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Abstract: The efficacy of assisted reproductive technologies (ARTs) in older women remains con-
strained, largely due to an incomplete understanding of the underlying pathophysiology. This review
aims to consolidate the current knowledge on age-associated mitochondrial alterations and their
implications for ovarian aging, with an emphasis on the causes of mitochondrial DNA (mtDNA)
mutations, their repair mechanisms, and future therapeutic directions. Relevant articles published up
to 30 September 2024 were identified through a systematic search of electronic databases. The free
radical theory proposes that reactive oxygen species (ROS) inflict damage on mtDNA and impair
mitochondrial function essential for ATP generation in oocytes. Oocytes face prolonged pressure to
repair mtDNA mutations, persisting for up to five decades. MtDNA exhibits limited capacity for
double-strand break repair, heavily depending on poly ADP-ribose polymerase 1 (PARP1)-mediated
repair of single-strand breaks. This process depletes nicotinamide adenine dinucleotide (NAD+)
and ATP, creating a detrimental cycle where continued mtDNA repair further compromises oocyte
functionality. Interventions that interrupt this destructive cycle may offer preventive benefits. In con-
clusion, the cumulative burden of mtDNA mutations and repair demands can lead to ATP depletion
and elevate the risk of aneuploidy, ultimately contributing to ART failure in older women.

Keywords: aging oocytes; mitochondrial DNA (mtDNA); mtDNA mutations; nicotinamide adenine
dinucleotide; poly ADP-ribose polymerase 1 (PARP1)

1. Introduction

Our female hunter–gatherer ancestors devoted a significant portion of their reproduc-
tive years to pregnancy and lactation [1]. However, they were also subject to the adverse
health outcomes associated with excessive pregnancies, including maternal and fetal mor-
tality during childbirth. In developed nations, advancements in contemporary perinatal
care have markedly diminished life-threatening complications linked to pregnancy and
childbirth; however, these risks persist at alarming levels in developing regions. In recent
years, societal advancements have driven a global trend toward delayed marriage and later
onset of first pregnancies [2]. The continuous physiological demand of monthly ovulation
can negatively impact women’s health, contributing to reduced fecundity due to reproduc-
tive aging and an increased risk of conditions such as uterine fibroids, endometriosis, and
gynecological cancers [3]. Notably, the age-related decline in ovarian reserve significantly
impairs reproductive potential [4,5]. Assisted reproductive technologies (ARTs) for women
with aging ovaries are less effective and entail greater financial burdens [6]. For instance,
the live birth rate per oocyte stands at 26% for women under 35 but drops to merely 1% for
those over 42 [7].

Although the mechanisms underlying reproductive aging remain incompletely un-
derstood, it is conceptually attributed to mitochondrial dysfunction, which may induce
oxidative stress, hormonal dysregulation, reduced oocyte quantity and quality, mito-
chondrial DNA (mtDNA) damage and related genetic mutations, epigenetic alterations,
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defective spindle assembly, meiotic errors, chromosomal misalignment, and telomere
shortening [8–12]. Oocyte quantity and quality may decline with age, potentially con-
tributing to impaired mitochondrial function [12], or the relationship may be bidirectional,
with both influencing each other [11,13,14]. Furthermore, granulosa and cumulus cells
are known to promote oocyte maturation by activating glycolysis [15], the pentose phos-
phate pathway [16], and lipid metabolism [13,17]. Notably, this bidirectional regulatory
mechanism is crucial, as mature oocytes, in turn, stimulate and activate glycolysis and the
tricarboxylic acid (TCA) cycle in granulosa cells [13,18]. A recent metabolomic analysis of
the aging ovary revealed diminished mitochondrial oxidative phosphorylation (OXPHOS)
despite compensatory upregulation of glycolysis and lipid metabolism [19]. Impaired OX-
PHOS results in reduced adenosine 5′ triphosphate (ATP) production, a critical factor since
mitochondria serve as the primary energy source during oocyte maturation, fertilization,
and early embryonic development [20]. The segregation of chromosomes to opposite poles
during meiosis demands substantial energy [14,21]. Age-associated mutations in mtDNA
are believed to induce ATP depletion, resulting in errors in chromosome segregation [11,22].

In this review, we first provide a brief summary of our current understanding of age-
related mitochondrial changes and ovarian aging. We subsequently present an updated
overview of the causes and mechanisms underlying mitochondrial DNA mutations and
their potential repair, concluding with a discussion of prospective therapeutic strategies to
alleviate the impact of aging on oocytes.

2. Normal Mitochondrial Function

Oxygen levels in Earth’s atmosphere rose dramatically between 2.4 and 2 billion years
ago, a period known as the “Great Oxidation Event” [23]. This transformative event was
driven by cyanobacteria, which released substantial amounts of oxygen through photo-
synthesis, creating conditions that were pivotal for the evolution of life and enabling the
emergence of complex organisms [23]. Approximately two billion years ago, bacteria
capable of using oxygen for energy production were incorporated into the ancestors of
eukaryotic cells, evolving into mitochondria—organelles essential for energy metabolism
in modern eukaryotic cells [24]. Mitochondria, often referred to as the “powerhouses of
the cell”, are central to bioenergetics and metabolic processes, such as oxidative phos-
phorylation, and exhibit dynamic transformations to meet fluctuating cellular energy
demands [6,25,26]. ATP is synthesized via the electron transport chain, which consists
of five complexes embedded in the inner mitochondrial membrane [6,27]. Complexes I
(nicotinamide adenine dinucleotide (NADH) dehydrogenase) and II (succinate dehydroge-
nase) oxidize NADH and flavin adenine dinucleotide (FADH2), respectively, transferring
electrons to ubiquinone (coenzyme Q10, CoQ10) [28] (Figure 1). The NADH and FADH2
utilized by these complexes are generated through the mitochondrial TCA cycle, under-
scoring the intricate coordination between the TCA cycle and the electron transport chain
in facilitating ATP production [27]. Complex III reduces cytochrome c, which subsequently
donates electrons to molecular oxygen, enabling electron transfer to Complex IV [6,27,28].
Complex V (ATP synthase) drives ATP synthesis by utilizing the proton gradient generated
across the inner membrane [28]. However, interactions between the electron transport
chain and molecular oxygen generate superoxide anion radicals (O2

•−), which dismu-
tate into hydrogen peroxide (H2O2) and can further react to produce hydroxyl radicals
(HO•) [25,29–32]. Reactive oxygen species (ROS), as by-products of mitochondrial respi-
ration, function as critical signaling molecules in preserving the health and homeostasis
of organisms [33]; however, excessive ROS production generates cytotoxic and mutagenic
free radicals, posing significant risks [6,26,28]. Thus, the “endosymbiotic contract” reflects
a delicate equilibrium between the evolutionary advantages mitochondria confer and the
intrinsic challenges posed by the reactive by-products of aerobic respiration, shaping the
complex dynamics of multicellular life [24]. Young mitochondria, depicted in the center
of Figure 1, exhibit enhanced ATP synthesis and attenuated ROS production. Conversely,
aged mitochondria, shown on the right, display impaired ATP synthesis, mitochondrial



Int. J. Mol. Sci. 2024, 25, 13144 3 of 20

dysfunction, elevated ROS production, and consequent mitochondrial DNA damage. Thus,
mitochondria in younger cells predominantly harbor wild-type mtDNA, whereas those in
aged cells exhibit a higher proportion of mutated mtDNA.
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Figure 1. Mechanisms of the mitochondrial electron transport chain and its deterioration with
aging. “I” to “V” denote the complexes of the mitochondrial electron transport chain. The colored
ring indicates “mtDNA”. ROS-mediated mtDNA damage (red explosion marks) refers to “mutated
mtDNA”. The left and right colored rings illustrate young and aged mitochondrial DNA, respectively.

3. Age-Related Changes in Mitochondria

As women age, both the quantity and quality of oocytes diminish, undermining their
developmental competence post-fertilization and elevating the risk of miscarriage [34,35].
However, when women over 40 undergo in vitro fertilization (IVF) with oocytes donated
by younger women, success rates align with those of younger patients, indicating that
the donor oocyte quality—rather than the recipient’s age—is pivotal in determining IVF
outcomes [34,36]. Age-related morphological and ultrastructural alterations in oocytes have
been documented [37–39]. Pronounced mitochondrial ultrastructural differences between
younger and older women include variations in mitochondrial size and shape, cristae
architecture, membrane integrity, and mitochondrial density [11,39,40]. In older women,
both mitochondrial quantity and density are reduced, with the inner membranes forming
the cristae appearing disorganized [38]. Mitochondria frequently exhibit enlargement,
elongation, and irregular shapes, while younger women typically display mitochondria
with a more consistent and healthy morphology [38]. These ultrastructural changes in older
women are often linked to a decline in mitochondrial membrane integrity and compromised
mitochondrial function [37].

Furthermore, the impact of aging on oocyte mitochondria is evident through func-
tional abnormalities [6,11]. Age-associated biochemical changes encompass alterations in
glucose and energy metabolism, mitochondrial function, lipid metabolism, oxidative stress,
amino acid and protein metabolism, calcium signaling, steroid hormone signaling, gap
junction communication, paracrine signaling, and epigenetic modifications [6,11]. Mito-
chondrial dysfunction, in particular, involves several key aspects, including diminished
mitochondrial content, reduced mitochondrial protein synthesis, impaired antioxidant ac-
tivity, defects in mitochondrial dynamics (such as biogenesis, fusion and fission, mitophagy
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(selective degradation of damaged mitochondria), or apoptosis) [41], metabolic imbalances,
disrupted mitochondrial membrane potential (∆ψ) [42], dysfunctional electron transport
chain activity, decreased ATP production [43], elevated ROS levels, and activation of the
mitochondrial permeability transition pore [6,11,25,44,45]. The most critical consequence
of age-related mitochondrial dysfunction is impaired ATP synthesis and mtDNA damage,
which negatively influences chromosome segregation [46,47] and compromises embryonic
development [48–50] (Figure 1). Impaired chromosome segregation during meiosis leads to
elevated rates of aneuploidy [22], and there is little doubt that mitochondrial dysfunction is
a key contributor to ovarian aging.

4. Ovarian Ageing as the Free Radical Theory

A substantial body of research has focused on the complex interplay between aging,
mitochondrial function, and oxidative stress in oocytes [12,51,52]. The widely accepted free
radical theory [25,29] serves as the prevailing hypothesis to explain aging, positing that ROS
drive the process of cellular senescence [53–56]. Some researchers emphasize that repeated
ovulation and menstrual cycles, along with other sources of ROS accumulation in the
ovaries—such as obesity and unhealthy lifestyle factors—impose stress on the reproductive
system, resulting in excessive oxidative stress [30]. Numerous studies revealed that elevated
oxidative stress has been shown to impair mitochondrial function, thereby compromising
oocyte quality and fertility [45,57–60].

Let us now examine the mechanism through which oxidative stress induces damage
to mtDNA. Arbeithuber et al. conducted an analysis of mtDNA mutations in 30 Indian
rhesus macaques, ranging in age from 1 to 23 years, stratified into four distinct age groups:
<5 years, 5–10 years, 10–15 years, and 15–23 years [61]. Their findings revealed that de novo
mtDNA mutations progressively accumulate with advancing age, predominantly mani-
festing as transitions rather than transversions [61]. Transition mutations, characterized by
purine-to-purine or pyrimidine-to-pyrimidine substitutions, are less disruptive to DNA
structure [62]. In contrast, transversion mutations, which involve purine-to-pyrimidine
exchanges (or vice versa), are more likely to impair DNA structure and function [62,63]. Evi-
dence suggests that the majority of mtDNA mutations associated with aging are transitions,
whereas ROS-induced mutations are predominantly transversions [64]. The dominance of
transitions over transversions in mtDNA mutations is noteworthy, as it highlights the bio-
chemical processes underlying mutagenesis. Transitions are primarily linked to replication
errors or repair mechanisms that favor nucleotide mispairing within the same chemical
class [64]. Therefore, it is hypothesized that mtDNA replication errors become increasingly
frequent with advancing age. On the other hand, ROS primarily induce transversion
mutations, such as the conversion of guanine to 8-oxoguanine, which pairs with adenine
and results in a G → T transversion [63]. This indicates that mitochondria possess an
efficient capacity to repair mtDNA damage induced by oxidative stress [65]. Outlined
below are the molecular mechanisms through which oxidative stress contributes to oocyte
aging: Oxidative stress induces DNA damage and mtDNA mutations (resulting in chro-
mosomal instability and elevated aneuploidy) [66], protein oxidation (leading to impaired
protein function and aggregation), lipid peroxidation (compromising cell membranes and
amplifying oxidative injury) [67], cytoskeletal damage (disrupting meiotic spindle integrity
and causing chromosomal segregation errors), telomere shortening (accelerating cellular
aging and oocyte senescence) [68], dysregulation of redox homeostasis (reducing antiox-
idant defenses and increasing oxidative damage), and epigenetic alterations (modifying
gene expression and impairing developmental potential) [69–71]. Many researchers posit
that the free radical hypothesis constitutes one of the primary triggers for mtDNA muta-
tions. A detailed discussion of this hypothesis is beyond the scope of this review. Refer to
sources [25,29] for further information.
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5. Molecular Mechanism Underlying Oocyte Aging Caused by mtDNA Mutations

Here, we summarize the role of mitochondria in oocyte aging, with an emphasis on
mtDNA mutations. Normal respiratory chain function requires a sufficient number of intact
and functional mitochondrial genomes [72]. Each mitochondrion harbors approximately
2–10 copies of mtDNA [73]. Human mtDNA is a circular, double-stranded genome consist-
ing of 16,569 bp, encoding only 13 proteins essential for the respiratory chain, while the re-
maining ~1500 mitochondrial proteins are encoded by the nuclear genome [26,32,72,74,75].
In primordial germ cells, mtDNA copy numbers are relatively low (~200 copies), but during
oocyte maturation, mtDNA copy numbers expand dramatically, exceeding 200,000 in fully
mature oocytes [36,76–80]. This amplification ensures the availability of sufficient mitochon-
dria and energy reserves to support early embryonic development post-fertilization [76].
Conversely, sperm cells contain only 10 to 1000 mtDNA copies [81,82]. After fertilization,
sperm mitochondria are degraded, and the embryo inherits its mitochondrial population
exclusively from the maternal lineage [6,36,83]. MtDNA mutations in oocytes impede their
ability to effectively support early embryonic development. The key mechanisms by which
mtDNA mutations occur are ROS damage, replication errors, mitochondrial DNA repair
deficiencies, replicative segregation and genetic drift, age-related accumulation of muta-
tions, and environmental factors (Figure 2). Sections 5.1–5.6 in the text below correspond to
numbers 1 through 6 in Figure 2. Given the limited understanding of mitochondrial DNA
damage and its role in oocyte aging, we will provide only a concise discussion on this topic
from 5.3 onwards.
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Figure 2. The molecular mechanisms of mtDNA mutations in oocyte aging. 1. ROS-induced damage:
Oxidative stress can cause guanine (G) in DNA to undergo oxidation, resulting in its conversion to
thymine (T). Complex I is particularly vulnerable to oxidative stress, and ROS-induced oxidation
can impair its function, thereby disrupting cellular energy production. 2. Replication errors: The
mitochondrial DNA polymerase, polymerase γ (POLG), is responsible for mtDNA replication, a process
inherently more complex and prone to errors than the replication of nuclear DNA. Polymerase β
(POLB) also plays a role in mitochondrial BER. 3. Mitochondrial DNA repair deficiencies: The repair
mechanisms available for mtDNA are significantly more limited compared to those safeguarding nuclear
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DNA. The nucleotide excision repair, mismatch repair, and double-strand break repair pathways are
less robust and not as extensively characterized as in the nucleus. 4. Replicative segregation and
genetic drift: MtDNA is randomly allocated among daughter cells through replicative segregation.
This randomness can result in the unpredictable dominance of either deleterious or neutral mutations.
5. Age-related accumulation of mutations: As individuals age, replication errors—such as point
mutations, deletions, or insertions—accumulate in the mitochondrial genome. These mutations
compromise mitochondrial function by disrupting the synthesis of proteins essential for the electron
transport chain, reducing energy production, exacerbating oxidative stress, and contributing to the
development of age-related diseases, including infertility. 6. Environmental factors: Ovulation-
associated bleeding, smoking, and other environmental factors induce oxidative stress, which, in
turn, promotes mutations in mtDNA. SSB, single-strand DNA break; DSB, double-strand DNA break.

5.1. ROS-Induced Damage

ROS can directly damage mtDNA, causing base modifications, strand breaks, and
DNA cross-linking. Specific base changes, such as guanine’s conversion to 8-oxoguanine,
can result in GC-to-TA transversions, contributing to chromosomal instability [84]. ROS-
induced damage can affect complex I (NADH dehydrogenase), impair NAD+ production,
and reduce ATP synthesis [11,85]. NAD+/NADH redox pairs are central not only to
OXPHOS but also to glycolysis, the tricarboxylic acid cycle, and fatty acid oxidation [85,86].
mtDNA mutations impair the redox balance of NADH and NAD+ [11,85]. For more
information on age-related mtDNA mutations, see Section 7.

5.2. Replication Errors

Mitochondria replicate their DNA independently of the cell cycle, increasing the like-
lihood of replication errors [72]. POLG, responsible for mtDNA replication, is less efficient
and accurate than nuclear DNA polymerases [87]. Despite having proofreading abilities,
POLG can still introduce point mutations, insertions, or deletions. Replication can stall due to
secondary structures or damage, causing strand breaks and rearrangements. Moreover, POLB
plays a direct role in repairing oxidative lesions, such as 8-oxoguanine (8-oxoG), through its
polymerase activity, ensuring mtDNA integrity [65]. POLB contributes high-fidelity nucleotide
incorporation during repair. This prevents mutagenic events that could arise from errors in
repair synthesis. In addition to single-nucleotide repair, POLB can participate in long-patch
BER, where a stretch of 2–10 nucleotides is replaced. Refer to Section 8 for a comprehensive
overview of the mechanisms involved in mtDNA damage repair.

5.3. Mitochondrial DNA Repair Deficiencies

Mitochondria possess limited DNA repair mechanisms, primarily base excision repair
and mismatch repair [88]. However, mitochondrial MMR is relatively weak and may
not provide substantial protection against the accumulation of mutations. Furthermore,
they lack advanced repair pathways, such as nucleotide excision repair and homologous
recombination, making mtDNA particularly susceptible to accumulating mutations [88].
ROS-induced double-strand breaks are especially detrimental, often leading to large dele-
tions or rearrangements.

5.4. Replicative Segregation and Genetic Drift

When the mitochondrial population within an individual predominantly contains
wild-type mtDNA, the condition is referred to as homoplasmy [6,89]. However, individual
cells typically harbor a mixture of mutated and wild-type mtDNA, known as hetero-
plasmy [6,89,90]. During cell division, mtDNA is randomly partitioned among daughter
cells in a process called replicative segregation [91]. With successive divisions, this stochas-
tic distribution can lead to fluctuations in the ratio of mutated to non-mutated mtDNA
across different cells. This stochastic distribution can result in the fixation (heteroplasmy)
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or elimination (homoplasmy) of specific mutations through genetic drift, particularly in
cells with fewer mitochondria. Genetic drift describes the random variation in allele fre-
quencies within a population, driven by chance rather than natural selection. Over time,
random segregation increases the mutational load in some cells, exacerbating mitochondrial
dysfunction. Refer to Section 6 for more information on heteroplasmy.

5.5. Age-Related Accumulation of Mutations

As mitochondria continuously divide and replicate throughout an individual’s life-
time, replication errors accumulate, contributing to the gradual buildup of mtDNA muta-
tions [92]. DNA replication errors can lead to the emergence of transition mutations. The
efficiency of mitochondrial DNA repair mechanisms also declines with age, accelerating
the accumulation of damage. Consequently, mtDNA accumulates mutations at a higher
rate than nuclear DNA over time.

5.6. Environmental Factors

Several environmental factors can induce mtDNA mutations by causing damage to
the mitochondrial genome or disrupting its replication and repair processes. These factors
include ultraviolet radiation, chemical toxins (pollutants, pesticides, tobacco smoke, and
iron), radiation exposure, drugs and pharmaceuticals (chemotherapeutic agents, antibiotics,
and endocrine-disrupting chemicals), and dietary and lifestyle factors (poor diet and
alcohol consumption) [93]. Each of these factors can exacerbate the natural accumulation of
mtDNA mutations over time, potentially contributing to aging and various mitochondrial
and systemic diseases.

Collectively, increased mtDNA mutations, deletions, and respiratory chain deficiencies
are key factors in oocyte aging [6,69,94–97]. MtDNA mutations arise from a combination of
oxidative stress, replication errors, and limited repair capacity. ROS-induced damage may be
a primary driver, given the oxidative environment within mitochondria. The accumulation
of mutations over time, along with errors introduced by POLG during replication and
the randomness of replicative segregation, renders mtDNA highly prone to mutations.
Aneuploidy, a hallmark of aging, arises from DNA damage, loss of chromosomal cohesion,
spindle assembly checkpoint dysfunction, and meiotic recombination errors [12,22,98]. These
mutations are especially detrimental in energy-demanding cells like oocytes, contributing to
age-related functional decline.

6. Heteroplasmy as a mtDNA Variant

In the fetal ovary, oocytes originate from primordial germ cells and remain arrested at
the diplotene (germinal vesicle) stage of the first meiotic division until puberty [21,99,100].
Upon stimulation by a luteinizing hormone surge, fully grown oocytes resume devel-
opment, complete the first meiotic division, and extrude the first polar body [21,100].
Subsequently, oocytes arrest at the metaphase of the second meiotic division until fertil-
ization occurs [21,100]. During the prolonged arrest, lasting up to 50 years [6], mtDNA
is susceptible to accumulating damage or replication errors, which may result in hetero-
plasmy or mtDNA deletions [61]. Despite the presence of multiple mtDNA mutations in
oocytes, these are not frequently transmitted to offspring. Heteroplasmy is ubiquitous, with
the average individual carrying at least one heteroplasmic variant [83,101,102]. Oocytes
have developed mechanisms to minimize the intergenerational transmission of deleterious
mtDNA mutations, a concept encapsulated by the bottleneck theory. The genetic bottle-
neck in mtDNA refers to the sharp reduction in mtDNA copy number during embryonic
oogenesis, followed by amplification in subsequent stages [27,76,80,82,83,103–105]. While
one consequence of this process is a reduction in the transmission of deleterious mtDNA
mutations, the primary purpose and theoretical basis of the bottleneck extend beyond
mutation reduction. The bottleneck amplifies stochastic differences in the proportions
of mutant and wild-type mtDNA. This amplifies selection opportunities. If deleterious
mutations dominate the reduced pool, these oocytes are less likely to develop or be vi-
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able. This is because irreparable mtDNA mutations are removed through mitophagy [106].
If wild-type mtDNA predominates, these oocytes have a better chance of propagating.
A newly acquired mtDNA mutation is not immediately detrimental, as the wild-type
genomes can compensate for the defect [107]. Consequently, low levels of mutant mtDNA
generally do not impair offspring viability [108]. These mechanisms play a pivotal role
in eliminating defective mitochondrial genomes and maintaining mitochondrial integrity
across generations [6,108]. Furthermore, by introducing a degree of randomness in the seg-
regation of mtDNA variants, the bottleneck increases genetic variability among offspring.
This variability may have evolutionary advantages, allowing populations to adapt better
to environmental changes or pressures. However, advanced maternal age at the time of
fertilization correlates with an increased burden of heterozygous mtDNA mutations in
the offspring’s blood and buccal cells [90]. The observed correlation between advanced
maternal age at fertilization and an elevated number of heteroplasmies in the offspring
implies that the transmission frequency of mutations increases with maternal age [90,109].
Therefore, the timing of mtDNA mutations is associated with the duration preceding the
meiotic division; the longer this period, the higher the likelihood of mtDNA mutations
accumulating. As shown in Figure 3 on the left, the extent and distribution of mtDNA
mutations vary across individual mitochondria. It is postulated that there are various
types, ranging from type A, which exhibits few mutations, to type B, which has moderate
mutations, to type C, characterized by numerous mutations. It has been reported that
mitochondrial dysfunction typically becomes apparent only when the mutation rate ex-
ceeds 80% within a heteroplasmic cell [110]. For example, in types A, B, and C, the mtDNA
mutation rates are 33%, 67%, and 100%, respectively. While type C exhibits mitochondrial
dysfunction, types A and B do not, despite the presence of mtDNA mutations (Figure 3,
left). Thus, the proportion of type C mitochondria within an oocyte may dictate the destiny
of the ovarian reserve in older women.
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Figure 3. Mitochondrial dysfunction driven by the extent of mtDNA mutations (left) and the thera-
peutic potential of NAD+ precursor supplementation (right). Type A exhibits few mutations, type B
has moderate mutations, and type C is characterized by numerous mutations. This diagram illustrates
that each mitochondrion contains three mtDNA strands, labeled 1, 2, and 3 sequentially from left to
right, with NAD+ precursor supplementation therapy resulting in a doubling of the mtDNA strand
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count. It should be noted that this depiction is a conceptual visualization intended to aid under-
standing of the mechanism and does not accurately reflect the actual biological system. Irreparable
mtDNA mutations (mtDNA strand No. 3) are eliminated via mitophagy. Mitochondrial dysfunction
is defined by the presence of mutations in 80% or more of the mtDNA. MDMR, mitochondrial DNA
mutation rate; MD, mitochondrial dysfunction.

7. Age-Related Alterations in mtDNA Mutations and Copy Number

Here, we provide a summary of the age-associated dynamics in mtDNA mutations and
copy number. Mutations were detected in the mtDNA of 28% of oocytes and 66% of cumu-
lus cells, demonstrating a markedly lower mutation burden in germ cells relative to somatic
cells [111,112]. On the other hand, the incidence of mtDNA mutations in sperm is excep-
tionally high [113,114]. Common mtDNA mutations include point mutations [115] and the
widely recognized 4977 bp deletion—often termed the “common deletion” [116]. Research
indicates that older women exhibit a significantly greater frequency of low-frequency point
mutations in their oocytes than younger women [115]. Although fertilization rates appear
comparable between older and younger women, blastocyst formation rates decline with
maternal age [85]. This finding suggests that despite successful fertilization, oocytes from
older women are less likely to develop into blastocysts [85]. In fact, mitochondrial function
at the morula stage of human embryos deteriorates with maternal age, impairing the transi-
tion from morula to blastocyst [117]. The increased frequency of mtDNA mutations in older
oocytes may deplete the energy reserves necessary for successful blastocyst progression.
Furthermore, the 4977 bp deletion has significant repercussions for mitochondrial archi-
tecture and functionality [116]. The concomitant loss of numerous genes can disrupt ATP
synthesis and compromise energy metabolism. Studies on cloned bovine oocytes suggest
that mtDNA deletions increase with age [97], though human studies present conflicting
evidence regarding the age-related accumulation of such deletions [116,118–120].

Next, it is well established that mtDNA content differs between the oocytes and embryos
of younger and older women. Multiple studies indicate that oocytes from older women
contain fewer mtDNA copies and a lower mtDNA content compared to those from younger
women [6,73,116,121–124]. Similar trends have been reported in bovine models [6,125]. In
contrast, embryos derived from older women exhibit an elevated mtDNA copy number
relative to their younger counterparts [126]. This suggests that mitochondrial DNA in older
women is more prone to mutations, necessitating an increased mtDNA copy number to meet
the augmented ATP production demand [126]. This compensatory mechanism may account
for the observed rise in mtDNA content in embryos from older women. Therefore, elevated
mtDNA copy numbers have been correlated with reduced embryo quality and viability [127].
Indeed, embryos with increased mtDNA content may show diminished implantation potential
during IVF [126,128–131]. Nonetheless, other studies report no significant association between
mtDNA copy number and implantation outcomes [132,133] or between ovarian aging and
the accumulation of mtDNA point mutations [111]. Although evidence remains conflicting,
embryos from older women may display elevated mtDNA copy numbers; however, this
increase alone is insufficient to guarantee a successful live birth without adequate energetic
reserves to sustain blastocyst development.

8. mtDNA Damage and Its Repair Mechanism

We initially present a summary of the mechanisms governing mtDNA repair in oocytes
(Figure 4). Among the mtDNA damage repair mechanisms, the BER pathway is critical
for maintaining mtDNA integrity, addressing damage caused by ROS and other genotoxic
insults [134,135]. The roles of Poly(ADP-ribose) polymerase (PARP) and polymerase in this
process are as follows: PARP1/OGG1 binary complexes detect single-strand breaks (SSBs)
or nicks caused by damaged bases that have been excised. Once activated, PARP1 catalyzes
the addition of poly(ADP-ribose) (PAR) chains to itself and nearby proteins using NAD+

as a substrate [136,137]. PARP1 catalyzes the cleavage of NAD+ into nicotinamide and
ADP-ribose. This modification recruits and stabilizes BER proteins at the site of damage,
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enhancing repair efficiency. Mitochondrial BER relies on specific DNA polymerases that
perform vital roles in the repair mechanism. POLG is the primary mitochondrial DNA
polymerase and plays a dual role in replication and repair. During BER, after the dam-
aged base is excised by a glycosylase and the resulting abasic site is processed by an AP
endonuclease, POLG fills the gap by incorporating the correct nucleotide. It also exhibits
proofreading activity, ensuring high fidelity during gap filling. Emerging evidence suggests
that additional polymerases, such as POLB, may transiently localize to mitochondria under
stress [65]. Therefore, PARP activity and polymerase function are tightly regulated to
maintain mitochondrial integrity. Dysfunction in these proteins, depletion of NAD+ levels,
or introduction of replication errors can lead to impaired BER, mtDNA mutations, and
mitochondrial dysfunction.
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indicates “ADP-ribose”. This figure illustrates only the involvement of NAD+ in the mechanism of
mtDNA damage repair by PARP1. See the text for steps of BER involving PARP and polymerases.

NAD+ synthesis involves ATP in several steps (the de novo pathway, the Preiss–
Handler pathway, and the salvage pathway) [132]. ATP is essential for NAD+ synthesis and
recycling, highlighting the interconnectedness of cellular energy metabolism and cofactor
availability. If ATP production fails to meet the demand for NAD+ consumption over
time, PARylation becomes compromised, preventing the completion of the mtDNA repair
process. Therefore, chronic activation of mitochondrial PARP1 can deplete NAD+ and ATP,
triggering mitochondrial dysfunction and eventual cell death (blue square in Figure 4) [138].
PARP1 enables effective mtDNA repair under physiological NAD+ concentrations but
impairs polymerase activity when NAD+ is scarce [139]. These findings indicate that aging
diminishes the capacity to repair mtDNA mutations.

Second, NAD+ also supports mitochondrial sirtuins, enzymes essential for metabolic
regulation, genomic stability, DNA repair, inflammation control, and longevity [140].
Sirtuins modulate mitochondrial enzymes involved in DNA repair processes such as
BER. Sirtuins catalyze lysine deacetylation, coupling it to NAD+ hydrolysis, generating
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O-acetyl-ADP-ribose and nicotinamide [141]. For example, SIRT1 has been proposed to
enhance the expression of nuclear respiratory factor 1 (NRF-1), NRF-2, and mitochon-
drial transcription factor A (TFAM), a key protein responsible for stabilizing mtDNA
and promoting its replication and transcription [142], via its deacetylation of peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Moreover, SIRT3
activates mitochondrial antioxidant enzymes like superoxide dismutase 2 (SOD2) and
glutathione peroxidase, reducing oxidative damage to mtDNA [143]. This helps main-
tain the integrity of the mitochondrial genome. Additionally, sirtuins rely on NAD+ for
their enzymatic activity, linking their function to cellular energy status and mitochon-
drial metabolism. Therefore, elevated NAD+ levels enhance sirtuin activity, promoting
efficient mtDNA repair, replication, and transcription. Furthermore, sirtuins play a
role in mitophagy [144], thereby removing mitochondria with extensively mutated or
damaged mtDNA. Changes in NAD+ levels due to aging or stress directly affect sirtuin
function, influencing health-span and cellular homeostasis. Beyond PARPs and sirtu-
ins, NAD+ serves as a cofactor for other enzymes, including ADP-ribosyltransferase
(ART), RNA polymerase, cyclic ADP-ribose hydrolase (CD38), and Sterile Alpha and TIR
Motif Containing 1 (SARM1) [145]. These enzymes regulate metabolism and maintain
intracellular equilibrium [145,146]. Excessive NAD+ depletion, resulting from metabolic
stress, culminates in ATP deficiency and cellular death. The roles of NAD+ and sirtuins
in oocyte protection and aging are gradually being elucidated.

Finally, we also outline the challenges in developing therapeutic strategies aimed at
enhancing mtDNA repair. Since NAD+ is continuously expended to sustain intracellular
homeostasis, oocytes necessitate perpetual replenishment to preserve diverse cellular func-
tions [147,148]. Age-related diseases have been causally linked to declining NAD+ levels,
and several preclinical interventions have demonstrated the benefits of NAD+ restora-
tion [139,145,149,150]. Indeed, in aged mice, oocyte quality improved following NAD+

replenishment [139]. Administering nicotinamide riboside (NR), a NAD+ precursor, to
mutant mice lacking critical NAD+ biosynthetic enzymes (indoleamine-2,3-dioxygenase
1 (Ido1) or quinolinate phosphoribosyl transferase (Qprt)) restored ovarian reserve and
enhanced oocyte quality [151]. Similarly, nicotinamide mononucleotide (NMN) supple-
mentation recovered NAD+ levels, improving oocyte quality and fertility in naturally aged
mice [152]. A four-week regimen of NMN supplementation conferred significant bene-
fits [139]. In a separate study, 40-week-old mice received NMN treatment for 20 weeks to
validate its efficacy [153]. In mice, 1 month corresponds to approximately 2.5 human years,
representing a relatively prolonged treatment duration for humans. ATP demand peaks
during spindle assembly in metaphase I [154], necessitating adequate NAD+ replenishment
for mtDNA repair [155]. The recent reviews from 2022 [147] and 2023 [145] offer compre-
hensive insights into NAD+ metabolism, ovarian aging, and the therapeutic promise of
NAD+-boosting strategies. They have explored the roles of NAD+, sirtuins, and PARPs in
fertility, with potential applications in embryo production programs [147]. However, the
efficacy of NMN supplementation varied among species, with porcine models showing
less pronounced benefits than mice [147]. The therapeutic efficacy of NAD+ precursor
supplementation may vary based on local NAD+ concentrations.

The variability of mtDNA mutations and the efficacy of NAD+ precursor supplemen-
tation must be carefully considered. As mentioned in the previous subsection (Figure 3,
left), the extent of mtDNA mutations can vary significantly among individual oocytes, even
within a single organism. In aged mice harboring type A and type B mitochondria, NMN
supplementation may partially ameliorate mtDNA mutations, promoting the predomi-
nance of wild-type mtDNA (Figure 3, right). This restoration of wild-type mtDNA may
improve spindle assembly, cleavage rates, blastocyst formation, and live birth outcomes.
However, in cases where type C mitochondria harbor numerous unrepairable mutations,
NMN supplementation may not yield comparable benefits. Type B mitochondria, with
intermediate levels of damage, may experience partial improvements following NMN
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administration. Therefore, NMN supplementation may not exert uniform effects across all
animal models, as oocytes exhibit varying degrees of mitochondrial dysfunction.

9. Conclusions

In developed nations, there is a growing trend toward delayed pregnancy and child-
birth, accompanied by an escalating demand for ART [139]. Advanced maternal age
remains one of the most significant clinical challenges in reproductive medicine, yet ef-
fective strategies to enhance oocyte quality are not fully elucidated [139,152]. This review
focuses primarily on mtDNA mutations and their repair mechanisms, following a con-
cise discussion of the free radical theory. Age-related mtDNA mutations are believed to
accumulate predominantly due to ROS-induced damage and deficiencies in repair path-
ways, ultimately leading to mitochondrial dysfunction [57,58]. The generation of ROS
and mtDNA damage are intricately connected, with overlapping effects on mitochondrial
health [145]. Quiescent oocytes—dormant for decades—are vulnerable to oxidative dam-
age [69,145]. mtDNA is subject to damage, replication, and replication errors, resulting in
heterogeneity and deletions [83,156]. Mitochondria harboring a high burden of mtDNA
mutations respond by upregulating their mtDNA copy number through compensatory
mechanisms. However, despite retaining fertilization potential, they remain inefficient
at ATP production and fail to support blastocyst formation [85,117]. As mtDNA damage
accumulates and repair capacity becomes overwhelmed or impaired, mutations continue
to increase with age.

Studies have identified evolutionarily conserved mechanisms of mtDNA inheritance,
such as bottlenecks during germ cell development and selective pressures against specific
mtDNA mutations during maternal transmission [103–105]. Nonetheless, investigations
into how aging affects mtDNA repair mechanisms are still in their early stages. Notably,
mtDNA exhibits limited capacity to repair double-strand breaks, relying heavily on PARP1
for the repair of single-strand breaks [136,137]. However, this repair process consumes
NAD+ as a substrate, potentially leading to ATP depletion over time, resulting in a para-
dox where oocyte function declines despite ongoing mtDNA repair. To preserve oocyte
function with aging, it is crucial to establish an environment that ensures the continuous
replenishment of NAD+ and ATP [145,147]. Nonetheless, the long-term administration of
drugs—equivalent to 2.5 to 12.5 years in humans, based on animal studies—is not a prac-
tical solution [139,153]. In oocytes that have remained quiescent for decades, short-term
antioxidant and NAD+ supplementation may be inadequate to correct pre-existing mtDNA
mutations. Moreover, the mtDNA within individual mitochondria is highly heterogeneous,
complicating repair efforts. While NAD+ supplementation may benefit mitochondria with
relatively low mutation loads, those with a heavy mutation burden remain challenging to
restore, perpetuating mitochondrial dysfunction. Therefore, the administration of NMN
requires careful consideration of dosage, duration, delivery method, and the extent of
pre-existing mtDNA mutations.

In conclusion, the accumulation of mtDNA mutations, coupled with the decline in
repair mechanisms, contributes to reduced ovarian reserve and developmental competence,
heightening the risk of aneuploidy. There is an urgent need for clinically viable and practical
approaches to assess the degree of mtDNA mutations and repair capacity in oocytes.

10. Future Direction

The outcomes of ART in older women can be assessed through a range of clinical,
biological, and demographic parameters [157]. Clinical indicators include the number
and quality of oocytes retrieved, the fertilization rate, the number and quality of embryos
reaching the blastocyst stage, the implantation rate, the confirmation of pregnancy via
ultrasound evidence of a gestational sac, and the live birth rate per ART cycle. Biological
and molecular parameters encompass hormonal levels, such as estradiol and progesterone
during stimulation cycles, endometrial thickness, anti-Müllerian hormone levels, follicle-
stimulating hormone levels, antral follicle count as visualized on ultrasound, and embryo
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genetic assessments, including preimplantation genetic testing for aneuploidy. Health
and demographic factors, including the woman’s age, body mass index, comorbidities,
and lifestyle behaviors such as smoking and alcohol consumption, further influence ART
success. Moreover, follicular fluid, integral to oocyte development and maturation, serves
as a biochemical mirror of the follicular microenvironment, wherein its constituent factors
may serve as predictive indicators of ART outcomes. Recent review articles have explored
the potential of evaluating oocyte and granulosa cell function by measuring markers of
oxidative stress, cytokines, glycolysis, oxidative phosphorylation, metabolites, lipid profiles,
autophagy, ferroptosis, and apoptosis in follicular fluid [19,158,159].

Unlike nuclear DNA, mtDNA lacks a mechanism for repairing double-stranded
breaks. Instead, it has evolved mechanisms such as base excision repair for single-
stranded breaks and mitophagy, which ensures the quality control of oocytes. Mito-
chondria were evolutionarily adapted to assume humans would undergo pregnancy
and childbirth during only 20 to 30 years of a typical 50-year lifespan. Additionally, it
was unforeseen that mechanisms to maintain mtDNA integrity would need to function
effectively over such an extended lifespan. In this review, we emphasize the potential of
real-time evaluation of mitochondrial DNA damage, repair, and replication mechanisms
to improve the predictive accuracy of ART outcomes. Given the critical role of mito-
chondrial dysfunction, oxidative stress, mtDNA mutations, and compromised repair
pathways in ovarian aging, identifying pharmacological interventions to target these
molecular pathways is paramount in addressing ovarian aging. Direct assessment of
mtDNA mutations in oocytes remains challenging, highlighting the pressing need for
novel biomarkers capable of distinguishing between severe, irreversible damage and re-
versible damage based on the extent of mtDNA mutations. For instance, measuring ATP
and NAD+ levels in follicular fluid and culture supernatants may offer valuable insights,
as these biomarkers reflect mitochondrial activity crucial for oocyte function. Further
studies are essential to determine whether the combined analysis of these biomarkers
can significantly enhance ART outcomes.

11. Materials and Methods
Search Strategy and Selection Criteria

A narrative review was conducted using the PubMed and Google Scholar databases to
identify relevant studies published up to 30 September 2024, employing the keywords listed
in Table 1. This review includes both human and animal data, with search terms combined
using the Boolean operators AND and OR. Additionally, a manual search of reference lists
from pertinent publications was performed. Eligible studies comprised original research
articles in English and reference lists from review papers. Duplicate records, non-relevant
literature, and non-English publications were excluded. Initial records were identified
through electronic searches, and titles and abstracts were screened to exclude irrelevant
studies after duplicates were removed. In the final eligibility assessment, full-text articles
were reviewed to exclude studies lacking comprehensive data. The authors independently
evaluated the relevance of the selected articles before proceeding with an exhaustive
full-text review, resolving any uncertainties or disagreements through discussion. The
study selection process is depicted in the flowchart in Figure 5, detailing the inclusion and
exclusion criteria.
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Table 1. The keyword and search term combinations.

Search Mode The Keyword and Search Term Combinations

Search term 1 mitochondria
Search term 2 aging
Search term 3 oocytes OR granulosa cells OR cumulus cells
Search term 4 mtDNA mutations OR mtDNA repair
Search term 5 oxidative stress OR reactive oxygen species OR ROS
Search term 6 nicotinamide adenine dinucleotide OR NAD OR NADH OR NADPH
Search term 7 poly ADP-ribose polymerase OR PARP1

Search Search term 1 AND Search term 2 AND Search term 3
Search term 1 AND Search term 2 AND Search term 3 AND Search term 4
Search term 1 AND Search term 2 AND Search term 3 AND Search term 5
Search term 1 AND Search term 2 AND Search term 3 AND Search term 6
Search term 1 AND Search term 2 AND Search term 3 AND Search term 7
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