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SUMMARY

Inference of causal transcriptional regulatory networks (TRNs) from transcriptomic data suffers 

notoriously from false positives. Approaches to control the false discovery rate (FDR), for 

example, via permutation, bootstrapping, or multivariate Gaussian distributions, suffer from 

several complications: difficulty in distinguishing direct from indirect regulation, nonlinear effects, 

and causal structure inference requiring “causal sufficiency,” meaning experiments that are 

free of any unmeasured, confounding variables. Here, we use a recently developed statistical 

framework, model-X knockoffs, to control the FDR while accounting for indirect effects, 

nonlinear dose-response, and user-provided covariates. We adjust the procedure to estimate the 

FDR correctly even when measured against incomplete gold standards. However, benchmarking 

against chromatin immunoprecipitation (ChIP) and other gold standards reveals higher observed 

than reported FDR. This indicates that unmeasured confounding is a major driver of FDR in TRN 

inference. A record of this paper’s transparent peer review process is included in the supplemental 

information.
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In brief

Cataloging the structure of causal gene regulatory networks is fundamental to systems-level 

models of cells. Kernfeld et al. study the false discovery rate of network inference methods, 

employing new statistical tools to correctly account for nonlinear and indirect effects. In three 

examples across separate species, findings indicate unmeasured confounding that will make 

false discovery rate control impossible via many current approaches, indicating that new data 

or methods are needed.

Graphical abstract

INTRODUCTION

A transcriptional regulatory network (TRN) is the set of direct regulatory relationships 

between transcription factors (TFs) and their target genes in a given biological system. 

Inferring TRNs has been a high priority because they enable systems-based approaches to 

study complex biological processes. For example, TRNs can predict the effects of genetic 

perturbations during differentiation and development,1 reveal the genetic architecture of 

complex traits,2–4 and aid in drug development.5–8 These are just a few of the many 

applications across diverse fields of biological research in which accurate TRN models 

would yield useful advances.9–13
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Since the advent of gene expression profiling,14,15 much effort has been dedicated to the 

development of computational methods to infer TRNs from transcriptomic data based on 

statistical association between TFs and putative target gene expression (reviewed in Nguyen 

et al.16 and Sanguinetti and Huynh-Thu17). As the interpretation of TRNs depends on their 

accuracy, evaluation of TRN inference method performance is vital. In a seminal TRN 

benchmarking study using gold standards ranging from simulation ground truth to yeast 

motif- and chromatin immunoprecipitation (ChIP)-based networks,18 the best-performing 

methods reached a maximum precision of roughly 0.5, meaning that even for the top 

approaches, roughly half of the inferred edges were incorrect. In more recent benchmarks on 

mammalian data, early precision with respect to cell type-specific ChIP data is at most 1.7 

times better than random19 or no better than random.20 These results are not uncommon, and 

the high rate of false positives is widely recognized as one of the most difficult obstacles to 

realizing the potential of TRN inference methods.21

A general strategy for handling a preponderance of false positives is to statistically filter 

TRN outputs to achieve a user-specified precision, typically expressed in terms of false 

discovery rate (FDR) control.22–27 In brief, the FDR is the proportion of significant 

predictions that are expected to be false positives, and there are various ways to estimate 

the FDR of TRN inferences (see Box 1). If FDR estimates are accurate, then the user can 

generate a TRN in which only a specified fraction of edges are false positives. This makes 

it much more likely that the downstream uses of the TRN (e.g., predicting transcriptional 

effect of perturbations) will be fruitful and that experimental follow-up will be efficient.

Unfortunately, FDR-controlled TRN inference faces distinctive and challenging obstacles. 

First, permutation tests cannot account for indirect effects.36,37 Second, methods allowing 

indirect effects typically make strong assumptions of linear and Gaussian data,25,38 whereas 

responses to TFs are neither fully understood nor empirically linear.39,40 Third, some TRN 

inference methods do not estimate the causal graph structure; instead, they infer a closely 

related undirected graph called the Markov random field (MRF) structure. Though the nodes 

of the MRF are identical to the nodes of the causal graph, the MRF counterpart to a causal 

graph structure has additional edges necessary to capture dependencies between nodes 

with shared downstream effects.41 Fourth, TRN inference depends on a crucial assumption 

known as causal sufficiency,41,42 which requires all relevant causal factors to be measured. 

However, transcriptomic data are heavily affected by unobserved confounders that may 

include batch effects or post-transcriptional regulation. Finally, gold standard data are 

incomplete, biased toward specific well-studied regulators, and lacking in high-confidence 

curated negative results, so that reported and observed FDR are not directly comparable. 

Indeed, prior work on FDR-controlled TRNs has not systematically compared reported FDR 

on real datasets against gold standards.22–27,43

We develop gold standards and approaches for a fair empirical evaluation of FDR control 

across a variety of methods and assumptions. In order to directly test or completely avoid 

certain modeling assumptions, we contribute a computationally efficient adaptation of the 

model-X knockoff filter, which has distinctive advantages for TRN inference36,44 (Box 2). 

By applying this approach and others to benchmark FDR control in TRN inference on 

simulated and real data, we find that the reported FDR underestimates the observed FDR, 
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leading to inflated confidence in the resulting TRN. After systematically eliminating other 

sources of error, we find that transcriptomic data do not satisfy causal sufficiency, even 

when certain likely confounders are included in the models. Because this is an inherent 

limitation of the datasets we study, FDR control is unlikely to be achievable by any TRN 

inference method. Because our approach should be useful to diagnose obstacles to causal 

network inference across a variety of domains and data types, we have made our software 

and documentation freely available (STAR Methods).

RESULTS

Efficient generation of model-X knockoffs enables computationally tractable genome-wide 
TRN inference

Our approach centers on a recent innovation in high-dimensional statistics: model-X 

knockoffs.36,44 Model-X knockoffs were originally intended to be applied to individual 

regression problems, not network inference. Here, we use model-X knockoffs to build a 

network by regressing each gene on all other genes. If done naively, this process requires 

time proportional to the fourth power of the number of genes. We derived methods to 

re-use portions of the calculations to improve runtime and memory consumption for high-

dimensional data, and our approach saves considerable computational resources (Figures 

S1A and S1B). Rather than running the whole procedure independently for each gene, which 

would control FDR separately in many subsets of the network, we pool the symmetric 

statistics and use the same threshold t across all regressions. This method has no theoretical 

guarantee, but per-target FDR control and global FDR control are not equivalent (STAR 

Methods), and simulations indicate that pooling improves global FDR control (Figure S1C).

Model-X knockoffs approximately control FDR in TRN inference from simulated data

To test the reliability of model-X knockoffs in a controlled setting, we used the previously 

published simulated network data from the BEELINE TRN inference benchmarking 

framework.19 BEELINE evaluates TRN inference on a variety of datasets simulated from 

nonlinear stochastic differential equations, with various known network structures giving 

rise to different types of developmental trajectories. We generated knockoffs with three 

different methods that reflect different modeling assumptions. The first method, labeled 

“Gaussian,” used Gaussian knockoffs with covariance equal to the sample covariance 

matrix. Though the data are not Gaussian, Gaussian knockoffs are simple to construct, 

and they may be adequate given that the knockoff filter is somewhat robust to mis-

specification.51,52 The second method, “mixture,” used a Gaussian mixture model,49 which 

is again mis-specified, but provides more flexibility than Gaussian knockoffs for cases 

where the data are nonlinear or multimodal. The third method, “permuted,” randomly 

permutes samples within each gene (independent of the permutation applied to the other 

genes). Independently permuting the entries of each feature yields valid knockoffs, but 

only if all features are independent.53 Genes in this simulation are not independent, as the 

simulation is specifically meant to reflect regulatory cascades.19 Thus, permutation is not 

expected to yield adequate knockoffs; however, we include this method due to the popularity 

of permutation methods for error control in TRN inference.22,23,26,27,54 We provided the 

simulated data to the knockoff filter using only RNA expression levels (“RNA only”) or 
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revealing RNA expression, RNA production rate, and protein levels (“RNA + protein”). 

The latter captures the full state of the simulation. Using networks capable of generating 

a variety of temporal trajectories, these experiments provide a baseline expectation for the 

behavior of the knockoff filter in TRN inference.

Results show that FDR control depends on testing the correct null hypothesis, choosing 

an adequate model for knockoff construction, and obtaining causally sufficient data. When 

using permutation to test the incorrect null hypothesis that all genes are independent, excess 

false positives are observed in 10/12 evaluations (Figure 1A, blue trend lines). When testing 

the correct null hypothesis, but using Gaussian knockoffs on these non-Gaussian data, 

excess false positives are observed in 10/12 evaluations (Figure 1A, red trend lines). When 

testing the correct null hypothesis using a flexible mixture model for knockoff construction, 

excess false positives are observed in only 5/12 evaluations (Figure 1A, orange trend lines). 

When considering tests where the correct null is tested via flexible knockoffs on causally 

sufficient data with protein concentration and RNA production rate revealed, only 2/6 tests 

show slight excess FDR (Figure 1A, orange trend line, top row). When protein levels and 

transcription rates are revealed, proteins are assumed to regulate transcripts and not vice 

versa, so non-oriented edges from the knockoff filter can be oriented, and backward edges 

are counted as false positives (Figure 1A, bottom row). With RNA only, static methods 

cannot infer directionality, so edge direction was not considered when calculating FDR 

(Figure 1A, bottom row). This difference in evaluation may account for better performance 

in the RNA-only condition for some experiments.

Figure 1A highlights that the specific model used to generate model-X knockoffs must be 

chosen carefully. Fortunately, goodness-of-fit can be assessed even without gold-standard 

data on network structure. For example, trends over time or joint embeddings can 

directly test the swap condition that defines valid knockoffs (Box 2). Applied to protein 

concentrations from the cyclic network structure, these comparisons reveal a complete lack 

of structure in permuted knockoffs and subtle deviations from the original data distribution 

in Gaussian knockoffs. Mixture-model knockoffs are visually indistinguishable from the 

original data (Figures 1B and 1C).

Figure 1A also highlights how FDR control relies on observation of all causal factors, which 

in this simulation include protein concentrations. Correlations between protein and RNA 

levels or RNA production rate and RNA levels were sometimes low or negative (Figures 1D 

and 1E) and can also be poor in real data.56 Failure of FDR control despite using a model 

that yields plausible knockoffs is a sign that some causal factors were not measured.

Model-X knockoffs control FDR in testing conditional independence on a large, diverse E. 
coli dataset

Next, we tested the extent to which standard knockoff construction methods can match 

the distribution of real data. We chose the Many Microbe Microarrays Database, which is 

comprised of gene expression data for 4,511 genes, including 334 TFs, across 805 E. coli 
samples.57 As with the BEELINE data, we constructed knockoffs using three approaches: a 

Gaussian distribution based on the sample covariance matrix, a Gaussian mixture model 

(cluster assignments are shown in Figure S2A), and independent permutation of each 

Kernfeld et al. Page 5

Cell Syst. Author manuscript; available in PMC 2024 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gene. However, because the Many Microbe Microarrays dataset is higher dimensional than 

the BEELINE data, the sample covariance matrix may be a poor estimator.35 Therefore, 

we tested four additional sets of Gaussian knockoffs based on established methods for 

high-dimensional covariance estimation. For the “shrinkage” method, we used an adaptive 

shrinkage method.35 For the “glasso_0.01,” “glasso_0.001,” and “glasso_1e—4” methods, 

we used graphical LASSO with penalty parameters 10−2, 10−3, and 10−4.58 Stronger 

regularization may lead to estimates that fit the data worse and also to worse-fitting 

knockoffs. Because setting the strength of shrinkage parameters is not fully understood 

in the context of knockoff construction, we tested a range of options empirically.

We evaluated the resulting knockoffs using three types of diagnostics. The first diagnostic 

used high-dimensional visualization to determine how well each knockoff construction 

method preserved qualitative properties of the data. We concatenated the TF expression 

matrix with all TF expression knockoffs and jointly reduced to two dimensions via t-

stochastic neighbor embedding (t-SNE)55 (Figure S2A). Most methods appeared similar 

to the original data, but in the permuted method, the distribution of the knockoffs has very 

little overlap with the distribution of the original data. Based on this diagnostic, permuted 

knockoffs will not control FDR.

The second diagnostic is a swap test based on k-nearest neighbors (KNN) that is sensitive 

to any violation of the key exchangeability criterion that valid knockoffs must satisfy.47 

For data with N observations and D variables, this test creates a matrix of size 2N by 

2D, including original features in the upper left, knockoffs in the upper right, and original 

features randomly swapped with knockoffs in the bottom half. For any row in the top 

(unswapped) half of this matrix, the expected proportion of nearest neighbors that is in the 

bottom (swapped) half is 50%, and Romano et al. describe how to test this 50% proportion 

as a null hypothesis. Low p values indicate evidence that knockoffs are invalid. Most 

knockoff generation methods failed this test, but the sample, glasso_0.001, and glasso_1e—

04 methods showed no evidence of poor fit (Figure 2A). Based on this test, the sample, 

glasso_0.001, and glasso_1e—04 model-X knockoff constructions should control FDR in 

testing for conditional independence.

In the third diagnostic, we followed a commonly used simulation scheme that uses real TF 

expression and simulated target gene expression (Algorithm 1). Using real regulator data and 

simulated targets adequately tests the assumptions of model-X knockoff construction, which 

only requires a correct model for regulators and not targets. Using the same simulated 

targets, we also benchmarked two methods that assume target genes follow a linear 

relationship with their regulators: we tested the GeneNet R package25 and the Gaussian 

mirror.59 GeneNet is conservative, returning no discoveries except at an FDR of 1. The 

Gaussian mirror and most knockoff-based methods failed to control FDR, with permuted 

knockoffs performing worst. The sample and glasso_1e—04 knockoff constructions yielded 

slightly lower observed than reported FDR (Figure 2B).

These three diagnostics characterized several attempts at FDR control in tests of conditional 

independence using real TF expression data. Based on the combined results, we conclude 
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that the sample and glasso_1e—04 knockoff constructions are valid model-X knockoffs and 

can control FDR in testing conditional independence.

A modified knockoff filter allows FDR calibration with incomplete gold standards

The preceding section addressed fitting the distribution of knockoffs to real data, for 

example, using real regulator data with simulated target genes. However, tests on real target 

genes are also necessary, which raises an additional complication: gold standard data from 

ChIP or literature curation are incomplete. Below, we will describe gold standards based 

on direct binding data (ChIP-chip, ChIP sequencing [ChIP-seq], and ChIP-exo) and genetic 

perturbations followed by transcriptomics. When direct binding data and perturbation data 

both support the presence of a TF-target edge, it will be included in our gold standard 

positives, and likewise, when neither support an edge, it will be included in our negatives. 

Where the two sources disagree, edges will be annotated as unknown. These gold standards 

may contain disproportionately more positive or negative examples because they include 

only the most confident conclusions and they measure only a small fraction of active 

regulators. Because the base rate of positive examples does not match the network as a 

whole, even perfect methods run on ideal data would not report the same FDR that is 

observed relative to the gold standard.

Algorithm 1.

Measuring FDR control with synthetic target genes

Input:

 - TF expression X (matrix, Nobservations by G genes)

  - xn, xg, and xn, g will denote expression for a given sample n and/or gene g.

 - A desired FDR level α
 - The number of simulations J
 - Sets of indices S1, S2, …SJ indicating the true regulators in each simulation. We select the number of regulators as 
max(M, 1), where M is Poisson with mean 2. Then we select regulators randomly without replacement.

 - Dose-response curves f1, f2, …fJ dictating the true response to the regulator in each simulation. We set 
fj xn = 1 if xn, g > mean xg  for all g in Sj and fj xn = 0 otherwise.

Procedure:

 - For j = 1…J :

  - For n = 1…N:

   - Generate Y n, j fj xn .

 - Run the knockoff filter to obtain pairs (i, j) at FDR α.

 - For j = 1… . J :

  - If ij is in Sj, count (i, j) as correct.

  - If ij is not in Sj, count (i, j) as a false discovery.

To account for bias in FDR checks using incomplete gold standards, we designed 

a simulation study where gold standards are purposefully biased toward positive or 

negative examples (STAR Methods). We tested FDR control by partitioning the TF-target 

relationships from each gold standard into three sets: a set of positives P, a set of negatives 
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N, and a set of unknowns U. Each hypothesis was considered testable if it was in P or 

N. We carried out the final step of the knockoff filter (the selective SeqStep procedure36) 

either on all hypotheses as usual or on only testable hypotheses. Focusing the analysis 

on testable hypotheses correctly calibrated the reported FDR from the knockoff filter to 

match the observed FDR from incomplete gold standards, whereas including all hypotheses 

failed to align the reported and observed FDR (Figure 3, blue). This simulation suggests 

that the knockoff filter will control FDR as measured by gold standards consisting of 

high-confidence positive and negative TF-target relationships, as long as the final step is 

applied to testable hypotheses only.

We applied the same tactic using permuted knockoffs and using the Gaussian mirror, which 

also uses selective SeqStep as the final step. We attempted to use GeneNet in a similar way 

by applying its final step, a mixture model with a parametric null distribution, to testable 

hypotheses only. The Gaussian mirror had lower observed than reported FDR and, in fact, 

was overly conservative, except when testing all hypotheses against negatively biased gold 

standards. Effects of gold standard bias were greatly reduced by using testable instead 

of all hypotheses (Figure 3). GeneNet and the permutation-based knockoffs had elevated 

observed FDR except on positively biased gold standards (Figure 3), and for GeneNet and 

permuted knockoffs, benchmarking testable hypotheses did not fully remove bias due to 

incomplete gold standards. We also attempted to benchmark BINCO, which is promising 

due to its ability to accommodate nonlinear indirect effects.24 But, as in prior reports,23 

we encountered software errors because BINCO requires a U-shaped distribution of test 

statistics, which our data did not produce.

In summary, no alternative method was as successful as model-X knockoffs in matching 

observed and reported FDR in the presence of incomplete gold standard data. The 

Gaussian mirror may be a usable conservative alternative, but GeneNet or permutation-based 

benchmarks on positively biased gold standards are likely to be too optimistic.

Reported FDR underestimates observed FDR in the DREAM5 E. coli expression data

The preceding tests address nonlinear responses, indirect effects, and incomplete gold 

standards as sources of excess FDR. However, all TRN inference methods used in this 

work also assume causal sufficiency, meaning they assume all factors affecting transcript 

levels have been measured. Causal factors that are unmeasured present a fundamental issue 

in network inference, yielding statistical relationships among observed variables where no 

causal connection exists.41,42 For example, if a TF and a gene that is not a direct target are 

both controlled by retinoic acid levels, unmeasured variation in retinoic acid levels could 

lead to a correlation between the TF and the non-target gene. Simple measurement error also 

would violate the causal sufficiency assumption, as would compositional effects (Simpson’s 

paradox) or experimental batch effects. We discuss this further and show simulations in 

the STAR Methods. It is unclear a priori whether measuring mRNA levels of candidate 

regulators, along with metadata on cell types or culture conditions, is enough to approximate 

causal sufficiency in typical TRN inference tasks. This motivated us to test FDR control on 

real data.
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To test FDR on real data, we developed two gold standards based on convergent 

results of distinct experimental designs. For a TF-target relationship to be included as a 

testable hypothesis, we required concordant evidence from both ChIP data and genetic 

perturbation followed by transcriptomic analysis rather than a replicated result between 

similar experiments (e.g., multiple ChIP experiments). For one gold standard, we collected 

ChIP targets and knockout data from RegulonDB v10.9,60 and for the other, we combined 

RegulonDB ChIP data with all genetic perturbation outcomes from the Many Microbe 

Microarrays Database (except where genetic effects were confounded by differences in 

growth medium). To check the reliability of these sources, we compared each dataset 

against the others and against RegulonDB v10., which is a manually curated collection 

supported by evidence from binding motif occurrences, binding assays, site mutation, or 

gene expression assays. We also compared against a small number of validation experiments 

from the DREAM5 competition.18 The various sources were well-supported by one another, 

except for RegulomeDB knockout data, which frequently did not support hypotheses from 

other sources and thus may be under-powered (Figure S2B). These two gold standards 

contained 754 positive and 8,496 negative examples across 6 TFs (8% edge density), with 

each example having two types of concordant evidence. We note that these gold standards’ 

edge density is likely much higher than the true network density, as an 8% edge density 

with roughly 300 total TFs would imply roughly 24 TFs directly regulating the average 

target gene. The true network density is unknown, but other bacteria provide perspective: 

in Mycobacterium tuberculosis, ChIP and perturbation of hundreds of TFs found 7,248 

DNA-binding locations in the presumed promoters of 2,520 unique genes (roughly 3 TF 

binding sites per gene),61 and in Bacillus subtilis, TRN inference has found 4,516 regulatory 

relationships across 3,086 genes (roughly 1.5 per gene).62 This is evidence that the TFs 

featured in available E. coli ChIP and knockout data are more promiscuous than average, 

underscoring the importance of FDR assessment methods that tolerate imbalanced gold 

standards.

Combined with our method for testing FDR control on unbalanced gold standards, this 

resource provides a tractable method to check FDR control on a real TRN task. We 

performed knockoff-based TRN inference using GeneNet, the Gaussian mirror, and a variety 

of model-X knockoff constructions, fully described in the STAR Methods. We then checked 

results on the testable hypotheses from the two gold standards. No method successfully 

controlled FDR on real data (Figure 4A; Table S2). Notably, the glasso_1e—04 knockoffs, 

which successfully controlled FDR on simulated data (Figure 2B), failed to control FDR 

when applied to real target genes. The sample method displayed very low power on real 

data, with almost no testable discoveries below q = 0.5, so we were unable to assess 

observed FDR for sets of hypotheses with low reported FDR (Table S2). GeneNet was 

closest to controlling FDR on real data, but its observed FDR often exceeded its reported 

FDR.

Permutation procedures test the overly strong null hypothesis that each gene is independent 

of all other genes, and permutation tests will thus mistake indirect effects for direct 

effects.36,37 As an example of how these findings can affect biological interpretation, 

consider the melibiose regulator melR, which was shown by DNase footprinting, ChIP-

chip, and knockout transcriptomics to have a total of 3 or 4 target genes.63,64 Analyses 
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using permuted knockoffs yielded 131 predicted targets of melR. These discoveries were 

nominally significant at a reported FDR of 0.01, but the only known target among the 131 

results was melA. The spurious targets detected by permutation-based FDR control span 

diverse biological functions, and if taken literally, these findings would massively revise the 

field’s perception of melR’s function. By contrast, GeneNet, knockoffs with glasso_1e—04 

covariance estimation, and knockoffs based on the sample covariance do not discover any 

melR targets at 0.01 FDR. For GeneNet, at reported FDR of 0.2, a total of six findings 

include two known targets, melA and melB. These results show that using calibrated 

conditional independence tests in place of permutation tests to estimate FDR can reduce 

the volume and perhaps the rate of false discoveries on a real TRN task, with meaningful 

improvement in interpretation.

Causal factors that are unmeasured present a fundamental issue in causal statistics, yielding 

conditional dependence relationships among observed variables where no causal connection 

exists. One problem falling under this umbrella is confounding by technical factors.65,66 

Another is exogenous perturbations: for example, repressor proteins can be activated by 

binding to a ligand, and this does not require altered mRNA levels.67 We sought to address 

these possibilities with a combination of labeled perturbations present in the data and 

estimation of unobserved confounders via unsupervised machine learning. Unsupervised 

methods such as principal-component analysis (PCA) can estimate unwanted variation from 

transcriptome data, for example, cleanly separating batches.68 Similar methods have been 

used to remove batch effects prior to network inference.65,66

To address possible confounding, we tested against gold standards while conditioning 

on labeled perturbations and principal components. Combined with the glasso_1e—04 

knockoff construction method, this approach effectively removed associations with all 

factors explicitly conditioned upon, producing very high q-values that indicate no evidence 

for conditional dependence (Figure S2C). Conditioning on labeled perturbations and 

principal components did not restore FDR control relative to either gold standard (Figure 

4B). Observed FDR was volatile (Figures 4A and 4B), likely because very few discoveries 

contributed to the observed FDR estimates (Figure 4C). It remains unclear whether 

accounting for principal components or surrogate variables in transcriptome data alone could 

mitigate the false discoveries driven by unmeasured confounders. Furthermore, use of PCA 

as a proxy for unmeasured confounders may limit power by removing useful signal.66

In principle, conditional independence tests do not directly estimate the causal graph 

structure; instead, they infer a closely related undirected graph called the MRF structure. 

Though the nodes of the MRF are identical to the nodes of the causal graph, the MRF has 

extra edges.41 Specifically, the neighbors of a node Y in the MRF consist of the parents, the 

children, and the spouses (parents of children) of node Y in the causal graph. The spouses 

may manifest as excess false discoveries, even if the MRF structure is otherwise learned 

with controlled FDR. We accounted for spouses by treating all TF-TF edges as unknown 

and excluding them from the real-data calibration estimates described above. Thus, spousal 

relationships cannot explain the excess FDR we observe, and failure of causal sufficiency 

remains the likely culprit.
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Reported FDR underestimates observed FDR in mouse and human RNA-seq data with 
paired chromatin state

Statistical assumptions that work or fail for TRN inference in E. coli may not work or 

fail the same way in eukaryotes.18 Furthermore, modern multi-omic methods merge mRNA 

measurements with much more molecular information, and this may suffice to capture 

influences missed in mRNA data. In particular, genome-wide averages of downstream 

transcription or accessibility near known TF binding motifs may contain information about 

TF activity that is not present in counts of any individual TF transcript.69 To evaluate 

knockoff filter FDR control on multi-omic data, we turned to a mouse skin and hair 

follicle dataset consisting of paired RNA and chromatin measurements on 34,774 single 

cells from an unknown number of female mice70 and a dataset of 10,691 human peripheral 

blood mononuclear cells (PBMCs) from a single donor, generated using 10x Genomics’ 

simultaneous RNA sequencing (RNA-seq) and ATAC-seq.71 We first applied our models 

to the RNA portions of these datasets to explore FDR control, and then we incorporated 

various types of information from the ATAC portion.

Single-cell sequencing suffers from large measurement error. In theory, measurement error 

can cause false positives in network inference (STAR Methods). To reduce the effect of 

measurement error, we averaged the data across cells within 100 k-means clusters and 

discarded any cluster with <10 cells, producing 57 clusters (skin) or 46 clusters (PBMCs). 

This is a reasonable method for separating biological and technical variation since a similar 

approach has been shown to yield groups of cells that are consistent with an identical 

expression profile perturbed by multinomial measurement error.72 For the skin data, most 

clusters had at least 80% of their cells sharing the same annotation from prior analysis.70 

We generated permuted knockoffs and Gaussian knockoffs for the resulting TF expression 

matrix (57 clusters by 1,972 TFs, skin, and 46 clusters by 1,108 TFs, PBMCs). Since there 

are more TFs than expression profiles, we could not construct Gaussian knockoffs using the 

sample method as done in the E. coli analyses; instead, we used a positive-definite optimal 

shrinkage estimator.35

We used two diagnostics to evaluate conditional independence tests prior to addressing 

questions of causality: simulated target genes and the swap-based KNN test. For simulated 

target genes, both types of knockoffs controlled FDR (Figure 5A). The KNN swap test 

found no evidence against Gaussian knockoffs but strong evidence for failure of permuted 

knockoffs, suggesting that genes in natural data are not all statistically independent (Figure 

5B). This demonstrates that permutation-based methods are unlikely to control FDR in 

TRN inference or in the simpler subtask of conditional independence testing, but Gaussian 

knockoffs can control FDR in conditional independence tests.

To test FDR on real gold standards, we selected all TFs from ChIP-atlas with skin or 

PBMC ChIP-seq data.73 The skin ChIP data covered 65 TFs and 19,882 unique targets with 

315,143 total edges. The PBMC ChIP data covered 13 TFs and 15,784 unique targets with 

116,590 total edges. We used Gaussian knockoffs to infer regulators of all genes passing a 

minimum expression cutoff. We generated q-values for hypotheses that are testable via ChIP. 

Additional variants of the analysis used only T cells or only the keratinocyte lineage for 

network inference. The results showed poor enrichment and many false positives with highly 
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confident results, with 37,155 findings (skin) or 9,247 findings (PBMCs) at an FDR of 0.1 

(Figure 5C; Table S3). Conditional independence testing via knockoffs does not control FDR 

in TRNs inferred from these datasets.

One potential explanation for this issue is measurement error (STAR Methods). To reduce 

the effect of measurement error, we increased the cutoff to 100 cells or 500 cells per cluster. 

Too few PBMC clusters remained at 500 cells per cluster, so only the skin data are analyzed 

at that cutoff. Fewer discoveries were made (3,711 in PBMCs and 8,345 in skin at FDR 0.1 

and at least 100 cells per cluster), but FDR was controlled only in the T cell analysis (Figure 

5C; Table S3). Aggregating more cells in this way does not eliminate all measurement 

error, so we devised an independent method to estimate the degree to which measurement 

error increases false discoveries. We simulated measurement error starting from the cluster-

aggregated data. Specifically, we resampled each TF expression count Xij by replacing it 

with a Poisson random variable whose expectation equals Xij.74 We constructed knockoffs 

based on the resampled TF expression. We tested the results on real target genes and on 

target genes that were simulated prior to resampling. Resampling caused slight deleterious 

effects in simulations, especially at high reported FDR, but had a weak effect on ChIP-seq 

benchmarks (Figure 5D; Table S3). Based on these analyses, measurement error could not 

explain the degree of miscalibration we observed.

Aside from transcript quantification errors, another possible driver of false positives is the 

inability of transcriptomics to directly measure TF activity. A better measure of TF activity 

might be a summary of gene or enhancer targets rather than the mRNA level of the TF.75–78 

There are many similar methods reviewed and benchmarked by DoRothEA.79 As a measure 

of TF activity, we used ChromVAR to calculate per-motif differential accessibility scores.80 

We repeated our mouse and human multi-omics experiments using motif activity alone, or 

both motif activity and TF RNA levels, as predictive features (Figure 5E; Table S3). We 

also attempted to remove unmeasured confounding by conditioning on the top 5 principal 

components of both the gene expression matrix and the ATAC counts matrix during 

knockoff construction (Figure 5F; Table S3). Neither approach reported an FDR matching 

the observed FDR, suggesting that these metrics of TF activity based on global chromatin 

accessibility do not contain enough additional information to satisfy causal sufficiency.

Finally, it is possible to screen each individual hypothesis by requiring support from a 

TF binding motif located in the promoter of the relevant target gene or in a co-accessible 

enhancer candidate—this is done (for example) by CellOracle and SCENIC+.1,81 To check 

whether this strategy could facilitate FDR control by enriching for relevant edges, we 

created a motif-based TF-target network. We paired each gene with correlated ATAC peaks 

within 50 kilobases (kb) of the gene and searched for JASPAR TF binding motifs in each 

peak via motifmatchr.82 For a cell count cutoff of 10, the portion of the PBMC motif-based 

network that was testable using our collection of ChIP data included 4 regulators and 

13,271 target genes with 33,680 edges. The testable portion of the skin motif-based network 

included 23 regulators and 12,802 target genes with 164,932 edges. However, intersecting 

knockoff-based results with the results of motif analysis did not improve FDR control 

(Figure 5G).
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DISCUSSION

False positives have been a persistent problem in TRN inference.21 Statistical FDR control 

has become indispensable in closely related domains, such as differential expression 

analysis.31 But FDR control has seen limited use in TRN inference. TRN inference 

presents several stubborn and poorly characterized obstacles, with recommendations about 

the source of false discoveries and recommendations about possible solutions differing 

heavily depending on the dataset under study.18,19,65,83,84 In this work, we provided tools 

and approaches to systematically diagnose and address several of these obstacles in a 

dataset-specific way.

Specifically, model-X knockoffs can control FDR even when targets respond to regulators 

in a way that is nonlinear, unlike many alternatives,25,38,85 model-X knockoffs can 

correctly discriminate between direct and indirect effects unlike permutation tests,36 and 

a modification of the knockoff filter allows FDR estimation on an incomplete set of testable 

hypotheses. Furthermore, we excluded TF-TF edges from our analyses, so differences 

between directed and undirected graphical models are unlikely to explain the excess FDR, 

and for analyses using single-cell sequencing data, Poisson resampling experiments showed 

that measurement noise is unlikely to explain excess FDR.

Despite these improvements, FDR remained inflated in an E. coli transcriptome application 

and in mammalian multi-omics applications using either RNA levels or global motif 

accessibility as proxies for TF activity. These results cast doubt on a considerable 

amount of TRN work making explicit causal interpretations of conditional dependence 

structure.43,45,86–90

Our observation of poor FDR control via permutation also has implications for common 

practice. FDR control in TRN inference often relies on permuted genes as negative 

controls,22,23,26,27 which we demonstrate does not yield good control. As an example, in the 

E. coli analysis, permuted knockoffs yielded 131 melR targets spanning diverse biological 

functions. This conflicts with ChIP and perturbation experiments showing three or four 

targets of melR, almost all located in the melibiose operon.64,91 If melR were not already 

well studied, follow-up experiments based on these findings could have wasted considerable 

resources.

A natural continuation of our work is to identify specific reasons for failure of causal 

sufficiency, and we emphasize that nearly any type of error or incompleteness could 

eventually be revealed as an obstacle. A simple possibility is the unit of observation and 

the source of variation: since bulk RNA data can be subject to Simpson’s paradox or 

variable cell type composition, it is possible that the main source of variation across bulk 

samples does not reflect mechanisms operating in each cell. Even in single-cell data, local 

averaging of cells to estimate a pseudo-time trajectory is inferior to dynamic information 

at a single-cell level.45 Another plausible source of unmeasured causes is batch effects 

or poor normalization.65,66,84 It is possible that better normalization,92 better controls for 

quantitation,93,94 or more standardized experiments95 may improve FDR control. However, 

our analyses using PCA to infer and remove surrogate variables were largely unsuccessful. 

Kernfeld et al. Page 13

Cell Syst. Author manuscript; available in PMC 2024 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For a third possible source of unmeasured causes, recent reports based on multi-layered 

simulations attribute TRN inference errors to non-mRNA layers of cell state96,97 such as 

protein abundance. By that logic, new multi-omics technologies may yield improvements, 

especially by directly measuring proteins or by measuring transcription rate instead of RNA 

levels.45,98–100 Even in the same multi-omics data we use, improved attribution of motif 

accessibility to TFs could potentially improve our results. For example, many families of 

TFs share motifs, and TF affinity depends on cellular context.

For new datasets, our approach could be applied to assess causal sufficiency. Though we 

recommend knockoff constructions be separately validated on each dataset they are applied 

to, we find that Gaussian knockoffs with regularized covariance estimates are a sensible 

initial choice for -omics data with low sample size and high dimension.

If careful analyses of data from improved experimental methodologies continue to indicate 

lack of causal sufficiency, then the field should pursue analytical approaches that do not 

require causal sufficiency. Some causal structure inference methods allow for unobserved 

causal factors, and they have been deployed for TRN inference, but they lack finite-

sample FDR control.54,101 If these methods could be equipped with realistic guarantees 

on FDR control, this would help facilitate further methodological refinement or yield high-

confidence regulatory relationships for end users. Meanwhile, thoughtful external evaluation 

will be critical for understanding the performance of TRN methods.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents 

should be directed to and will be fulfilled by the lead contact, Patrick Cahan 

(patrick.cahan@jhmi.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• This paper analyzes publicly available data. We list the source URLs for the 

datasets in the key resources table. We have also made all data available as a 

collection via Zenodo with DOIs listed in the key resources table.

• We have deposited all original code at GitHub as of May 2023 (https://

github.com/ekernf01/knockoffs_paper), with DOIs for relevant releases minted 

by Zenodo. DOIs are listed in the key resources table.

• Any additional information required to repeat the analyses reported in this paper 

is available from the lead contact upon request.

METHOD DETAILS

Hardware and software used—We ran speed/memory tests in Figures 2 and S1 on 

a Dell XPS 13 with 8GB RAM and an Intel Core i5 processor. We ran BoolODE in 

a virtual environment according to the maintainers’ instructions, with minimal changes 
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made to export protein concentrations and RNA rates of change. We ran BEELINE 

within a conda environment according to the maintainers’ instructions (https://github.com/

Murali-group/Beeline). We made minimal modifications in order to test multiple sets of 

parameters (https://github.com/Murali-group/Beeline/issues/59) and to benchmark directed 

and undirected FDR. E. coli and multiomics experiments ran on Amazon Web Services 

EC2 t2.2xlarge instances based on the Ubuntu 20.04 image or on a Dell XPS15 running 

Ubuntu 20.04. Experiments used R version 4.1.2. R package versions were installed from 

either Bioconductor 3.14 or were explicitly pinned and installed from CRAN. We set seeds 

and automated package installation for repeatability, checking certain key figures and md5 

checksums of certain intermediate outputs. BEELINE results may vary due to randomness 

in BoolODE simulations. E. coli analyses are exactly repeatable. SHARE-seq analyses are 

exactly repeatable up to knockoff generation but may yield slightly different symmetric 

statistics and calibration results.

E. coli datasets and gold standard processing—We downloaded E. coli 
microarray data from the DREAM5 challenge website at https://www.synapse.org/#!

Synapse:syn2787211. The DREAM5 competition contains decoy genes with values chosen 

at random from the rest of the dataset.103 These are absent from all gold standards, but 

we left them unchanged to facilitate comparison with previous work. We downloaded E. 
coli transcriptional units from the Biocyc smart table “All transcription units of E. coli 
K-12 substr. MG1655,” available at https://biocyc.org/group?id=:ALL-TRANSCRIPTION-

UNITS&orgid=ECOLI. We collected gold standard data as follows.

• “dream5 validation”: we manually extracted interactions from Data S7 of 

Marbach et al.18

• “M3Dknockout” includes all single-knockout samples and their controls 

from the DREAM5 training data, downloaded from https://www.synapse.org/#!

Synapse:syn2787211. We excluded experiments with aliased effects; e.g., if the 

knockout was accompanied by a change in growth conditions relative to the 

controls. We removed any sample used in this gold standard from the training 

data prior to knockoff construction whenever we used this gold standard for 

evaluation.

• “regulondb10_9” consists of manually curated regulatory interactions, which we 

downloaded from https://regulondb.ccg.unam.mx/menu/download/full_version/

files/10.9/regulonDB10.9_Data_Dist.tar.gz on 2022 Jan 28.

• “chip” and “regulonDB knockout”: we downloaded ChIP-based and knockout-

based TF-target pairs from RegulonDB version 10.9; a complete list of 

accessions is given in Table S1. In E. coli ChIP data, IHF targets were regarded 

as targets of both IHF genes (ihfA and ihfB). The MelR targets melA and melB 
were added manually, since they were missing despite having high-quality ChIP 

evidence (Grainger et al. 2005). ChIP-chip and ChIP-seq studies lacking loss-of-

function controls were excluded to reduce risk of false positives104; otherwise, 

all datasets listed were included, including ChIP-exo without loss-of-function 

controls.
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E. coli targets are often determined at the level of a transcription unit, which may contain 

multiple genes.105,106 We thus augment E. coli ChIP and knockout-based gold standards to 

include any gene sharing a transcriptional unit with a target gene listed in the RegulonDB 

high-throughput downloads. For figures mentioning "chip and M3Dknockout" or "chip and 

RegulonDB_knockout," we marked a regulatory relationship as positive if it was consistent 

with both ChIP data and knockout data. We treated a relationship as negative if it was 

missing from both. Additionally, if the target or the regulator did not appear at least once in 

both datasets, we marked the example as unknown.

QUANTIFICATION AND STATISTICAL ANALYSIS

Designating analyses that use real and simulated data—We use real data, 

simulated data, and hybrid data with real regulators and simulated target genes. To clarify, 

each figure or figure panel states “real data,” “simulated data,” or “Real TF expression with 

simulated target genes.”

Knockoff filter usage—We constructed knockoffs via the R package rlookc, which is 

released along with this paper. We applied the knockoff filter using the same measure 

of variable importance throughout unless otherwise noted. It is the signed max lasso 

coefficient at entry (stat.lasso_lambdasmax from the R package knockoff) with one 

computational speedup: we fitted LASSO paths by glmnet with dfmax=21, corresponding to 

the assumption that no gene has over 20 direct regulators. Where we sought FDR control 

for a collection of discoveries from separate runs of the knockoff filter, for example, across 

multiple E. coli target genes, we estimated FDR after pooling the symmetric knockoff 

statistics.

Speed and memory tests—We measured runtime using the microbenchmark R package 

and peak memory usage using the peakRAM R package (Figures S1A and S1B).

Threshold selection tests—In Figure S1C, we simulated covariates with the same 

mean, covariance, and sample size as the E. coli TF expression data. We constructed 

knockoffs using the exact mean and covariance (not an estimate from the simulated dataset). 

We set responses equal to the covariates, so each column has a single relevant feature. We 

applied the knockoff filter using the difference in linear model coefficients as the variable 

importance measure. We selected thresholds separately for each target (“separate”) or using 

a single shared threshold (“merged”). We calculated FDR as the number of false discoveries 

across all targets divided by the number of discoveries over all targets.

BEELINE benchmarking—For Figure 1, we constructed Gaussian knockoffs using 

the sample mean and covariance. We inferred Gaussian mixture model parameters using 

mclust.107 We used 100 clusters, all having equal, spherical covariance. BoolODE does not 

separate production from decay, so we inferred RNA decay rates using piecewise quantile 

regression of RNA rates of change on RNA levels. Our method cannot reliably infer self 

edges, and we ruled these out a priori.
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E. coli analysis—For the 334 TFs in the E. coli microarray data, we constructed knockoff 

features under multivariate Gaussian or Gaussian mixture model assumptions. When n>=p, 

we used the semidefinite program implementation in the R package knockoff to determine 

optimal valid correlations of knockoff features with the original features. When p>n, we 

used a new method (STAR Methods). For mixture models, we set hard cluster assignments 

using the k-means clusters described below, and per-cluster covariance was estimated using 

the method for p>n.

We constructed each simulated target gene by randomly selecting a set S containing 

max(1,M) TFs, where M is Poisson with a mean of 2. We set the target expression to 1 if 

all regulators were greater than their mean expression and 0 otherwise. We performed 1,000 

simulations, and experiments cycled through 10 independently generated sets of knockoffs.

For each gene in turn, we selected TF regulators via the knockoff filter. To find regulators 

of TFs, we created new knockoffs omitting the TF in question, and otherwise we inferred 

regulators in the same way. For GeneNet, we used the GeneNet R package to compute all 

partial correlations, and we used the fdrtool package to fit mixture models to only the partial 

correlations involving the target. For the Gaussian Mirror, we used a fork of the GM R 

package implementing simultaneous mirrors.

To adjust for confounders, we computed knockoffs after appending columns (features) 

to the TF expression matrix containing either non-genetic perturbations or non-genetic 

perturbations and the top principal components (Figure 4B). We computed the principal 

components using the full expression matrix as input, scaled and centered. These knockoffs 

thus violate the dictum to construct knockoffs without influence of the target variable, 

but the effect is to make the results more conservative. We tested association with the 

confounding variables (Figure S2C) using the Pearson correlation as the measure of variable 

importance inside the knockoff filter.

We computed t-SNE embeddings using the R package tsne with default settings, using as 

input the 334 by 805 TF expression matrix concatenated with many 334 by 805 matrices 

of knockoffs (yielding a a 334 by 805*(k+1) matrix). We computed K-means clusters using 

the kmeans function from the R package stats with the entire expression matrix (TFs and 

non-TF genes) as input. The t-SNEs in the supplement are from the analysis with no 

adjustment for confounders and no special handling of genetic perturbations.

Since the knockoff filter tests conditional independence, not the direction of causality, we 

marked backwards edges confirmed by a given gold standard as correct. To rule out spouses 

as a source of false positives (appearing in MRF structure but not gold standards), we 

marked all TF-TF edges as unknown, even if they appear to be ruled in or out by a given 

gold standard.

Incomplete gold standard simulations—For Figure 3, we simulated data and 

computed knockoff statistics as in Figure S1C. We marked gold standard positives 

(negatives) as unknown with 80% probability in the negative (positive) bias trials. We 

computed Q-values via Selective SeqStep36 on all hypotheses (top row of Figure 4), or 
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only hypotheses that were testable with the remaining gold standard data (bottom row). 

We computed observed FDR using the remaining gold standard data. We performed ten 

independent replicates.

Multi-omics analysis—We downloaded SHARE-seq skin count matrices from GEO 

accessions GSM4156608 and GSM4156597 and reformatted them as 10x-format HDF5 

matrices using the DelayedArray and HDF5Array R packages. To successfully merge ATAC 

read counts with cell metadata, we subtracted 48 from the number in the final barcode 

associated with each cell in the count data. We acquired PBMC multi-omics data from the 

10x Genomics website on Aug 21, 2023.71

We clustered the cells in each dataset using the Bioconductor packages scran, scater, 

and mbkmeans. For PBMCs only, we removed droplets with 2,000 or fewer total RNA 

counts. For both datasets, we normalized the RNA data by dividing by total counts per 

cell. We selected 2,000 highly variable transcripts as input for PCA. We selected 50 

principal components as input for mbkmeans. For keratinocyte-only experiments, we used 

existing cell-type annotations, and we retained cells with the following labels: ahighCD34+ 

bulge, alowCD34+ bulge, Basal, Hair Shaft-cuticle.cortex, Infundibulum, IRS, K6+ Bulge 

Companion Layer, Medulla, ORS, Spinous, TAC-1, TAC-2. For T cell-only experiments, we 

annotated clusters using the following markers – CD4 T Cell: IL7R, CCR7, CD3E; CD8 T 
Cell: CD8A, CD3E, NKG7; CD16 Monocyte: FCGR3A, MS4A7; CD14 Monocyte: CD14, 

LYZ; B cell: MS4A1, CD19; NK cell: GNLY, NKG7, NCR1; Dendritic cell: FCER1A, 

CST3. We summed raw RNA and ATAC counts within each of the 100 clusters determined 

by mbkmeans, conducting all downstream analysis with the “pseudo-bulk” data.

We normalized “pseudo-bulk” RNA profiles by dividing by total counts and multiplying 

by 1,000,000. We excluded genes below 1CPM. We centered and scaled each gene to 

have mean 0 and variance 1. We replaced genes with constant expression with standard 

Gaussian random draws. We downloaded human TFs curated iby Lambert et al.102 from 

http://humantfs.ccbr.utoronto.ca/download.php on March 18, 2022. We downloaded mouse 

TFs and cofactors from AnimalTFDB 3.0108 on October 14, 2021. We used cofactors in 

addition to TFs since they can alter the effect of the TFs on downstream expression. We 

constructed knockoffs for the centered, scaled TF expression matrix using the “permuted” 

method (permuting samples within each gene independently) or using the scalable Gaussian 

knockoff implementation in the function “createHighDimensionalKnockoffs” released in the 

rlookc package accompanying this paper. In cases where we test independence conditional 

on principal components of the ATAC or RNA data, we computed these using all 

genes/features, and we concatenated them onto the TF expression data prior to knockoff 

construction. We generated simulated target genes as in the E. coli analysis.

We constructed motif-based networks by pairing ATAC peaks with any promoter within 

50kb whose RNA levels correlated with the peak’s ATAC signal (Pearson correlation > 0.2), 

then finding motifs in the promoter or linked ATAC peaks via motifmatchr. Correlation was 

measured on the pseudo-bulk data.
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We downloaded ChIP-seq peaks within 10kb of any promoter from ChIP-atlas73 on 

September 7, 2023. We selected files with “blood” or “epidermis” in the metadata. We 

retained each column of each file only if the cell type descriptions included the substrings 

“skin”, “hair”, “epiderm”, “keratinocyte", “blood”, or “pbmc". We averaged the signal 

within each TF. The signal distribution was heavily skewed with many small values, so we 

filtered peaks to exclude any peak with less than the mean signal strength.

Leave-one-out knockoff construction (LOOKC)—Network inference on N genes 

usually requires running N regression models, where each gene in turn is treated as 

the target. In this derivation, a method is developed for fast construction of Gaussian-X 

knockoffs when each variable is omitted in turn, so that we can condition on every variable 

except the one omitted.

To provide complete published documentation of our software, we include derivations of 

certain additional features not used in our study of TRN inference.

From Candes et al.,44 Gaussian knockoffs are constructed such that the centered, scaled data 

X and the knockoffs X have joint covariance

G = Σ Σ − S
Σ − S Σ

This ensures the correct exchangeability properties that lead to proper FDR control. Since 

the mean is 0 and the distribution is Gaussian, this covariance matrix completely specifies 

the distribution. Here, Σ is the covariance of X or an estimate thereof. S is a diagonal 

matrix that can be specified by the user. There is one constraint on S (it must yield a 

positive-definite G), but otherwise S can be chosen freely. The specific choice can affect the 

method’s power, and existing software can determine a good option for S that is compatible 

with the methods described herein.

Since X is known but X must be generated, a sample is drawn not from Pr(X, X) but from 

Pr(X ∣ X). This distribution can be derived with standard techniques and is given in the 

model-X knockoffs paper. The exact formulas in terms of X, S, and Σ are reproduced below 

as needed.

We now describe how to reduce the computational cost. Generating knockoffs involves 

matrix operations of order O ND2  and O D3  where D is the number of variables and Nis 

the number of observations. In general, knockoffs must depend on X but must not depend on 

Y , so whenever a new variable is treated as Y , the construction would need to be repeated 

with that variable left out. If done naively, this would add a factor of D to the runtime (where 

D is the number of variables).

Instead, it is possible to generate all leave-one-out knockoffs (LOOKs) within a constant 

factor of the original O ND2 + D3  computation time. The method is:

1. For a first approximation, generate knockoffs for X and omit column k.
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2. Update the knockoffs to remove the residual influence of column kon the 

remaining variables.

The exact updates are derived below. They can be done by adding two rank-one matrices to 

the initial approximation. We define terminology as follows:

• Without loss of generality, assume we wish to omit the final column of Xprior to 

knockoff generation, and call this variable k.

• Let G denote the joint covariance of features and knockoffs as in Candes et al.44 

Let G−k denote G but omitting variables k and k + D. Both rows and columns 

are omitted. G−k is never formed explicitly, but it is important mathematically 

because it specifies a joint covariance for the distribution of our leave-one-out 

knockoffs Pr X−k, X−k . To obtain valid knockoffs, one requirement is that G−k

must remain positive definite. This is satisfied because for a positive definite 

matrix, any principal submatrix is also positive definite. G−k also satisfies the 

knockoff exchangeability criterion. Thus, no change is needed in the choice of S.

• Let M and C be the mean and covariance of Pr(X X) with no variables omitted. 

From Candes et al.,44

– M = X − XΣ−1S

– C = 2S − SΣ−1S.

• Let S−k, Σ−k, Σ−1
−k

, X−k, X−k, M−k, and C−k denote the obvious matrices but with 

variable k omitted. (X−k is the “first approximation” mentioned above.) For S, Σ, 

and C, omitting a variable means omitting the column and the row. For X and M, 

only the column is omitted. For Σ−1
−k

, the inverse is computed first, and row 

and column k are omitted later. This implies

E X−k ∣ X = M−k = X−k − X−k Σ−1
−k

S−k

and

Cov X−k ∣ X = C−k = 2S−k − S−k Σ−1
−k

S−k .

• Let M and C be the desired mean and covariance of the distribution we need to 

sample from: Pr X−k ∣ X−k . It yields almost the same result as M−k and C−k, but 

note that variable k must be omitted before computing the inverse of Σ, not after:

– M = E X−k ∣ X−k = X−k − X−k Σ−k
−1S−k

– C = Cov X−k ∣ X−k = 2S−k − S−k Σ−k
−1S−k

A reasonable guess would be to pre-compute knockoffs with all variables and omit portions 

of them at each iteration. This method is not quite correct on its own, because
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Σ−k
−1 ≠ Σ−1

−k
. Another way to understand this is to note that

Pr X−k ∣ X−k ≠ Pr X−k ∣ X

But, these initial guesses are very close, and they can be corrected efficiently, which we 

will now show by comparing M−k to M and C−k to C. Before that comparison, there is one 

preliminary to discuss. Partition Σ and Σ−1 as

Σ = A cT
c d

and

Σ−1 = E gT
g ℎ

In general, A−1 ≠ E, but this can be resolved with a standard rank-one update:

A−1 = E − gTℎ−1g

This is useful in correcting both the mean and the covariance.

Without loss of generality, assume we are omitting the final variable, at index k. The mean 

can be partitioned to isolate the variable to be removed:

M = M−k ∣ Mk = X−k ∣ xk − X−k ∣ xk
E gT
g ℎ

S

The relevant block is

M−k = X−k − X−kE + xkg S−k .

This is the mean of the naive procedure (generate knockoffs first, then omit). By contrast, we 

need the result as if variable k were removed *before* knockoff generation:

M = X−k − X−k Σ−k
−1S−k = X−k − X−kA−1S−k

The necessary correction is of rank 1. It is:

M − M−k = − X−kA−1S−k + X−kE + xkg S−k

−X−kES−k + X−kgTℎ−1gS−k + X−kES−k + xkgS−k

X−kgTℎ−1gS−k + xkgS−k

X−kgTℎ−1 + xk gS−k
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For the covariance, the desired matrix (again removing variable k *before* generating 

knockoffs) is

C = 2S−k − S−k Σ−k
−1S−k

2S−k − S−kA−1S−k

2S−k − S−kES−k + S−kgTℎ−1gS−k

C−k + S−kgTℎ−1gS−k

Thus, the covariance of the precomputed knockoffs can be corrected by adding a random 

vector S−kgTℎ−1/2zn where zn ∼ N(0, 1). This must be done N times, once per observation 

in X. These derivations have been implemented in our R package rlookc and tested for 

correctness against the reference implementation in the R package knockoff.

Efficient leave-one-out knockoffs with groups of variables—In a dataset with a 

correlated set of variables l in X, it may be impossible to distinguish among the different 

options, yet it may be clear that at least one of them is in the active set. In this scenario 

it is desirable to test the null hypothesis Y ⊥ ⊥ XlX−l (where indexing by – l denotes 

omission of the whole set). In Sesia et al.,48 model-X knockoffs are extended to composite 

hypotheses of this type. Their framework assumes variables are partitioned into (disjoint) 

groups l1, …lL. Error control is similar to the un-grouped knockoff framework, but the 

exchangeability criterion

swap(B, [X ∣ X]) =d [X ∣ X]

no longer needs to be met for all sets of variables B. Rather, exchangeability is only required 

for swaps where grouped variables stay together, i.e. B is the union of any of the l’s.

A method for constructing such knockoffs is described in Sesia et al.,48 but it only applies 

to a specific HMM used on genotype data. Constructing grouped model-X knockoffs for 

Gaussian X is discussed by Katsevich and Sabatti109 as an extension of prior work done 

under the more restrictive assumptions of fixed-X knockoffs.110 The method is reasonably 

simple: the diagonal matrix S can be replaced with a block-diagonal matrix where the blocks 

correspond to the variable groups. As before, the only other constraint on S is that G must 

remain positive definite. Dai and Barber110 give a fast, simple scheme for choosing S.

Given knockoffs obeying the correct exchangeability criterion, test statistics may be 

constructed arbitrarily as long as they are symmetric under the null. For example, the 

maximum (or mean) importance measure within each group can be subtracted from the 

maximum (or mean) over the corresponding knockoff importance measures, or the test could 

use the likelihood ratio

Pr Y ∣ X−l, X
Pr Y ∣ X, X−l
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, or LASSO-based methods could use grouped LASSO. Grouped hypothesis tests are 

implemented in ‘rlookc‘ and unit-tested successfully, with checks for error control, power, 

and positive definiteness of G. The computational cost of sampling group knockoffs is 

similar to the cost of sampling individual knockoffs.

For efficient leave-one-out knockoffs, the strategy outlined above applies with slight 

modifications. Partition S as

S =
S−k Sk, − k

S−k, k Sk

Since S−k, k is no longer 0,

M−k = X−k − X−kE + xkg S−k − X−kgT + xkℎ Sk, − k

The terms on the left are as above, but the rightmost term is new. The desired quantity has 

the same formula as before, though S−k may not be diagonal:

M = X−k − X−k Σ−k
−1S−k = X−k − X−kA−1S−k

The necessary correction is still of rank 1, and the algebra strongly resembles the case 

above.

M − M−k = − X−kA−1S−k + X−kE + xkg S−k + X−kgT + xkℎ Sk, − k

− X−kES−k + X−kgTℎ−1gS−k + X−kES−k + xkgS−k + X−kgT + xkℎ Sk, − k

X−kgTℎ−1gS−k + xkgS−k + X−kgT + xkℎ Sk, − k

X−kgTℎ−1 + xk gS−k + X−kgT + xkℎ Sk, − kℎ−1gS−k + xkgS−k + X−kgT + xkℎ Sk, − k

X−kgTℎ−1 + xk gS−k + X−kgTℎ−1 + xk ℎSk, − k

X−kgTℎ−1 + xk gS−k + ℎSk, − k

Similarly, the last three terms (which we will denote R) are new in

C−k = 2S−k − S−k ∣ Sk, − k Σ−1 S−k ∣ Sk, − k
T

2S−k − S−kES−k + S−k, kgS−k + S−kgSk, − k + Sk, − kℎSk, − k
2S−k − S−kES−k − R

, and the correction becomes
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C = 2S−k − S−k Σ−k
−1S−k

2S−k − S−kA−1S−k

2S−k − S−kES−k − R + R + S−kgTℎ−1gS−k

C−k + R + S−kgTℎ−1gS−k

C−k + S−k, kgS−k + S−kgSk, − k + Sk, − kℎSk, − k + S−kgTℎ−1gS−k

C−k + bf + fTbT + bℎbT + fTℎ−1f
C−k + ℎ1/2b + ℎ−1/2fT × ℎ1/2bT + ℎ−1/2f

For brevity, we have introduces some new names above: b ≡ S−k, k and f ≡ gS−k. To convert a 

Gaussian random vector with covariance C−k into one with covariance C, it suffices to add a 

standard Gaussian times the square root of the increment, which is

ℎ1/2b + ℎ−1/2fT = ℎ1/2S−k, k + ℎ−1/2S−kgT

These results reduce to the updates for non-grouped LOOKs whenever Sk, − k = 0. Grouped 

LOOKs are successfully unit tested against the slower reference implementation for mean, 

covariance, and correlation with held-out variables.

Gaussian mixture knockoffs and the efficient leave-one-out knockoffs 
(LOOKs)—Compared to Gaussian knockoffs, Gaussian mixture models can provide more 

flexibility and extend the applicability of this framework. If an observation Xi is drawn from 

a mixture of J Gaussians with PDF

∑
j = 1

J
πjN μj, Σj ,

then Gimenez et al.49 showed that a joint density for x_i and a knockoff could be

∑
j = 1

J
π

j

N μj, Gj ,

where Gj is defined separately for each cluster as above. If zi is the (latent) cluster chosen 

for xi, we can generate a knockoff by choosing a cluster zi at random from P zi ∣ xi  and 

drawing knockoffs from P xi ∣ xi, zi ; Gimenez et al.49 show that this preserves the necessary 

exchangeability property.

For mixture-model leave-one-out knockoffs (LOOKs), it is necessary to sample zi from 

P zi ∣ xi, − k , meaning almost the same posterior but without knowledge of one coordinate. 

Fast methods for doing this are outlined in the next paragraph. Then xi, − k
∼  can be drawn 

from P(xi, − k
∼ ∣ xi, − k, zi) as described above. Beware: cluster assignments may vary across 

leave-one-out iterations even within the same observation, and the low-rank updates should 

not be applied to a knockoff observation sampled from the wrong cluster. It is thus necessary 
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to maintain multiple initial guesses for the knockoffs, one per cluster, and always select the 

correct one to update.

To sample zi from P zi ∣ xi, − k , suppose the estimates of the cluster proportions P(Z = z)
remain unchanged. From Bayes’ Theorem,

P Z = z ∣ X−k = P X−k ∣ Z = z P(Z = z)
∑z

P X−k ∣ Z = z P(Z = z)

If cluster z has mean μ and covariance Σ, then computation is dominated by the cost of

P X−k ∣ Z = z = 1
det 2πΣ−k

exp − x−k − μ−k
T Σ−k

−1 x−k − μ−k
2 .

The term inside the exponent can be cheaply obtained from the rank-one correction used 

earlier:

Σ−k
−1 = A−1 = E − gTℎ−1g

The determinant can be computed from a Cholesky decomposition: if Σ = LLT  and L is 

triangular, then

det(Σ) = det(L)det(L) = ∏
k = 1

D
ek

2

One way to update the determinant cheaply is via the Cholesky factors. If

Σ−k Σk, − k

Σ−k, k Σk, k
= L−k

T L−k, k
T

0 Lk, k

L−k 0
L−k, k Lk, k

, then

Σ−k = L−k
T L−k + L−k, k

T L−k, k

By a well-known matrix determinant lemma,

det Σ−k = det L−k
T L−k det 1 + L−k, k L−k

T L−k
−1L−k, k

T

Given a precomputed L of size D, this update can be computed in O D2  time via forward 

and backward substitution, compared to O D3  if done naively.
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Gaussian mixture model knockoffs are implemented and unit-tested in our software, but 

leave-one-out Gaussian mixture model knockoffs are not yet implemented at time of writing.

Efficient high-dimensional Gaussian knockoffs—RNA-seq and ATAC-seq 

commonly measure 20,000 to hundreds of thousands of features. The original model-X 

knockoffs paper44 includes a GWAS demo with 71,145 SNPs. But, the SNPs are distributed 

over 23 chromosomes with each chromosome treated separately, and the biggest matrix 

operations are on the order of a 10k by 10k block. Since RNA-seq and ATAC-seq 

can far exceed the 10,000 variables included in the original demonstration of model-X 

knockoffs, we envision the need for more computationally efficient high-dimensional 

Gaussian knockoff generation. Here, we develop an efficient method for Gaussian knockoff 

generation in settings with p>>n, where the dominant cost is that of a singular value 

decomposition (SVD).

The sample covariance matrix will be singular and a poor estimate of the true covariance. 

We instead begin with the optimal shrinkage method of Schaefer and Strimmer,35 which 

yields a positive definite estimate as well as better mean squared error than the sample 

covariance.

We assume throughout that X has mean 0, variance 1 for each feature. If needed, knockoffs 

can be constructed on centered, scaled data and then transformed back to match the original 

mean and scale. Let S, G, and Σ denote the same matrices that were used in the leave-one-

out derivations.

The first task in generating Gaussian knockoffs for large p: it is hard to find S such that

Σ Σ − S
Σ − S Σ

is positive definite. The memory requirements of the reference implementation appear to 

scale with the square of the dimension. But, the shrinkage estimator above suggests a much 

easier way to obtain a valid S. It returns an estimate of the form

Σ = (1 − λ)R + λI

where R is the sample covariance matrix and λ is determined from the data by 

‘corpcor::estimate.lambda‘. Since a sufficient condition for G to be positive definite is 

2Σ − S to be positive definite, S can be set to 2ρλI for 0 < ρ < 1, and then

2Σ − S = 2((1 − λ)R + λI) − 2ρλI = 2(1 − λ)R + 2(1 − ρ)λI

which is positive definite.

It is useful to discuss certain computational tricks prior to the rest of the derivation. The 

sample covariance R is
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1
n − 1X⊤X

Let UTV be a full SVD of X with singular values ti. Then the column i of V  is an eigenvector 

of many related matrices:

• R with eigenvalue ti
2

n − 1

• Σ with eigenvalue (1 − λ) ti
2

n − 1 + λ

• Σ−1 with eigenvalue (1 − λ) ti
2

n − 1 + λ
−1

•
2S − SΣ−1S 1/2

 with eigenvalue 4ρλ − 4ρ2λ2 (1 − λ) ti
2

n − 1 + λ
−1 1/2

Thus, the product MZ where M is any of these matrices can be computed as:

MZ = V V TMV V TZ = V f(T)V TZ

where f(T) returns a diagonal matrix with the appropriate transformation applied piecewise 

to the eigenvalues in T . For i > n, ti = 0, so anything orthogonal to the top n columns of V  has 

the same eigenvalue. Partition V  accordingly as V X ∣ V ⊥ . The product can be written

MZ = V Xf(T)V X
T Z + f(0)V ⊥V ⊥

TZ

This can be computed with just O(np) memory because

V ⊥V ⊥
⊤Z = Z − V X V X

⊤Z

The knockoffs must be created with mean X − XΣ−1S. The reference implementation in the 

R package “knockoff” forms Σ and computes the inverse explicitly, which incurs prohibitive 

O p2  memory requirements. Instead, we apply the third bullet point above, with f chosen 

for Σ−1. Likewise, the knockoffs must be created with covariance C = 2S − SΣ−1S. To do 

this, the reference implementation in the R package ‘knockoff‘ performs an inverse and a 

Cholesky factorization, both of them having O p2  memory requirements. Instead, we use the 

fourth bullet point above to efficiently multiply by the square root of 2S − SΣ−1S.

Merging sets of FDR-control results—Material in this section is adapted from 

one author’s comments on a public question and answer forum, licensed under a 

Creative Commons CC-by-SA 4.0 license and available at https://stats.stackexchange.com/a/

536311/86176. The knockoff filter involves a choice of threshold, which is varied based 

on the user’s desired FDR and which is applied to a set of intermediate statistics produced 

as part of the knockoff filter. Here we motivate the choice to use a single threshold across 
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all target genes, rather than running the whole knockoff filter procedure for each gene 

separately and later combining the discoveries.

Consider merging two disjoint sets of discoveries, each generated by a method that controls 

FDR at level α. Let a and b be the number of false discoveries in the first and second set 

respectively. Let c and d be the total number of discoveries. Let λ = c
c + d  . “FDP” will refer 

to the false discovery proportion observed in the data (with the convention FDP = 0 for 

cases with no discoveries), and “FDR” will mean E[FDP].

The combined FDP is a convex combination of the individual FDPs.

a + b
c + d = a

c + d + b
c + d

c
c + d

a
c + d

c + d
b
d

λa
c + (1 − λ) b

d

It is tempting to conclude

E a + b
c + d = λE a

c + (1 − λ)E b
d = α

where α is the FDR of the two input sets, but since λ is random and not independent of 

a;b;c;d, this equality does not hold in general. A counterexample can be constructed as 

follows. Let α = 0.5, let c − a = 1, let b = 1, let d = 2, and let a equal 0 or 100 with 50% 

probability. Then, E[a
c ] is in fact slightly less than 50%, but a + b

c + d  is 1/3 or 101/103 with 

equal probability, and its expected value exceeds 0.5. When the number of true hypotheses 

is limited, as we expect in a sparse gene regulatory network, the mixture proportion λ
is dominated by sets that happen to yield more false discoveries. Thus, in practice, FDR 

is inflated when measured across the combined set. In our implementation, we do not 

control FDR independently for selecting regulators of each target gene. Rather, we choose 

a threshold jointly across all target genes. Joint choice of threshold is not mathematically 

guaranteed to our knowledge, but in simulations, it seems to resolve this issue.

Causal sufficiency and false discoveries in TRN inference—This note describes 

how TRN inference methods ideally work with complete measurements and how incomplete 

measurements lead to false discoveries. Our concept of causal TRNs begins by reducing 

the cell to a list of numbers—usually, one number for each gene, representing the 

abundance of its mRNA. Obviously, information is lost between the cell and the numerical 

representation, especially about isoforms, miRNAs, DNA methylation, chromatin state, 

extracellular signals, and proteins (amount, phosphorylation, intracellular localization). But 

there is a well-developed mathematical theory of causal structure inference for complex 

systems that are partially observed and represented as a list of numbers. We offer a brief 

introduction to this theory following the Carnegie Mellon school of causal statistics.41 We 
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also refer readers to two excellent expositions of the TRN inference problem that mostly 

align with our view.111,112

As a building block, imagine a future technology that can measure and exert fine-grained 

control over all aspects of molecular state that affect transcription. We assume transcription 

at locus j is controlled by a limited number of direct regulators, and we suppose for now 

that observations are causally sufficient: all factors affecting transcription are observed. 

Formally, we define the "direct regulators" to be the smallest set of factors such that if the 

direct regulators are experimentally held constant, no intervention on other factors will alter 

transcription at j. The causal graph structure we hope to infer is a graph with one node for 

each number in the cell state representation and with a directed edge connecting each node 

to any node that it is a direct regulator of.

Although the end goal of our TRN analysis is specified in terms of causation, the means 

to this end are described in terms of conditional dependence tests. Causal relationships 

and conditional dependence relationships are closely related, and conditional independence 

relations can be read from a causal graph via a graphical criterion called d-separation.41 

Two nodes are independent conditional on a set S whenever they are d-separated by S in the 

causal graph. A general definition of d-separation can be found in Spirtes et al.,41 sections 

2.3.4 or 3.7.1, but for unidirectional chains, d-separation is just separation: the ends are 

d-separated by any variable linking them. The implication is that upstream regulators are 

independent of downstream targets conditional on mediators.

If a given set of measurements lacks causal sufficiency, the relationship between conditional 

dependence and causal structure is much less straightforward. It is conceptually useful to 

imagine a bigger set of measurements that is causally sufficient, then study d-separation on 

the bigger causal graph, then determine what conditional dependence structures can arise 

among the observed variables.

For example, in a unidirectional chain X1 X2 X3, if the mediator X2 is observed with 

error, we can add a new node Y 2 for the observed value.
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The ends are d-separated conditional on the true value X2, but not the observed value 

Y 2. Below, we include simple simulations with measurement error to demonstrate that 

measurement error can cause excess false discoveries when using conditional dependence to 

discover causal structure.

A non-causal correlation between two transcript levels can also be driven by an unobserved 

shared cause such as a batch effect or an unmeasured extracellular signal. This topic is 

discussed in section 6.3 of Spirtes et al.,41 “Mistakes,” with a key example describing a 

simple chemical reaction. Below, we describe causal graphs and simulations showing excess 

false discoveries driven by failure of causal sufficiency with three distinct mechanisms: 

measurement noise; variable growth conditions; and poor normalization.

We first discuss measurement noise. Consider a causal network where X1 regulates X2
regulates X3. To reduce mathematical complexity, suppose the data are generated from the 

following linear and Gaussian model.

−X1 ∼ N(0, 1)
−X2 ∼ 0.5 ∗ X1 + 0.5 ∗ E1 where E1 ∼ N(0, 1)
−X3 ∼ 0.5 ∗ X2 + 0.5 ∗ E2 where E2 ∼ N(0, 1)

We test for a direct relationship between X1 and X3 using a t-test (cutoff p< 0:05) of 

the regression coefficient β1 in a model X3 = X1β1 + X2β2 + ϵ. There is no direct relationship 

between X1 and X3, so the true value of β1 is 0, and the expected rate of false positives is 

0.05. The following R code can be used to verify that the false positive rate is indeed 0.05.

set.seed(0)p = list()

for(i in 1:1000){
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 X1 = rnorm(100, 0, 1)

  X2 = 0.5*(X1 + rnorm(100, 0, 1))

   X3 = 0.5*(X2 + rnorm(100, 0, 1))

    p[[i]] = coef(summary(lm(X3 ~ X1 + X2)))[2,4]

    }

    mean(unlist(p)<0.05)

We now repeat these experiments, but before running the t-test, we add measurement error to 

each variable. Formally, we define Y i = Xi + Di, where Di ∼ N(0, 1), and we run the regression 

Y 3 = Y 1β1 + Y 2β2 + ϵ. Because of the measurement error, the false positive rate is roughly 

tripled (the following code prints 0.162).

set.seed(0)p = list() for(i in 1:1000){

 X1 = rnorm(100, 0, 1)

  X2 = 0.5*(X1 + rnorm(100, 0, 1))

   X3 = 0.5*(X2 + rnorm(100, 0, 1))

    Y1 = X1 + rnorm(100, 0, 1)

     Y2 = X2 + rnorm(100, 0, 1)

      Y3 = X3 + rnorm(100, 0, 1)

       p[[i]] = coef(summary(lm(Y3 ~ Y1 + Y2)))[2,4]

       }

       mean(unlist(p)<0.05) # 0.162

These examples follow an E-shaped causal model:

Because the true expression X2 blocks the path from X1 to X3, X1 and X3 are d-separated by x2

and are independent conditional on x2. Because the measured expression+noise Y 2 does not 

block this path, X1 and X3 are not d-separated by Y 2 and are dependent conditional on Y 2.

Unmeasured confounding can also cause tests of conditional independence to produce 

excess false positives relative to a ground-truth causal network. Using the same base model 

as above, we can show what would happen if a normalization issue caused expression values 
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to decrease by 50%, affecting half of the observations. In the normalization artifact scenario, 

the following R code shows that the false positive rate climbs from 5% (reported) to 8.3% 

(observed).

set.seed(0)p = list()

for(i in 1:1000){

 X1 = rnorm(100, 0, 1)

  X2 = 0.5*(X1 + rnorm(100, 0, 1))

   X3 = 0.5*(X2 + rnorm(100, 0, 1))

    has_bad_normalization = 1:50

     X1[has_bad_normalization] = X1[has_bad_normalization]*0.5

      X2[has_bad_normalization] = X2[has_bad_normalization]*0.5

       X3[has_bad_normalization] = X3[has_bad_normalization]*0.5

        p[[i]] = coef(summary(lm(X3 ~ X1 + X2)))[2,4]

        }

        mean(unlist(p)<0.05) # 0.083

This example reflects the following structure, in which C provides an alternate path between 

X1 and X3 that is not blocked by X2.

Another possible source of unmeasured confounding is extracellular conditions or signals. 

In the next example, we use the same true causal structure, but additionally we simulate an 

unmeasured change in growth media present in 50% of samples that increases the values of 

A and C by 50%. Due to the altered growth condition, the false positive rate climbs from 5% 

(reported) to 6.2% (observed).
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set.seed(0)p = list()

for(i in 1:1000){

 X1 = rnorm(100, 0, 1)

  X2 = 0.5*(X1 + rnorm(100, 0, 1))

   X3 = 0.5*(X2 + rnorm(100, 0, 1))

    growth_condition_differs = 1:50

     X1[growth_condition_differs] = X1[growth_condition_differs]*1.5

      X3[growth_condition_differs] = X3[growth_condition_differs]*1.5

       p[[i]] = coef(summary(lm(X3 ~ X1 + X2)))[2,4]

       }

       mean(unlist(p)<0.05) # 0.062

This example reflects the following structure, in which C provides an alternate path between 

X1 and X3 that is not blocked by X2.

Methods for FDR control in subset selection—The following table summarizes the 

statistical assumptions made by methods used in this study.
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Method Assumptions

Model-X knockoffs44 P(X) is known

Gaussian mirror59 P(Y\ |X) is Gaussian

GeneNet43 P(Y, X) is Gaussian

BINCO24 Selection frequencies are U-shaped and the contribution from null hypotheses is decreasing

Permutation53 All features in X are mutually independent

We also wish to clarify a few points.

• First, although our knockoff constructions typically assume the model for X is 

Gaussian, that assumption can be modified, for example, using mixture models 

or generative neural networks.

• Second, BINCO24 provides a formal definition of “U-shaped” as well as some 

guidance on what procedures yield U-shaped selection frequencies (albeit only 

in the limit of infinite data). If f0 is the selection frequency distribution under 

the null hypothesis and f1 is the distribution under the alternative, they define 

U-shaped as “There exist V1 and V2, 0< V 1 < V 2 < 1, such that as n ∞, f1 0
on (V 1, V 2] and f0 is monotonically decreasing on (V1, 1].” They also provide 

the following guidance. “Lemma 1: A selection procedure [is U-shaped] if, as 

the sample size increases, [selection probability] tends to one uniformly for all 

true edges and has a limit superior strictly less than one for all null edges.”

• Third, permutation tests can be viewed in two different ways. The typical 

viewpoint is that, without any assumptions, they can test if any two variables are 

marginally independent. Our objective is to test conditional independence, not 

marginal independence. Permuted variables can also be viewed as conditional 

independence tests because they are valid model-X knockoffs, but only under the 

assumption that all features are independent.53
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Box 1.

False discovery rate control

Given a collection of hypothesis test results, FDR is defined as the expected proportion 

of false positives among the significant findings.28 If 100 tests are conducted with a p 
value cutoff of 0.05, and 15 discoveries are made, a reasonable estimate of the FDR 

is 5/15. Eliding certain technicalities, a slightly modified FDR equals one minus the 

expected precision, and it also equals the posterior probability that a randomly chosen 

positive result is a false positive.29,30 FDR control has become standard in many fields, 

including differential gene expression analysis31 and neuroimaging,32 due to its simple 

interpretation and useful balance between stringency and power.28

Most TRN methods, including widely used methods such as GENIE3 and ARACNE,33,34 

do not report FDR at all. For those that do, FDR estimation typically begins by 

independently permuting expression values within each column of a samples-by-genes 

matrix.22,23,27 Then, any measure of association can be computed to yield a statistic 

for each gene-gene pair in the original and permuted data (Box 1 Figure A). For true 

relationships, the original, unpermuted data should give a stronger association (Box 1 

Figure A, red). For a given significance cutoff, a common estimate of the raw number 

of false discoveries is the fraction of findings arising from the permuted data. As 

an alternative, some TRN FDR control methods rely on bootstrapping or multivariate 

Gaussian assumptions.24,35 In the STAR Methods, we summarize assumptions of FDR 

control methods used in this study.

How can we be sure that the FDR reported by a TRN inference method is accurate? 

Ideally, reported FDR is compared with the observed FDR, which is computed by 

counting the fraction of false discoveries emerging from inferring a TRN in a biological 

context in which the true TRN is known (Box 1 Figure B).

Box 1 Figure. Evaluating permutation-based FDR control in a simple example network
(A) Correlations before and after permuting. This analysis is from a simulated network 

with 25 regulator-target pairs and n = 1,000 observations. Color indicates whether the 

edge is truly present in the network.
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(B) For various correlation cutoffs (colorscale, unitless), the observed FDR from the 

known network structure (y axis) and the FDR reported by the permutation procedure 

based on the fraction of gene pairs that are permuted (x axis).
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Box 2.

The model-X knockoff filter

The model-X knockoff filter was designed for supervised machine learning problems 

with a target Y and features X. The knockoff filter is a class of algorithms that control 

FDR while selecting a relevant subset of features from X. Here, a feature is defined to be 

relevant if it is dependent on Y conditional on all other features. This notion of relevance 

exactly matches many TRN inference methods.34,45,46

Given a target Y and a set of features X, the procedure begins by constructing knockoffs 

K that act as negative controls for each feature in X. We use a specific type of knockoffs, 

called model-X knockoffs, that are based on a probability model for X. Valid model-X 

knockoffs must obey a specific mathematical criterion: any set of features S can be 

swapped with the corresponding original features while preserving the joint distribution 

of the data and the knockoffs. Formally, [XS,XSc,KS,KSc] and [KS,XSc,XS,KSc] are 

equal in distribution, where Sc denotes the complement of S, meaning Sc contains the 

indices of the features that are not swapped with their knockoffs.36,44 Model-X knockoff 

construction relies on an assumed probability model for the features X, and different 

software implementations have enabled knockoff construction from different families 

of distributions.47,48 In this work, we use Gaussian knockoffs36,44 or Gaussian mixture 

model knockoffs.49

Given the knockoffs, the analyst may measure feature relevance via any “knockoff 

statistic” as long as it obeys a key symmetry property: the absolute value of the knockoff 

statistic must remain the same when any set of features is swapped with its knockoffs. 

The feature importance should be positive whenever the feature is more important than 

its knockoff and negative otherwise. We typically use a LASSO regression including both 

X and its knockoffs. We record the maximum penalty parameter at which a feature or 

its knockoff is still selected into a LASSO regression. If the knockoff enters before the 

original feature, we make it negative. This statistic is a common choice with good power 

in simple settings.50 Tree-based or other statistics could also be used.

Under the null hypothesis of conditional independence, the knockoff statistics are 

symmetric about zero, so the left and right tails of the sampling distribution are 

identical.44 For a given cutoff t, the estimated FDR is the number of statistics below 

—t divided by the number above t. The threshold t can be raised or lowered to control the 

FDR at the desired level.

The model-X knockoff filter has two distinctive advantages for TRN inference. First, 

even when using a linear model internally, maintaining error control requires no 

assumptions about P(Y|X). Second, assumptions about P(X) are directly testable and 

can be customized to each dataset.
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Highlights

• FDR control in statistical TRN inference despite nonlinear and indirect effects

• Methods to accurately assess FDR despite incomplete gold standard data

• The major remaining obstacle is unmeasured confounding

• Growth conditions, noise, and latent variables tested as potential confounders
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Figure 1. FDR control with model-X knockoffs using simulated data
(A) Reported FDR versus observed FDR for knockoff-based hypothesis tests used to infer 

TRNs based on data simulated with the BEELINE framework in which the ground truth 

TRN is known.19 The “reported FDR” represents the target false discovery rate (FDR) that 

is reported by the algorithm. The “observed FDR” is calculated by comparing inferred TRN 

to the ground truth TRN. The six networks are listed across the top margin: bifurcating (BF), 

bifurcating converging (BFC), cyclic (CY), linear (LI), linear long (LL), and trifurcating 

(TF). In the top row (RNA + protein), RNA concentrations, protein concentrations, and 
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RNA production rates are all revealed, and edges in the wrong direction are counted as 

incorrect. In the bottom row (RNA only), RNA concentrations are used as input to the 

algorithm, following Pratapa et al. In the bottom row, edges in the wrong direction are 

counted as correct. The colors indicate three methods of knockoff construction: independent 

permutation of all features (permuted), second-order knockoffs (Gaussian), and Gaussian 

mixture model knockoffs (mixture).49 Results are averaged over 10 independent simulations, 

each with 500 cells. A line below the diagonal indicates a conservative method: observed 

FDR is lower than reported. A line above the diagonal indicates an overconfident method: 

observed FDR is higher than reported. A diagonal line indicates a well-calibrated method.

(B) Protein expression for all genes in a realization of the BFC network (n = 500), along 

with three types of knockoffs (n = 500 each), all jointly reduced to two dimensions via 

t-stochastic neighbor embedding (t-SNE).55 The colors indicate three different methods of 

knockoff construction.

(C) Protein concentration and corresponding knockoff features for gene 1 n = 500 cells 

simulated from the CY network model, plotted against time. No cell is measured twice, 

and each dot is the terminus of an independent trajectory. Time is not used as input for 

generating knockoffs. The colors indicate three different methods of knockoff construction.

(D) Pearson correlation between RNA concentration and protein levels for each gene across 

all simulations used. Each dot summarizes one gene in n = 500 simulated cells.

(E) Pearson correlation between RNA concentration and RNA production rate for each gene 

across all simulations used. Each dot summarizes one gene in n = 500 simulated cells.
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Figure 2. Model-X knockoffs control FDR in testing conditional independence
(A) KNN-based swap test with k = 20. This diagnostic swaps all variables with their 

knockoffs, then compares each observation to its unswapped counterpart, measuring how 

many nearest neighbors are swapped or unswapped.47 Low p values (left) and proportions 

of non-swapped neighbors far from 50% (right) indicate a poor fit. For ideal knockoffs, the 

expected proportion of non-swapped neighbors is 50%. There are n = 805 samples in the 

DREAM5 E. coli data.

(B) Reported and observed FDR of various methods used to select regulators for each of 

1,000 simulated E. coli target genes. Real regulator expression is used to simulate target 

genes as shown in Algorithm 1. The colors indicate different methods for FDR control. 

The x axis displays the FDR reported by the method, while the y axis shows the observed 

fraction of false discoveries based on what is known from the simulation. Data above the 

diagonal indicate excess FDR. GeneNet returns no findings except at an FDR cutoff of 1.

See also Figure S2.
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Figure 3. Model-X knockoffs allow direct comparison of predicted FDR to incomplete gold 
standards
Reported FDR versus observed FDR on fully synthetic data with n = 805 samples. Although 

the data are simulated and all causal relationships are known, the evaluation uses biased gold 

standards in which 80% of causal relationships are marked as unknown (left) or 80% of gene 

pairs with no causal relationship are marked as unknown (right). In the top row, we applied 

the final step in each FDR control method to all hypotheses, while in the bottom row, we 

applied the final step only to hypotheses that are testable given the remaining gold standard 

data. The colors indicate different methods for FDR control.
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Figure 4. Diverse methods do not control FDR in TRN inference
(A) Comparison of FDR reported by each method (x axis) and observed FDR (y axis) across 

different methods and gold standards. The observed FDR is calculated across hypotheses 

that are testable using an intersection of target gene sets from ChIP and perturbation 

transcriptomics experiments. M3DKnockout refers to the genetically perturbed samples 

from the Many Microbe Microarrays Database57 while RegulonDBKnockout refers to 

genetically perturbed samples downloaded from RegulonDB. When fewer than 10 testable 

hypotheses are returned below a given reported FDR, the observed FDR is highly uncertain, 
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and we leave the left part of the plot blank. The colors indicate different methods of FDR 

control. Analysis is based on n = 805 microarray profiles.

(B) Reported and observed FDR when correcting for labeled and unlabeled indicators of 

confounding. Knockoffs are constructed using the glasso_1e—04 method conditioning on 

no covariates, on labeled perturbations, or on both labeled perturbations and the top (10, 

20, 30, 50) principal components of the full expression matrix. When fewer than 10 testable 

hypotheses are returned below a given reported FDR, the observed FDR is highly uncertain, 

and we leave the left part of the plot blank. The colors indicate which confounders were 

controlled for. Analysis is based on n = 805 microarray profiles.

(C) Power (number of discoveries) in the same analysis shown in (B). The colors indicate 

which confounders were controlled for. Analysis is based on n = 805 microarray profiles.
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Figure 5. FDR calibration is not improved by including TF activity inferred from single nucleus 
multiomics data
This figure contains a mixture of real and simulated data.

(A) Error control in detecting regulators based on simulated target gene expression. 

Simulation uses real TF RNA data from the PBMC (n = 10,691 cells) and mouse skin (n = 

34,774 single cells) multi-omics datasets. Targets are simulated as described in Algorithm 

1. Knockoffs are constructed via independent permutation of each gene’s values (permuted) 

or Gaussian model-X knockoffs using an optimal shrinkage estimator35 for the covariance 

matrix. 1,000 target genes are simulated. The x axis displays the FDR reported by the 
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method to the user, while the y axis shows the observed fraction of false discoveries based 

on the ground truth from the simulation setup. The colors indicate different methods for 

knockoff construction.

(B) KNN swap test with k = 5 and swapping all variables (“full”, not “partial”).47 Low 

p values (vertical axis) and high proportions of non-swapped neighbors (horizontal axis) 

indicate a poor fit. Results are shown for permuted and Gaussian knockoffs deployed 

on SHARE-seq TF expression data. The colors indicate different methods for knockoff 

construction.

(C) Reported FDR from the knockoff filter versus observed FDR relative to ChIP-seq data 

when using the knockoff filter to infer regulators of each gene in the SHARE-seq data. 

Gaussian knockoffs are used. The color scale shows cell count cutoffs: clusters with fewer 

than the indicated number of cells are omitted. The x axis displays the FDR reported to the 

method by the user, while the y axis shows the observed fraction of false discoveries based 

on ChIP-seq data. Points above the black line (y = x) indicate excess false discoveries.

(D) Variant of (A) where covariates are contaminated with additional Poisson error prior 

to construction of knockoffs. The cell count cutoff is indicated in the color scale. Gaussian 

knockoffs are used.

(E) Variant of (C) where global accessibility of JASPAR human and mouse motifs is used as 

a measure of TF activity instead of, or in addition to, TF RNA levels. The cell count cutoff is 

10. Colors indicate which measure of TF activity is used.

(F) Variant of (C) where knockoffs are constructed conditional on the top 5 principal 

components of the RNA matrix and the ATAC matrix. These experiments use both RNA and 

global accessibility as measured of TF activity, as in (E) (purple). The cell count cutoff is 10. 

Colors indicate whether the analysis controlled for principal components or not.

(G) Variant of (C) where specific hypotheses are removed from consideration unless they are 

supported by a TF binding motif in a nearby region whose chromatin accessibility correlates 

with transcript levels of the putative target gene. This strategy is used alone, where it does 

not have a specific reported FDR (yellow), or in combination with knockoff-based FDR 

control (orange). These experiments use both RNA and global accessibility as measured of 

TF activity, as in (E) (purple), and they condition on the top principal components, as in 

(F) (bright green). The cell count cutoff is 10. Colors indicate whether the analysis used 

knockoffs, motif matching, or both to filter out false positives.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

All data used in this study Zenodo DOI: https://doi.org/10.5281/zenodo.6573413

DREAM5 E. coli data Sage Bionetworks https://dreamchallenges.org/dream-5-network-inference-
challenge/

Mouse transcription factors AnimalTFDB https://guolab.wchscu.cn/AnimalTFDB#!/

Human transcription factors Lambert et al.102 http://humantfs2.ccbr.utoronto.ca/download.php

SHARE-seq data Ma et al.70 GEO: GSM4156608 and GEO: GSM4156597

10X multiomics data 10x Genomics website https://www.10xgenomics.com/datasets/pbmc-from-a-healthy-
donor-no-cell-sorting-10-k-1-standard-2-0-0

Human and mouse transcription factor targets ChIP-atlas http://dbarchive.biosciencedbc.jp/kyushu-u/metadata/
experimentList.tab

E. coli high-throughput gold standards RegulonDB v10.9 https://regulondb.ccg.unam.mx/ht

E. coli curated gold standards RegulonDB v10.9 https://regulondb.ccg.unam.mx/releasesNote/
date=2021-04-02&version=10.9

Software and algorithms

Modification of the BoolODE framework This paper DOI: https://doi.org/10.5281/zenodo.10063178

Modification of the BEELINE framework This paper DOI: https://doi.org/10.5281/zenodo.10063174

E. coli analysis This paper DOI: https://doi.org/10.5281/zenodo.10063164

Multi-omics analysis This paper DOI: https://doi.org/10.5281/zenodo.10688721

Demonstration of knockoff construction speedups 
and calibration on incomplete gold standards

This paper DOI: https://doi.org/10.5281/zenodo.10063183

Faster implementation of the Gaussian mirror (R 
package)

This paper DOI: https://doi.org/10.5281/zenodo.10063192

Faster implementation of knockoff construction 
(limited Julia interface)

This paper DOI: https://doi.org/10.5281/zenodo.10063198

Faster implementation of knockoff construction 
(limited Python interface)

This paper DOI: https://doi.org/10.5281/zenodo.10063196

Faster implementation of knockoff construction (R 
package)

This paper DOI: https://doi.org/10.5281/zenodo.10063187
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