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Abstract

Joint actions are defined as coordinated interactions of two or more agents toward a shared goal, often requiring different and com-
plementary individual contributions. However, how humans can successfully act together without the interfering effects of observing 
incongruent movements is still largely unknown. It has been proposed that interpersonal predictive processes are at play to allow the 
formation of a Dyadic Motor Plan, encompassing both agents’ shares. Yet, direct empirical support for such an integrated motor plan is 
still limited. In this study, we aimed at testing the properties of these anticipated representations. We collected electroencephalogra-
phy data while human participants (N = 36; 27 females) drew shapes simultaneously to a virtual partner, in two social contexts: either 
they had to synchronize and act jointly or they performed the movements alongside, but independently. We adopted a multivariate 
approach to show that the social context influenced how the upcoming action of the partner is anticipated during the interval preced-
ing the movement. We found evidence that acting jointly induces an encoding of the partner’s action that is strongly intertwined with 
the participant’s action, supporting the hypothesis of an integrative motor plan in joint but not in parallel actions.

Keywords: joint action; EEG; multivariate analyses; motor cognition; predictive processing

Received: 10 April 2024; Revised: 14 October 2024; Accepted: 29 November 2024
© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
A huge variety of human activities can only be accomplished 
through coordinated interactions with others. Think of two tango 
dancers: to perform smoothly and elegantly, they need to coor-
dinate their actions in time and space, constantly adjusting their 
movements to match their partners. Such concerted activities are 
often referred to as Joint Actions (Sebanz et al. 2006), situations in 
which two or more agents interact in order to achieve a shared 
goal, as, for example, performing a “pirouette.” However, the cog-
nitive mechanisms allowing for such coordination are far from 
being fully understood (Sacheli et al. 2018).

One crucial issue in Joint Actions is that of visuomotor inter-
ference (VMI; Kilner et al. 2003, Blakemore and Frith 2005). 
Observing another agent performing a movement is known to 
activate the corresponding motor plan in the observer (Rizzolatti 
et al. 1996), influencing their movement execution. An incon-
gruent observed action produces a disruption of the observer’s 
motor plan and, consequently, poorer motor performance (Brass 
et al. 2001, Cracco et al. 2015, Forbes and Hamilton 2017, Cracco 
and Brass 2019). Notably, acting jointly toward a shared goal 
often requires the coordination of complementary and incongru-
ent movements (Sartori and Betti 2015). It has been proposed 
that interference is overcome by generating a Dyadic Motor Plan 
that integrates the anticipated behavior of the other into one’s 

own motor plan (Sacheli et al. 2018). This perspective is in line 
with the idea of engaging in a “we-mode” during social interac-
tions (Gallotti and Frith 2013), capturing task representations that 

go beyond concurrent representations of own and others’ indi-
vidual action contributions by also specifying relations between 

them that emerge at the level of the group (Kourtis et al. 2019, 
Marschner et al. 2024). Indirect evidence for such an integration 
process comes from behavioral data on reduced VMI when act-

ing jointly compared to acting alongside but independently (i.e. in 

parallel), quantified in faster reaction times and lower distortions 

in the kinematic profiles of the executed movements (Sacheli et al. 
2018, 2019, Clarke et al. 2019, Rocca et al. 2023).

Neurocognitive studies addressing interpersonal coordination 

mostly focused on how acting jointly modulates motor activa-
tion following an observed movement, thus inferring predictive 
processes during action unfolding (Bolt and Loehr 2021). Only 

few electroencephalography (EEG) studies investigated the inter-
val preceding the overt movements. Some reported univariate 

differences in specific event-related potentials between joint and 

individual action contexts, suggesting an anticipation of the part-
ner’s contribution supported by dedicated attentional and motor 
processes (Kourtis et al. 2013, 2014). Another study highlighted 
the role of the relational properties between the individual agents’ 
contributions, showing that even in the absence of information 
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concerning the individual movements, knowing whether they will 
be the same or different allows for the formation of cognitive and 
sensorimotor “we-representations” that benefit the performance 
of the coordinated action (Kourtis et al. 2019). Altogether, these 
studies provide initial evidence for differences in neural activity 
associated with different task demands while preparing for Joint 
Actions. However, they do not test directly for differences between 
the same pairs of movements performed in a coordinated (i.e. 
joint) or independent manner (i.e. parallel).

To fill this gap, we developed a novel Paired Drawing Task, dur-
ing which we asked participants to draw the instructed shapes 
either synchronously with a virtual partner (i.e. Joint social con-
text) or in parallel. By controlling visual, motor, and attentional 
demands of the task, we ensured differences in how the action 
plans are represented during the preparation interval could only 
be attributed to their relevance for the upcoming Joint or Par-
allel action. We set out to address two main questions. First, 
we tested whether drawing jointly reduced VMI, as reported in 
previous behavioral studies (Sacheli et al. 2018). Second, in line 
with the outlined theoretical framework (Sacheli et al. 2018) and 
with the existing evidence (Kourtis et al. 2013, 2019), we hypothe-
sized that acting jointly induces the formation of dedicated neural 
representations, proactively anticipating and tying together each 
agent’s contribution, that are fundamentally distinct from simply 
encoding two action plans. Therefore, to directly tap into the rep-
resentational content of the neural activity recorded during the 
preparation interval, we implemented a multivariate approach 
to investigate what information was decodable from the spatial 
and temporal activation patterns. We reasoned that, if during 
Joint Actions the upcoming movements of the participant and the 
partner are represented intertwined, it should be difficult to dis-
tinguish which specific shape each of the two is about to draw, 
leading to lower classification accuracies when they are drawing 
jointly. This pattern of results would be indicative of the emer-
gence of an integrative representation, as proposed by the Dyadic 
Motor Plan framework.

Materials and methods
Participants
Forty participants were initially recruited, and gave their informed 
consent prior to the beginning of the experiment in accordance 
to the approved application to the Ethical Committee of Hum-
boldt University (reference number: 2022-45). Eligibility criteria 
included age between 18 and 35 years of age, right-handedness, no 
history of neurological or psychological conditions, no limitations 
to upper limb mobility, and suitability for EEG procedures. Sam-
ple size for this experiment was not computed a priori, but chosen 
to be analogous to that of other studies using similar analytical 
approaches (Wolff et al. 2020, Muhle-Karbe et al. 2021, Häberle 
et al. 2023).

Two participants were discarded because of poor EEG data 
quality (>50% of trials dropped due to excessive noise) and tech-
nical issues during data collection. Exclusion criteria based on 
behavioral performance caused the removal of one participant 
due to accuracy below 60% in response to catch trials, and one par-
ticipant because their mean delta time in the Joint task exceeded 3 
SDs from the group mean, implying poor compliance to the exper-
iment instructions (see below for the full explanation of the task 
and measures considered). Following exclusions, the final sample 
consisted of 36 participants (Mage = 24.56, ±4.86; 27 females and 9 
males), all right-handed and with normal or corrected-to-normal 

vision acuity. Participants received a compensation of 30€ for their 
time.

Materials
Each participant performed the task sitting comfortably at 
approximately 90 cm from a computer monitor (resolution 3840 
× 2160, diagonal display length ∼69.47 cm, set on a 30 Hz refresh 
rate to ensure exact timing). They were asked to use their 
right hand to draw on a graphic tablet oriented vertically (One 
by Wacom, model number CTL-472, with an active area of 
15.2 × 9.5 cm). Stimuli presentation, collection of responses from 
both the keyboard and the tablet, as well as the interaction with 
the EEG recording software, were managed through the Psychopy 
toolbox, version 2022.1.3 (Peirce 2007). The continuous trace pro-
duced by the pen on the graphic tablet was displayed live on the 
monitor, as a white dot (8 pixels radius) moving on a gray back-
ground, with a sampling rate of 30 Hz (i.e. the position of the dot 
was updated according to the new coordinates of the pen on the 
tablet every ∼33 ms). The entire surface of the graphic tablet was 
mapped on the right hemispace of the monitor, meaning that the 
left edge of the tablet corresponded to the vertical midline of the 
monitor. Participants started the experiment with extensive prac-
tice to familiarize with the experience of drawing on the tablet, 
and were encouraged to explore the limits of the drawing space 
to grow accustomed to the correspondence between the surface 
of the tablet and the monitor. A solid black line (4 pixels) was 
depicted along the midline, spanning 1200 pixels from the cen-
ter of the monitor (11.81 degrees of visual angle). At the top and 
bottom of this line were two black circles of 100-pixel diameter 
(1 degree of visual angle), which we will refer to as starting and 
ending points, respectively (Fig. 1).

Participants were informed that they would perform their task 
together with a partner. They would not meet or interact directly 
with the partner, but only see their drawings appear on the left 
side of the monitor, while their own drawing appeared on the 
right side. Drawings of both the participant and the virtual part-
ner began at the starting point and reached the ending point. Both 
agents drew either a half circle or a half diamond, depending 
on the specific instructions for each trial. In reality, the draw-
ings of the partner consisted of a set of pre-recorded, hand-free 
drawn half circles and half diamonds. This was done to maximize 
the feeling that these trajectories were the products of another 
human agent. It is worth pointing out that the mere belief that 
an observed motion trajectory is human-generated is sufficient 
to treat it as biological (Gowen et al. 2016, Chandler-Mather et al. 
2020). Based on the existing literature, we confidently assumed 
the kinematics of our prerecorded trajectories would be perceived 
as the product of human agents. To increase the perceived flu-
idity of the movement, the trajectories were displayed as thin 
white lines (5 pixels) originating from the starting point and pro-
gressively extending over time to reach the end point, with two 
new (x, y) coordinates being added to the display on each screen 
refresh. However, their presentation was carefully controlled in 
order to match specific timing criteria (see below).

Procedure
Familiarization phase
All participants started the experiment with a familiarization 
phase to get used to drawing with the tablet, during which they 
were allowed to draw freely. When they felt comfortable with it, 
they moved on to the next phase, in which they learnt how to 
accurately draw the shapes required for the experiment. They 
were instructed to guide the tip of the pen in correspondence 
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Figure 1. Behavioral paradigm.

Note. Upper panel: Timeline of one example trial. The cue instructs the participant to draw a circle, while the partner will draw a diamond. The shapes are 
executed after the starting point turns green. Bottom left panel: Congruency manipulation. Depending on the combination of shapes drawn by the participant 
and the partner, trials could be congruent or incongruent. Bottom right panel: Social context manipulation. Participants carried out a Joint and a Parallel task, 
requiring to synchronize the drawing time with the partner or to draw consistently in 2 s, respectively.

of the starting point, triggering the appearance of a cue above 
it, on the right-hand side. The cue indicated the shape to draw: 
these could be either half a circle or half a diamond, initiating 
at the starting point and reaching the end point at the bottom of 
the midline. The cue could be one of four symbols (#, $, %, &). 
Each participant was assigned one of 6 possible cues combina-
tions. Namely, for the whole experiment two symbols indicated 
circles, and two symbols indicated diamonds. At the beginning 
of each block, one symbol for each shape was instructed to the 
participant, and the cue pairs kept alternating across blocks.

The cue stayed on display for 200 ms, followed by a cue-target 
interval with a duration uniformly distributed between 1800 and 
2000 ms. Then, the starting point would change its color to green, 
prompting the participant to start drawing (i.e. go signal). Dur-
ing this first practice phase (i.e. “Shape familiarization”), a gray 
shaded area appeared on the monitor to guide the participant in 
their drawing, indicating the area boundaries within which the 
drawing would be considered accurate (i.e. an area of 100 pixels 
surrounding the perfect circle and diamond trajectories from the 
starting to the ending point). To make this learning phase even 
more effective, the leading tip of their drawn trajectory would be 
large (15 pixels) if its location was within the indicated shaded 
area, whereas it would be as small as the size of the remaining 

trailing trace if outside of the provided boundaries. Participants 
completed six of such familiarization trials, without any time 
constraints.

Once the expected shapes were learnt, participants completed 
12 additional trials (6 for each shape) without the aid of the 
shaded area to guide them (i.e. “Execution practice”). They were 
instructed to replicate the same shapes they practiced in the pre-
vious step, and received analogous online feedback in the form 
of the pen tip diameter according to the same criteria. Here, they 
were additionally required to draw their shapes in approximately 
2 s, and to initiate the movement as soon as possible when the 
starting point turned green. Feedback was provided after each 
trial, evaluating the drawing based on three criteria: (I) the tra-
jectory was considered accurate if at least 60% of its coordinates 
fell within the ideal trajectory boundaries; (II) the total drawing 
duration was between 1.6 and 2.4 s; and (III) the starting time (i.e. 
interval between the starting point turning green and the tip of 
the pen leaving it) was <800 ms.

Next, participants completed an “Observation practice” phase, 
during which they were not required to draw, but were introduced 
to the drawing performed by the virtual partner on the left side 
of the monitor. Analogously to the Execution practice, the trial 
started when the tip of the pen was placed within the starting 



4  Formica and Brass

point, this time triggering the appearance of a symbol above it on 
the left side. This indicated the movement that the virtual part-
ner would perform after the cue-target interval (1800–2000 ms). 
After the go signal and a delay spanning from 400 to 600 ms, one 
of the predrawn trajectories started being displayed, for a total 
duration ranging from 1.6 to 2.4 s. In 4 trials out of 12, the trajec-
tory being displayed did not match the identity of the presented 
cue (i.e. “catch trials”). Participants were instructed to monitor 
the performance of their virtual partner, and to press the “b” key 
on the keyboard as soon as they noticed a mistake in the shape 
being drawn. The goal of introducing catch trials was to ensure 
that attention was allocated to the action of the partner, and that 
its cued identity was retained during the whole delay interval.

Once these task subcomponents had been practiced individ-
ually, they were combined and performed together. Namely, for 
each trial, two symbols would appear as cues, one indicating a 
shape for the participant and one for the partner. These could be 
the same (i.e. congruent trials) or two opposite shapes in the case 
of incongruent trials. After the go signal, the goal of the partici-
pant was to draw their shape, and also to monitor the drawing of 
the partner to detect potential catch trials.

Social context manipulation: practices and main tasks
The core social manipulation in our experiment consisted of a 
Joint and a Parallel condition, administered in a block design to 
all participants, with their order counterbalanced. The two social 
contexts were designed to be as similar as possible in terms of 
visual input, amount, and relevance of the information provided 
to the participant in each trial, motor requirements, and over-
all movement durations. What distinguished the two conditions 
was the extent to which the participant had to online adjust their 
movement to that of the partner. Namely, in the Joint social con-
text, the requirement for participants was to draw accurately, and 
to synchronize their drawing time to that of the partner, with the 
goal of reaching the end point simultaneously. On the contrary, 
in the Parallel context participants had to draw accurate trajec-
tories, trying to keep their timing consistent to approximately 2 s, 
irrespective of the drawing time of the partner. In other words, 
the specific kinematic properties of the partner’s movement were 
behaviorally relevant for the participants only during the Joint 
task, as they had to adjust their behavior to the speed of the part-
ner’s movement, whereas in the Parallel task only the identity of 
the shape drawn by the partner had to be monitored to detect 
catch trials (Fig. 1).

Each of the two conditions was preceded by a task-specific 
practice phase. Blocks of 12 trials (3 for each combination of 
shapes between participant and partner, namely both circles, both 
diamonds, circle and diamond, diamond and circle) were admin-
istered. Two trials in each block were catch trials (i.e. the partner 
drew the opposite shape to that indicated by their cue). The per-
formance in these practice trials was again measured according 
to three criteria: (I) the trajectory was considered accurate if at 
least 60% of its coordinates fell within the ideal trajectory bound-
aries; (II) the starting time of the participant’s drawing was within 
800 ms from the go signal; if the starting time exceeded 800 ms, 
the trial was interrupted and considered an error; (III) the draw-
ing time was in accordance with the task goals. More specifically, 
in the Joint context, a trial was considered good with respect 
to timing if the difference (i.e. delta) between the moment the 
participant and the partner reached the end point was below 
200 ms. Small deltas indicate good synchronization to the move-
ment speed of the partner. On the contrary, the Parallel context 

required participants to be consistent in their own timing, and 
trials were considered timely if the drawing was within 200 ms 
from the instructed 2 s duration. After each sequence of 12 prac-
tice trials, the performance in the block was evaluated. If across 
trials the average trajectory accuracy was above 60%, there were 
no more than two trials with slow starting time, at least one 
catch trial was correctly detected, and the task-specific timing 
requirement was fulfilled, the practice ended and the main task 
would start. Otherwise, another practice block would start, up to 
a maximum of eight blocks. On average, 2.6 (±1.85) blocks were 
completed for the Joint context, and 2.4 (±2.02) for the Parallel 
context. The number of practice blocks needed for the two tasks 
did not differ significantly across participants (W = 182.5, P = .65, 
Common Language Effect Size (CLES) = 0.57).

Following the successful completion of the task-specific prac-
tice, 6 blocks of 48 trials were completed for each of the 2 
social contexts. Each participant completed 60 trials for each con-
text and shape pair combination, plus 12 additional catch trials, 
resulting in a total of 576 trials. The trial structure was identical 
to the practice, with the only difference that feedback was pro-
vided only for missed catch trials (as a message stating that “your 
partner drew the wrong shape!”) and for trials with slow starting 
time (“You waited too long to start drawing. Try to start drawing 
as soon as the starting point turns green!”). Trials with a slow 
start were immediately interrupted and repeated at the end of 
the block (maximum once). In each block of the main task, eight 
were catch trials, to ensure in both social contexts participants 
retained the cue identity for the partner’s shape throughout the 
whole trial, and allocated comparable attention to the drawing of 
the partner. Feedback was provided at the end of each block as 
the average accuracy in terms of trajectory, timing, and detection 
of the partner’s mistakes.

Crucially, timing parameters were adjusted carefully during 
the Joint and Parallel contexts, in order to characterize the differ-
ent task requirements. In the Joint task, the movement duration 
of the partner was uniformly distributed from 1.8 to 2.2 s. In the 
Parallel task, the movement duration of the partner was sampled 
from a slightly larger distribution, spanning from 1.6 to 2.4 s. The 
reason for this discrepancy was to ensure participants could not 
rely on the movement duration of the partner to fulfill the timing 
requirements of the Parallel task (i.e. in some trials the partner 
would be too fast or too slow with respect to the accepted tim-
ing criterium), and therefore ensuring a difference in how the two 
tasks were approached and performed, while keeping all other 
factors equal.

Throughout the whole experiment, another timing parameter 
was updated after each block. The participant’s starting times (i.e. 
time between the go signal and the pen tip leaving the starting 
point) were averaged at the end of each block. This value was 
then used in the subsequent block to adjust the starting time 
of the partner’s movement, sampled from a uniform distribu-
tion centered on the averaged starting time of the participant, 
and spanning ±100 ms. While keeping constant for the whole 
experiment the maximum allowed starting time of 800 ms, this 
adaptive starting time for the partner’s movement (1) guaranteed 
that the partner’s performance was credibly attributed to another 
human agent, and (2) reduced the likelihood of participants wait-
ing for the partner’s drawing to start, in order to detect potential 
catch trials, before proceeding to execute their own movement. 
This set-up ensured that drawing and monitoring of the partner’s 
performance happened simultaneously.

After the preparation and the EEG cap set-up (∼40 min), the 
total duration of the experiment, including the familiarization 
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phase, the two task-specific practices, and the two main tasks, 
was of approximately 90 min. Participants could take a self-paced 
break between each block of the main task, and a longer break 
was encouraged after the end of the first main task, in order to 
allow participants to relax before learning and practicing the sec-
ond task. At the end of the experimental phase, the EEG cap was 
removed and a short debriefing was provided to the participants.

Experimental design and behavioral analyses
The experiment consisted of the within-subject factor Social con-
text (Joint vs Parallel) and the within factor Combination, with 
four levels corresponding to the crossing of the shape drawn by 
the participant and the shape drawn by the partner (CC: both 
agents draw circles, DD: both agents draw diamonds, CD: the 
participant draws a circle and the partner a diamond, DC: the 
participant draws a diamond and the partner a circle; the first 
letter always indicates the shape of the participant, and the sec-
ond the shape of the partner). Crucially, the four combinations 
could be grouped for subsequent analyses in the factor Congru-
ency, with the two levels Congruent (combinations CC and DD) 
and Incongruent (combinations CD and DC).

With respect to general behavioral performance in the two 
social contexts, we compared some indicators to evaluate 
whether participants approached the two tasks differently. First, 
we compared accuracy in response to catch trials between the 
two contexts by means of a nonparametric Wilcoxon signed-rank 
test (due to violated normality assumption, Shapiro–Wilk test 
P < .05). Then, we quantified whether the timing requirements 
of the two contexts were correctly implemented. For the Joint 
task, we expected average delta times to not differ significantly 
from 0, and hence we tested for this comparison with a one-
sample t-test. Analogously, in the Parallel task participants were 
instructed to draw consistently in 2 s, thus we compared the 
average duration of their movement (from the moment the pen 
left the starting point to the movement it reached it) with this 
instructed duration. All statistical comparisons were carried out 
with the Python toolbox Pingouin version 0.5.3 (Vallat 2018) unless 
otherwise specified.

Trajectory analyses
With respect to overt motor behavior, our main goal was to quan-
tify the VMI elicited by the partner’s movement on the drawing of 
the participant, and to investigate whether this was influenced 
by the social context manipulation. Trajectories were recorded 
as the collection of (x, y) coordinates covered by the tip of the 
participant’s pen from the moment it left the starting point (i.e. 
beginning of the drawing action) to the moment it reached the 
ending point. Only trajectories recorded during noncatch trials, 
extending fully from the starting point to the ending point, were 
used for this analysis.

As one new pen coordinate was sampled at the refresh rate 
(30 Hz, one sample each ∼33 ms), trajectories recorded in each 
trial had different number of data points, depending on the over-
all drawing duration. Therefore, the first step to make trajectories 
comparable across trials and conditions was to interpolate and 
resample them to the same number of data points. For each tra-
jectory (i.e. each trial), we fitted a cubic spline (with the default 
settings of the function interpolate. CubicSpline() from the scipy 
package), and sampled 100 points from it. Next, we visually 
inspected all the interpolated trajectories and discarded those 
in which the participant made gross errors (e.g. the pen slipped 
from their hand resulting in a meaningless scribble). On average, 
gross errors were identified in 5.45 (±6.88) trials per participant, 

corresponding to 1.13% (±1.41). Notably, we confirmed that this 
trimming procedure did not result in discarding more trials in 
any specific experimental condition, by submitting the count of 
discarded trials for each participant and condition to a General-
ized Linear model with factors Social context and Congruency, 
using a Poisson distribution and Sum contrast coding (The Jamovi 
Project, 2023). We found no significant effect (all Ps > .21), indi-
cating that participants did not commit more gross errors in any 
specific experimental condition.

The visual inspection implemented was agnostic with respect 
to the shape indicated by the cue. In other words, we did not 
visually discard trajectories based on whether the drawn shape 
matched the instructed one or not. To objectively quantify such 
swap errors, for each trajectory we identified the rightmost coor-
dinate point, and used it as knot to fit a linear and a quadratic 
univariate spline (interpolate.LSQUnivariateSpline from the scipy 
package, with an order of 1 and 2, respectively). Practically, we 
fitted two straight lines or two curves between the identified right-
most point, and the first and last point of the trajectory. Linear fits 
should approximate diamonds better, whereas quadratic fits were 
expected to better capture circles. Then, for each trial we checked 
which of the two fits performed better (i.e. had lower residuals) 
and marked as swap errors trajectories in which the fit incon-
sistent with the instructed cue had lower residual values. This 
resulted in an average of 4.22 (±7.43) trials marked as swap errors 
per participant, corresponding to 0.92% (±1.62). Again, we tested 
whether participants committed more swap errors in any experi-
mental condition by means of a Poisson Generalized Linear Model, 
with factors Social context and Congruency (The Jamovi Project 
2023). We found no significant effect (all Ps > .150). Since it cannot 
be disentangled whether swap errors were due to an inaccurate 
retention of the cue identity, or were the result of VMI, and since 
they did not differ in number across conditions, we discarded 
these trials from subsequent analyses. Overall, we retained for 
analyses an average of 462.08 (±15.11) trajectories per participant 
(115.52 ±4.24 for each Social context × Congruency condition).

VMI in continuous movements has been defined in previous 
work as the variability in movement trajectories (Kilner et al. 
2003). To quantify VMI in our task, we extracted for each trial 
an index of distortion of the drawn trajectory from a condition-
nonspecific template. For each participant, we first computed 
a template circle and a template diamond, by averaging all 
instances of each of the two shapes, across all experimental con-
ditions. Then, we measured the area subtended by the trajectory 
drawn in each individual trial and the corresponding template 
shape. This resulted in a single value per trial, indicating how 
distant the trajectory was from the participant-specific average 
shape template, with larger values indicating larger deviations 
from the template (Fig. 4, left panel). Because the resulting dis-
tribution of these values severely violated normality, we applied a 
Box-Cox transformation (Pek et al. 2018, Atkinson et al. 2021), as 
implemented in the scipy.stats package (Virtanen et al. 2020). The 
optimal lambda was estimated to be 0.336, and the transformed 
data successfully approximated normality (skewness = −0.037, 
kurtosis = −0.164). Therefore, we fitted this Box-Cox transformed 
distribution to a Linear Mixed Model using the lme4 package in R 
(Bates et al. 2014). We included as fixed effects Social context, Con-
gruency, and their interaction; and we included a random inter-
cept for each participant [in lme4 notation: Area ∼ SocialContext 
* Congruency + (1 | Subject)], setting a Sum contrast coding for 
both predictors (−1, 1). Notably, adding random slopes to the 
model equation resulted in failure of model convergence, and 
therefore we implemented the simple intercept model. Visual 
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inspection of the residuals did not reveal a deviation from nor-
mality. P-values were computed with the Satterthwaite-corrected 
degrees of freedom (Kuznetsova et al. 2017).

Additionally, based on the Dyadic Motor Plan framework and 
previous evidence linked to it (Sacheli et al. 2018, 2019, Clarke 
et al. 2019), we formulated also the more specific and directional 
hypothesis of larger distortions in incongruent trials of the Paral-
lel task. To test it, we computed the Congruency Effect (i.e. mean 
distortion in incongruent trials—mean distortion in congruent tri-
als), separately for each of the two tasks. We then compared the 
Congruency Effects across Tasks with a paired-samples one-tailed 
t-test, assuming larger values for the Parallel task.

To ensure distortions in the drawn trajectories are not caused 
by confounding factors other than the target experimental 
manipulations, we performed two additional control analyses. 
First, we added to the model described in the previous para-
graph an additional fixed effect, namely the centered drawing 
time [in lme4 notation: Area ∼ SocialContext * Congruency * Draw-
ingTime + (1 | Subject)]. The rationale for this control analysis was 
to rule out that larger distortions could be due to faster draw-
ing performance, akin to a speed-accuracy trade-off. Second, we 
tested for the effect of the order in which the two tasks were 
performed. Namely, participants performed the two tasks in a 
blocked fashion, with the order of the two tasks counterbalanced 
across participants. With this control analysis, we aimed at check-
ing that the VMI was not systematically influenced by the order in 
which the two tasks were administered. To this goal, we fitted the 
model Area ∼ SocialContext * Congruency * TaskOrder + (1 | Subject).

EEG recordings and preprocessing
Electrophysiological data were recorded with a Biosemi ActiveTwo 
system, with 64 Ag-AgCl electrodes arranged in accordance with 
the international 10-20 system (Klem et al. 1999). The set-up 
included a Common Mode Sense–Driven Right Leg (CMS–DRL) 
electrode pair, two external electrodes attached to the left and 
right mastoids, and four electrodes (two at the outer canthi of 
both eyes, one above and one below the left eye) used to moni-
tor horizontal and vertical eye movements. Data were recorded at 
a sampling rate of 1024 Hz, and we aimed at keeping impedance 
below 10 kΩ.

All preprocessing steps were carried out using the MNE Python 
toolbox version 1.3.1 (Gramfort 2013). First, to achieve the max-
imum signal-to-noise ratio provided by the CMS–DRL set-up, 
we initially re-reference the data to the electrode POz (spatially 
located in the cap between CMS and DRL). Then, we implemented 
a bandpass FIR filter on the continuous data, in the frequency 
interval 0.1–40 Hz (Hamming window with 0.0194 passband ripple 
and 53 dB stopband attenuation, with lower and upper transi-
tion bandwidths of 0.1 and 10 Hz, respectively). Next, we used 
the NoisyChannels function, available in the toolbox PyPrep ver-
sion 0.4.2 (Bigdely-Shamlo et al. 2015, Appelhoff et al. 2022) to 
detect bad channels in the continuous recordings. We adopted 
the default parameters of the toolbox and searched for bad chan-
nels according to the whole range of methods available, namely: 
low signal-to-noise ratio, channels with poor correlation with the 
surrounding ones, channels containing abnormally high ampli-
tudes, excessive high frequency noise, flat or near-flat values, and 
channels poorly predicted by the others (ransac approach). This 
comprehensive procedure resulted in an average of 3.64 (±1.83) 
channels being flagged as bad across participants. Note that for 
all participants the channel POz was indicated as flat due to it 
being used as reference.

Our main interest was to test for the preparatory neural 
representations associated to dyadic movements. Therefore, we 
focused our analyses in the delay period between the cue and 
the go signal. The continuous data were epoched time-locked 
to the onset of the cue (initially from −500 to 3000 ms), linearly 
detrended, and downsampled to 128 Hz. To remove electrophys-
iological activity associated with eye movements, an Indepen-
dent Component Analysis was performed and components were 
selected to be discarded when they correlated with the activ-
ity recorded by the electrooculogram located above the left eye 
(MNE function ica.find_bads_eog()). On average, 1.25 (±0.6) com-
ponents were discarded per participant. After re-referencing to 
the average of all electrodes, we proceeded to discard trials in 
which the 150 μV peak-to-peak amplitude threshold was exceeded 
(on average, 3.28% ±4.83% trials per participant). Finally, epochs 
were baseline corrected to the average signal in the time window 
200-0 ms preceding the cue onset.

As the focus of our hypotheses was the delay period following 
the cue and preceding the go signal, both regular and catch tri-
als were included in the analyses. As we aimed at including in the 
analyses only trials with an accurate representation of the other’s 
shape during the cue-target interval, catch trials that were not 
correctly identified, and regular trials that were indicated to be 
catch trials were excluded from the analyses. For each individual 
condition (crossing of the factors Social context and Congruency), 
we retained an average of 139.74 (±6.36) trials per participant, 
corresponding to 97.04% (±4.42) of available trials.

EEG decoding analyses
Decoding action combinations in congruent and incongruent 
trials
In line with the Dyadic Motor Plan hypothesis (Sacheli et al. 2018), 
we expected that, during the preparation interval of the Joint 
condition, the upcoming participant’s and partner’s movements 
would become integrated in a conjoined representation. We rea-
soned that this would result in low decoding accuracies when 
trying to discriminate incongruent combinations (CD vs DC), as 
both would include the same set of two movements. On the con-
trary, information concerning the two movements is thought to 
be maintained during Parallel actions in a less intertwined fash-
ion, leading to higher discriminability. Given the complete overlap 
between the two upcoming actions in the Congruent combination 
pairs, we expected high discriminability in both Social contexts. 
Therefore, to test this hypothesis, we performed two-way classifi-
cations on the broadband EEG data, with the goal of classifying the 
two possible movements combinations (i.e. CD vs DC and CC vs 
DD), separately for the two contexts. The classification procedure 
was carried out using the Scikit-learn Python toolbox version 1.0.2 
(Pedregosa et al. 2011) and MNE Python version 1.3.1 (Gramfort 
2013).

To increase signal-to-noise ratio in the input for the classifier, 
we created “supertrials” by averaging together randomly sampled 
sets of four trials belonging to the same category (Grootswagers 
et al. 2017). To minimize the influence of the visual features of the 
cue on the classifier, for each supertrial we averaged together tri-
als belonging to the same experimental condition, but randomly 
sampled in equal number from each of the two cue pairs (e.g. one 
supertrial for the condition CC would be the result of averaging 
together two CC trials with cue pair 1, and two CC trials with 
cue pair 2). For each classification, we created 10 supertrials for 
each condition. The mean activity was then subtracted from each 
supertrial and each channel separately, to normalize the voltage 
fluctuation over time (Wolff et al. 2020, Muhle-Karbe et al. 2021).
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Figure 2. Spatiotemporal decoding.

Note. Epoched data after preprocessing (1) are averaged together in random partitions of the same conditions to create supertrials (2). Time courses for each of the 
64 channels are pooled in time, averaging voltages in 10 time-bins (3). The resulting 640 values are used as features to train and test an LDA classifier (4). The 
whole procedure is repeated 100 times.

Instead of performing decoding separately for each time point, 
we implemented spatiotemporal decoding, capturing multivari-
ate information encoded not only in spatial patterns but also in 
their temporal evolution (Wolff et al. 2020, Muhle-Karbe et al. 
2021). With this approach, both spatial and temporal features of 
the neural activity are used for classification within participants, 
with the advantages of improving decoding accuracy and being 
insensitive to potential differences in decoding latencies across 
participants. We were interested in the neural representations 
arising during the delay period, thus anticipating the overt move-
ment. Therefore, our time window of interest covered the interval 
between the onset of the cue and the subsequent 2000 ms (i.e. 
the shortest possible delay interval, accounting for its variabil-
ity). We averaged the data from these 2 s window in 10 bins of 
200 ms. As a result, each single supertrial was treated as a discrete 
event, with 640 features (i.e. 10 binned-values for each of the 64
electrodes).

These binned supertrials were used as input to train and 
test Linear Discriminant Analysis (LDA) classifiers, with a least 
square solver and automatic shrinkage based on the Ledoit-Wolf 
lemma. We used a stratified five-fold cross-validation approach. 
This means that the pool of 20 supertrials entering each classi-
fication was split 5 times in nonoverlapping training sets of 16 
supertrials, and testing sets of 4 supertrials, equally representing 
the 2 classes, and the classification accuracy was averaged across 
the 5 folds.

Importantly, to avoid biases due to the random sampling 
of trials in creating supertrials, for each contrast of inter-
est, we repeated the whole classification pipeline for 100 

permutations (i.e. we generated supertrials and performed the 5-
fold cross-validated classification 100 times) and we averaged the 
results (Fig. 2). 

Decoding own and partner’s movements
Additionally, we tested whether the two instructed movements 
were decodable separately during the delay period. Therefore, 
we adopted the same spatiotemporal approach to classify the 
upcoming movement of the participant, and the upcoming part-
ner’s movement, across Congruency levels and separately for 
the two Social contexts. In other words, we aimed at classify-
ing whether the participant was instructed to draw a circle or a 
diamond (conditions CC and CD vs conditions DC and DD), and, 
separately, if the partner’s instruction was to draw a circle or a 
diamond (conditions CC and DC vs conditions CD and DD).

The only difference from the classification pipeline explained 
above was in the creation of supertrials. To classify the upcom-
ing movement of the participant, we created supertrials averaging 
together one individual trial from each of the two experimental 
conditions in which the participant had to draw a specific shape, 
and one for each physical cue identity. For example, to create one 
supertrial for the condition “participant was instructed to draw 
a circle,” we averaged together one trial from condition CC (cue 
pair 1), one trial from condition CC (cue pair 2), one trial from 
condition CD (cue pair 1), and one trial from condition CD (cue 
pair 2). This resulted in the same total number of trials (i.e. four) 
contributing to the formation of one single supertrial, as in the 
previous contrasts.
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Analogous five-fold cross-validated LDA classifications were 
performed, repeating the random sampling for the supertrials 
creation for 100 permutations.

Statistical testing of spatiotemporal decoding accuracies
The spatiotemporal classification approach described resulted in 
one value per participant for each contrast. To reliably test if these 
empirical distributions were significantly higher than chance, 
we compared them against null distributions obtained through 
labels permutations. First, we repeated for each participant the 
classification procedure outlined above, but this time randomly 
assigning the supertrials to one of the two classes. This resulted, 
for each participant, in 100 classification accuracies that we aver-
aged to obtain one value for each participant, constituting the null 
distributions (Supplementary Fig. S1 and Supplementary Table 
S1). Then, we used a one-tailed paired-samples t-test to estab-
lish, for each contrast, whether the empirical distributions were 
significantly higher than the null distributions.

Our main hypothesis was that the decoding accuracy of incon-
gruent movement combinations would be lower during Joint task 
compared to the Parallel task. To directly test for this, we per-
formed a two-tailed paired-samples t-test contrasting decoding 
accuracies for Incongruent conditions (CD vs DC) between Joint 
and Parallel tasks. Analogously, we also compared the empiri-
cal classification accuracies across the two social contexts when 
decoding congruent action combinations, own movement, and 
partner’s movement.

Spatial decoding
To have an understanding of which channels contributed most 
to the decoding obtained with our spatiotemporal approach, we 
repeated the same set of two-way classifications in a spatial fash-
ion. Instead of treating space (i.e. channels) and time as features 

for the LDA classifiers, we performed the decoding on the time-
resolved voltage values, separately for each channel. This analysis 
results in one decoding accuracy for each channel, participant, 
and contrast of interest, therefore allowing us to display topogra-
phies of classification accuracies. For exploratory purposes, we 
conducted statistical testing to detect clusters of electrodes with 
decoding accuracies significantly larger than chance. We used a 
cluster-based permutation approach (Maris and Oostenveld 2007, 
Sassenhagen and Draschkow 2019), clustering across neighboring 
channels based on Delauney triangulation.

Results
General behavioral measures
We computed some indicators of behavioral performance to 
investigate compliance to the experiment instructions (Fig. 3). 
First, we compared accuracy in catch trials detection between 
Joint and Parallel tasks. We designed the experiment with the goal 
of equating the attentional deployment to the partner’s draw-
ing across the two conditions. Participants were highly accurate 
in identifying errors in partner’s trajectories during both Joint 
(Mean = 0.94, SD = 0.05) and Parallel task (Mean = 0.92, SD = 0.06), 
although slightly better during the Joint task (W = 162.0, P = .035, 
CLES = 0.62).

Next, we aimed at testing whether the timing requirements 
imposed by the task were attended correctly by participants. 
In the Joint task, we expected participants to align their tim-
ing with the movement duration of the partner’s, resulting in 
very small intervals between the moment theirs and the part-
ner’s trajectories reached the ending point (i.e. delta times). As 
expected, we found that on average the delta time (Mean = 0.01, 
SD = 0.051) was not significantly different from 0 (t35 = 1.08, 
P = .28, d = 0.18, BF10 = 0.31). The total duration of the move-
ment time was not analyzed statistically for the Joint context 

Figure 3. Indicators of behavioral performance.

Note. In each boxplot, the black line inside the box indicates the second quartile (median) of the distribution (n = 36). The bounds of the boxes depict the first and 
third quartiles of the distribution. Whiskers denote the 1.5 interquartile range of the lower and upper quartile. On the left side of each boxplot, dots represent 
individual scores, whereas on the right side their density is displayed as a half-violin plot.
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Figure 4. VMI results.

Note. Left panel: VMI is quantified as the area between the average shape templates for the participant, and each of the drawn trajectories. Right panel: Box-Cox 
corrected area values, for each Social context * Congruency condition. Error bars depict the confidence interval.

(Mean = 2.07, SD = 0.06), as it was biased by the discrepancy 
between the participant’s starting time and the (adaptive) starting 
time of the partner.

With respect to drawing time in the Parallel task, participants 
were instructed to complete their trajectory in 2 s. However, they 
showed a tendency to systematically shorten their drawing time 
(t35 = −2.71, P = .01, d = 0.18), resulting in an average drawing time 
of 1.93 s (±0.15).

Overall, these results support the effectiveness of our social 
manipulation, indicating that participants understood the timing 
requirements of the two tasks and behaved accordingly, although 
they were more successful in complying with the requirements of 
the Joint task.

VMI is larger in the parallel context
Our main hypothesis concerning VMI in the drawn trajectories 
was that an incongruent movement should result in larger dis-
tortions during the Parallel task. We predicted that, in the Joint 
task, the active anticipation of the partner’s drawing, and its inte-
gration into a Dyadic Motor Plan, would drastically reduce the 
distortion in the participant’s drawing, in line with other experi-
mental findings (Sacheli et al. 2018, Rocca and Cavallo 2020, Rocca 
et al. 2023). We quantified VMI by computing the distance of each 
drawn shape from its corresponding template, computed as an 
average of all circles and all diamonds drawn by the individual 
participant.

The results of the fitted Linear Mixed Model revealed a signif-
icant effect of Social context (β = −0.53, 95% CI = [−1.02, −0.05], 
t16629 = −2.17, P = .030), indicating that trajectories were deviating 
more from the template in the Parallel compared to Joint task. 
The effect of Congruency approached but did not cross the sig-
nificance threshold (β = −0.45, 95% CI = [−0.94, 0.03], t16629 = −1.84, 

P = .065), hinting at larger distortions in incongruent trials. Finally, 
the interaction effect also approached but did not reach the sig-
nificance threshold (β = 0.45, 95% CI = [−0.003, 0.93], t16629 = 1.82, 
P = .069).

To have a more directional test of our effect of interest, we 
computed the Congruency Effect for each of the two contexts 
(see “Methods” section). The one-tailed t-test revealed signifi-
cantly larger distortions in the Parallel compared to Joint task 
(t35 = −1.88, P = .034, d = 0.43, BF10 = 1.73). Despite the small effect 
size and the inconclusive Bayes Factor, these results are in line 
with the hypothesis that integrating the partner’s action into a 
Dyadic Motor Plan reduces the interfering effect of observing an 
incongruent movement (Fig. 4).

We fitted two additional models as control analyses. First, we 
extended our model to include the centered factor Drawing Time 
and its interactions with the factors Social context and Congru-
ency. The rationale for fitting this model was to account for a 
potential effect of the speed of drawing on the distortion in the 
trajectories. The results of this model were analogous to the pre-
vious analysis with respect to the main effects of Social context, 
Congruency and their interaction. Additionally, we found a sig-
nificant interaction of Congruency and Drawing Time (β = −0.78, 
95% CI = [−1.27, −0.30], t16625 = −3.18, P = .001). Notably, this inter-
action indicated that slower movements were associated with 
larger distortions in incongruent trials, discarding the possibility 
of a speed-accuracy trade-off between movement duration and 
variability in drawn trajectories (Supplementary Fig. S2). Next, 
we extended our original model to include the factor Task Order 
and its interaction with Social context and Congruency. While 
this model replicated again the main findings concerning the 
experimental manipulations of interest, the effect of Task Order 
and all the related interactions were not significant. We took 
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Figure 5. Decoding of incongruent and congruent combinations.

Note. Left panel: Accuracies resulting from the decoding of the conditions CD vs DC in Joint and Parallel tasks. The dashed horizontal gray line indicates the 
chance level (50%). In each boxplot, the black line inside the box indicates the second quartile (median) of the distribution (n = 36). The bounds of the boxes depict 
the first and third quartiles of the distribution. Whiskers denote the 1.5 interquartile range of the lower and upper quartile. On the left side of each boxplot, dots 
represent individual scores, whereas on the right side, their density is displayed as a half-violin plot. For visualization purposes, the topographies report the 
decoding accuracies for each of the 64 channels, separately for each task. Thicker dots indicate channels belonging to spatial clusters with significantly 
above-chance decoding accuracy. Right panel: Accuracies resulting from the decoding of the conditions CC vs DD in Joint and Parallel tasks. Plotting conventions 
are the same as for the left panel. ***: P < .01.

these results as evidence that the interfering effect of incongruent 
movements during the Parallel task were not associated with the 
order in which the participants performed the tasks, nor could be 
attributed to an increased variability due to faster drawing times.

Social context influences the neural 
representation of upcoming movements
To test whether the Joint social context induced the formation of a 
Dyadic Motor Plan, in which the movements of the two agents are 
tightly integrated, we aimed at classifying conditions pairs, sepa-
rately for Joint and Parallel tasks (Fig. 5). First, we tested whether 
the classifier could pick up differences between the two incongru-
ent conditions (i.e. CD vs DC). We reasoned that, if the two actions 
are represented intertwined in the Joint condition as proposed, it 
should be more difficult for the classifier to tease these two con-
ditions apart. We found high, above-chance decoding accuracies 
in the Parallel task (t35 = 4.89, P < .01, d = 1.09, BF10 > 100), while 
it did not reach significance in the Joint task (t35 = 1.50, P = .07, 
d = 0.36, BF10 = 0.99). Crucially, we observed a significant differ-
ence between Joint and Parallel tasks in the decoding accuracies of 
incongruent combinations (t35 = 2.74, P < .01, d = 0.59, BF10 = 4.37).

With respect to discriminating between congruent movement 
combinations (i.e. CC vs DD), the two movement combinations 
were successfully classified above chance level in both the Joint 
(t35 = 4.55, P < .01, d = 1.07, BF10 > 100) and Parallel task (t35 = 4.14, 
P < .01, d = 0.99, BF10 > 100). The observed decoding accuracies 
did not differ between the two social contexts (t35 = 0.43, P = .67, 
d = 0.09, BF10 = 0.19).

For qualitative exploration, we implemented the same decod-
ing contrasts also at the spatial level, to identify those electrodes 
carrying most information. With the exception of the incongru-
ent combinations in the Joint task, the other contrasts yielded 
electrodes clusters of above-chance accuracy covering mostly 
occipito-parietal and frontal regions.

One property of the classification approach we adopted is 
that it is agnostic to which aspect of the data is informing the 
classifying algorithm. Namely, in our comparisons the classifier 
might be picking up information encoding the upcoming partici-
pant’s movement, as well as the partner’s movement. Therefore, 
to better disentangle the individual contributions of these two 
sources of information, we carried out two additional classifica-
tion analyses, aimed at discriminating the upcoming participant’s 
movement (Circle: CC and CD vs Diamond: DC and DD), and the 
upcoming partner’s movement (Circle: CC and DC vs Diamond: 
CD and DD), across Congruency levels (Fig. 6).

The prepared participant’s movement was successfully clas-
sified above chance in both the Joint (t35 = 4.23, P < .01, d = 1.10, 
BF10 > 100) and Parallel task (t35 = 4.66, P < .01, d = 1.15, BF10 > 100). 
We found no evidence indicating that the strength of the par-
ticipant’s movement representation differed between Joint and 
Parallel contexts (t35 = 0.79, P = .431, d = 0.20, BF10 = 0.24). Spa-
tially, clusters of above-chance electrodes were widespread over 
the whole scalp.

Interestingly, classifying the partner’s movement lead to 
above-chance accuracies in the Parallel task (t35 = 2.58, P < .01, 
d = 0.60, BF10 = 6.28), but not in the Joint task (t35 = 0.78, 
P = .22, d = 0.18, BF10 = 0.48). Decoding accuracies of the partner’s 
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Figure 6. Decoding of participant’s and partner’s movements.

Note. Left panel: Accuracies resulting from the decoding of the instructed participant’s movement (Circle or Diamond), separately for Joint and Parallel tasks. Right 
panel: Accuracies resulting from the decoding of the instructed partner’s movement (Circle or Diamond), separately for Joint and Parallel tasks. See Fig. 5 for 
plotting conventions.

movement were almost significantly larger in the Parallel com-
pared to the Joint task, although the formal significance threshold 
was not met (t35 = 1.90, P = .06, d = 0.38, BF10 = 0.90). Consistently, 
the spatial decoding revealed an occipital cluster of electrodes 
significantly above chance, only in the Parallel task.

Discussion
According to recent proposals, engaging in successful coordinated 
interactions entails the proactive anticipation of our partner’s 
actions (Kilner et al. 2007), and their integration with our own 
motor contribution in a Dyadic Motor Plan toward the shared 
goal (Sacheli et al. 2018). However, so far the emergence of such 
integrated representations in preparation for Joint Actions has 
not been tested directly, but rather was supported by reduced 
interference effects on overt behavior (Sacheli et al. 2018, Clarke 
et al. 2019, Rocca et al. 2023). At the neural level, previous stud-
ies targeting specifically the preparatory phase preceding Joint 
Actions reported univariate differences attributed to the interac-
tive task context (Kourtis et al. 2013, 2014, 2019). However, they 
did not investigate if, and to what extent, the same information 
is encoded differently when the two agents are asked to perform 
jointly or independently from each other. To answer this ques-
tion, our study focused on the preparation phase, and adopted 
a multivariate approach to compare the patterns of electrophys-
iological activity between the two social contexts. We reasoned 
that, if the participant’s and the partner’s prospective contribu-
tions were integrated into a Dyadic Motor Plan, they should be 
more intertwined and overlapping, resulting in lower discrim-
inability. Confirming this hypothesis, the multivariate approach 
we implemented revealed that the two incongruent movement 
combinations (i.e. circle-diamond and diamond-circle) were sig-
nificantly easier to discriminate when the two agents were acting 

in parallel, compared to jointly. This finding provides compelling 
evidence for the formation of an integrated representation incor-
porating both upcoming movements. In fact, it highlights how 
acting jointly induces the encoding of the actions in a format 
that goes beyond the two individual contributions, but entails also 
their combination at the dyadic level.

Moreover, and in line with previous studies, we hypothesized 
that such an integrated representation would lead to reduced 
VMI, quantified in the distortion of the drawn trajectories. Our 
results, despite warranting a cautious interpretation due to the 
inconclusive BF, hint at a pattern that is compatible with our 
hypothesis and suggest that the active anticipation of observ-
ing an incongruent movement induces its diminished interfering 
effect (Kaiser and Schütz-Bosbach 2018).

We further tested to what extent each of the two individual 
contributions was decodable from the pattern of neural activity 
recorded during the preparation interval. The upcoming move-
ment of the participant was successfully decodable in both social 
contexts, indicating that the motor plan associated with the shape 
to draw was being strongly prepared (Ariani et al. 2015, 2022). With 
respect to the action of the partner, in the Joint condition the clas-
sifier failed at discriminating whether they were about to draw a 
circle or a diamond. On the contrary, this same contrast yielded 
high decoding accuracies during Parallel interactions, indicating 
that in this condition the upcoming partner’s movement was rep-
resented in a format that could be more effectively picked up by 
the classifier.

Crucially, good performance in catch trials detection clearly 
showed that participants were efficiently maintaining the infor-
mation pertaining the movements of the partner in both condi-
tions. Therefore, low classification accuracies in the joint social 
context cannot be due to the action information from the partner 
being entirely disregarded. Moreover, the two social contexts were 
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designed to be as matched as possible with respect to cognitive 
and attentional demands. We consider it highly implausible that 
participants directed more attention toward the partner’s action 
contribution in the parallel condition. In fact, this task did not 
require participants to adjust their behavior based on the part-
ner’s, unlike the joint condition which relied more heavily on the 
constant monitoring of the partner’s timing. With these consid-
erations in mind, we excluded the possibility of our results being 
explained by an attentional mechanism, but rather interpreted 
them as reflective of the different degree of interactivity in the 
two conditions.

We think these results represent an important step forward 
in understanding how the available information on the partner’s 
movement is represented as a function of the interactive social 
context. Previous studies focused predominantly on motor activa-
tion in response to an observed movement or during interaction, 
often in situations in which participants had no prior information 
concerning the partner’s contribution (Bolt and Loehr 2021). As a 
notable example, Sacheli et al. (2019) revealed a stronger hemo-
dynamic response in the left ventral premotor cortex, tracking 
the identity of the unfolding partner’s movement, while agents 
took turns in playing a melody (Sacheli et al. 2019). Conversely, we 
investigated the anticipatory phase of Joint Actions, and provided 
complementary evidence showing that the upcoming movement 
of an interactive partner could not be successfully decoded in the 
interval preceding its unfolding. This finding is consistent with the 
idea that, when cued in advance, the other’s contribution is antic-
ipated and integrated to one’s own action and in reference to it, a 
representational format that does not allow for its classification 
in isolation but is functional to minimize its subsequent inter-
fering effect. Therefore, our results extend on previous research 
in suggesting that coordinated interactions rely on complex rep-
resentational dynamics, potentially undergoing reorganization 
from the anticipation to the implementation phase (Elsayed et al. 
2016, Ariani et al. 2022), and shaped by social context, information 
availability, and its functional relevance.

One important aspect of our results that needs to be empha-
sized is that they are agnostic with respect to the nature of 
the encoded information, being it motoric, visual, abstract and 
semantic, or a combination thereof. We interpreted them in the 
light of the proposed existing framework, but the current study 
was not designed to disentangle between these alternatives. The 
spatial decoding analysis suggests that occipital electrodes are 
those carrying more information concerning the partner’s upcom-
ing action in the Parallel condition. This topography hints at a 
larger recruitment of areas associated with visual processing to 
maintain the partner’s contribution throughout the delay period 
(Christophel et al. 2017). One possible explanation for this might 
be that in the Parallel condition participants are mostly anticipat-
ing the expected visual outcome of the partner’s action, rather 
than its kinematic properties. On the other hand, there is grow-
ing evidence showing that the maintenance in working mem-
ory (WM) of information concerning motion patterns, biological 
movements, and hand postures elicits activation of somatosen-
sory cortices, as indexed by suppression of rolandic mu rhythm 
(Christophel and Haynes 2014, Gao et al. 2015, Galvez-Pol et al. 
2018). Moreover, the role of motor activity to smoothly coordinate 
with an interaction partner has been widely emphasized by pre-
vious studies on Joint Action (Bolt and Loehr 2021). In our data, 
we did not observe larger decoding accuracies in the joint condi-
tion over sensorimotor cortices, nor in any other scalp location. 
Nevertheless, we speculatively raise the intriguing hypothesis 

that the social context affects the representational format of the 
information concerning the partner’s movement. Research in the 
field of WM is strongly demonstrating how task demands influ-
ence the encoding and maintenance of items, supporting the idea 
that information is coded in the most suitable way to effectively 
drive behavior (Myers et al. 2017, Henderson et al. 2022, van Ede 
and Nobre 2023, Formica et al. 2024). In keeping with the premises 
of the Dyadic Motor Plan, we propose that in an interactive con-
text the optimal representational format for the partner’s action 
is motoric in nature, already during the anticipation phase. This 
would be functional to allow its efficient assimilation with the par-
ticipant’s contribution. In fact, perhaps unsurprisingly, the results 
on the decoding of the participant’s own upcoming movement are 
compatible with a more motoric representational format, show-
ing widespread scalp areas of high decoding accuracies in both 
social contexts, including also anterior electrodes over sensorimo-
tor cortices. On the contrary, acting alongside would not require 
the motoric encoding of the other’s action, as this does not need 
to be integrated with the motor plan of the participant, and can 
be maintained for future recognition as more visual or abstract 
semantic content. Future studies should be designed with the 
explicit goal of teasing apart the characteristics of the encoded 
anticipatory information, to verify if Joint Actions truly rely on 
the motoric anticipation of the partner’s contribution.

In conclusion, our current results support the Dyadic Motor 
Plan framework and extend on it, demonstrating that the neural 
representations of the upcoming joint configuration and of the 
partner’s movement are affected by the social context manipula-
tion. These findings suggest that engaging in Joint Action induces 
the reformatting of the encoded information into integrated 
motoric representations, to optimize the subsequent coordi-
nated behavior. Disentangling the specific formats of the encoded 
actions and investigating how they evolve between prepara-
tion and implementation thus remains an open and fascinating 
avenues for future research.
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