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Abstract: Natalizumab is a highly effective therapy for multiple sclerosis (MS). The aim of this study
was to evaluate serum neurofilament light chain (sNfL) and serum glial fibrillary acidic protein
(sGFAP) in patients with relapsing–remitting MS treated with Natalizumab. sNfL and sGFAP were
analyzed at baseline, 6 and 12 months post treatment using the single-molecule array (SiMoA)
technique. We recruited matched healthy controls for comparison. The study included 54 patients,
with a median age of 33 years (Interquartile range (IQR), 29–41), with 32 women (60%) and 76 healthy
controls. A decrease in sNfL was observed at 6 (67%, p = 0.005) and 12 (72%, p < 0.0001) months
compared to baseline. After two years, six patients experienced evidence of disease activity (EDA-3).
The remaining ones had no evidence of disease activity (NEDA-3). NEDA-3 presented a remarkable
reduction in sNfL (p < 0.0001) and sGFAP (p = 0.01) after 6 months of treatment that continued to be
observed after 12 months compared to baseline. EDA-3 only reached a significant decrease in sNfL
after 12 months; there were no significant changes in sGFAP values. Natalizumab leads to a decrease
in sNfL, which is higher and occurs earlier in NEDA-3 patients. Patients also showed a significant
reduction in sGFAP levels, which was not observed in the EDA-3 group.

Keywords: sNfL; sGFAP; SiMoA; multiple sclerosis; natalizumab

1. Introduction

Serum biomarkers play an important role in multiple sclerosis (MS), even more so
since the development of new immune assays [1,2]. Neurofilaments are cytoskeletal
proteins released into the cerebrospinal fluid and blood. Their quantification leads to the
measurement of neuronal injury [3]. Serum neurofilament light chain (sNfL) has been
validated in MS as a biomarker of disease activity. In addition, its elevation has been linked
to disease progression [4–7].

Serum glial fibrillary acidic protein (sGFAP) is an intermediate filament present in the
astrocytes [8]. Increases in sGFAP values have been related to future disability worsening,
especially progression independent of relapse activity [9–12]. The application of these
two biomarkers together seems to increase the ability to detect patients at risk of disease
impairment [9,12,13].

Natalizumab is a monoclonal antibody used as a highly effective therapy for relapsing–
remitting multiple sclerosis (RRMS). It is an IgG4 antibody that targets the α4 integrin,
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preventing harmful lymphocytes from entering the central nervous system. This is achieved
by inhibiting the interaction between α4β1 integrin and vascular cell adhesion molecule-1
present in endothelial cells [14].

The way Natalizumab can make changes over time in sNfL and sGFAP values is not
well known nowadays and evidence in the literature is scarce [15].

We aimed to evaluate both biomarkers in RRMS patients over their first year of
treatment with Natalizumab. We compared their values with a cohort of matched healthy
controls (HCs). In addition, we divided the patients into two groups according to the
achievement of no evidence of disease activity status (NEDA-3) after two years of follow-up,
to study differences in the evolution of sNfL and sGFAP values since the start of treatment.

2. Results

We incorporated 54 patients (32 women (60%)) into the study, all of whom initiated
Natalizumab at Hospital Universitario Ramón y Cajal (Madrid, Sapin), a referral MS center.
Clinical and demographic data of patients and HCs are shown in Table 1.

Table 1. Baseline data.

RRMS
(n = 54)

HCs
(n = 76) p Value

Age (years) 33 (29–41) 31 (26–46) n.s.

Female/Male 32/22 47/29 n.s.

Body mass index 25.3 (21.6–28.1) 22.5 (20.5–24.7) n.s.

Time from disease onset (years) 3.1 (0.8–9.8)

EDSS score 2 (1.5–2.5)

ARR 1 year before 1 (1–2)

Previous treatment

None 26 (48.1%)

Platform 27 (50%)

Orals 1 (1.8%)

Monoclonal antibody 0

T2 lesions (<10, 10–50, >50) 7(13%), 39(72.2%), 8 (14.8%)

Number of gadolinium-enhancing lesions 1 (0–4)

Patients with gadolinium-enhancing lesions 40 (74.1%)

Oligoclonal IgG bands 52/53 (98.1%)

Oligoclonal IgM bands against lipids 43/53 (81.1%)

sNfL (picograms/mL) 15 (10.2–39) 6.11 (2–8.5) p < 0.0001

sGFAP (picograms/mL) 203.5(138.1–268.4) 91 (72.6–109) p < 0.0001

Abbreviations: n, number of patients and controls; RRMS, relapsing–remitting multiple sclerosis; HCs, healthy
controls; EDSS, Expanded Disability Status Scale; ARR, annualized relapse rate, n.s. non-significant. Platform treat-
ments: interferon b and glatiramer acetate; oral drugs: dimethylfumarate, fingolimod, teriflunomide. Continuous
variables are shown as median (IQR) and categorical variables as numbers (%).

The median age (Interquartile range, IQR) of Natalizumab-treated patients was 33 (29–41)
years. The annualized relapse rate (ARR) the year before treatment was 1 (1–2). The time from
disease onset was 3.1 years (0.8–9.8). Twenty-six patients (48.1%) had not previously received
disease-modifying treatment, and twenty-eight patients (51.9%) had received other treatment
and needed a change due to lack of efficacy. Eight patients (14.8%) had at least 50 T2 lesions
on baseline MRI; forty patients (74.1%) had gadolinium-enhancing lesions.

The data showed that 76% of patients had high (≥10 picograms/mL) sNfL values at
treatment onset. Patients with high sNfL at treatment onset had more T2 lesions in MRI
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performed at baseline (p = 0.007). sNfL and sGFAP values were higher in RRMS patients at
baseline compared to HCs (p ≤ 0.001 for both biomarkers).

A significant reduction in sNfL values was observed at 6 (67%, p = 0.005) and 12 (72%,
p < 0.0001) months compared to baseline. However, the decrease between 6 and 12 months
was not significant. Compared to HCs, differences persisted at 6 (p > 0.0001) and 12
(p = 0.006) months. We did not find significant changes in sGFAP values in the whole cohort
(Figure 1).
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Figure 1. sNfL (picograms/mL) of RRMS patients and healthy controls at baseline, 6 and 12 months
of Natalizumab; sGFAP (picograms/mL) of RRMS patients and healthy controls at baseline, 6 and
12 months of Natalizumab. ** (p = 0.006), **** (p < 0.0001).

Patients who switched from other DMTs had higher sNfL values (34.4 (14.2–73.4) vs.
12.5 (8.9–19.7), p = 0.0003) compared with naïve patients. These differences persisted at
6 months (12.9 (7–28.2) vs. 8.1 (6.7–10.9), p = 0.04), and disappeared at one year of follow-up
(8.2 (6.4–14.3) vs. 8 (6.3–10), p = 0.4). However, we did not find differences in sGFAP values
between these groups.

Patients were followed for two years. During this time, six patients experienced
EDA-3. In four cases this was due to radiological activity, and in the other two to a clinical
relapse. The remaining patients achieved NEDA-3. No significant differences were found
in the baseline sNfL values of EDA-3 and NEDA-3 patients. These were 44.7 (11–89.2)
picograms/mL and 12.4 (6.7–30.5) picograms/mL, respectively. NEDA-3 patients exhibited
a reduction in sNfL after 6 months to 8.5 (7.2–12) picograms/mL, p < 0.0001, and after
12 months to 8 (6.2–11.4) picograms/mL, p < 0.0001, compared to baseline. By contrast,
in EDA-3 patients the median sNfL value at six months of treatment was 15 (8.8–22.4)
picograms/mL with no significant differences with baseline levels. Only after 12 months
of treatment did we find a clear decrease in this group to 8.6 (5.4–13.7) picograms/mL,
p = 0.01 (Figure 2).

We did not find differences in baseline sGFAP between EDA-3 and NEDA-3 patients.
The values were 216.9 (86.1–369) picograms/mL and 197.7 (138.7–266.9) picograms/mL,
respectively. EDA-3 patients did not experience significant changes during the first year of
treatment. Nevertheless, sGFAP values decreased in NEDA-3 patients after 6 months of
treatment to 165.9 (123.7–229.5) picograms/mL, p = 0.01, and remained low after 12 months
(171.9 (136.3–208.9) picograms/mL, p =0.02) compared to baseline (Figure 3).
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3. Discussion

Acute axonal damage generated by highly inflammatory diseases can manifest as
clinical (relapses) or radiological (increases in T2/gadolinium-enhancing lesions) activity.
This is associated with high sNfL levels in RRMS patients [7]. According to this, sNFL
levels are used as a biomarker for monitoring inflammation [7] and sGFAP seems to be
linked to disease progression not associated with acute inflammation [9]. The combination
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of both biomarkers, sNfL, and sGFAP, may help to ameliorate the ability to detect patients
at risk of worsening [10,13].

Early initiation of high-efficacy disease-modifying treatments in RRMS patients with
high sNfL values at disease onset has been linked with a reduction in inflammatory activity
and disease progression [7,13]. Nevertheless, there are only a small number of studies
focused on variations in sNfL over time in RRMS patients who start a disease-modifying
treatment. Furthermore, even fewer studies have analyzed both biomarkers (sNfL and
sGFAP) together.

We aimed to analyze the role of sNfL and sGFAP in a group of highly active RRMS
patients who started treatment with Natalizumab. First, we explored sNfL and sGFAP
during the first year and compared the results to a cohort of matched HCs. We observed
that sNfL decreased progressively, as described in other cohorts [16–18], but did not reach
similar values to those of the HCs after a year of treatment. Natalizumab was administered
every 4 weeks since, at that time, there was still no evidence of the 6-week dosing [19].

In another cohort [20], sNfL values were measured at 3 months and then after a year
of treatment; consequently, they described nadir at one year of treatment. However, we
observed that the decrease in sNfL values occurs mainly during the first six months, mostly
in patients reaching NEDA-3 after follow-up. This decrease was maintained after one year
of treatment. By contrast, the decrease was only observed after a year in EDA-3 patients,
showing that an early reduction in sNfL levels was associated with an optimal response.
This is in line with previous findings describing an association with sNfL ratio at 12 months
and the risk of new MRI activity after two years of Natalizumab treatment [21].

Different data have been published about sNfL levels and their correlation with clinical
and radiological activity in patients treated with Natalizumab. Thus, an increase in sNfL
levels was linked to the recurrence of disease activity, defining these high levels as an early
biomarker to predict the presence of disease before clinical or radiological signs appear [22].
From another perspective, a different research study [23] found no association between the
wearing-off symptoms and sNfL and sGFAP levels in patients treated with Natalizumab,
thus suggesting that it may not be associated with new disease activity, at least in all
cases. However, research has focused more on the role of neurofilaments as predictors of
the development of progressive multifocal leukoencephalopathy in patients treated with
Natalizumab [24–27]. In our cohort, we observed that the reduction in sNfL values after
six months of treatment could serve as a predictor of disease activity at two years, as only
patients who reached NEDA-3 status after two years experienced a significant reduction in
sNfL levels at this point.

Less evidence is available for sGFAP in Natalizumab-treated patients [15]. The possible
effect of this drug on activated astroglia is not well known [14]. Our data showed no
differences in this variable after 6 and 12 months of treatment in the entire cohort, but
we found significant decreases at these points in the NEDA-3 group. These data strongly
suggest that a reduction in sGFAP values in conjunction with that of sNfL levels can identify
patients who will reach a NEDA-3 status in the long term during Natalizumab treatment.

The main limitation of our study was the sample size. These findings should be
validated in larger, multicenter cohorts followed for a more prolonged period of time.

In conclusion, our data show that an early decrease in sNfL and sGFAP values could
identify patients at low risk of disease activity during Natalizumab treatment.

4. Materials and Methods
4.1. Study Design

This was an observational study with prospective data collection, following the
Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) state-
ment. Patients were recruited at the Hospital Universitario Ramón y Cajal in Madrid,
Spain. We enrolled patients with RRMS who started Natalizumab treatment between
March 2011 and August 2016. These patients were followed for two years. Treatment-naïve
and previously treated patients were included. Patients received 300 mg of Natalizumab
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intravenously every 4 weeks. Age-, sex- and body mass index-matched HCs were recruited
between August 2023 and February 2024.

4.2. Patient Consent

All patients and HCs signed an informed consent prior to participation. Anonymized
data, which support the findings of this study, will be available to any qualified investigator
upon request for 3 years following the publication of the study.

4.3. Data Collection

Clinical, radiological, and demographic variables were collected at onset. Experienced
neurologists in the field conducted all Expanded Disability Status Scale (EDSS) evaluations
every 3 months. Additional examinations were conducted in case of a relapse. A baseline
MRI was performed within a month before treatment onset following established clinical
protocols. Control MRI studies were performed annually.

4.4. Sample Collection

Patient blood specimens were collected just before initiating Natalizumab treatment
and again at 6 and 12 months after that. Serum sample aliquots were stored at −80◦ until
they were processed.

4.5. Serum sNfL and sGFAP Quantification

sNfL and sGFAP were quantified using an HD-X instrument (Quanterix, Lexington,
MA, USA) with the single-molecule array (SIMoA) technique (Quanterix, Billerica, MA,
USA). We employed a Neurology 2-Plex B Kit (Quanterix, Billerica, MA, USA), following
the manufacturer’s instructions. The mean inter- and intra-assay coefficients equaled 5.6%
and 4.4% for sNfL and 5.8% and 5% for sGFAP, respectively. The research team handling
the evaluation of the serum samples remained unaware of the clinical data.

4.6. Definitions

We used the 2017 McDonald criteria for diagnosis [28]. Disability was assessed with
the EDSS score [29]. Confirmed disability worsening was defined as a rise of at least
1.5 points in the EDSS if the baseline score was 0, an increase of at least 1 point if the
previous EDSS was between 1 and 5, and a minimum 0.5 point increase for patients with
a baseline EDSS of 5.5 or higher [30]. NEDA-3 was defined as the absence of relapses,
disability worsening and new and/or enlarged T2 lesions or gadolinium-enhancing lesions
on MRI. Patients experiencing a relapse, MRI activity, or an exacerbation of neurological
disability were classified as having evidence of disease activity-3 (EDA-3) [31].

The cut-off applied for sNfL and sGFAP levels was established at the 90th percentile
value of the corresponding HC, which was 10 picograms/mL for sNfL and 140 picograms/mL
for sGFAP, in line with the benchmarks used in previous studies [5,7,31–33].

4.7. Statistical Analyses

Descriptive analyses were summarized using absolute and relative proportions for
categorical variables, and differences were examined using χ² or Fisher’s exact test. The
median with an Interquartile range (IQR) was employed to describe continuous variables,
and associations between groups were evaluated using the Friedman and Mann–Whitney U
tests. We performed statistical analyses using the GraphPad Prism 9.0 software (GraphPad
Prism Inc., San Diego, CA, USA). All tests were two-tailed, and a significance level of
p < 0.05 was deemed significant.
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