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Abstract: The wall thickness of the TP2 copper tube casting billet is not uniform after a three-roll
planetary rotational rolling, which affects the wall thickness uniformity of the copper tube in the
subsequent process. In order to study the influence of wall thickness at different positions of copper
pipe after rolling on the wall thickness of copper pipe after joint drawing, an online ultrasonic test
platform was used to measure the wall thickness of copper pipe after tying, and based on the test data,
a finite element model of copper pipe billet was established, and the numerical simulation of joint
drawing wall thickness was conducted. Based on the results of the ultrasonic testing experiment and
finite element simulation, different neural network models were used to predict the joint tensile wall
thickness with the data of the ultrasonic testing experiment as input and the results of finite element
simulation as output. The prediction effect of different neural network models was compared, and
the results showed that the prediction and fitting effect of the SVM model was better, but overfitting
occurred during the fitting process. Furthermore, particle swarm optimization is used to optimize the
penalty parameter C and the kernel parameter g in the SVM model. Compared with the traditional
SVM model, the PSO–SVM model is more suitable for the prediction of joint tensile wall thickness,
which can better guide the production to solve this problem.

Keywords: joint drawing; ultrasonic testing; numerical simulation; neural network

1. Introduction

TP2, as a kind of copper pipe, is composed of copper and a small amount of phos-
phorus, of which the copper content is usually more than 99.85%. TP2 copper pipes have
excellent conductivity, thermal conductivity, corrosion resistance, and excellent process-
ability and are widely used in fields such as air conditioning, refrigeration, aerospace,
intelligent manufacturing, and computers [1–4]. Quality consistency is a bottleneck prob-
lem that restricts the application of TP2 copper pipes in complex working conditions.
Three-roll rotary rolling is the second process in the production of TP2 copper pipes [5].
The metal billet is rolled continuously, mainly based on three horizontally aligned rolls to
change its shape and size, as shown in Figure 1. During the rolling process, the metal billet
is squeezed between three rollers in different directions, and due to the increasing pressure
between the rollers, the metal billet is gradually squeezed into the desired shape and size.
When the metal billet passes through the end of the three-high mill, its cross-sectional area
is greatly reduced, while its length is significantly increased, resulting in large deformation,
which easily causes uneven wall thickness defects and seriously affects the product quality
of the subsequent process [6]. How to predict the wall thickness of copper tubes in subse-
quent processes is currently one of the key concerns in the field of copper tube casting and
rolling processes.
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There are many methods for non-destructive testing, and the most common ones can
be divided into five types [7]: radiographic testing (RT); ultrasonic testing (UT); magnetic
particle testing (MT); penetrant testing (PT); and eddy current testing (ECT). Among them,
ultrasonic testing (UT) has the characteristics of strong penetration ability, accurate position-
ing, and high sensitivity. It can accurately locate defects inside and on the inner and outer
walls of materials without damaging the pipes and is more suitable for the detection of
precision pipes. Most scholars conduct defect detection research on materials or structures
based on ultrasonic testing methods. Chen Shu et al. determined the working parameters
of the water immersion-focused transverse wave method and water immersion-focused
longitudinal wave direct injection method, conducted experiments on different types of
defects, and obtained the advantages of water immersion-focused longitudinal wave direct
injection method and water immersion-focused transverse wave method. The combination
of the two methods can effectively improve the accuracy of detection [8]. Guo Zonghao
et al. utilized the characteristics of the weld seam between the reactor pressure vessel con-
necting the pipe and the cylinder body and selected probes with different frequencies and
angles for defect detection and quantification. The detection results met the requirements,
and the automated ultrasonic testing of the inlet and outlet connecting pipe welds of the
reactor pressure vessel could be achieved [9]. Fu Zongzhou conducted C-scan testing on
the established standard test blocks to verify that the C-scan testing based on porosity
standard test blocks could achieve monitoring and evaluation of the 2% porosity produc-
tion line of carbon fiber composite laminates, meeting the requirements of engineering
specifications [10]. Mortada et al. described ultrasonic testing technology and demon-
strated the research progress made by air-coupled ultrasonic testing systems in the field of
defect detection in composite material structure manufacturing [11]. Kumar et al. studied
the propagation of ultrasonic waves on cracks through laboratory experiments and finite
element models. For crack propagation beyond 20% crack depth, the transmission index is
inversely proportional to the crack depth [12]. Tunukovic et al. developed an ultrasonic
detection device provided by an industrial robotic arm, greatly improving detection speed
and positioning accuracy [13]. Bilici used ultrasonic testing to evaluate the properties of
composite materials and observed a linear relationship between grain size and physical and
mechanical properties based on ultrasonic characteristics [14]. Tunukovic et al. compared
the performance of object detection models, defect detection statistical methods, and tradi-
tional assignment threshold methods in carbon fiber defect detection. Intelligent machine
learning improved amplitude threshold and statistical threshold techniques [15]. Liu Bo
studied the water immersion ultrasonic C-scan detection method for open diffusion welded
titanium alloy hollow support plates from the perspectives of theory and experimental
verification. From the production of the reference block to the determination of the probe,
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water distance, gain, and gate, the rationality and reliability of the ultrasonic detection
reference block and detection process were verified through comparative analysis [16]. Liu
Ping distinguished the identification of residual height signals at the root of the weld seam,
“mountain” wave signals, cover surface signals, and base metal reflection signals, which
was beneficial for spectrum acquisition and correct judgment of defects [17]. Fadzil et al.
used phased array ultrasonic testing technology and classic time correction gain method
to detect good ultrasonic signals from the interface layer and back wall and compared
them qualitatively and quantitatively with the proposed ultrasonic method, showing a
high degree of consistency [18].

Numerous scholars have conducted extensive research on wall thickness changes.
Zhang et al. have explored a new high-speed electrical discharge copper tube machining
scheme, which simulates the deformation process of copper tubes during machining
through finite element analysis. A prediction model for copper tube electrode wall thickness
changes has been established, and the accuracy of the prediction has been verified by
comparing it with experimental measurements [19]. Gao et al. conducted research on
the reduction in outer wall thickness during the rotational bending process of eccentric
pipe fittings. By establishing a finite element model, they analyzed the changes in axial
and radial wall thickness and found the optimal eccentricity between the inner and outer
centers of the pipe section [20]. Pavlov et al. studied the shape change in alloy steel pipes
by using the method of computer simulation, and put forward the suggestion of selecting
mandrel calibration in the longitudinal rolling process, thus improving the accuracy of
pipes and reducing defects [21]. Shrivastava et al. explored the influence of different wall
thickness changes on Al–Mg–Si alloy tubes by using numerical simulation and experimental
comparison, and the results showed that when the tube wall thickness was the lowest, the
deformation in the compression process was the largest [22]. Shemonaeva investigated
the influence of circular pipe cross-section on the wall thickness distribution of the final
part and found that the wall thickness quality of the finished part could be improved by
generating a horizontal thickness difference [23].

The neural network prediction algorithm, with its powerful nonlinear mapping capa-
bilities, self-learning, and adaptive characteristics, as well as its broad application scope,
plays a crucial role in modern deep learning. As technology continues to develop and
innovate, the application prospects of neural networks will expand even further. Liu et al.,
aiming to achieve accurate predictions of power grid failures, proposed a distribution
network fault classification prediction model that combines a three-layer data-mining
model (TLDM) with an improved backpropagation neural network (BPNN) enhanced by
the adaptive moment estimation (Adam) algorithm and stochastic gradient descent [24].
Zhang et al. employed an improved support vector machine (SVM) method to construct a
machine learning-based prediction model, enhancing the accuracy and efficiency of fatigue
strength predictions for intercoolers [25]. Yin et al. used a radial basis function (RBF) neural
network model to predict flame retardancy [26].

In summary, currently, ultrasound-based defect detection is mainly applied to sim-
ple regular structures such as flat plates, but for complex precision tube TP2 materials,
ultrasound detection is still in the theoretical research stage and has not been applied in
engineering practice. At present, static, offline, and destructive methods are mainly used in
engineering for quality inspection of rotary rolled tube billets, which require inspection of
cut tube billets. These methods have complex and cumbersome processes, low efficiency,
and high randomness, and they cannot meet the real-time online inspection needs of the
production process under the background of intelligent manufacturing requirements. In
response to this issue, an intelligent online ultrasonic testing platform for wall thickness
detection has been independently developed. Research on rolling wall thickness changes
has been conducted, and the detection accuracy has been verified by comparing it with
offline testing results. Finite element simulation has been used to obtain joint wall thickness
data, and different neural networks have been used to predict joint wall thickness. The
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best prediction algorithm has been compared and optimized to obtain a more accurate
prediction model.

2. Three-Roll Planetary Rotary Rolling Tube Billet Online Detection Experimental
Platform

To solve the problem of low efficiency and inaccurate detection of the wall thickness
of three-roll planetary rotary rolling tube billets in existing technology, an intelligent
online ultrasonic thickness measurement experimental platform has been independently
developed. The detection process is shown in Figure 2. The electrical controller is controlled
by the computer, and the electrical controller sends instructions to the lower computer. The
lower computer then transmits the signal to the ultrasonic thickness measurement probe,
generating ultrasonic waves.
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2.1. Detection Device

In the production process of three-roll rotary rolling, the copper pipe is produced
at a certain speed under the drive of the roll and the feeding trolley. In order to achieve
the best production quality control, a set using ultrasonic sensors for measuring the pipe
thickness in real time was developed (Figure 3). The measuring device is formed by a
housing necessary to plunge the pipe into water, and the sensor is set to be placed around
the pipe. The housing was installed next to the process line, which was composed of upper
and lower containers mounted on a sliding support frame that can be set in and out of
the process line. For measuring, the main frame is set in the line, and the containers are
closed around the pipe. Two wheels at the entrance and the exit close, fixing the pipe.
The closed housing is a sealed tank filled with water in a short time to the desired level.
The measurement is performed with the UT probes, as described below. Once the test is
finished, the water is drained and recycled for the next cycle, the tank opens, the wheels
release the pipe, and the device can be removed from the line.
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Figure 3. Wall thickness detection device.

Four probes are arranged at 90◦ around the axial direction to monitor the wall thickness
of the rolled copper pipe in real time. In order to ensure the accuracy of the measuring
probe, a follow-up device is installed at the position of the probe base. The follow-up device
is connected to the probe base and the detection frame by a spring. When the copper tube
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is shaken or bent, the probe base is driven by the spring, ensuring that the probe and the
follow-up device are relatively stationary along the radial direction so that the focus of
the probe is always located on the axial center line of the rolled tube blank, improving the
detection accuracy. The thickness measuring device is shown in Figure 4.
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The ultrasonic thickness probe is made of a stainless steel shell and a composite circular
wafer of a diameter of 10 mm, as shown in Figure 5. The probe parameters are listed in
Table 1.
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Figure 5. Thickness probe.

Table 1. Probe working information.

Item Argument

Probe working mode Single crystal
Damping 50 Ω
Frequency 10 MHz
Probe type Water immersion line focusing probe
Probe Angle 90◦

Channel gain 50 dB

2.2. Data Analysis and Processing System

Ultrasonic thickness measurement is based on looking into the propagation through
the workpiece and measuring the different acoustic paths caused by the boundary surfaces.
This non-destructive method requires ultrasound pulse generation, transmission, reception,
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and signal processing, as shown in Figure 6. Signal processing mainly includes three
aspects: signal noise reduction; time-frequency display; and wall thickness calculation.
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2.2.1. Wavelet Threshold Denoising

To obtain a high-quality signal, a denoising method is applied, using wavelet transform
to decompose the initial signal. This method can be divided into the following four steps:

Step 1: Perform two-dimensional discrete wavelet transform (DWT) on the original
image to obtain high-frequency and low-frequency components;

Step 2: Find the appropriate threshold. Calculate threshold values based on the
relationship between signal frequency band and strength and process the decomposed
high-frequency and low-frequency parts separately;

Step 3: Threshold the wavelet coefficients of high-frequency and low-frequency compo-
nents according to the contraction criterion. Common methods include hard thresholding
and soft thresholding;

Step 4: Perform wavelet inverse transform on the processed signal to obtain the
denoised reconstructed image (IDWT):

(1) Wavelet Transform
After shifting the wavelet basis function φ(t) by β, perform inner product with the

signal η(t) to be analyzed at different scales µ, such as [27]:

DWT(µ, β) =
1
√

µ

∫ +∞

−∞
η(t)φ(

t − β

µ
)dt (1)

where µ is the scale factor; β is the translation factor; φ(t) is the conjugate function of the
mother wavelet. Wavelet transform performs multi-scale analysis on the original signal
η(t) by changing different scale factors µ, achieving filtering;

(2) Selection of Visu Universal Threshold
Visu universal threshold refers to using a pre-set fixed value as a threshold to threshold

the coefficients after wavelet transform [28]:

λ = α
√

2 ln(N) (2)

where α is the standard deviation of noise; N is the signal length;
(3) Threshold function
There are usually two forms of threshold functions: hard threshold and soft threshold.

Among them, the hard threshold is [29]:

λ(wt) =
{

λ(wt), |λ(wt)| > λ
0, |λ(wt)| ≤ λ

(3)

However, hard thresholding is prone to signal distortion. In the case of soft threshold-
ing, the high-frequency coefficients are not completely retained when they are greater than
the threshold. Instead, the coefficients are correspondingly reduced, making the signal
smoother, better preserving the detailed information in the signal, and avoiding signal
distortion:

λ(wt) =
{

sgn(λ(wt))(|λ(wt)− λ|), |λ(wt)| > λ
0, |λ(wt)| ≤ λ

(4)

(4) Inverse Wavelet Transform
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Through inverse wavelet transform, the processed wavelet coefficients can be recom-
bined into an approximation of the original signal, achieving noise reduction:

x(τ)_new =
1

Cφ

∫ +∞

0

∫ +∞

−∞
DWTβ

µ x(τ)φµ,β(t)dµdβ (5)

where φµ,β(t) = 1√
µ φ( t−β

µ ), and Cφ is the constant of the wavelet function.

2.2.2. Time-Frequency Display

The pulse–echo method for ultrasonic thickness measurement uses sharp pulses for
excitation, and the obtained echo signal is an oscillating pulse signal. Its mathematical
model can be expressed as [30]:

h(t; τ) = βeα(t−τ)2
sin(2π fc(t − τ) + ϕ) (6)

where β is the amplitude of the echo signal; α<0 is the broadband factor; τ is the delay
parameter to be estimated; fc is the center frequency; ϕ is the phase of the ultrasound echo
signal.

Wavelet transform is used to decompose a noisy signal, and threshold processing is
applied to each layer of the decomposed coefficients to filter out noise-related wavelet
coefficients. The denoised signal is then reconstructed. Formula (6) represents a cosine-
modulated Gaussian envelope signal, which can be solved using the Fourier transform:

H(ω) =
+∞∫
−∞

h(t)dt

=
β

2i

√
− α

π

e
(2π fc − ω)2

4α
+i(τ(2π fc−ω))

− e
(2π fc + ω)2

4α
+i(τ(2π fc+ω))

 (7)

In engineering, only positive frequencies have physical significance; therefore, the
final form of the Fourier transform of the reflection echo model is

+∞∫
−∞

y · eiωtdt

=
β

i

√
− α

π
e
(2π fc − ω)2

4α
+i(τ(2π fc−ω))

(8)

The above equation shows that the amplitude spectrum of the ultrasonic echo model

is still a Gaussian function, and the maximum value of the amplitude spectrum β
√
− α

π is
obtained at the center frequency ω = 2π fc.

2.2.3. Thickness Measurement Principle

According to the on-site inspection environment, the liquid immersion method is
used for thickness measurement. The liquid immersion method is a non-contact thickness
measurement method, in which a certain thickness of liquid medium exists between the
ultrasonic transducer and the measured object, acting as an ultrasonic coupling agent, as
shown in Figure 7.
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Figure 7. Ultrasonic thickness measurement by liquid immersion method.

The principle of liquid immersion thickness measurement is as follows: the plane wave
emitted by the ultrasonic probe passes through the acoustic lens and the water immersion
layer. If the velocity of the ultrasonic wave in the acoustic lens meets the velocity in the
water immersion layer, the ultrasonic beam is focused. If focused thickness measurement is
not used, then water immersion thickness measurement is the same as the common direct
contact thickness measurement method; that is, the water layer only acts as a coupling
agent. When calculating the thickness of the measured object, it is necessary to distinguish
between the propagation time of ultrasound in the water layer and the measured object.
The thickness calculation formula is as follows:

D =
1
2

VL × (t1 − t2) (9)

where D is the thickness of the measured object; VL is the propagation velocity of transverse
waves in the measured object; t1 is the round-trip time between the ultrasonic probe and
the bottom surface of the object being measured; t2 is the time it takes for the ultrasonic
probe to travel back and forth between the upper and lower surfaces of the object being
measured. The time-frequency signal is extracted, and the time values t1 and t1 of the
two echo peaks are calculated, t2 being the round-trip time between the ultrasonic probe
and the bottom surface of the object being measured and t2 being the time it takes for the
ultrasonic probe to travel back and forth between the upper and lower surfaces of the object
being measured. The time difference between the two echo peaks is used to calculate the
wall thickness indirectly.

2.3. Experimental Verification

In order to verify the accuracy of the ultrasonic detection system, four different rolled
sample tubes were measured with the new device after adjusting the gain and gate position
and measuring four points on each sample, as shown in Figure 8. The samples were
intercepted for offline measurement by direct contact with a spiral micrometer.
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The accuracy of ultrasonic detection data is 0.01, and the precision of the spiral
micrometer is 0.001. In order to reduce the errors caused by manual measurement, we
measured three times at the same position, took the average value, calculated the relative
errors of the two, and drew Table 2. Through statistics, we can see that the maximum
relative difference between ultrasonic data and manual measurement data is 2.40%.

Table 2. Sample tube data comparison.

Sample Tube Detection Position Ultrasonic Data Hand Measured Data Relative Difference

Sample tube 1

Slot 1 3.14 3.138 0.06%
Slot 2 2.80 2.836 1.27%
Slot 3 2.96 2.965 0.17%
Slot 4 2.76 2.767 0.25%

Sample tube 2

Slot 1 2.98 3.049 2.26%
Slot 2 3.14 3.118 0.71%
Slot 3 2.92 2.944 0.82%
Slot 4 3.14 3.112 0.90%

Sample tube 3

Slot 1 3.04 3.034 0.20%
Slot 2 3.14 3.085 1.78%
Slot 3 2.98 2.996 0.53%
Slot 4 3.04 3.032 0.26%

Sample tube 4

Slot 1 3.14 3.127 0.42%
Slot 2 3.03 2.959 2.40%
Slot 3 2.98 2.939 1.40%
Slot 4 2.82 2.828 0.28%

3. Establishment of Finite Element Model
3.1. Finite Element Model Building

For the FE model, the initial tube blank was set with a length of 50 mm and an outer
diameter of 48.4 mm. A realistic thickness section of the pipe was defined according to the
ultrasonic test results, using the average value of each test position, as shown in Figure 9.
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3.1.1. Model Construction of Deforming Body and Mold

The finite element model shown in Figure 10 consists of four parts: the floating core
head; the outer mold; the drawing tool; and the tube blank. The tube blank gradually
contacts the floating core head and the outer mold under the action of the drawing tool,
entering the deformation area under their combined effect. When the tube blank enters
the outer mold area, the outer diameter of the tube blank tightly contacts the mold due
to the smaller inner diameter of the mold, resulting in radial compression for diameter
reduction. Simultaneously, the inner wall gradually contacts the core head, expanding
outward and reducing wall thickness. The core head adjusts its position based on the
deformation of the tube blank to maintain uniform support internally. An initial tube
blank size of Φ 48.4 × 2.8 mm is reduced to Φ 38 × 2.2 mm after the first drawing and,
finally, to Φ 30.03 × 1.605 mm after the second drawing. Since the deformation is axial
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and axisymmetric, the model is divided into 33,000 hexahedral mesh elements with a size
of 1.17 mm. The drawing mold material is carbide YG8, with the outer mold defined as
the deformable body, the core head as a rigid body, and spring-driven to simulate its axial
position adaptability.
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Figure 10. Initial finite element model of pipe.

3.1.2. Setting Pipe Parameters

The mass density of the TP2 copper tube is ρ = 8940 kg/m3; the thermal conductivity
is λ = 390 W/(m·k); the specific heat capacity is c = 400 J/(kg·k); the elastic modulus is
E = 1.170 × 105 MPa, and the Poisson’s ratio is ν = 0.33. The drawing speeds of the two
passes were 48 and 72 m/min, respectively, and the friction coefficient was 0.05. The
coefficient of thermal expansion varies with temperature, and the specific values are shown
in Table 3.

Table 3. Effect of temperature on thermal expansion coefficient.

Temperature/◦C 0 100 200 300

Thermal Expansion Coefficient/µm/(m·k) 17.0 17.0 17.3 17.7

3.1.3. Pipe Performance Parameter

To determine the material properties, a uniaxial stress–strain test was performed with
an electronic universal testing machine at a deformation speed of 6 mm/min and repeated
three times, yielding a load-displacement curve.

After exceeding the elastic limit due to the significant size change (reduction in diam-
eter), the true stress formula σT = P/A is used instead of the engineering stress formula
σe = P/A0 to more accurately measure the material response in the plastic flow range. The
true strain and true stress formulas are as follows:

εT = ln(
I0 + ∆I

I0
) = ln(1 + εe) (10)

σT = σe(1 + εe) (11)

where I0 is the initial gauge length of the sample; ∆I is the elongation of the gauge; σe, εe
represent engineering stress and engineering strain; σT, εT represent true stress and true strain.

The true stress–strain curve of the initial tube blank is shown in Figure 11 for three
different specimens. The yield strength and tensile strength (average) values measured
were 301 MPa and 319 MPa, respectively.

After obtaining the true stress–plastic strain curve, the Holloman hardening equation
is applied to uniformly fit the true stress–strain curve to be the constitutive model of the
following simulation. The Holloman constitutive equation is as follows [31]:

σT = Kεn
T (12)

where K is the strength coefficient, and n is the strain hardening index.
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By fitting Holloman’s constitutive equation, the fitting degree is 98%, and the coeffi-
cients of K and n are 81.7 and 0.36, respectively.

According to the research by Liu et al. [32], the actual drawing temperature ranges from
65.9 ◦C to 108.5 ◦C, and the effect of temperature on the model is minimal. Additionally,
as shown in Chen’s study [33], the yield strength of the tube does not vary significantly
between 20 ◦C and 100 ◦C. Therefore, data collected at room temperature can be used
for simulation.
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3.2. Comparison of Finite Element Results

After the simulation, nine tracking points are established along the same cross-section
to extract wall thickness data via post-processing of the finite element model; the drawn
copper tube segment is measured for thickness using a spiral micrometer at nine points
along the same section, as shown in Figure 12 and Table 4.
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Table 4. Comparison of wall thickness data (mm).

Measurement Location Finite Element Model Wall
Thickness Data

Spiral Micrometer
Measurement Data Wall Thickness Deviation

1 1.602 1.621 0.019
2 1.625 1.605 0.02
3 1.614 1.624 0.01
4 1.606 1.651 0.045
5 1.609 1.644 0.035
6 1.608 1.617 0.009
7 1.625 1.621 0.004
8 1.600 1.641 0.041
9 1.612 1.621 0.006

As can be seen from Table 5, the maximum wall thickness deviation between the finite
element simulation data and the actual production manual data is 0.045 mm.

Table 5. Wall thickness data statistics (mm).

Number of
Groups

Wall Thickness at
Position 1

Wall Thickness at
Position 2

Wall Thickness at
Position 3

Wall Thickness at
Position 4

Joint Wall
Thickness

1 2.838 2.875 2.803 2.799 1.611
2 2.856 2.884 2.838 2.819 1.623
3 2.867 2.885 2.863 2.835 1.631

. . . . . . . . . . . . . . . . . .
399 2.872 2.781 2.799 2.815 1.625
400 2.835 2.798 2.819 2.845 1.629

4. Neural Network Prediction

The wall thickness of four locations detected by ultrasound was used as the input
of the neural networks (NNs). The corresponding wall thickness provided by the FE
simulation (using the same input thickness data) was used as the output of the NNs. A
total of 400 sets of wall thickness data were measured using the new equipment in the
process line, as shown in Table 5, and the corresponding 400 evaluations performed by the
FE model were calculated. According to the prediction method proposed by Liu, Zhang,
Yin et al. [25–27], the BP neural network, SVM neural network, RF neural network, and RBF
neural network are used for prediction. Three hundred sets of data are randomly selected
as the training sets of this model, 60 sets of data as the test sets, and the remaining 40 sets
as the verification sets. Different types of neural networks and machine learning models
are implemented using the Scikit-Learn learning library in the Python 3.10 language.

4.1. BP Neural Network

The BP neural network (Back Propagation Neural Network) mainly consists of three
parts: input layer; hidden layer; and output layer [30,34], and the main factors affecting
the wall thickness of copper pipe after joint drawing are uneven radial wall thickness of
copper pipe after rolling. The wall thickness of the input layer is measured at four different
positions by an ultrasonic testing platform, and the wall thickness of an output layer is
the wall thickness of copper pipe after joint drawing. The BP neural network prediction
framework is shown in Figure 13.
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4.2. SVM Model

SVM (Support Vector Machine) is suitable for small sample learning algorithms, which
can project samples from low-dimensional space to high-dimensional space in a nonlinear
manner, thereby transforming linear optimization problems into convex programming
problems and obtaining the optimal solution of the original problem [35,36]. At the same
time, kernel functions are used to convert inner product operations in high-dimensional
space into kernel function operations in the original space.

If the training samples have nonlinear relationships, each set of data in the training
samples can be transformed into a high-dimensional space, and linear regression can be
performed on the data in the high-dimensional space, thereby transforming the nonlinear
fitting problem of the original samples into a linear regression problem of the samples in
the high-dimensional space. The obtained fitting function is [37]:

y = ω · ψ(x) + b (13)

where x is the input vector; y is the output vector; ω is the weight vector; b is the fitting
deviation; ψ(x) is a nonlinear mapping. By training ω and b multiple times in Equation (13),
the minimum values of Equations (14) and (15) can be obtained:

Q( f ) = c
n

∑
i=1

ς( f (xi)− yi) +
1
2

ω2 (14)

ς( f (xi)− yi) =
1
n

{
| f (xi)− yi| − ϑ| f (xi)− yi| ≥ ϑ

| f (xi)− yi| < ϑ
(15)

where c
n
∑

i=1
ς( f (xi)− yi) is the empirical error of the optimization problem; 1

2 ω2 is the

normalization parameter of the optimization problem; ς(·) is the cost parameter of the
optimization problem; c is the penalty factor for the optimization problem; ϑ is the loss
function parameter for the optimization problem.

To achieve the transformation from nonlinear to linear problems and transform the
learning process of support vector machines into computable convex optimization prob-
lems, the following equation is used:

min
[

1
2∥w∥2 + C

l
∑

i=1
(ξi + ξi

∗)

]
;

s.t. yi − wϕ(xi)− b ≤ ε + ξi;
−yi − wϕ(xi) + b ≤ ε + ξi, i = 1, 2, . . . , l;
ξi ≥ 0, ξi

∗ ≥0.

(16)
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where C is the penalty coefficient. To simplify the prediction process, it is transformed into
a dual problem:

max
n
∑

i=1
yi(ai − ai

∗) − ϑ
n
∑

i=1
(ai + ai

∗) − 1
2

n
∑

i=1

n
∑

j=1
(ai − ai

∗)(aj − aj
∗)K(xi, xj)

s.t
n
∑

i=1

(
ai − a∗i

)
≤ ai, ai

∗ ≤c
(17)

where ai, a∗i are the Lagrange multipliers in quadratic programming. According to
Equations (13)–(17), the final regression function can be obtained as

f (x) =
l

∑
i=1

(ai − ai
∗)K(xi, xj) + b (18)

where ϕ(x) is a nonlinear mapping function; w is the direction vector; b is the intercept of
the regression function; ε is the insensitivity coefficient; K(xi, xj) = ϕ(xi)ϕ(xj) is the kernel
function that satisfies the SVM condition; xi and xj are sample vectors; yi is the category of
the training sample; ξi, ξ∗i is a relaxation variable.

On the basis of Equation (18), the radial basis function kernel function is used to
simplify the solution, and the final kernel function is as follows:

K(xi, xj) = exp(−g
∥∥xi − xj

∥∥2
), g > 0 (19)

where g is the nuclear parameter.

4.3. RF Neural Network

Random forest (RF) is a machine learning algorithm based on decision trees developed
by Breiman [38], which can be used for classification, regression, and multidimensional
data processing. It not only balances the errors of unevenly distributed data in the sample
but also has a good tolerance for outliers and noise [39], as shown in Figure 14. From
Figure 13, it can be seen that the RF model is composed of multiple classification trees 1,
2, . . ., n, and each decision tree works together to mine indicators that have a significant
correlation with the model’s prediction accuracy.
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4.4. RBF Neural Network

Based on the RBF (Radial Basis Function) neural network prediction of wall thickness
uniformity, the quantitative factors affecting the wall thickness of the copper tube after
joint drawing in this paper are the wall thicknesses at different positions of the rolled
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copper tube. A functional relationship between the factors affecting the wall thickness of
the copper tube after joint drawing and the wall thickness is established:

fs = f (x1, x2, x3, x4) (20)

where x1, x2, x3, x4 refer to the wall thicknesses at different positions of the rolled copper
tube, and fs is the uniformity of the wall thickness of the drawn copper tube.

Therefore, this article takes the wall thickness of copper pipes at four different positions
as the input layer of the neural network, one hidden layer, and the output layer as the
wall thicknesses of the connected copper pipes. The topology structure of the RBF neural
network is shown in Figure 15.
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4.5. Evaluation Methods

The prediction of joint tensile thickness using the BP neural network, SVM neural
network, RF neural network, and RBF neural network, respectively, belongs to the problem
of regression prediction. After the predicted value is output, it needs to be compared with
the real value to evaluate the fitting effect of this model. There are several commonly
used methods to evaluate model accuracy: mean square error (MSE); root mean square
error (RMSE); mean absolute error (MAE); determination coefficient (R2) [40,41]. For each
evaluation index containing n samples, the formula is as follows:

• Mean Squared Error (MSE):

MSE =
1
n

n

∑
i=1

(y − yi)
2

(21)

• Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1
n

n

∑
i=1

(y − yi)
2

(22)

• Mean Absolute Error (MAE):

MAE =
1
n

n

∑
i=1

|y − yi| (23)

• Determination coefficient (R²):
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R2 = 1 − ∑ (yi − y)2

∑ (yi − y)2 (24)

where y is the predicted value; yi is the actual value, and y is the mean of the predicted
values. In this study, MAE, MSE, RMSE, and R2 are selected as the final evaluation metrics
for the model. The smaller the values of MAE, MSE, and RMSE, and the closer R2 is to 1,
the smaller the model’s error and the better the predictive performance.

4.6. Comparative Analysis of Neural Networks

Figure 16 shows the predictive performance of the model on the training and testing
sets: SVM > BP > RF > RBF. Table 6 presents the evaluation parameters MAE, MSE, RMSE,
and R2 values for different models. In terms of prediction accuracy, the SVM model
has high prediction accuracy (test set: MAE = 5.1 × 10−3, MSE = 2.8 × 10−3, RMSE =
1.21 × 10−2, R2 = 9.23 × 10−1). SVM transforms the prediction problem into a convex
optimization problem, ensuring that the found solution is the global optimal solution, while
the application of kernel functions maps the sample space to higher dimensions, improving
the model’s generalization ability. The prediction accuracy of the BP model (test set: MAE
= 6.7 × 10−3, MSE = 3.5 × 10−3, RMSE = 1.97 × 10−2, R2 = 8.81 × 10−1) is slightly lower
than that of the SVM model. This may be due to the fact that the BP neural network relies
on an error backpropagation algorithm to adjust weights and biases to predict errors at
the minimum value. However, this gradient descent-based prediction method is prone
to getting stuck in local minima, resulting in the model being unable to reach the global
optimal solution. The RF model (test set: MAE = 8.9 × 10−3; MSE = 4.6 × 10−3; RMSE =
2.09 × 10−2; R2 = 7.65 × 10−1) demonstrated stable predictive ability, but there may be
some errors in the low wall thickness region. The prediction accuracy of the RBF model
(test set: MAE = 1.1 × 10−2; MSE = 5.7 × 10−3; RMSE = 2.32 × 10−2; R2 = 7.21 × 10−1) is
the lowest. This may be because the variance parameter of the Gaussian kernel function
used in the RBF model controls the radial action range of the function [42]. Setting the
variance too large or too small can affect the network’s adaptability to data, resulting in
inferior performance in predicting the thickness of the connected wall compared to the
other three models. However, in the four models, when the wall thickness is less than 1.55
mm, the prediction value is small, but when the wall thickness is greater than 1.55 mm, the
four models have better prediction accuracy. It can be seen that the SVM neural network,
BP neural network, RF neural network, and RBF neural network have higher accuracy in
predicting large wall thickness, but when predicting small wall thickness, the prediction
value of the SVM neural network is higher than that of BP neural network. SVM neural
network has more stable prediction accuracy.

Table 6. Wall thickness data statistics (mm).

Model
Training Set Test Set

MAE MSE RMSE R2 MAE MSE RMSE R2

BP 4.7 × 10−3 4.3 × 10−4 1.29 × 10−2 8.86 × 10−1 6.7 × 10−3 3.5 × 10−3 1.97 × 10−2 8.81 × 10−1

SVM 4.2 × 10−3 8.7 × 10−6 1.12 × 10−2 9.15 × 10−1 5.1 × 10−3 2.8 × 10−3 1.21 × 10−2 9.23 × 10−1

RF 5.7 × 10−3 6.1 × 10−4 1.47 × 10−2 8.71 × 10−1 8.9 × 10−3 4.6 × 10−3 2.09 × 10−2 7.65 × 10−1

RBF 6.2 × 10−3 2.1 × 10−3 1.71 × 10−2 7.67 × 10−1 1.1 × 10−2 5.7 × 10−3 2.32 × 10−2 7.21 × 10−1
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4.7. Comparison and Verification of Prediction Accuracy

Through a comprehensive comparison of evaluation metrics, the SVM neural network
provided the highest prediction accuracy for this model. As an example and to verify the
better prediction accuracy of the SVM neural network, the first set of data (group 1 in
Table 5) is used to present the simulation results (Figure 17) and the comparison of the
prediction results according to the different NNs (Table 7).



Materials 2024, 17, 5685 18 of 24

Materials 2024, 17, x FOR PEER REVIEW 19 of 25 
 

 

Figure 16. Different neural network verification results: (a) BP neural network training set; (b) BP 
neural network test set; (c) SVM neural network training set; (d) SVM neural network test set; (e) 
RF neural network training set; (f) RF neural network test set; (g) RBF neural network training set; 
(h) RBF neural network test set. 

Table 6. Wall thickness data statistics (mm). 

Model 
Training Set Test Set 

MAE MSE RMSE R2 MAE MSE RMSE R2 
BP 4.7 × 10−3 4.3 × 10−4 1.29 × 10−2 8.86 × 10−1 6.7 × 10−3 3.5 × 10−3 1.97 × 10−2 8.81 × 10−1 

SVM 4.2 × 10−3 8.7 × 10−6 1.12 × 10−2 9.15 × 10−1 5.1 × 10−3 2.8 × 10−3 1.21 × 10−2 9.23 × 10−1 
RF 5.7 × 10−3 6.1 × 10−4 1.47 × 10−2 8.71 × 10−1 8.9 × 10−3 4.6 × 10−3 2.09 × 10−2 7.65 × 10−1 

RBF 6.2 × 10−3 2.1 × 10−3 1.71 × 10−2 7.67 × 10−1 1.1 × 10−2 5.7 × 10−3 2.32 × 10−2 7.21 × 10−1 

4.7. Comparison and Verification of Prediction Accuracy 
Through a comprehensive comparison of evaluation metrics, the SVM neural net-

work provided the highest prediction accuracy for this model. As an example and to verify 
the better prediction accuracy of the SVM neural network, the first set of data (group 1 in 
Table 5) is used to present the simulation results (Figure 17) and the comparison of the 
prediction results according to the different NNs (Table 7). 

  
(a) (b) 

Figure 17. Finite element simulation of wall thickness: (a) the first pull wall thickness; (b) the second 
pull wall thickness. 

As can be seen from Figure 17a, when the tube billet enters the sizing section, the wall 
thickness begins to decrease, gradually decreasing from 2.8 mm to about 2.2 mm. In the 
double draw, the wall thickness is reduced from 2.2 mm to 1.6 mm. After the simulation, 
tracking points were established along any cross-sections, and the average wall thickness 
of the cross-section was calculated to be 1.611 mm. 

Using the wall thickness from the finite element model as input, different neural net-
works were used for prediction (Table 7). As shown in Table 7, the wall thickness predicted 
by the SVM neural network for this copper tube is 1.606 mm, while the predictions from 
BP, RF, and RBF neural networks are 1.601 mm, 1.598 mm, and 1.587 mm, respectively, 
indicating that SVM provides higher predictive accuracy for practical production. 

Table 7. Prediction comparison(mm). 

Model BP SVM RF RBF 
Simulated wall thickness results 1.611 

Model prediction result 1.601 1.606 1.598 1.587 

5. Particle Swarm Optimization Support Vector Machine Model 
The penalty parameter C and kernel parameter g of the SVM algorithm directly affect 

the model�s prediction accuracy. To improve prediction accuracy, Particle Swarm 

Figure 17. Finite element simulation of wall thickness: (a) the first pull wall thickness; (b) the second
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Table 7. Prediction comparison(mm).

Model BP SVM RF RBF

Simulated wall thickness results 1.611
Model prediction result 1.601 1.606 1.598 1.587

As can be seen from Figure 17a, when the tube billet enters the sizing section, the wall
thickness begins to decrease, gradually decreasing from 2.8 mm to about 2.2 mm. In the
double draw, the wall thickness is reduced from 2.2 mm to 1.6 mm. After the simulation,
tracking points were established along any cross-sections, and the average wall thickness
of the cross-section was calculated to be 1.611 mm.

Using the wall thickness from the finite element model as input, different neural
networks were used for prediction (Table 7). As shown in Table 7, the wall thickness
predicted by the SVM neural network for this copper tube is 1.606 mm, while the predictions
from BP, RF, and RBF neural networks are 1.601 mm, 1.598 mm, and 1.587 mm, respectively,
indicating that SVM provides higher predictive accuracy for practical production.

5. Particle Swarm Optimization Support Vector Machine Model

The penalty parameter C and kernel parameter g of the SVM algorithm directly
affect the model’s prediction accuracy. To improve prediction accuracy, Particle Swarm
Optimization (PSO) is first used to optimize C and g, and then the SVM algorithm is applied
for training and prediction on the relevant data. The prediction flow of this study is shown
in Figure 18.
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5.1. PSO Optimization Algorithm

The most common optimization methods for support vector machine algorithms
include genetic algorithm (GA) [43], least squares algorithm (LS) [44], particle swarm
optimization algorithm (PSO) [45], etc. PSO (Particle Swarm Optimization) algorithm is
an optimization method based on particle analysis. In the process of application, particles
can determine their motion patterns based on their own group characteristics [46], thereby
achieving the goal of optimization. By simulating the social behavior of bird or fish flocks,
global search is achieved, avoiding the randomness of adjusting control parameters and
reducing the probability of falling into local optimal solutions [47]. Particle iterative updates
can be expressed as

vi
LB =ωV · vi

LB+c1rand(1) · (PbestLB − xi
LB) + c2rand(2) · (GbestLB − xi

LB)
xi

LB =xi
LB+ωPvLB

i
(25)

where vLB
i is the iteration speed of the LB-th generation; xLB

i is the particle position of the
LB-th generation; PbestLB is the individual optimal position of the LB-th generation, and
GbestLB is the global optimal position of the LB-th generation. LB = 1, 2 . . ., i = 1, 2 . . ., ωV
is the inertia weight factor for velocity; ωP is the inertia weight factors for position; c1, c2
are acceleration constants, and rand(1), rand(2) are random functions.

The PSO algorithm is implemented in Python using the pyswarm library. In order to
optimize the accuracy and modeling efficiency of the SVM model, this experiment uses the
PSO algorithm to optimize the penalty factor C and kernel parameter g. The PSO algorithm
parameters are set as follows: the number of particles is 10; the maximum number of
iterations of the particle swarm is 100; the acceleration factors are c1 = 1.5 and c2 = 1.7. The
inertia weight factors are ωV and ωP are 1, respectively. The search range for both penalty
parameter C and kernel parameter g is (0.1–100).

5.2. SVM Kernel Function Selection

In this study, the PSO algorithm was used to optimize the penalty parameter C and
kernel function g. Three types of kernel functions, polynomial kernel function, radial basis
kernel function, and sigmoid kernel function, were used for learning [48,49]. The best
fitness of the predicted samples was used as the validation criterion to select the optimal
kernel function type. The optimal fitness changes in the three types of kernel functions are
shown in Figure 19. It can be seen that when the number of iterations reaches about 15, the
three kernel functions gradually converge. From the entire result, it can be seen that using a
polynomial as the kernel function has the best optimization effect. Therefore, a polynomial
is chosen as the kernel function for the SVM algorithm in this study.
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5.3. Verification of Prediction Results

The SVM model and PSO–SVM model were used to predict the joint tensile wall
thickness. Three hundred and twenty sets of data were randomly selected as the training
set, and 80 sets of data as the test sets. The prediction results are shown in Figure 20.
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The predicted values of the two models are basically consistent with the real situation.
The SVM neural network has a small prediction effect when the wall thickness is small,
while the real values and predicted values of the PSO–SVM training set and test set have a
better fitting degree. Moreover, the prediction results of the two models only have errors
in the detail fluctuations, so it is considered that both models have the ability to predict
the wall thickness. The evaluation parameters are shown in Table 8. After using the PSO
algorithm to improve the traditional SVM model, the RMSE and MAE of the PSO–SVM
model in the training set are, respectively, 1.08 × 10−3 and 2.0 × 10−3, and the R2 of PSO–
SVM is 9.64 × 10−1. Compared with the traditional SVM model, the improved PSO–BPNN
model has better evaluation results. However, for the test set, RMSE and MAE of the
PSO–SVM model were 1.45 × 10−2 and 3.4 × 10−3, respectively, and R2 of the test set was
9.49 × 10−1, which had a good consistency with R2 of the training set sample (9.64 × 10−1).
This indicates that compared with the traditional SVM model, the improved PSO–SVM
model has a more stable prediction effect on wall thickness prediction. In the traditional
model, the values of penalty parameter C and kernel function g are randomly selected,
but the PSO–SVM model selects the optimal values of penalty parameter C and kernel
function g through the PSO optimization algorithm. Therefore, the prediction effect of
PSO–SVM is better.
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Table 8. Parameter evaluation.

Model
Training Set Test Set

MAE MSE RMSE R2 MAE MSE RMSE R2

SVM 3.6 × 10−3 8.7 × 10−8 1.21 × 10−3 9.29 × 10−1 5.9 × 10−3 2.6 × 10−3 1.82 × 10−2 9.12 × 10−1

SVM-PSO 2.0 × 10−3 3.1 × 10−8 1.08 × 10−3 9.64 × 10−1 3.4 × 10−3 1.1 × 10−3 1.45 × 10−2 9.49 × 10−1

5.4. Prediction Result Verification

Through the prediction of different neural networks, it is concluded that the PSO–
SVM neural network is more suitable for joint drawing wall thickness prediction. In order
to verify that the prediction results of the PSO–SVM neural network can better guide
production, ultrasonic detection is used to detect copper pipes in production. After the
detection, the copper pipes in the corresponding joint drawing process are intercepted.
The spiral micrometer was used to measure the wall thickness of nine radial positions and
calculate the average value, as shown in Figure 21. After the measurement, the data of
four different positions detected by ultrasound were, respectively, input into five different
neural networks, and the predicted values of different neural networks were obtained, as
shown in Table 9.
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Table 9. Comparison of predicted results with actual production results (mm).

Model BP SVM RF RBF PSO–SVM

Production measurement result 1.598
Forecast result 1.590 1.592 1.587 1.581 1.595
Prediction bias 0.008 0.006 0.011 0.017 0.003

As shown in Table 9, compared with the actual production data, the prediction results are
all small, but the prediction deviation of PSO–SVM is at least 0.003 mm, indicating that the
prediction effect of PSO–SVM is highly accurate and can guide production more effectively.

6. Conclusions

(1) The established online ultrasonic thickness test bench was used to detect the rolled
copper pipe, and the maximum relative error between the ultrasonic data and the offline
manual data was 2.40%, which had good accuracy and could meet the actual engineering
requirements. The experimental equipment effectively solves the problems of low accuracy,
low efficiency, and poor timeliness in the traditional method;

(2) The BP neural network model, SVM model, RF neural network model, and RBF neu-
ral network model were used for prediction, and the R2 of the training set were 8.86 × 10−1,
9.65 × 10−1, 8.71 × 10−1 and 7.67 × 10−1, respectively. The results showed that the above
neural network models could effectively predict the wall thickness of the connecting copper
pipe. But the SVM model has higher prediction accuracy;
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(3) The RMSE of the test set of the PSO–SVM model decreased from 1.82 × 10−2

to 1.45 × 10−2; MAE decreased from 5.9 × 10−3 to 3.4 × 10−3, and R2 increased from
9.12 × 10−1 to 9.49 × 10−1. It can be seen that the PSO–SVM model has better stability than
the traditional SVM model in predicting joint tensile wall thickness;

(4) The construction of an ultrasonic online thickness test bench and the prediction
of PSO–SVM for joint tensile wall thickness data can better monitor the change in wall
thickness on site. When the wall thickness deviation of the rolling mill is large, which has a
serious impact on the joint tensile wall thickness, the roll can be adjusted in time to improve
the copper pipe quality correlation coefficient.
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