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Abstract
High-dimensional, spatial single-cell technologies, such as CyTOF imaging mass cytometry (IMC), provide detailed information regarding 
locations of a large variety of cancer and immune cells in microscopic scales in tumor microarray slides obtained from patients prior to 
immune checkpoint inhibitor (ICI) therapy. An important question is how the initial spatial organization of these cells in the tumor 
microenvironment (TME) changes with time and regulates tumor growth and eventually outcomes as patients undergo ICI therapy. 
Utilizing IMC data of melanomas of patients who later underwent ICI therapy, we develop a spatially resolved interacting cell system 
model that is calibrated against patient response data to address the above question. We find that the tumor fate in these patients is 
determined by the spatial organization of activated CD8+ T cells, macrophages, and melanoma cells and the interplay between these 
cells that regulate exhaustion of CD8+ T cells. We find that fencing of tumor cell boundaries by exhausted CD8+ T cells is dynamically 
generated from the initial conditions that can play a protumor role. Furthermore, we find that specific spatial features such as co- 
clustering of activated CD8+ T cells and macrophages in the pretreatment samples determine the fate of the tumor progression, 
despite stochastic fluctuations and changes over the treatment course. Our framework enables the determination of mechanisms of 
interplay between a key subset of tumor and immune cells in the TME that regulate clinical response to ICIs.
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Significance Statement

Imaging mass cytometry allows for detailed snapshot imaging of microscale organization of tumor and immune cells and provides 
insights into underlying biology and clinical responsiveness to cancer immunotherapy. Combining published imaging mass- 
cytometry data and recorded patient responses to immune checkpoint inhibitor (ICI) drugs with analysis rooted in statistical physics 
and statistical inference theory, we developed and studied the dynamics of mechanistic spatially resolved models. We show that ex
haustion of CD8+ T cells by melanoma and macrophage cells can lead to protumor fencing of exhausted CD8+ T cells around melan
oma cells. Specific features of the initial spatial organization can lead to single-variable average behavior despite stochastic spatial 
dynamics. The insights from our studies can pertain to the response of other solid tumors to ICI therapy.
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Introduction
A tumor is complex and heterogeneous tissue composed of tumor 
cells, various immune cells, connective tissues, blood and lymph
atic vessels, and extracellular materials like collagen (1). The rela
tionship between tumor cells and immune cells in the tumor 
microenvironment (TME) is shaped by multiple factors, including 
the recruitment of immune cells (2), activation of T cells by neoan
tigens in the draining lymph nodes, and exhaustion of activated 
T cells. Immunotherapeutic strategies that exploit the immune 

system to eliminate tumors have revolutionized cancer treatment 

(3). However, despite many striking examples of success, these 

therapies still cure only a moderate percentage (∼20–40%) of pa

tients (3, 4). System-level understanding of how the immune sys

tem induces anti- and protumor responses can considerably aid 

the development of newer immunotherapies with greater efficacy.
Recent advancements in single-cell spatial technologies, such 

as CyTOF imaging mass cytometry (IMC) (5–9) and cyclic immuno
fluorescence (CyCIF) (10, 11), provide extensive information about 
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the composition of the TME where over 30 different proteins can 
be measured in single cells along with knowledge of their spatial 
locations in small millimeter scale tissue microarray (TMA) sam
ples extracted from tumors. A wide variety of spatial data analysis 
tools ranging from calculation of local cell density (12–14), spatial 
pair correlations (13, 15), clustering (16) to application of probabil
istic methods such as latent Dirichlet allocation (15, 17), and ma
chine learning methods such as graph (18) or convolutional (19) 
neural networks have been employed to identify microscopic spa
tial patterns of tumor and immune cells in high-dimensional IMC, 
CyCIF, and multispectral fluorescence imaging datasets that are 
associated with patient survival and response to anticancer drugs. 
However, the imaging is usually done at a single time point, most
ly before the ICI treatment, and a major challenge is to infer how 
these microscopic spatial patterns mechanistically determine the 
tumor growth kinetics when checkpoint drugs are administered.

Spatially resolved mechanistic models involving tumor and im
mune cells have been developed over the years using agent-based 
(20–24) and cellular automaton (23) modeling approaches or par
tial differential equations (25) to determine the roles of interaction 
between these cell types, vascularization, and mechanical forces 
in tumor growth and patient responses. These models largely re
mained uncalibrated against experimental data; however, due 
to the access of digital hematoxylin and eosin (H&E) slides in re
cent years, greater computation power, and efficient algorithms, 
several studies have calibrated spatial models against real (26) 
and synthetic (27) immunohistochemistry datasets which can 
identify few types of cells. In contrast, IMC datasets can identify 
many immune cell types as well as their activation states which 
offer an attractive scenario to calibrate such spatial models and 
infer mechanisms involving interplay between the tumor and im
mune cells.

To this end, we combined IMC data obtained from biopsy 
samples from melanoma patients precheckpoint therapy, the 
data regarding the response of these patients to anti-PD1/CTLA4 
checkpoint therapy to develop a mechanistic spatially resolved 
interacting cell system (ICSs) model; we combined statistical 
interference theory to justify details of the interactions between 
immune and tumor cells that underlie patient responses to im
mune checkpoint inhibition (ICI) drugs. The specific major find
ings from our investigation are as follows: (i) the elucidation of 
the effects of the interplay between killing of tumor cells by active 
CD8+ T cells, and the exhaustion of the latter by tumor cells and 
noninflammatory macrophages, (ii) how the interplay in (i) dy
namically generates spatial configurations with fencing of tumor 
cells by exhausted CD8+ T cells protecting tumor cells from active 
CD8+ T cells outside the fence; and (iii) how, despite the inherent 
stochastic fluctuations in the processes, at time scales longer than 
cell proliferation, maturation and death, specific features in the 
initial spatial organization of the melanoma and immune cells 
lead to widely different tumor growth outcomes. Despite the lim
itations of the dataset due to the small size (1 mm × 1 mm) of the 
TMA, the small sample size (∼30) of the patient cohort and our 
model’s simplicity, we note that we find and can corroborate the 
fencing of melanoma cells by exhausted CD8+ T cells independ
ently with data from an unrelated experimental study (10). Our 
modeling approach and methods can be utilized to design new 
immunotherapeutic strategies for melanoma and other cancers.

Approach
We obtained publicly available CyTOF IMC data of 1 × 1 mm2 

TMAs to quantify proteins in single cells that yield a spatial profile 

of different cell types in the TME. This information for samples 
from a cohort of 30 melanoma patients is paired with the response 
(responder or nonresponder, determined by immune-related re
sponse criteria or irRC (28)) to immune checkpoint inhibitors 
(ICIs) involving anti-PD1, anti-CTLA4, or the combination of the 
two (Fig. 1a) (5, 28).

We followed three main steps. First, we used the IMC and the 
patient response datasets to identify the immune cell types and 
their microscale spatial organization that are associated with 
the response of patients to ICI drugs. Second, we developed a spa
tially resolved ICS model involving mechanistic interactions be
tween tumor and the relevant immune cell types identified in 
the previous step. Lastly, we set up a training and testing frame
work for the spatially resolved mechanistic model using the IMC 
and the patient response datasets; this allows us to evaluate dif
ferent hypotheses regarding the interactions underlying the inter
play between tumor and immune cells. We describe these steps 
briefly below and provide further details in the Materials and 
methods section and in the Supplementary Material.

Identification of relevant spatial microscale cellular patterns
We used the spatial data regarding the locations of 10 different 
cell types such as melanoma cells, activated CD8+ T cells, and 
macrophage/monocytes in the TMA slides that were determined 
by Moldoveanu et al. (5) for our analysis (Fig. 1). First, we com
puted the densities of these different cell types in each TMA 
slide, which displayed large patient–patient variations. To de
termine cell types whose densities differ substantially between 
responders (14 patients) and nonresponders (16 patients) of 
the ICI therapy, we compared the mean densities of the cell 
types averaged over TMA slides obtained from responder or non
responder patients (Fig. S1a). We found that responders have on 
average larger densities of activated CD8+ T cells (P = 0.16; 
Fig. 1c); however, the densities of all the cell types did not display 
substantial difference (P ≤ 0.05) between the responder and non
responders (Fig. S1a).

Next, we evaluated whether specific microscale organization of 
certain cell types in the TMA slides significantly separates res
ponders from nonresponders. We used the pair correlation func
tion (C(r)), a widely used approach in statistical physics and 
material science (29), to evaluate whether cells of the same type 
or different types cluster or avoid each other within a length scale 
r relative to homogeneous and random spatial distribution of the 
cells in the slide (Fig. 1b and d). We computed C(r) for all the cell 
types and all possible pairs of the cell types, which showed large 
patient–patient variations (Figs. S1b and 1b). In order to determine 
spatial patterns involving specific cell types that might distinguish 
responders to nonresponders, we compared values of C(r) at r =  
10.5 μm for all possible pairs of cell types and found that C(r) for 
macrophages/monocytes with activated CD8+ T cells differ sub
stantially (P = 0.002) between responders and nonresponders, 
whereas the C(r) for most of the other pairs of cell types cannot 
be well separated (P > 0.05, Fig. S1b). The only cells other than 
CD8+ T cells and macrophage/monocytes that showed C(r) values 
substantially (P = 0.049) different between responders and non
responders are CD4+ T cells and stromal endothelial CD31+ cells. 
Stromal and immune cell interactions can influence tumor 
growth and metastasis via cytokines and tumor cell differenti
ation (30). In this study, we focused on the growth and lysis of 
tumor cells by CD8+ T cells, leaving the influence of stromal and 
immune cells in tumor growth as a future direction. Based on 
the above analyses, we reasoned that melanoma cells, activated 
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CD8+ T cells and macrophage/monocytes, and mechanisms 
involving interactions between these cell types give rise to the dif
ferences in tumor growth in the patients who went through the ICI 
therapy. In order to evaluate the roles of different mechanisms 
with which these cells can interact to regulate tumor growth, we 
developed a spatially resolved mechanistic ICS model as we de
scribe below. More information on the spatial analysis can be 
found in the Analysis of IMC datasets section in Supplementary 
Material.

Development of a spatially resolved ICS model
We developed a spatially resolved model to describe the time 
evolution of melanoma cells and specific immune cells identified 
through our data analysis. The model is set up on a 1 × 1 mm2 2D 
simulation box divided into smaller l0 × l0 (=10 × 10 μm2) cham
bers. We considered activated CD8+ T cells, exhausted CD8+ T 
cells, tumor-associated macrophages (TAMs), and melanoma 
cells (Fig. 2a), where these cells interact and move spatially 
with specific rules and proliferate, die, or differentiate. The rules 
are based on experimental observations reported in the literature 

or on previous computational modeling efforts. We briefly de
scribe the rules used in the model below. We also provide bio
logical justifications for the rules and parameter values 
associated with the rules in Table S1 as well as in the Model simu
lation section in Supplementary Material.

In the model, all four cell types can occupy chambers in the 
simulation box, obeying local occupation limits due to the cells’ 
physical sizes. Melanoma cells proliferate (Fig. 2b) and are lysed 
by activated CD8+ T cells when the melanoma cells are in contact 
with the CD8+ T cells in the same or neighboring chambers 
(Fig. 2c). When in contact with melanoma cells, activated CD8+ 

T cells can become exhausted. Activated CD8+ T cells proliferate, 
creating new activated CD8+ T cells in the same chamber. 
Activated CD8+ T cells are also recruited into a randomly chosen 
chamber. The rates of proliferation and recruitment of activated 
CD8+ T cells depend on the number of melanoma cells lysed with
in a time interval. The exhausted CD8+ T cells do not lyse melan
oma cells or proliferate, and die. TAMs, similar to melanoma 
cells, induce CD8+ T-cell exhaustion when those are in contact 
with activated CD8+ T cells in the same chamber. Spatial motility 
of CD8+ T cell and TAM is modeled as diffusive hops to the nearest 

Fig. 1. Selection of cell types by analyzing patient slides. a) Patients with melanoma underwent ICI therapy and were characterized as either responders 
or nonresponders to therapy according to irRC. b) The dataset provides an IMC snapshot of each patient TME. We quantitatively evaluate the relationship 
between response to therapy and the spatial distributions of each cell type/pairs of cell types. We find the densities of each cell type in every slide as well 
as the spatial correlation (graphic aid below slides) between every permutation of two cell types. Graphic aid for the spatial correlation calculation: the 
density of blue cells around each yellow cell at radius R in an annulus of thickness δ is calculated for each yellow cell and averaged across all yellow cells. 
The total slide density of blue cells is then subtracted from that average to find if the density of blue cells around the average yellow cell is above or below 
that expected from a random distribution of blue cells. Finally, this value is divided by the average number of blue cells across all slides. Figures (a-b) were 
created with BioRender.com. c) The activated CD8+ T-cell density in slides corresponding to patients who did or did not respond to ICI therapy. The 
average activated CD8+ T-cell density (represented with box) among responders is higher than that of the nonresponders. The averages are different with 
P-value 0.1504. Because activated CD8+ T densities differ between responders and nonresponders, we consider activated CD8+ T cells a relevant cell 
population. d) The plot of spatial correlation between macrophages/monocytes and activated CD8+ T cells shows that at a distance of 10.5 μm (about the 
distance to a nearest neighbor), macrophages/monocytes find on average more activated CD8+ T-cell neighbors in responders than in nonresponders. 
The average spatial correlation values at 10.5 μm are different with a P-value of 0.0005. This difference between responders and nonresponders to ICI in 
the spatial distribution shows the relevance of the cell types, macrophages/monocytes and activated CD8+ T cells, and their spatial distribution.
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neighboring chambers. We do not explicitly model subcellular 
kinetics such as the pharmacodynamics of anti-PD1 and anti- 
CTLA4 for simplicity but the effects of ICI drugs are implicitly 
captured in model parameters. More details are given in the 
Model simulation section in Supplementary Material and Table S1.

Modeling the time evolution
We approximate the randomness in cell movements, cell prolifer
ation, cell death, and cell differentiation events as Markov proc
esses, where the current state only depends on the previous 
state of the system, for simplicity. The time evolution is per
formed by a kinetic Monte Carlo simulation approach (for details, 
see Model simulation section of Supplementary Material).

Model training
The time evolution of our model depends on the values of the 
model parameters. The order of magnitudes of many of the pa
rameters are known from previous experiments and modeling ef
forts; however, some of the parameters that substantially affect 
the tumor growth, such as the rate of exhaustion of activated 
CD8+ T cells by melanoma cells or macrophages, are not known. 
We estimated these parameters using the patient response out
comes in the following way: The initial locations and numbers 
of the melanoma and immune cells in our model are obtained 
from the TMA slides, and the locations and numbers of these cells 
change as the model is evolved over time. We computed the fold 
change of the total number of melanoma cells from the initial 
configuration at t = 0 with that of at an end time T, where a fold 
change of <1 (or >1) designates the patient associated with the 

TMA slide as a responder (or nonresponder); Fig. 2d. We choose 
T = 333 h or about 2 weeks which spans a common duration of a 
single cycle of ICI therapy through the course of a full ICI therapy 
regimen (7, 31, 32). We then assume that the effects of ICI remain 
constant throughout the cycle and that outcome for a single cycle 
of treatment correlates with patient treatment outcome deter
mined by Moldoveanu et al. using irRC. Since the time evolution 
is stochastic, the above fold change can vary across multiple sim
ulations of the same initial condition with the same model param
eters. We therefore define a prediction success frequency fi(θ) for each 
slide i to be the fraction of the simulations of our ICS model with 
parameter set θ, given the initial condition fixed by slide i, which 
agrees with the reported binary clinical outcome (e.g. responder 
or nonresponder) for the corresponding patient. We then define 
an appropriate response prediction success score function 
score(θ) (Eq. 2) for the model to quantify the model’s success 
across all slides. The score function given the clinical outcome 
data is maximized to estimate the model parameter set θ. We 
may then simulate the cancer cell population progression for 
each patient slide at optimal model parameters (Fig. S6). 
Additional details are provided in the Materials and methods 
section.

Hypothesis testing
We set up a hypothesis testing framework for evaluating different 
mechanisms that can potentially underlie the regulation of tumor 
growth by the immune cells considered in our ICS model using 
model simulations, IMC datasets, and the clinical outcome 
data. Alternate hypotheses (e.g. TAMs do not exhaust activated 

a

d

b c

Fig. 2. Schematic of model and approach to parameter estimation and hypothesis testing. a) The four cell types in the model: including melanoma 
cells, activated CD8+ T cells, exhausted CD8+ T cells and TAMs. b) Schematic depicting melanoma cells, macrophages, activated CD8+ T cells, and 
exhausted CD8+ T cells on the ICS lattice. CD8+ T cells and macrophages are free to diffuse around the slide. c) Cell–cell interactions in the model 
include lysis of melanoma cells by activated CD8+ T cells at rate l, exhaustion of activated CD8+ T cells by melanoma cells at rate bC and exhaustion of 
activated CD8+ T cells by TAMs at rate bM. Rates and rules are given in Table S1. Figures (a), (b) and (c) were created with BioRender.com. d) Shows 
spatial locations of melanoma cells, macrophages, cytotoxic CD8+ T cells, and exhausted CD8+ T cells from IMC data of human melanoma biopsies 
taken before ICI treatment and corresponding computationally time-evolved samples after 2 days. Top: IMC slide 06RD corresponding to a responder. 
Bottom: IMC 19BL corresponding to a nonresponder. Right: Melanoma cell population trajectories in time for 50 samples for each of the 2 slides. The 
19BL samples display cancer growth showing nonresponse, and the 06RD samples display cancer regression, which is an example of response.
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CD8+ T cells) can be tested by setting model parameters in the 
base model (the model described up to this point) to zero to create 
alternate models. To compare these alternate models to the base 
model, we first train the alternate models with the clinical out
come data as we trained the base model (Fig. 3a). Once these alter
nate models are trained, we then utilize bootstrapping to generate 
new datasets. Finally, comparing the prediction success scores (or 
score(θ)) for each dataset between the base model and a given al
ternate model, we evaluate whether the alternate model is more 
successful at predicting response (Figs. 3b and S2). Further details 
are provided in the Materials and methods section.

Results
Exhaustion of CD8+ T cells induced by TAMs and 
melanoma cells regulate response to ICIs
We tested several hypotheses pertaining to the mechanistic inter
plays between CD8+ T cells, TAMs, and melanoma cells that have 
been previously explored in experimental investigations with ani
mal models, and in vitro and ex vivo studies by applying our ap
proach to the IMC and the patient response data in Moldoveanu 
et al. (5). To test whether macrophages play a protumor role in 
the TME, we evaluated the hypothesis that exhaustion of CD8+ T 
cells by TAMs and melanoma cells plays a protumor role and in
fluences the response to ICI drugs in patients. We compared the 
base model with alternate models (representing hypotheses) 
where either the rates with which TAMs or melanoma cells ex
haust CD8+ T cells when these cells interact is set to zero. The ab
sence of CD8+ T-cell exhaustion by either melanoma cells or TAMs 
in the alternate models led to larger decreases in the fold change 
of the melanoma cells compared with that in the base model 
(Fig. 3a). This is due to the presence of more activated CD8+ T cells 
in the TME which sustained cytotoxicity toward the melanoma 
cells for the duration of the simulation. We evaluated the conse
quence of removing exhaustion of CD8+ T cells by melanoma cells 
and TAMs as in the alternate models on their ability to predict re
sponse to ICI drugs within our hypothesis testing framework. The 
P-values obtained were slightly higher (>5 and <10%), usually de
noted as suggestive (33), than the community accepted value 
(≤5%). We found suggestive P-values of 7% (TAM exhaustion of 
CD8+ T cells to zero) and 9% (melanoma cell exhaustion of CD8+ 

T cells to zero), respectively, rejecting the alternate hypotheses; 

therefore, the alternate models are less successful in predicting 
the patient outcome compared with the base model (Figs. 3b 
and S2). Thus, this result points to the importance of the exhaus
tion of CD8+ T cells by TAMs and melanoma cells in regulating tu
mor growth and response to ICI drugs in melanoma.

The initial (pretreatment) spatial organization of 
immune cells determines melanoma cell growth 
in the TME
Characterization of the trained ICS dynamics yields insight into 
how the TME might evolve in vivo. In particular, we find that the 
initial spatial distribution of activated CD8+ T cells and TAMs in 
the ICS model impacts the average dynamics over all simulations 
(trajectory average) of melanoma and activated CD8+ T cells for 
several patient slides. To evaluate the role of the initial spatial dis
tribution of the immune cells in the TME, we first uniformly and 
randomly distributed activated CD8+ T cells or TAMs throughout 
the area of each slide to generate altered initial distributions of the 
immune and melanoma cells. We then investigated the ICS time 
evolutions of the altered initial distributions and their ability to 
predict the patient responses associated with those slides. We de
scribe two such cases below.

Consider slide 33RD corresponding to a patient who did not re
spond to ICI therapy. The base model showed a net increase in the 
average number of the melanoma cells at the final time (about 14 
days) and correctly predicted the patient response in 98.6% of 
1,000 simulations performed of the slide TME (Fig. 4a). However, 
when the initial spatial distribution of the CD8+ T cells was altered 
by seeding the cells uniformly and randomly throughout the slide, 
there was a net decrease in the total number of melanoma cells 
over the duration of the simulation, and 100% of the 1,000 simula
tions of the altered initial condition incorrectly predicted the slide 
to be a responder (Fig. 4a). Inspection of the spatial organization of 
the melanoma, TAMs, and activated CD8+ T cells in slide 33RD 
(Fig. 4c), shows that a large portion of the melanoma and the acti
vated CD8+ T cells are spatially segregated, which could limit the 
access of the CD8+ T-cell population to the majority of the melan
oma cells, whereas when the activated CD8+ T cells are distrib
uted homogeneously in the altered initial distribution, most of 
the melanoma cells can be accessed and eliminated by the CD8+ 

T cells. This leads to a net decay of the melanoma cell population 
and causes the model to predict the slide to be a responder. 

Fig. 3. Hypothesis testing with ICS model and patient response data suggests TAM and melanoma cell–induced exhaustion of CD8+ T cells regulate 
response to ICI drugs. a) Melanoma cell fold change (log-linear plot) trajectories plotted as a function of time for 1,000 simulations of slide 33RD 
performed with the trained full model (dark red) and with the trained model with TAM exhaustion of activated CD8+ T cells turned off (dark cyan). b) 
Shows the distribution of DSS (defined in the Materials and Methods section) over 100,000 bootstrap samples to test the hypothesis that the prediction 
power of the full model is the same as in the model without TAM exhaustion of activated CD8+ T cells. The hypothesis is rejected with P-value 0.070. DSS 
distribution for the model without exhaustion of CD8+ T cells by melanoma cells is shown in Fig. S2.
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Similarly, randomizing the initial distribution of activated CD8+ T 
cells in the rest of the patient cohort yields largely different model 
predictions (a shift in the percentage accuracy of trajectory pre
diction of patient response >60%) for two other patient slides 
(10% of patient slides) as well (Table S3).

In another slide, 21RD, associated with a responder, the time 
evolution of the initial distribution of the melanoma and immune 
cells using our ICS model correctly predicts the outcome 98% of 
the 1,000 simulations (Fig. 4b). However, when the spatial distri
bution of the TAMs in slide 21RD is altered by seeding the TAMs 
randomly and uniformly throughout the slides, only 65 of 1,000 
simulations show a decrease in the melanoma cell population 
by final time thus predicting the correct outcome 0.065% times 
(Fig. 4b). For the slide 21RD, distributing the TAMs homogeneously 
throughout the slide (Fig. 4d) increases mixing between the TAMs 
and activated CD8+ T cells which increases conversion of ex
hausted CD8+ T cells and, ultimately, leads to increased growth 
of the melanoma cell populations and incorrect response predic
tion for the patient. Clearly, ICI response associated with a slide is 
dependent on specific features of the initial spatial distribution of 
cells in the TME. Randomizing the initial distribution of TAMs in 
the rest of the cohort yields largely different model predictions 
for one other patient slide (∼7% of patient slides; Table S3). 
These results point to potential mechanisms with which the ini
tial spatial distributions of the melanoma and immune cells can 
regulate the tumor growth in the presence of ICI drugs. We further 

characterize and quantify such spatial mechanisms in the next 
two sections.

Intratumoral CD8+ T cells produce fencing of 
tumor boundaries with exhausted CD8+ T cells
We studied the spatial configurations of the melanoma and the 
immune cells in the ICS model starting from each of the slides 
to identify features that may potentially affect tumor dynamics. 
We found that the system displays an increased accumulation 
of exhausted CD8+ T cells in contact with melanoma cells, which 
we term “fencing.” This aggregation of exhausted CD8+ T cells in 
contact with melanoma cells occurred for simulations initialized 
with several IMC slides (Fig. 5a). The phenomenon of “fencing” oc
curred not only in the snapshot configurations shown but per
sisted on a time scale comparable to (or larger than) that is set 
by the melanoma cell proliferation rate. We quantified the aggre
gation of the exhausted CD8+ T cells in contact with melanoma 
cells in our simulations. We present the analysis in the context 
of slide 06RD and show results for additional slides in the 
Supplementary Material (Fig. S3a and b). We defined a collection 
of exhausted CD8+ T cells in contact with melanoma cells as a 
fencing cluster of exhausted CD8+ T cells where at least one ex
hausted CD8+ T cell in the cluster shares the same chamber or 
a nearest neighboring chamber with a melanoma cell and all 
the others are in contact with fellow exhausted CD8+ T cells in 
the same chamber or the nearest neighboring chambers 

Fig. 4. The pretreatment spatial organization of activated CD8+ T cells, TAMs, and melanoma cells determines tumor cell dynamics in the ICS model. a) 
Melanoma cell fold change as a function of time on a log-linear plot for 1,000 samples of slide 33RD. Contrast the curves for the observed ICI initial 
condition shown in dark cyan with those for the same initial condition but with the initial activated CD8+ T-cell positions randomly distributed (shown in 
dark red). With the rearrangement of the activated CD8+ T cells, the model prediction flips from nonresponse to response in almost all runs of the 
stochastic simulations. b) Similar comparison of melanoma cell fold change for 1,000 samples of slide 21RD as a function of time; the results for the 
observed ICI initial condition are shown in dark red, and the results with only the initial TAM positions being randomly distributed are shown in dark 
cyan. The randomization of the initial TAM positions changes the behavior from responder to nonresponder for almost all samples. c) Snapshots of a time 
evolution of slide 33RD, considered in (a), for one sample using the ICS model (top) and for the same initial condition but with the activated CD8+ T-cell 
positions randomly distributed (bottom). When the activated CD8+ T-cell population is randomized, it is distributed throughout the melanoma bulk and 
is thus able to rapidly expand due to its early lysing of melanoma cells. d) Snapshots from a single-time evolution of slide 21RD considered in (b) using the 
ICI initial condition (top) and of the same initial condition but with the TAM spatial distribution randomly distributed (bottom). The positions of the 
randomized TAM cells can more effectively inhibit the expansion of the activated CD8+ T-cell population leading to a different outcome. Results for 
figures (a)–(d) were obtained with the trained base ICS model. The color scheme separating cell types in the tumor slides (c) and (d) are the same as those 
used in Figure 2a.
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(Fig. 5d). The shape of the clusters of exhausted CD8+ T cells may 
not always resemble the canonical shape of a fence. We found 
that for the simulations initiated with the slide 06RD, for config
urations at 72 h, 25% of the exhausted CD8+ T cells reside in 
such clusters containing at least three exhausted CD8+ T cells 
(Fig. 5e). In contrast, when the CD8+ T cells in these configurations 
were permuted randomly with other immune cells (activated 
CD8+ T cells and TAMs), only 9% of the randomized exhausted 
CD8+ T cells contribute to the clusters with three or more cells, 
implicating roles of the spatial distributions of the melanoma 
and the immune cells in the IMC slides and their kinetics in giving 
rise to these fencing structures. In our simulations, the fencing 
structures arise because of the exhaustion of active CD8+ T cells 
in contact with melanoma cells. The exhausted CD8+ T cells that 
can no longer lyse the melanoma cells in the fence hinder access 
of other activated CD8+ T cells to the tumor, thus potentially re
ducing lysis. We find evidence of fencing cluster formation by ex
hausted CD8+ T cells in the simulation of 20 of the 30 patient 
slides (Table S4). Given the generality of such a mechanism 
underlying the occurrence of fences of exhausted CD8+ T cells, 
we reasoned these structures should be seen in images of tumor 
samples of melanoma.

We investigated CyCIF imaging data of melanoma tissue slides 
obtained from patients at different stages of melanoma progres
sion technique published in a different study by Nirmal et al. 
(10). The CyCIF imaging data contained over 50 protein markers 

and identified over 10 different types of immune, stromal, and 
melanoma cells, including melanoma and exhausted CD8+ T cells. 
We found fencing structures formed by exhausted CD8+ T cells in 
several regions (two are displayed in Fig. 5b and c). In analyzing 
the CyCIF data, we considered the typical physical sizes of the 
cells in the system, by modifying our definition of nearest neigh
bors to compute the clusters of exhausted CD8+ T cells in contact 
with melanoma cells (Fig. 5d). Here, two cells are considered near
est neighbors if their nuclei are within 15 μm of each other. The re
sults of our analysis of slide MEL-6 from Ref. (10) are as follows: 
14% of exhausted CD8+ T cells contribute to fencing clusters 
with three or greater number of member cells; randomly permut
ing the spatial distribution of the same exhausted CD8+ T cells, we 
found that 0.05% are in the fencing clusters, eliminating the pos
sibility that the fencing occurs in random configurations (Fig. 5f). 
This calculation was also performed with neighbors being defined 
at other radii, and the same qualitative results were found. These 
results show that exhausted CD8+ T cells preferentially cluster 
near melanoma cells in vivo, similar to that observed during the 
time evolution of the ICS model.

Growth of melanoma cells in the TME is regulated 
by stochastic fluctuations
In this section, we present results to show how the interplay of the 
initial spatial distribution of cell types from patient data with 

a b c

d e f

Fig. 5. Fencing of tumor boundaries with exhausted CD8+ T cells in the ICS model and CyCIF imaging data of TMA slides from melanoma patients. 
a) A sample of slide 06RD at 72 h of simulation shows exhausted CD8+ T-cell fencing. b, c) All melanoma, cytotoxic CD8+ T cells and exhausted CD8+ T 
cells are plotted for a subsection of slide MEL06 (10). Exhausted CD8+ T-cell fencing in the model is supported by the presence of linings of exhausted CD8+ 

T cells along the boundary of the tumor in MEL6 blocking access to their cytotoxic counterparts. In general, exhausted CD8+ T cells border the melanoma 
cells more often than cytotoxic CD8+ T cells. This may lead to a reduction of cytotoxic function in vivo. d) Illustration of fencing and nonfencing clusters 
with exhausted CD8+ T cells and melanoma cells. The two clusters of exhausted CD8+ T cells on the left, considered to be nonfencing, are either not in 
contact with melanoma cells or do not have enough cells in the cluster. The two clusters on the right meet the criteria for being fencing clusters. e) Shows 
the fencing metric for ICS model data alongside that for randomly a permuted distribution of exhausted CD8+ T cells. When the spatial distribution of 
exhausted CD8+ T cells is randomly permuted with all CD8+ T cells and TAMs in the simulation the percentage of exhausted CD8+ T cells contributing to 
fencing in slide 06RD at 72 h is considerably reduced when compared with the actual distribution. f) Shows the fencing metric for the CyCif data alongside 
that for randomly a permuted distribution of exhausted CD8+ T cells. The percentage of all exhausted CD8+ T cells contributing to fencing in slide MEL06 
is similarly greatly reduced when the distribution of exhausted CD8+ T cells is randomly permuted with all identified cells except melanoma cells. The 
color scheme separating cell types in the tumor slides (a), (b) and (c) are the same as those used in Figure 2a.
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Fig. 6. Characterization of the interplay between stochastic fluctuations and initial spatial organization of CD8+ T cells, TAMs, and melanoma cells in 
regulating tumor growth in the ICS model. a) Shows temporal stochastic trajectories of the populations of melanoma cell (log-linear plot) and b) activated 
CD8+ T-cell population (linear–linear plot) for 1,000 different runs of the same initial distribution of the cells in slide 16BL. Ordering the trajectories by 
their melanoma cell populations at 125 hours, the trajectories corresponding to the top 25% highest (lowest) melanoma cell populations are blue (brown). 
The lighter blue (brown) trajectory corresponds to the average trajectory of the blue (brown) trajectories. The black trajectories represent the remaining 
50% of trajectories which are neither in the blue nor brown subgroups. All samples begin with identical initial conditions set by the patient slide data 
16BL. Observe that the samples in the top 25% and bottom 25% of the melanoma cell population identified at 125 h remain separated up to the final time. 
c) The change in the autocorrelation coefficient (Eq. 1) with time for the melanoma cells from 125 h of the samples shown (solid line) along with the 
analytically computed autocorrelation of a single-variable stochastic birth process (dashed line). Both these autocorrelation coefficients decrease with 
time very little in the final 175 h of the simulation. d) Shows the change in the autocorrelation coefficient of the melanoma cells in the ICS model with time 
from 2 h to final time. This shows how predictive ability of the future state starting from 2 h drops off very fast in the early stage. After 125 h, the 
autocorrelation coefficient drops off very little as in (a). e) A log-linear plot of the mean melanoma cell population as a function of time from the 
simulations compared with the fitted single-variable growth process from 125 h. f) A log-linear plot showing the change of the melanoma cell population 
variance from the simulations (solid line) compared to that from the single-variable growth process (dashed line) from 125 h. The ICS model shows good                                                                                                                                                                                                                                                 

(continued) 
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stochastic dynamics of the ICS model determines the kinetics of 
the number of melanoma cells (Fig. S4a). We will illustrate results 
from our investigations using two slides as examples, examine 
their implications, and make several general conclusions.

We first examined the kinetics exhibited when the initial condi
tion corresponds to slide 16BL (Fig. 6a and b). The stochastic 
trajectories describing the fold change of the melanoma cell num
ber over time fluctuate and can be seen to cross at early times 
(t ≤ τ* ∼125 h for 16BL), whereas, as time progresses (e.g. >125 h), 
the overwhelming majority of the 1,000 trajectories (except for a 
few dozen outliers) remain separated (Fig. S4c).

We further characterized the crossing and noncrossing of most 
of the stochastic trajectories at early and late times (roughly be
fore and after 125 h), respectively, using an autocorrelation coef
ficient function A(t, ti),

A(t, ti) =
1
N

􏽘

αϵ all samples

(Cα(ti) − μ(ti))(Cα(t) − μ(t))
σ(ti)σ(t)

. ( 1 ) 

where N is the number of samples (stochastic trajectories), 

μ(t) = 1
N

􏽐
αϵ all samples Cα(t), and σ2(t) = 1

N

􏽐
αϵ all samples (Cα(t) − μ(t))2 . 

A(t, ti) quantifies the correlation between the populations at the 
current time t and an earlier time ti. The results of the simulations 
for the slide 16BL are shown in Fig. 6c and d; they show a sharp de
cay of A(t, ti = 2 h) with t for t > 2 h capturing the lack of correlation 
with the initial state or mixing of the stochastic trajectories due to 
stochastic dynamics, whereas A(t, ti = 125 h) decays slowly show
ing the decreased mixing of the stochastic trajectories.

The late-time kinetics of the mean fold change for the trajector
ies beyond τ* can be well approximated by an exponential growth 
with a proliferation rate roughly 25% lower than that of the mel
anoma cell replication rate. The decrease can be attributed to 
the elimination of the melanoma cells by the remaining small 
population of activated CD8+ T cells that is still decreasing due pri
marily to TAM exhaustion. The decreased mixing of the trajector
ies for t ≥ τ* is reflected in the coefficient of variation (σ/μ, Fig. S4b); 
it plateaus around a value of 0.4 at late times while the mean mel
anoma population μ increases exponentially.

The above two observations suggest that the dynamics of the 
melanoma cell number can be captured by a single-variable ran
dom birth process, known as the Yule process (34). Fitting the 
birth rate, the only parameter in the Yule model, to the observed 
growth rate in the simulations, we compared the analytical ex
pression of the variance of the Yule process with that in the sim
ulations (Fig. 6e). The one-variable model variance is somewhat 
lower than that in the simulations (Fig. 6f). This difference be
tween the ICS model variance and the Yule process can be under
stood by noting the spatial fluctuations in the number of activated 
CD8+ T-cell population that reduce the effective growth rate. The 
autocorrelation coefficient function A(t, ti = 125 h) for the Yule 
process agrees with that of the ICS model. The fact that we can de
scribe the late stage of the ICS model evolution by a spatially inde
pendent model is a striking feature of the model. Next, we 
examined the qualitative mechanism that leads to the change in 

the behavior of melanoma cell population, around 125 h, that is 
characterized by a rapidly decaying autocorrelation coefficient 
function at early times (Fig. 6d) and a slowly decaying autocorrel
ation coefficient function at late times (Fig. 6c). We reasoned this 
is due to a spatial separation between the melanoma and the 
CD8+ T-cell populations at late times (≥125 h). Inspection of the 
spatial configurations at intermediate times (Fig. 6g), revealed 
that around 125 h when the average melanoma cell population 
is near its minimum, the melanoma cells are spatially separated 
from the activated CD8+ T-cell population. The activated CD8+ 

T cells diffuse through the region with a small probability for 
encountering and eliminating melanoma cells and only rarely 
contact the isolated cancer masses. This spatial separation under
lies the success of the single-variable model at late times.

At early times when the CD8+ T cells in closer contact with mel
anoma cells the lysing of the melanoma cells leads to greater pro
liferation and recruitment of CD8+ T cells that compensates the 
exhaustion by TAM and melanoma cells leading to continued de
crease of the melanoma cell population. The effectiveness of the 
feedback mechanism depends on the spatial disposition of the 
cells in the initial slide and at early times and determines whether 
the spatial separation occurs and if so when. For some of the 
slides, this spatial segregation occurs at early times as in 16BL 
and similar descriptions are valid (Fig. S6). On the other hand, if 
the diverse types of cells remain heterogeneously distributed as 
time progresses, the feedback persists and there is a decrease in 
the average number of melanoma cells up to late times and 
even up to the final time as in slide 06RD (Fig. S5a–c) which exhib
its mixing as shown by its autocorrelation (Fig. S5d). We analyzed 
stochastic trajectories in other slides which help us make a few 
general observations described below.

We may break the stochastic dynamics of the other slides into 
mixing and lower mixing or dispersed trajectory stages similarly 
to 16BL. The dynamics in all slides except for those with small ini
tial melanoma cell populations may be described by either mixing 
stages, dispersed stages, or with a transition from the mixing tra
jectory stage to the dispersed trajectory stage before final time 
(Fig. S5). For the slides giving rise to stochastic kinetics with the 
dispersed trajectory stage, the initial activated CD8+ T-cell popu
lation count and the initial spatial distribution of activated CD8+ T 
cells determine the time and melanoma cell population count 
when the slide dynamics transition to the dispersed state. Slides 
that maintain the mixing stage to final time are characterized 
by larger activated CD8+ T-cell populations at late times.

Discussion
We integrated cell-level, CyTOF IMC dataset and patient-level re
sponse data to ICI treatment in melanoma to develop a mechan
istic, spatially resolved ICS model; we developed a statistical 
framework to justify and calibrate interactions between melan
oma, CD8+ T cells and TAMs in the microscale in the TME. Our 
simulations allow us to predict responses to ICI treatment and 
the spatiotemporal development of the TME starting from the 
snapshot IMC datasets. We used the ICS model to elucidate how 

Fig. 6. (Continued) 
qualitative agreement with the single-variable growth model. The variance is larger for the ICS model, as there are still some spatial dependences that 
contribute to variations in population. g) Snapshots of the spatial distribution of the activated and exhausted CD8+ T cells, TAMs, and melanoma cells 
from a single-time evolution of slide 16BL using the ICS model. The melanoma and activated CD8+ T cells become spatially isolated as the melanoma cell 
population dynamics transition to the later growth stage. This isolation persists up to the final time as the activated CD8+ T cells are exhausted, and the 
melanoma cell population proliferates mimicking a stochastic birth process. The color scheme separating cell types in the tumor slides (g) are the same as 
those used in Figure 2a.
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specific changes in the spatial co-existence of melanoma and 
immune cells in the initial state lead to dynamic changes in the 
spatial organization of the melanoma and the immune cells on 
microscopic length scales and thus, dramatically affect the 
growth of the melanoma cell populations. A unique aspect of 
our model development is the way in which we determined the 
relevant cell types in our mechanistic ICS model using the IMC 
and the patient response data, and further estimated model pa
rameters in our model. Furthermore, we studied the time evolu
tion starting from the initial condition provided by the imaging 
data. This enabled us to identify the important spatial features 
in much lower dimensions (e.g. three cell types) within the large 
number of cell types, cytokines, and chemokines that compose 
the TME that are crucial in determining the tumor fate.

Inspection of the spatial patterns generated during our ICS sim
ulations initiated from several TMA slides showed the emergence 
of a fencing pattern of exhausted CD8+ T cells around tumor 
boundaries. The fencing patterns arise as activated CD8+ T cells 
encounter melanoma cells and become exhausted. The ex
hausted CD8+ T cells in the fencing patterns prevent activated 
CD8+ T cells from invading the interior of the tumor and can po
tentially protect the tumor cells from CD8+ T-cell cytotoxicity. 
We found confirmatory evidence for such fencing structures 
formed by exhausted CD8+ T cells (show the biomarkers, e.g. 
TIM3+ and Lag3+) in CyCIF imaging data of TMAs obtained from 
melanoma patients by Nirmal et al. (10). This also suggests the 
underlying mechanism leading to these patterns in our simula
tions may be operative in melanoma patients. The exhausted 
CD8+ T cells in the data by Nirmal et al. are likely to arise due to 
PDL1-PD1 axis–induced exhaustion by TAMs and melanoma cells. 
It will be important to determine whether the similar mechanism 
underlying the fencing pattern of exhausted CD8+ T cells is pre
sent in solid tumors other than melanoma, and the differences 
in the subtypes of CD8+ T cells residing within and outside the fen
cing structures.

Our investigation found that the spatial segregation of melan
oma cells and activated CD8+ T cells plays a protumor role during 
TME progression in the ICS model. We found that this segregation 
often occurs at a diminished activated CD8+ T-cell population 
and can mark a transition to a stage that shares characteristics 
(Fig. S5e) with stochastic single-variable growth. We also observed 
that spatial mixing of activated CD8+ T cells and TAMs in the mi
croscale tumor tissues increases the probability of the interac
tions between these cells leading to increased exhaustion of the 
CD8+ T cells in the TME (Fig. 4c) and subsequent tumor growth. 
Similar conjectures on the relevance of cellular spatial distribu
tions have been made qualitatively previously (35–41). We were 
able to deduce such dependencies from the time evolution of pa
tient slides, and our ICS model provided mechanisms that under
lie this behavior. In evaluation of the model dynamics, we found 
fluctuations in cell population play a major role in prediction of 
patient response to ICI therapy from biopsy slides taken from pa
tients’ pretreatment. For some slides (such as 16BL), final cancer 
cell population counts between simulations can vary so widely 
due to stochastic fluctuations that they give rise to different pre
dictions of response. For other slides, predictions of response are 
effectively deterministic. The greater these fluctuations are, the 
less predictive power the biopsy slides have of patient response.

Limitations of the approach
We ignored several possibly relevant variables in our ICS model 
for simplicity and due to difficulties in providing validation 

against experiments. For example, our ICS model did not include 
the tumor vasculature—the blood vessels network regulating flow 
of nutrients and waste products in the TME, which is an important 
factor for tumor growth (42). Our analysis of the IMC dataset de
termined endothelial cells (CD31+ cells) to be associated with res
ponders to the ICI treatment. Cytokines and chemokines could 
affect immune cell cytotoxicity, proliferation, exhaustion, and re
cruitment in the TME. The 3D structure of the tumor that was not 
explicitly included in the model could affect variations in the TME 
progression as well. In three dimensions, the exhausted CD8+ 

T cells may be less likely to form fencing structures due to the het
erogeneous tumor cell distribution and diffusion. However, we 
found exhausted CD8+ T-cell fencing in the 2D snapshots of 3D 
tissue samples experimental, suggesting such structures do arise 
in three dimensions. These factors could affect the rates of the 
processes in our model, even making them dependent on time. 
Nevertheless, we expect the mechanisms underlying the phe
nomena we have identified will play a role in the extended models, 
although quantitative details can differ.

Limitations of the data
The datasets that underpin our theoretical modeling have definite 
limitations arising from the small spatial extent (1 mm × 1 mm) of 
the TMA and small sample size (30 patients) defined by the patient 
cohort. The size of the TMA restricts us from unveiling patterns on 
the scale above 100–200 μm. We only employ techniques to exam
ine cell–cell relationships at smaller length scales (5–50 μm) and 
how they differ between responders and nonresponder slides. 
Within each slide, we investigate these spatial relationships by 
averaging across the hundreds to multiple thousands of resident 
cells in CyCIF (10) and IMC (5) datasets. Despite the small cohort 
size, we find differences in densities (P < 0.16) and spatial correla
tions (P < 0.05) of specific cell types between responders and non
responders in the IMC data, such as in the spatial correlation 
between macrophage/monocytes and activated CD8+ T cells.

The lack of experimental information for different circum
stances precludes the possibility of modeling them reliably. For 
example, as none of the patients in the cohort went without ICI 
therapy, we do not model the TME without ICI therapy applied 
though we do explore such effects in Fig. S5f and the Sensitivity 
of patient response section in Supplementary Material. Because 
of the cohort size restriction and lack of information on the treat
ment regimens, we also did not model any of the three different 
treatments individually or explicit pharmacodynamics of the 
ICI drugs. Incorporation of these details could enable the model 
to provide patient-specific recommendations regarding choice 
of ICI drugs and their delivery using pretreatment biopsy slides. 
We plan to include these factors supported by relevant, available 
experimental data in future iterations of this model.

Despite the limitations of the data, we constructed our model 
consistent with the results both to clarify the steps in developing 
models from available data and to obtain useful insights into spa
tial patterns and temporal evolution from our model simulation. 
The dataset of Moldoveanu et al. does not identify an exhausted 
subset of CD8+ T cells, making it difficult to investigate the per
formance of our fencing measure in the prediction of their clinical 
outcomes. Nevertheless, as shown in the Results section, specific 
spatial features (e.g. Tex fencing) identified from this specific mod
el have been seen in unrelated experiments (10). Furthermore, as 
more data become available, we hope our approach and results 
will be useful in unraveling the spatiotemporal dynamics of can
cer therapy.
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Materials and methods
Model training
To train the ICS model parameterized by θ, we maximize a re
sponse prediction success score function, score(θ). We use the 
prediction success frequency fi(θ) per slide i as defined in the 
Approach section to construct the model prediction success score 
(43) is as follows:

score(θ) =
􏽙N

i=1

(1 − b)fi(θ) + b ×
1
2

􏼒 􏼓

. ( 2) 

Here, N = 30 is the number of patient slides and the constant b 
is used to capture the intrinsic limitations of the IMC dataset such 
as TMA slides not representing the TME at larger length scales 
(approximately several millimeters to centimeters) well enough (e.g. 
responder slides devoid of CD8+ T cells) or bias in the selection of tis
sue for TMAs to successfully predict patient response. Therefore, giv
en any single patient slide, our model could at maximum predict 
patient response outcome with a probability 1 − b/2 (<1). The factor 
½ arises from the fact that 50% of predictions due to intrinsic uncer
tainties can coincide with the correct patient response by random 
chance. We choose the value of the constant b = 0.1.

We note that in Moldoveanu et al. (5), the patient response 
outcomes were determined by irRC where clinicians evaluate re
sponse by shrinkage of the tumor size or nondevelopment of new 
lesions and overall increase/decrease in tumor burden. We capture 
this determination of response parsimoniously with the fold 
change of the melanoma cell population in our ICS simulations.

We chose to fit two parameters, the rates of exhaustion of acti
vated CD8+ T cells by melanoma and TAMs, because the magni
tudes of the rates are not well characterized in the literature, 
and our preliminary sensitivity analysis found them to strongly 
affect the prediction success score. All other rates are fixed 
(Table S1). We will refer to this as the two-parameter or base ICS 
model. The negative log prediction success score −ln(score(θ)) is 
minimized by varying these two rates. Our model results through
out the manuscript are presented for the parameter values esti
mated by optimizing score (θ).

Hypothesis testing
We follow standard hypothesis testing procedures commonly used in 
resampling statistics (44) to compare the optimized base ICS model to 
alternate models (hypotheses) of interest. We consider two hypoth
eses where activated CD8+ T cells are not driven to exhaustion by 
(i) the TAMs or (ii) the melanoma cells. A single-parameter alternate 
model is constructed by fixing one of these estimated parameters (the 
corresponding exhaustion rates) in the two-parameter model to zero. 
The model parameters (θalt) in the alternate single-parameter model 
are re-estimated using the patient’s response data by maximizing 
score(θalt), as we described in the previous section. Since we only var
ied these two exhaustion rates in the two-parameter model training, 
in the alternate model, only the other exhaustion rate was varied dur
ing the re-estimation procedure. Next, we set up a nonparametric 
bootstrap method as described below to generate samples from the 
two-parameter model and the alternate model for comparing the 
base and the alternate hypotheses. For the base model, our model 

training produces a prediction success frequency fi(θ̂base) for any slide 

i, where θ̂base represents the estimated two parameters in the two- 
parameter base model. We draw N (=30) slides from the original set 
of N (=30) slides randomly with replacement to create a bootstrap 
sample (indexed by β) of slides. Then, we compute the success score 

function ([score(θ̂base)]β) using the prediction success frequencies, 

{ fi(θ̂base)}, associated with the slides in the bootstrap sample β. The 
calculation of the success score function is repeated for many 
bootstrapped samples to generate a set of success scores for the 
base model. Next, we use the same procedure to generate a set of suc

cess scores {[score(θ̂alt)]β} for the alternate model. We compare 

the base and the alternate models by computing a test statistic 
given by the log-difference in the success score (DSS) predictions 
for base and the alternate model for the bootstrapped samples, i.e. 

DSSβ = −ln([score(θ̂base)]β) + ln ([score(θ̂alt)]β) = ln
[score(θ̂alt)]β

[score(θ̂base)]β

􏼠 􏼡

.

We construct the bootstrap distribution of DSS using multiple 
bootstrap samples (Figs. 3b and S2). If the one-sided (1 − α) × 
100% CI for DSS does not contain zero, we reject the hypothesis 
of equality at the α × 100% level (i.e. the optimized ICS model pro
vides a better fit to the data than the alternate model, and this im
proved fit cannot be readily explained by chance alone).

As our framework compares the optimized ICS model to alter
nate models where one of the two varying model parameters is 
fixed, the two hypotheses presented are the only hypotheses 
tested of significant interest (whether or not TAMs or melanoma 
cells exhaust activated CD8+ T cells) which may be tested with 
our base two-parameter ICS model. Testing whether these rates 
are any other specific values is of little interest.

Whenever multiple hypotheses are tested simultaneously, 
P-values for each individual hypothesis test should be adjusted. 
Here, we used a simple Bonferroni adjustment (i.e. each P-value 
was multiplied by the total number of tests performed) to obtain 
adjusted P-values of 14 and 18% for testing hypotheses related 
to TAM and melanoma cell exhaustion of activated CD8+ T cells, 
respectively. We did not focus on multiple hypotheses testing 
here, as the adjusted P-values are quickly elevated when perform
ing only two simultaneous hypothesis tests and the computation
al cost is prohibitive.
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Data Availability
Data used to generate all figures along with videos of the time 
evolution of single simulations of slides 06RD and 16BL may be 
found at DOI: 10.5281/zenodo.10206505. Instructions and code 
to build and execute ICS model simulations can be found at 
https://github.com/gdag458/Melanoma_ICS. Moldoveanu et al. 
make the patient IMC slides produced by their study available 
at DOI: 10.5281/zenodo.5903179 as noted in their paper (5). The 
melanoma patient CyCIF data produced by Nirmal et al. (10) is 
available at https://humantumoratlas.org as noted in their 
paper.
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