWA-sTF/FIXa

AMI vs. HVs 0.912 79.8 85.4% 36.0

AMI vs. CLD 0.771 107 73.8% 7.86

AMI vs. Cancer 0.691 116 65.4% 3.62

ACI vs. HVs 0.867 76.5 78.0% 13.2

ACI vs. CLD 0.662 94.5 62.2% 2.75

ACI vs. Cancer 0.553 102 57.2% 1.83
AUC, area under the curve; CWA, clot waveform analysis; APTT, activated partial thromboplastin time; sTF/FIXa,
small amount of tissue factor activation assay; HVs, healthy volunteers; CLD, chronic liver disease; ACI, acute
cerebral infarction; AMI, acute myocardial infarctions; DPT, derivative peak time; a red number indicates area
under the curve > 0.800.

4. Discussion

Routine measurements of clotting time, such as APTT and PT, are used to evaluate
hemostatic abnormality, clotting factor deficiencies [32], inhibitors of clotting factor [33],
DIC [34], and lupus anticoagulant (LA) [35] and to monitor anticoagulants such as heparin
or warfarin [36–38]; however, these measurements are not able to detect a hypercoagulable
state as reliably as a thrombin generation test [39] or thromboelastography [40]. Our
findings show no significant difference in the peak times of CWA-APTT between patients
with and without thrombosis. However, the evaluation of the APTT or PT has been updated
since the development of the CWA, including the modified CWA [30,31]. The second peak
time of CWA-sTF/FIXa was significantly shorter in the patients with ACI than in the
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HVs. In addition, a CWA shows not only the peak time but also the peak height, peak
width, and AUC [30,31]. The detection of a hypercoagulable state using the elevated peak
height of CWA-APTT and CWA-sTF/FIXa has been reported in patients with malignant
neoplasm [41] and ACI [21]. Our findings also show that the patients with AMI were in a
hypercoagulable state, as were the patients with cancer or ACI. In the thrombin generation
test [42,43], a shortened peak time and increased AUC indicate a hypercoagulable state.
Therefore, the AUC and AUC/second DPT of CWA-APTT or CWA-sTF/FIXa may indicate
a hypercoagulable state or thrombogenicity, respectively. A ROC analysis of the patients
with AMI or ACI vs. the patients with non-thrombotic diseases showed that the usefulness
in detecting a hypercoagulable state was in the order of AUC/second DPT, AUC, and
peak height; CWA-sTF/FIXa was better than CWA-APTT. As these AMI patients with
hypercoagulability by CWA had low D-dimer levels, CWA-APTT and CWA-sTF/FIXa can
be independent markers for hypercoagulability from fibrin-related markers.

Patients with AMI or atherosclerotic ACI are generally treated with antiplatelet ther-
apy [44,45], and hypercoagulability has not been considered important in these patients.
Our CWA-APTT and CWA-sTF/FIXa results showed that the patients with ACI or AMI
were markedly hypercoagulable. Indeed, atherosclerotic ACI patients are treated with
antithrombin agents such as argatroban [46]. Many relationships between the hypercoagu-
lable state and AMI have also been reported [47–49]. During atherosclerotic plaque rupture,
the hypercoagulable state may increase the size of the coronary artery thrombosis, causing
severe AMI. However, a hypercoagulable state might not be observed in patients with AMI
induced by coronary spasm [50]. It has been reported that oral anticoagulants with or with-
out aspirin do not reduce mortality, reinfarction, or stroke but significantly increase major
bleeding [51]. However, when percutaneous coronary intervention is performed in patients
with AMI, they are usually treated with unfractionated heparin and antiplatelets [52].
Therefore, the peak times of CWA-APTT and CWA-sTF/FIXa were slightly prolonged in
the AMI patients in our study. In these patients, the effect of heparin was confirmed based
on thrombin time and an anti-Xa assay. Patients with lupus anticoagulant were excluded
from this study. sTF/FIXa using PRP can be used to evaluate the effect of platelets. AMI
is considered to have major effects via platelet activation. There was no significant differ-
ence in platelet count between the patients with AMI and CLD. There was a significant
difference in sTF/FIXa between the patients with and without thrombocytopenia (platelet
count < 8 × 109/L) [29–31]. This thrombocytopenia, which was observed in liver cirrhosis,
was excluded from CLD in this study.

The mechanism underlying the development of a hypercoagulable state in AMI is
considered to involve various underlying diseases, such as diabetes mellitus [53], hy-
pertension [54], hyperlipidemia [55], inflammation [56], malignant neoplasm [57], and
obesity [58]. These risk factors cause mild or strong hypercoagulable states owing to the
increased expression of TF [59], the activation of the coagulation system [60], inflammatory
cytokines [61], atherosclerosis [55], platelet activation [62], and thrombin burst [63]. These
factors increase the peak heights of CWA-APTT and CWA-sTF/FIXa and shorten the peak
time of CWA-sTF/FIXa [31,64]. “The peak height × peak width” half of the velocity curve
is similar to the AUC of the velocity curve. Although there was no significant difference in
the peak widths of CWA-APTT and CWA-sTF/FIXa between the patients with and without
thrombosis, the AUC and AUC/peak time of the acceleration curve were strongly reflected
in the hypercoagulable state.

In terms of clinical implication, this study demonstrates hypercoagulability in patients
with AMI or ACI by using CWA-APTT or CWA-sTF/FIXa, thus suggesting that anticoagu-
lant therapy may be useful for AMI or ACI. Evidence of hypercoagulability in AMI or ACI
indicates a thrombotic risk for these diseases, suggesting the possibility of the prophylaxis
of AMI or ACI.
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Limitation of Reference Interval of CWA

APTT (the second DPT of CWA-APTT) has sufficiently been established; however,
the establishment of a reference interval for other parameters of CWA-APTT and CWA-
sTF/FIXa is proceeding. APTT is automatically obtained from a fully automatic blood
coagulometer, whereas the other parameters of CWA-APTT and all parameters of CWA-
sTF/FIXa are manually measured in each patient, suggesting that large-scale study using
CWA may be slightly difficult. In addition, there are a few HVs who have normal co-
agulation ability at old age. Therefore, it is difficult to use age-matched controls in a
CWA study.

5. Conclusions

An increased peak height and AUC of CWA-sTF/FIXa and a shortened second DPT
of CWA-sTF/FIXa were observed in patients with AMI and ACI. The CWA-AUC/second
DPT of CWA-sTF/FIXa may be useful for detecting a hypercoagulable state in AMI or ACI.
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