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Abstract: Parkinson’s disease (PD) is a neurodegenerative disorder characterized by both motor
symptoms and non-motor features. A hallmark of PD is the misfolding and accumulation of alpha-
synuclein (α-syn), which triggers neuroinflammation and drives neurodegeneration. Microglia, brain
cells that play a central role in neuroinflammatory responses and help clear various unnecessary
molecules within the brain, thus maintaining the brain’s internal environment, respond to α-syn
through mechanisms involving inflammation, propagation, and clearance. This review delves into
the complex interplay between α-syn and microglia, elucidating how these interactions drive PD
pathogenesis. Furthermore, we discuss emerging therapeutic strategies targeting the α-syn–microglia
axis, with a focus on modulating microglial functions to mitigate neuroinflammation, enhance
clearance, and prevent α-syn propagation, emphasizing their potential to slow PD progression.

Keywords: Parkinson’s disease; alpha-synuclein; microglia; neuroinflammation; propagation

1. Introduction

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder,
with rising incidence due to global population aging, presenting an increasing burden on
healthcare systems worldwide [1,2]. Patients with PD exhibit motor symptoms such as
bradykinesia, rigidity, and tremors, along with non-motor symptoms, including constipa-
tion, hyposmia, depression, cognitive decline, and sleep alternation [3]. The pathophysiol-
ogy of PD is influenced by an interplay between several mechanisms, including abnormal
α-synuclein (α-syn) aggregation, mitochondrial dysfunction, lysosomal or vesicle trans-
port deficiencies, synaptic transport issues, and neuroinflammation [3,4]. These processes
contribute to the accelerated degeneration of the nigrostriatal dopaminergic pathway and
impact other motor and non-motor circuits, leading to the diverse symptoms observed in
patients with PD [3,4]. A central pathological process of PD is the accumulation of α-syn,
which plays a crucial role in synaptic vesicle regulation and neurotransmitter release under
normal conditions [5–9]. However, in PD, α-syn misfolds and aggregates into Lewy bodies
contributing to neuroinflammation, further exacerbating neuronal damage and disease
progression [10–13].

Microglia, the resident immune cells in the brain, play a role in the progression of PD.
Microglia become activated in response to α-syn aggregates, leading to chronic neuroin-
flammation that exacerbates neurodegeneration [14]. Microglia also mediate the clearance
of these aggregates through phagocytosis and autophagy; however, these clearance systems
are often impaired in PD [15,16]. Moreover, microglia can propagate α-syn aggregates
facilitating the spread of pathology throughout the brain [17–20]. Therefore, understanding
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this balance between activation, propagation, and clearance roles is crucial for developing
therapeutic strategies that target microglial function in PD.

Recent advancements in therapeutic research targeting the interplay between mi-
croglia and α-syn have been conducted at both the preclinical and clinical levels [21].
Strategies such as inhibiting α-syn propagation, modulating microglial activity, and lever-
aging personalized gene therapies can potentially mitigate neuroinflammation and slow
neurodegeneration [22–24]. Furthermore, diagnostic tools, such as PET imaging and AI-
based models, can facilitate the monitoring of disease progression and therapeutic efficacy,
as well as our understanding and management of PD [25–28]. These approaches represent
a promising shift toward more precise, targeted interventions in PD treatment.

This review explores the intricate interplay between α-syn and microglia in PD, exam-
ining their roles in disease pathogenesis and discussing potential therapeutic strategies to
modulate these interactions to slow or halt disease progression.

2. Role of α-Syn in PD

The physiological functions and structural flexibility of α-syn are essential for main-
taining synaptic and mitochondrial homeostasis. Meanwhile, pathological modifications
and aggregation of α-syn drive its transition into toxic forms, promoting neurodegeneration
and contributing to PD progression. This session highlights the importance of the structural
dynamics and modifications of α-syn in disease progression.

2.1. α-Syn: Structure and Physiological Function

α-Syn is a small, 140-amino-acid protein predominantly expressed in the central ner-
vous system, particularly in presynaptic nerve terminals [6]. In physiological conditions,
α-syn primarily exists in an unstructured or intrinsically disordered state but can adopt
different conformations, including α-helices upon membrane binding or β-sheets during
aggregation [29]. Functionally, α-syn is involved in regulating synaptic vesicle trafficking
and neurotransmitter release. In these processes, α-syn binds to synaptic vesicles and
promotes their clustering, contributing to the maintenance of a reserve pool of synaptic
vesicles [5,6]. Moreover, α-syn interacts with the SNARE complex, essential for synaptic
vesicle docking and fusion, contributing to neurotransmitter release and synaptic plastic-
ity [7,8]. Additionally, α-syn is implicated in membrane curvature sensing and stabilization,
essential for synaptic vesicle recycling, and plays a role in maintaining mitochondrial
function and bioenergetics, which is crucial for neuronal survival [9].

Structurally, α-syn has three key regions: the N-terminal region, non-amyloid-β
component (NAC) domain, and C-terminal domain. The N-terminal region comprises
11-residue repeats with a conserved KTKEGV motif, which facilitates the formation of an
amphipathic α-helix when bound to lipid membranes [29]. The central NAC domain is
crucial for the aggregation properties of α-syn, as it promotes the formation of β-sheet
structures, a critical step in the aggregation process that leads to the formation of toxic
oligomers and fibrils [30–32]. The C-terminal domain is highly acidic, proline-rich, and
largely disordered. Furthermore, the C-terminal domain interacts with other proteins and
metal ions, and its flexibility is thought to help maintain α-syn in a soluble, non-toxic
state [29,33]. Under physiological conditions, α-syn primarily exists in an intrinsically dis-
ordered state but can adopt an amphipathic α-helix conformation upon membrane binding.
However, conformational changes occur in pathological conditions, particularly in the
NAC domain, driving toxic oligomer conformation [29,32]. These β-sheet-rich oligomers
stack together to form the core of fibrils, which are highly insoluble and toxic. The process
begins with α-syn monomers adopting an extended conformation that facilitates NAC–
NAC interactions, forming β-sheets [29,32]. When α-syn interacts with lipid membranes,
the N-terminal region stabilizes the α-helical conformation. However, when these interac-
tions are disrupted, α-syn may shift toward β-sheet formation, enhancing aggregation [34].
While flexible and disordered under normal conditions, the C-terminal region can also
influence aggregation when modified by post-translational modifications (PTMs), such as
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phosphorylation at serine 129 (Ser129), which accelerates fibril formation and promotes
neurotoxicity [35]. During the aggregation process, α-syn undergoes intermediate stages,
including the formation of soluble oligomers that are believed to be particularly neurotoxic,
before forming insoluble fibrils.

2.2. Modification of α-Syn in PD: Triggers of Aggregation and Disease Progression

The pathogenic role of α-syn in PD largely depends on its aggregation state. α-Syn
aggregates are a major component of Lewy bodies, the pathological inclusions observed in
PD. Lewy bodies disrupt cellular functions by sequestering vital proteins and impairing
cellular waste disposal mechanisms, contributing to neurodegeneration [36]. In contrast to
monomeric α-syn, which is non-toxic and soluble, the aggregation of α-syn represents a
toxic gain of function, often associated with mutations in the SNCA gene, which encodes
α-syn [10]. The connection between α-syn and PD was established in 1997 when point
mutations in the SNCA gene were identified in familial PD cases (PARK1 locus) [37]. Six
missense mutations in SNCA, i.e., Ala53Thr (A53T), Ala30Pro (A30P), Glu46Lys (E46K),
His50Gln (H50Q), Gly51Asp (G51D), and Ala53Glu (A53E), have been linked to autosomal
dominant forms of PD, each contributing to different aspects of aggregation and early onset
symptoms [37–43]. A53T and A53E lead to early-onset PD by enhancing α-syn fibril for-
mation and causing rapid disease progression with severe motor symptoms [37,43]. A30P
disrupts membrane binding, reduces the stability of the α-helical structure, and accelerates
oligomerization, contributing to PD pathology [39]. E46K promotes α-syn aggregation and
fibril formation, leading to early-onset dementia with Lewy bodies (DLB) [40]. H50Q also
increases protein aggregation and has been linked to both PD and DLB [41,42]. Lastly, G51D
has been linked to atypical PD with pyramidal tract symptoms and slower aggregation,
leading to a unique clinical presentation [38].

Furthermore, PTMs of α-syn, such as phosphorylation, nitration, acetylation, and
ubiquitination, play a crucial role in modulating the pathological states and aggregation po-
tential of α-syn [44]. Among the PTMs, phosphorylation at Ser129 is the most well-known
associated with α-syn aggregation and is commonly found in Lewy bodies [35,45,46]. While
Ser129 phosphorylation promotes fibril formation and neurotoxicity, phosphorylation at
Ser87 may have protective effects by reducing aggregation propensity [45]. Other key
PTMs include nitration, acetylation, and ubiquitination. Indeed, nitration, particularly
at tyrosine residues, promotes oligomer formation and disrupts normal folding, exacer-
bating oxidative stress and neurotoxicity [47]. Nitrated α-syn is found in Lewy bodies
and can enhance the pathological progression of PD by accelerating the misfolding and
aggregation of α-syn [48,49]. Conversely, acetylation at the N-terminal region stabilizes
α-syn and can potentially reduce its aggregation. However, aberrant acetylation may still
alter the normal function of α-syn and contribute to its pathological misfolding [50,51].
Ubiquitination of α-syn is a critical PTM that typically marks the protein for degradation
via the ubiquitin–proteasome system (UPS). However, in PD, selective dysfunction of UPS
results in the accumulation of misfolded or aggregated α-syn. Ubiquitinated α-syn is
frequently observed in Lewy bodies, the pathological inclusions characteristic of PD [52].
Disruptions in the ubiquitination process contribute to α-syn aggregation and neurotoxicity,
thereby accelerating the progression of PD [52]. Collectively, these modifications regulate
the structural dynamics of α-syn and its transition from a soluble, non-toxic form to an
aggregated, pathogenic state, thus making them critical factors in PD progression.

3. Interplay Between α-Syn and Microglia in PD

Microglia, the resident immune cells in the central nervous system (CNS), originate
from the embryonic yolk sac. In their resting state, they continuously monitor the brain
environment, responding to infections, injuries, and cellular debris. Furthermore, microglia
play a crucial role in maintaining brain homeostasis through various processes such as
synaptic pruning [53], neurogenesis [54], and immune surveillance [55]. Beyond these
homeostatic roles, microglia can also recognize and respond to α-syn aggregates, a hallmark
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of PD. The bidirectional relationship between α-syn and microglia underlies the complex
inflammatory responses seen in PD; α-syn aggregates activate microglia, and in turn, acti-
vated microglia can either promote α-syn clearance or exacerbate neuroinflammation [16]
(Figure 1). This complex interplay is crucial in understanding the progression of PD and
developing potential therapeutic strategies targeting the modulation of microglial function.
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Figure 1. A schematic that illustrates the key interaction mechanisms between microglia and α-syn in
PD: Bidirectional interaction between α-syn and microglia. Microglia recognize α-syn aggregates
through surface receptors, leading to their internalization. Once inside microglia, impaired clearance
mechanisms may result in the accumulation of α-syn, which can then be released, facilitating the
propagation of pathological aggregates to neighboring cells. The internalized α-syn triggers microglial
activation, resulting in the production and release of pro-inflammatory cytokines, contributing to
neuroinflammation. The persistent inflammatory response, alongside the spread of α-syn aggregates,
ultimately leads to the degeneration of dopaminergic neurons, a hallmark of PD progression. (Created
and modified using BioRender.com license no: RO27IGFJC2).

3.1. Recognition of α-Syn Aggregates by Microglia

Microglia recognize and bind extracellular α-syn aggregates through diverse pattern
recognition receptors (PRRs), which are pivotal for initiating the microglial response.

Toll-like receptors (TLRs), a family of PRRs, are crucial components in the innate
immune system that detect pathogen-associated molecular patterns and damage-associated
molecular patterns [56]. TLR2 and TLR4 detect α-syn aggregates, particularly oligomers.
TLR2 shows a higher sensitivity to these soluble forms, which are abundant in the early
stages of PD, while TLR4 can recognize multiple forms of α-syn, including fibrils [57]. Upon
activation, both TLR2 and TLR4 initiate the nuclear factor-κB (NF-κB) pathway, leading to
the release of pro-inflammatory cytokines and contributing to neuroinflammation [57–59].
Interestingly, TLR4 has also been implicated in this process of autophagy, which aids in
the clearance of α-syn aggregates. This suggests that TLR4 activation not only promotes
inflammation but also facilitates the degradation of toxic α-syn species, highlighting its
dual role in PD pathology [60].

The Fcγ receptors (FcγRs) are also critical regulators of immune responses in mi-
croglia, particularly in recognizing and responding to immunoglobulin G (IgG)-opsonized
complexes such as α-syn aggregates. These receptors modulate microglial activation
and balance phagocytosis and inflammation [13,61,62]. FcγRI, a high-affinity receptor,
binds to IgG-opsonized α-syn aggregates and triggers the phosphorylation of immunore-
ceptor tyrosine-based activation motifs activating downstream inflammatory signaling
pathways [13,61]. By contrast, FcγRIIB, a low-affinity receptor, downregulates immune
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responses and suppresses phagocytosis. FcγRIIB contains immunoreceptor tyrosine-based
inhibitory motifs (ITIMs) in its cytoplasmic domain. Upon α-syn binding, the ITIMs are
phosphorylated, interfering with intracellular signaling cascades necessary for actin poly-
merization and the engulfment of α-syn aggregates [13,62]. This balanced interaction
between FcγRI and FcγRIIB is critical in modulating microglial responses to α-syn.

Scavenger receptors recognize oxidized or aggregated forms of α-syn that can induce
microglial activation, phagocytosis, and reactive oxygen species (ROS) production. Cluster
of differentiation 36 (CD36), a class B scavenger receptor expressed on the surface of
microglia, plays a significant role in recognizing and binding α-syn aggregates [63,64].
CD36 specifically recognizes oxidized forms of α-syn, commonly found in the brains
of patients with PD. Upon binding to α-syn, CD36 promotes internalization of α-syn
and mediates activation of downstream inflammatory signaling pathways, leading to the
production of ROS [65]. Other scavenger receptors, such as scavenger receptor class A1
and macrophage antigen complex-1 (Mac-1), have been reported to mediate α-syn-induced
microglial activation [64,66]. Zhang et al. demonstrated that α-syn directly interacts with
Mac-1 receptors, which subsequently activate NADPH oxidase, resulting in increased ROS
production and promoting neuroinflammation [66].

Additionally, the receptors for advanced glycosylation end products (RAGE), a PRR
expressed on microglia, can recognize and bind various ligands, including α-syn aggre-
gates [67]. In the context of PD, RAGE specifically binds to misfolded and aggregated forms
of α-syn, particularly fibrillary α-syn, which are abundant in the diseased state. Upon
binging to α-syn fibrils, RAGE triggers the initiation and activation of the NF-κB signaling
pathway [68,69]. Activation of RAGE also stimulates the production of pro-inflammatory
cytokines and chemokines, which further recruit immune cells to the site of α-syn accu-
mulation, amplifying neuroinflammatory responses. Moreover, the interaction between
RAGE and α-syn fibrils may contribute to the chronic nature of neuroinflammation in PD,
as RAGE signaling is sustained in response to ongoing α-syn aggregation [67].

Triggering receptor expressed on myeloid cells 2 (TREM2), a receptor expressed on
microglia, plays a key role in regulating microglial responses, including phagocytosis
and inflammation. Yin et al. demonstrated that microglia respond to the presence of
α-syn aggregates via TREM2, potentially modulating their activity to prevent chronic
neuroinflammation [70]. This response contributes to an adaptive microglial activation
state that helps to maintain homeostasis and counteract neurotoxic effects in PD [70]. Other
studies have shown that TREM2 deficiency in microglia exacerbates α-syn accumulation,
intensifying neuroinflammation and worsening neurodegeneration [71,72].

3.2. Propagation of α-Syn Aggregates

Microglia not only internalize α-syn but actively participate in its propagation, con-
tributing to the spread of pathology within the CNS through various mechanisms, such as
microglial exosomes and tunneling nanotubes (TNTs) (Figure 2). Exosomes are extracellular
nanovesicles that carry cargo, including mRNA, lipids, and proteins, which are taken up
by neighboring cells [73]. Microglia package internalized α-syn into exosomes, facilitating
intercellular communication. These exosomes are then released into the extracellular space
and subsequently taken up by surrounding neurons, astrocytes, and other microglia, pro-
moting the spread of the α-syn pathology [19,74]. Studies indicate that α-syn-containing
exosomes play a critical role in the propagation of α-syn and contribute to neuroinflam-
mation and neurodegeneration related to PD pathology [75–77]. Indeed, elevated levels of
CNS-derived exosomal α-syn have been detected in the plasma of PD patients [75]. Chang
et al. demonstrated that exosomes containing α-syn were significantly released following
α-syn treatment in BV-2 cells. These exosomes were then taken up by dopaminergic neu-
rons, leading to neuronal death, secretion of pro-inflammatory cytokines, and microglial
activation [76]. Interestingly, microglial exosomes are heterogeneous, with certain exosomal
markers, such as CD9, CD63, and CD81 specifically enriched in α-syn-laden exosomes.
This selective targeting could help explain the specificity in α-syn propagation pathways
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and may offer a basis for future therapeutic interventions [78]. Additionally, lysosomal
dysfunction induced intracellular accumulation of α-syn, promoting the secretion of over-
loaded α-syn via exosomes. This indicates that the lysosomal dysfunction observed in PD
leads to increased exosomal secretion and propagation of α-syn, ultimately exacerbating
PD pathology [77].
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Figure 2. α-Syn propagation to neighboring cells by TNTs and exosomes of microglia. Microglia
internalize extracellular α-syn via endocytosis and form early endosomes. The endosomal membrane
then invaginates into its lumen and forms multivesicular bodies (MVBs). These mature MVBs are
processed by two pathways: the degrative and secretory pathway. Degrative MVBs (dMVBs) fuse
with lysosome, leading to degrade α-syn within MVBs; however, secretory MVBs (sMVBs) are fused
with plasma membrane and then released into the extracellular space. Additionally, TNTs directly
connect adjacent cells, enabling the transfer of α-syn aggregates across cytoplasmic bridges. Together,
exosome-mediated and TNT-driven transport enhance the dissemination of α-syn pathology along
neural networks, contributing to disease progression. (Created and modified using BioRender.com
license no: WW27IGFNZL).

Microglia actively communicate with other cells via specialized structures known as
TNTs, thin membrane channels composed of F-actin. TNTs facilitate the direct cell-to-cell
transfer of α-syn fibrils between microglia and other cells [79]. It has been reported that
interactions between microglia and other cells through TNTs can simultaneously promote
the propagation of α-syn and facilitate its degradation by distributing α-syn among mi-
croglia for degradation [20,80–82]. Formation of microglial TNTs can be increased when
stimulated by inflammatory stimuli, and activated microglia transfer α-syn to neighboring
cells. This communication enables the propagation of α-syn aggregates, potentially intensi-
fying the inflammatory response and promoting the spread of pathology throughout the
brain [20,80]. Furthermore, spreading α-syn through TNTs leads to lysosomal dysfunction,
promoting microglia–microglia interactions via the TNTs [81]. Conversely, Scheiblich et al.
demonstrated that microglia–microglia interactions through the TNTs distribute α-syn fib-
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rils, lowering the individual burden and enhancing the efficiency of α-syn degradation [82].
In summary, microglial TNTs play a dual role in propagating α-syn pathology across the
CNS and distributing α-syn fibrils for efficient degradation, underscoring their complex
but crucial involvement in the progression of PD.

3.3. Activation of Inflammatory Pathways by α-Syn Aggregates

The interaction between microglia and α-syn aggregates triggers various inflamma-
tory pathways, amplifying neuroinflammation in PD [83] (Figure 3). Upon recognizing
α-syn aggregates, microglial receptors, such as TLRs, activate downstream signaling path-
ways that initiate the canonical IκB kinase complex through the myeloid differentiation
primary response gene-88 (MyD88) adapter protein cascade [84]. This cascade leads to
the phosphorylation and degradation of IκB, allowing for the nuclear translocation of
NF-κB and the transcription of pro-inflammatory cytokine genes, including TNF-α, IL-1β,
and IL-6 [84]. The NF-κB pathway is thus central to microglial activation and promotes
sustained neuroinflammatory responses, contributing to the progression of PD pathology.

Activation of NF-κB also promotes upregulation of the NOD-like receptor protein 3
(NLRP3) inflammasome components. The NLRP3 inflammasome is an oligomeric com-
plex that requires a secondary stimulus for activation [85,86]. Once activated, the NLRP3
complex catalyzes the conversion of inactive pro-caspase-1 and pro-IL-1β into their ac-
tive forms, caspase-1 and pro-IL-1β, respectively [85,86]. The activated caspase-1 further
cleaves the N-terminal fragment of gasdermin-D (GSDMD), a critical effector in pyroptosis.
Cleaved GDSMD forms membrane pores, facilitating the release of active pro-inflammatory
cytokines, such as IL-1β and IL-18, into the extracellular space and promoting an inflamma-
tory cell death mechanism known as pyroptosis [87,88]. In particular, the binding of α-syn
to TLRs and CD36 serves as a priming signal for NLRP3 activation, effectively linking
α-syn recognition to inflammasome activity [15,65].

In addition, receptors such as CD36 and RAGE, upon α-syn binding, stimulate the pro-
duction of ROS through NADPH oxidase activation. Elevated ROS levels create oxidative
stress, which damages microglia and activates redox-sensitive pathways, including NF-κB,
further enhancing cytokine production [16,65,69]. This interplay between ROS generation
and NF-κB signaling establishes a positive feedback loop, exacerbating neuroinflammation
and potentiating further oxidative damage to neurons. This ROS-driven amplification
of NF-κB signaling contributes to a chronic inflammatory state, which is characteristic of
neurodegenerative diseases like PD.

Chronic α-syn accumulation also induces ER stress within microglia, activating the
unfolded protein response (UPR). Persistent UPR activation sensitizes microglia to an
inflammatory state, potentially amplifying their response to α-syn aggregates and con-
tributing to the inflammatory cycle in PD. Therefore, UPR activation in microglia can
potentially intersect with these inflammatory pathways, as the IRE1 branch of the UPR can
enhance NF-κB signaling, amplifying cytokine production and contributing to the chronic
inflammation characteristic of PD [89,90].

In summary, the interaction between α-syn and microglial receptors initiates multiple
inflammatory pathways, including NF-κB and NLRP3 inflammasome activation, which
are amplified by ROS production. Furthermore, UPR activation induced by α-syn aggre-
gates drives microglia into a chronic inflammatory state. Targeting these pathways offers
potential therapeutic strategies to mitigate neuroinflammation and slow PD progression.
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Figure 3. Mechanisms of microglial activation and α-syn degradation in PD. This schematic illustrates
the intracellular signaling pathways through which microglia respond to α-syn aggregates, encom-
passing inflammatory activation, phagocytosis, and autophagy. Recognition of α-syn by microglial
surface receptors activates MyD88, leading to the degradation of IκB and activation of NF-κB, which
promotes inflammatory gene transcription. In parallel, the NLRP3 inflammasome becomes activated,
assembling components such as ASC, NEK7, and caspase-1. Caspase-1 processes pro-IL-1β and pro-
IL-18 into their mature, secreted forms (IL-1β and IL-18), further driving the inflammatory response.
Activated GSDMD forms membrane pores, inducing pyroptotic cell death, a process implicated
in chronic neuroinflammation and neurodegeneration in PD. Microglia degrade α-syn aggregates
through phagocytosis and autophagy pathways. α-Syn internalized into phagosomes can undergo
LAP, facilitated by the PI3K complex (UVRAG, Beclin-1, Rubicon, Vps34) to form phagolysosome
α-syn degradation. Concurrently, the autophagy pathway, regulated by the ULK1 complex and
modulated by mTOR and p53, encapsulates α-syn in autophagosomes. These autophagosomes fuse
with lysosomes to form autolysosomes, where α-syn is degraded. The LC3 conjugation system (ATG5,
ATG12, ATG16) and p62 serve as key components for cargo recognition and delivery. (Created and
modified using BioRender.com license no: RN27JNRZ0N).

3.4. Clearance of α-Syn Aggregates

In PD, microglial mechanisms such as phagocytosis and autophagy are central to the
clearance of α-syn aggregates. These pathways are crucial for maintaining cellular home-
ostasis and preventing the toxic buildup of misfolded proteins; however, their dysfunction
in PD contributes to disease progression (Figure 3).
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3.4.1. Clearance of α-Syn Aggregates Through Phagocytosis and Autophagy in Microglia

Microglial phagocytosis is a process where microglia engulf extracellular α-syn aggre-
gates. This process is initiated when PRRs, such as TLRs, FcγRs, and scavenger receptors,
recognize α-syn aggregates on the surface of microglia [91]. These receptors activate intra-
cellular signaling pathways, including the phosphoinositide 3-kinase (PI3K) pathway and
small GTPases, such as Rac1, leading to actin cytoskeleton reorganization and phagosome
formation [92]. Once phagosomes encapsulate α-syn aggregates, they fuse with lysosomes
to form phagolysosomes, which are enriched with lysosomal enzymes that degrade α-syn
into smaller components [93].

In addition to phagocytosis, microglia utilize the autophagy–lysosomal pathway
to eliminate intracellular α-syn aggregates [15,94]. This process involves the formation
of double-membrane structures known as autophagosomes, which engulf α-syn aggre-
gates. The initiation and formation of autophagosomes depend on the activity of several
autophagy-related genes (ATGs), including ULK, which is regulated by upstream path-
ways such as mTOR [95]. During autophagy, class III PI3K complexes, including beclin-1
(BECN1), Vps34, and ATG14, produce phosphatidylinositol 3-phosphate, essential for
phagophore expansion and autophagosome maturation [92,96,97]. The autophagosome
membrane is further marked by LC3 lipidation (from cytosolic LC3-I to lipidated LC3-II),
facilitated by ATG7 and ATG3. LC3-II is integrated into the autophagosomal membrane
supports its expansion and subsequent fusion with lysosomes to form autolysosomes,
where lysosomal enzymes degrade α-syn aggregates [95,98].

Phagocytosis and autophagy share several components and pathways, notably the
involvement of LC3 in the LC3-associated phagocytosis (LAP) and lysosomal fusion for
degradation. In LAP, LC3 is recruited to phagosomal membranes, promoting the maturation
and fusion of phagosomes with lysosomes, similar to its role in autophagosome formation
during autophagy [92,96,97,99,100]. Both processes also rely on the NADPH oxidase 2
complex for ROS generation, which aids in degrading internalized cargo and stimulates
further autophagic and phagocytic activity, enhancing α-syn clearance [92,101].

3.4.2. Impairment of α-Syn Clearance Pathways in PD

Notably, in the context of PD, the efficiency of the pathways mentioned in Section 3.4.1
is often compromised due to multiple factors, contributing to disease progression. Studies
show that pathological forms of α-syn, particularly those prevalent in PD, significantly
impair microglial phagocytosis, disrupting the clearance of extracellular aggregates and
exacerbating neuroinflammation [102–104].

Rojanathammanee et al. indicated that the A53T α-syn mutation, commonly associated
with familial PD, induces a pro-inflammatory microglial phenotype, reducing phagocytic
efficiency [102]. Further research demonstrates that microglial responses are diverse and
based on α-syn conformations; the wild-type and A53T α-syn can promote microglial
phagocytosis, whereas the A30P and E46K variants inhibit this process [103]. Notably,
oligomeric α-syn—a form predominant in PD pathology—has been shown to inhibit both
basal and stimulated phagocytic activity, preventing efficient α-syn clearance [104]. These
findings highlight that the form of α-syn significantly affects microglial function, with
pathological variants disrupting normal phagocytosis.

Age is another factor affecting microglial phagocytic capacity. Microglia from older
mice exhibited reduced efficiency in engulfing α-syn oligomers compared to those from
younger mice while also showing higher levels of TNF-α release [105]. This age-related
factor aligns with the increased prevalence of PD in older populations, suggesting that
aging further exacerbates phagocytosis dysfunction, contributing to the accumulation of
α-syn aggregates.

PD-linked genetic mutations also impair autophagy and lysosomal function. Mutation
in genes such as leucine-rich repeat kinase 2 (LRRK2) and GBA affect lysosomal enzymes,
reducing autophagic capacity and compromising autophagosome–lysosome fusion pro-
cesses [15,106]. For example, the LRRK2 G2019S mutation, the most common pathogenic



J. Clin. Med. 2024, 13, 7243 10 of 20

form in familial PD, is closely linked to autophagic dysregulation. LRRK2 G2019S knock-in
mice and LRRK2 G2019S mutated SH-SY5Y cells show increased LC3-II levels and more
autophagic vesicles, indicating autophagic flux inhibition [107,108]. This mutation disrupts
autophagosome–lysosome fusion, leading to autophagosome accumulation, insufficient
α-syn clearance, and subsequent neuronal damage [108]. Mutations in GBA, which en-
codes lysosomal enzymes involved in lipid metabolism, are another common PD risk
factor [106]. Magalhaes et al. demonstrated that PD patient-derived fibroblasts with GBA1
mutations impaired lysosomal function and disrupted the autophagy–lysosome pathway.
This deficiency impedes lysosome reformation from autolysosomes, leading to the accumu-
lation of undigested autophagic material, resulting in cellular stress and increased α-syn
aggregation [109]. Together, these impairments collectively result in undigested α-syn ag-
gregates and other damaged organelles, exacerbating neuroinflammation and contributing
to dopaminergic neuronal death.

4. Therapeutic Approaches and Future Directions

Understanding the pathological mechanisms underlying PD, particularly the inter-
play between α-syn aggregation and microglial activation, has created new avenues for
therapeutic interventions. Several potential therapeutic strategies focus on modulating
microglial activation, enhancing clearance mechanisms, and blocking the propagation of
α-syn aggregates (Table 1). These strategies are aimed at mitigating neuroinflammation
and slowing neurodegeneration, offering the potential for better management of PD symp-
tom management and disease progression control. While these strategies show promise,
significant challenges still remain.

4.1. Targeting α-Syn Propagation Pathways

Preventing the cell-to-cell propagation of α-syn represents another therapeutic ap-
proach, as halting the spread of α-syn aggregates in the brain may slow the progression
of PD.

Exosome pathway inhibitors have the therapeutic potential of blocking exosome
formation or release, which could limit α-syn spread between cells. GW4869, a neutral sph-
ingomyelinase 2 inhibitor, regulates the production and release of exosomes [18,110,111].
Guo et al. demonstrated that GW4869 treatment reduces exosomes secretion in the mi-
croglia exposed to PFF and LPS, limiting exosome-mediated α-syn transfer to neighboring
neurons [18]. Tsutsumi et al. also showed that GW4869 reduced dopaminergic neuronal
damage and pro-inflammatory cytokine production, indicating that inhibiting exosome
secretion can alleviate neuronal injury and inflammation [111].

Additionally, studies have suggested that inhibition of TNTs and TNT-associated
molecule formation could prevent the intercellular transfer of α-syn and limit its
spread [20,80,81]. While TNT-targeted therapies remain untested in clinical settings, their
potential in PD therapy lies in curbing the transmission of pathogenic proteins and reducing
neuroinflammatory responses.

4.2. Modulating Microglial Activation States

Several therapeutic approaches are currently under investigation and in clinical trials,
which aim to modulate the activation state of microglia to reduce inflammation while
enhancing α-syn clearance efficiency. These strategies focus on shifting microglia toward a
neuroprotective phenotype, thereby promoting clearance of pathological α-syn aggregates
while minimizing the pro-inflammatory responses that contribute to neurodegeneration.

The small molecule TAK-242 is a specific TLR4 inhibitor that reduces the produc-
tion of pro-inflammatory cytokines such as IL-1β and TNF-α by blocking TLR4 signaling.
Preclinical models suggest that TAK-242 possesses neuroprotective potential to reduce
α-syn-induced microglial activation [112]. Although originally developed for treating
inflammatory conditions like sepsis, TAK-242 did not demonstrate sufficient efficacy in
phase III clinical trial in sepsis leading to the discontinuation of its clinical development.
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Currently, TAK-242 is primarily used as a research tool in preclinical studies. Despite
promising results in reducing neuroinflammation in preclinical models, no clinical data
exist to validate its efficacy in PD. NPT520-34 is a TLR2 antagonist that enhances autophagy
to facilitate the clearance of misfolded a-syn. Preclinical studies have demonstrated its
effectiveness in reducing α-syn accumulation, decreasing neuroinflammation, and improv-
ing motor function in L61 mouse models of PD, highlighting the potential of NPT520-34
as a therapeutic agent to target neuroinflammation and α-syn clearance. NPT520-34 is
currently in Phase I trials [113]. Another TLR inhibitor, CU-CPT22, targets and inhibits
TLR1/2, blocking microglial activation and mitigating neuroinflammation. However, the
application of CU-CPT22 remains in the preclinical research stage, where it has demon-
strated effectiveness in reducing inflammation and microglial activation triggered by α-syn
aggregation [114].

Modulating or inhibiting the NF-κB pathway using compounds such as hypoestoxide
and lenalidomide has shown efficacy in reducing microgliosis, protecting dopaminergic
neurons, and alleviating motor deficits in PD models [115,116]. Given the role of NF-κB
in propagating α-syn pathology, its inhibition offers a promising approach to prevent
excessive microglial activation in synucleinopathies. Minocycline, an anti-inflammatory
antibiotic, has also shown promise in inhibiting microglial activation and reducing pro-
inflammatory cytokines in PD models [117]. However, in an NET-PD study, minocycline
did not provide meaningful therapeutic benefits, highlighting the challenges of translating
preclinical success into clinical efficacy [118,119].

Lysosomal enhancers aim to enhance cellular mechanisms for clearing α-syn aggre-
gates. Ambroxol enhances lysosomal function and promotes α-syn clearance by increasing
glucocerebrosidase (GCase) activity, which is either deficient or dysfunctional in PD pa-
tients with GBA mutations [120]. Acting as a molecular chaperone, ambroxol assists in
proper GCase folding, improving lysosomal function and the clearance efficiency of α-syn
aggregates [121]. Ambroxol is currently in a Phase III clinical trial for PD (NCT05778617),
with the ASPro-PD trial (larger, placebo-controlled trial) testing its ability to slow PD
progression [122]. Dynasore, a dynamin inhibitor, blocks α-syn aggregate internalization
by inhibiting endocytosis in microglia, reducing inflammation in PD models and allowing
microglia to retain other protective functions without engulfing α-syn [123]. The autophagy-
targeting chimera (AUTOTAC), a chimeric compound composed of a target protein-binding
ligand and a p62/SQSTM1-binding ligand, selectively degrades α-syn aggregates by en-
hancing p62-mediated autophagy pathways [124]. In the PD model, oral administration
of ATC161, an AUTOTAC-based drug, reduced α-syn aggregates and their propagation
in the brain, alleviating glial inflammatory responses and enhancing motor performances.
However, clinical outcomes for PD with this approach have yet to be reported.

Table 1. Drugs targeting the α-syn–microglia interaction.

Drugs Therapeutic Strategy Efficacy Status clinicaltrials.gov ID

Neuroinflammation

Minocycline Inhibition of
microglial activation

Reduced inflammation in α-syn mouse
model [117]; no significant therapeutic
effect in early PD [118,119].

Phase II NCT00063193 (completed)

NPT520-34 Inhibition of
microglial activation

Confirmed safety, tolerability, and
pharmacokinetic profile in healthy
volunteers; planned to evaluate efficacy in
PD.

Phase I NCT03954600 (completed)

TAK-242 TLR4 inhibitor

Shown to suppress microglial activation
and reduce neuroinflammation in
preclinical models of PD by targeting
TLR4 [112].

Preclinical

clinicaltrials.gov
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Table 1. Cont.

Drugs Therapeutic Strategy Efficacy Status clinicaltrials.gov ID

CU-CPT22 TLR2 inhibitor
Reduced p-α-syn-induced inflammation
and restored autophagic function in an
MPTP mouse model [84,114].

Preclinical

Inzomelid
NLRP3
inflammasome
inhibitor

Entered Phase I clinical trials as a
potential disease-modifying therapy for
PD.

Phase I NCT04015076 (completed)

α-syn clearance

Ambroxol Enhances GCase
activity

Increased GCase levels and reduced α-syn
accumulation in both patients with and
without GBA1 mutations [122].

Phase II

NCT02941822 (completed)
NCT06193421
(recruiting)
NCT02914366 (Active, not
recruiting)

BIA 28-6156 Allosteric activator of
GCase

Undergoing evaluation to determine
efficacy in patients with GBA1 gene
variant.

Phase II NCT05819359 (Active, not
recruiting)

Venglustat
(GZ/SAR402671)

Glucosylceramide
synthase inhibitor

Reduced α-syn in preclinical models but
failed to show efficacy in Phase II trials,
leading to discontinuation.

Phase II NCT02906020 (Terminated)

PR001
(LY3884961)

Enhances GCase
activity

Undergoing evaluation to assess the
safety, tolerability, immune response,
biomarkers, and efficacy in patients.

Phase I/II NCT04127578 (Recruiting)

ATC161 Enhances autophagy
Reduced brain α-syn aggregates and glial
inflammation, improving motor function
in a PD model [124].

Preclinical

α-syn propagation

GW4869

Neutral
sphingomyelinase
inhibitor (blocks
exosome release)

Reduced α-syn propagation in preclinical
studies by inhibiting the release of
exosome-contained α-synuclein [111].

Preclinical -

4.3. Personalized and Gene Therapy Approaches

Traditional therapeutic strategies for PD have largely focused on broad-spectrum ap-
proaches. However, personalized gene therapy offers a patient-tailored option, particularly
for subgroups with specific genetic mutations linked to PD, such as SNCA, LRRK2, or
GBA mutations. Although PD exhibits lower genetic diversity across patients than dis-
eases with high genetic heterogeneity, which poses a challenge for personalized treatments,
personalized approaches may benefit patients with clear genetic backgrounds [125–129].

CRISPR-Cas9 gene-editing tools, for instance, hold potential for regulating or correct-
ing specific pathogenic genes. For patients with SNCA mutations, CRISPR approaches
targeting α-syn expression could help reduce pathogenic α-syn accumulation, poten-
tially mitigating disease progression [130,131]. It could also target other PD-linked genes,
such as LRRK2 and GBA, allowing for precise genetic modifications to address specific
mutation-related dysfunctions. Another approach involves siRNA-based regulation of
α-syn expression. By targeting specific microRNAs, such as miR-155 and miR-let-7a, siRNA
could modulate α-syn levels and inflammatory responses simultaneously, offering a less
interventional alternative to gene-editing tools while also addressing efficiency and safety
challenges associate with more invasive approaches like CRISPR [132,133].

The Adeno-associated-virus (AAV)-based gene delivery system has potential to deliver
gene-editing tools or therapeutic genes directly to affected brain regions. AAV vectors
have been tested in other neurological diseases, suggesting long-term therapeutic effects

clinicaltrials.gov
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that may be beneficial in PD [134–137]. Recent advancements in enhancing AAV delivery
systems are improving both precision and stability for gene therapies. Notably, researchers
have focused on enhancing AAV targeting microglia through capsid engineering, promoter
modification, and gene silencing; however, challenges remain, particularly in ensuring cell
specificity [138–144]. Therefore, improving AAV precision is crucial, as it may overcome
the limitations of traditional AAV methods and enhance the safety of gene therapies in
modulating microglial functions during PD pathology.

While precision medicine holds promise, current limitations in identifying reliable
biomarkers and the heterogeneity of PD make it challenging. Although researchers are
creating processes to identify specific molecular, genetic, and clinical biomarkers, many
remain experimental, and their validation for clinical use remains a major hurdle [129].
AI-driven predictive models are emerging as valuable tools for more targeted, personalized
approaches by analyzing genetic, molecular, and clinical profiles to stratify patients and
optimize therapies, potentially improving outcomes and reducing side effects [25,27,28].
These tools are expected to be essential for refining therapeutic interventions and advancing
the goal of personalized care in PD.

4.4. Diagnosing and Monitoring PD Progression Using PET Imaging

Positron emission tomography (PET) imaging is used to diagnose and monitor PD
progression and assess therapeutic efficacy. Translocator protein (TSPO) PET is used to
evaluate microglial activation and facilitates the assessment of disease progression. TSPO,
an 18 kDa protein located in the mitochondrial outer membrane in microglia, plays a
pivotal role in regulating biological processes related to mitochondrial stress. Additionally,
TSPO is a significant biomarker for quantifying inflammatory responses in microglia, with
expression markedly elevated upon activation [145]. Increased TSPO levels have been
observed in patients with PD [146,147]. PET imaging of TSPO provides a non-invasive
method for visualizing and quantitatively assessing microglial activation, offering valuable
insights into neuroinflammatory processes linked to PD. Notably, recent PET studies on
TSPO indicated that elevated microglial activation may be detectable in the prodromal
phases of PD, including in individuals with non-motor symptoms [148]. Xiang et al.
developed [18F]-F0502B, an α-syn-specific PET tracer for imaging synucleinopathy. F0502B
selectively labels α-syn aggregates in mouse and macaque PD models and post-mortem
brain tissues of PD patients; however, F0502B has not previously been applied to human
subjects [26]. This imaging modality allows clinicians to monitor disease progression
and evaluate therapeutic efficacy by comparing microglial activation levels before and
following treatment. In summary, the application of PET imaging plays an essential role in
understanding pathological alterations in PD and enhancing patient management [149].

5. Conclusions

PD is characterized by the complex interplay between pathological α-syn aggregation
and microglial activation, both of which contribute to progressive neurodegeneration. Mi-
croglia detect α-syn aggregates through various receptors, including TLRs, Fcγs, scavenger
receptors, RAGE, and TREM2, and respond to α-syn via multiple pathways. Microglia facil-
itate the propagation of α-syn through TNTs and exosomes, spreading the α-syn pathology
throughout the brain. Subsequently, microglia shift into inflammatory states, activating pro-
cesses such as NLRP3 inflammasome formation and the UPR. Additionally, microglia play
protective roles by clearing α-syn aggregates via phagocytosis and autophagy. However,
these clearance processes are often impaired in PD due to factors such as aging, genetic mu-
tations, and pathological α-syn conformations. Thus, maintaining a balance in microglial
function is crucial for mitigating α-syn pathology in PD. Therefore, understanding the dual
roles of microglia is essential for developing effective therapeutic strategies that modulate
their activation states to balance neuroprotection with controlled inflammation.

The therapeutic interventions discussed in this review, including targeting α-syn
propagation pathways, enhancing lysosomal function, and modulating microglial acti-
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vation, show promise in mitigating PD pathology. Recent advances in small-molecule
inhibitors, autophagy enhancers, and TLR antagonists highlight the potential of these
approaches to directly reduce neuroinflammation and promote α-syn clearance. Moreover,
other approaches, such as AAV-based gene therapy, CRISPR–Cas9 gene editing, and per-
sonalized therapies tailored to individual genetic profiles offer avenues for more targeted,
long-lasting treatments. However, while preclinical studies present encouraging results,
many of these strategies still face challenges in clinical application, particularly in achieving
efficient targeting of microglia, optimizing delivery systems, and minimizing adverse ef-
fects. Addressing these challenges will be key to realizing the therapeutic potential of these
approaches. Additionally, PET imaging could aid in diagnosing PD and monitoring disease
progression and treatment efficacy. In summary, while recent advances present viable
possibilities, significant challenges in biomarker validation, delivery optimization, safety,
specificity, and clinical translation must be addressed to ensure these therapies become
safe, effective, and accessible for PD patients.

This review summarizes the complex interaction between microglia and α-syn in PD,
highlighting the therapeutic potential of approaches targeting these mechanisms. Further
research is needed to refine these strategies, particularly to better understand how to
balance the neuroinflammatory and neuroprotective functions of microglia. Developing
future therapies that modulate the interaction between microglia and α-syn could offer
more effective ways to slow disease progression and improve the quality of life for patients
with PD.
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