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Abstract: This paper discusses the diagnostic models of tool wear during face milling of Aluminum
Matrix Composite (AMC), classified as a difficult-to-cut material. Prediction and classification
models were considered. The models were based on one-dimensional simple regression or on
multidimensional regression trees, random forest, nearest neighbor and multilayer perceptron neural
networks. Measures of diagnostic signals obtained from measurements of cutting forces and vibration
accelerations of the workpiece were used. The study demonstrated that multidimensional models
outperformed one-dimensional models in terms of prediction accuracy and classification performance.
Specifically, multidimensional predictive models exhibited lower maximum and average absolute
prediction errors (0.036 mm vs. 0.050 mm and 0.026 mm vs. 0.045 mm, respectively), and classification
models recorded fewer Type I and Type II errors. Despite the increased complexity, the higher
predictive accuracy (up to 0.97) achieved with multidimensional models was shown to be suitable for
industrial applications. However, simpler one-dimensional models offered the ad-vantage of greater
reliability in signal acquisition and processing. It was also highlighted that the advantage of simple
models from a practical point of view is the reduced complexity and consequent greater reliability of
the system for acquiring and processing diagnostic signals.
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1. Introduction

Meeting requirements for dimensional and shape accuracy and the properties of the
surface and surface layer of machined parts is the main goal of any machining process [1,2].
One of the factors that determine machining quality is the cutting tool, including its
condition as determined by the degree of wear of the cutting edge or cutting edges (in multi-
tools). To achieve the required machining quality, tool life, i.e., the time after which it must
be replaced or regenerated, is planned conservatively to ensure that quality requirements
are met with the greatest possible certainty. To define this safe tool life, various statistical
and analytical methods are used [3-6].

In order to rationally use the cutting potential of a tool, it is possible to monitor the
machining results, i.e., to evaluate the characteristics that determine the quality require-
ments, by measuring them offline, online or inline [7]. The possibilities for online or inline
measurement of machining results are increasing, mainly due to vision systems. Vision
systems are also used to assess the condition of cutting tools [8]. However, they are still
costly and often inaccurate and unreliable. Therefore, the diagnostics of the machining
process based on cutting force signals or vibroacoustic signals, especially vibration ones,
still dominates and is currently being developed [9,10].

The value and variation of the cutting force depends on the cutting parameters (thick-
ness and width of the layer being cut, cutting speed), the geometry of the cutting edge,
and the conditions at the interface between the cutting edge surface and the workpiece
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materials [11]. As the tool flank wears, its contact surface with the workpiece increases,
which causes an increase in cutting force. The cutting force is also influenced by an increase
in the radius of the corner rounding and the wear on the rake face. The groove that forms
on this surface causes an increase in the effective rake angle, which promotes a decrease in
cutting force.

Because the cutting force varies dynamically, it causes varying deformations of the
M-F-W-T system (Machine tool-Fixture-Workpiece-Tool). The movements of the machine
tool components, in particular the rotation of the tool (in milling) or of the workpiece (in
turning), are transformed into vibro-acoustic processes, vibrations, and acoustic emissions
that occur in and around the machine tool’s mechano-acoustic system. The externally
measured signal is the response of the dynamic system of the machining system with a
certain transmission to the sum of the cutting force excitations [12,13].

There are many examples in the literature of the use of cutting force signals and vi-
broacoustic phenomena for cutting tool condition diagnosis. During machining, diagnostic
signals and the corresponding degree of cutting edge wear is recorded. Tool wear is most
often determined by direct geometric indices, measured mainly on the contact surface and
sometimes on the face surface of the cutting edge. Based on the recorded signals, specific
signal measures are determined, which are then used to build the corresponding diagnostic
model [14-17].

When designing a diagnostic system, special attention should be paid to the selection
of signal measures directly or indirectly related to the wear of the cutting edge. The
recorded signals contain much more information that is not covariant with the condition of
the blade and is unnecessary from the point of view of making diagnostic decisions—e.g.,
related to the machine drive.

The ultimate goal should be to select such measures that provide a reliable assessment
of the wear of the cutting edge. Here, machine learning methods can be helpful, which will
allow you to select only those related to the condition of the blade (e.g., decision trees) from
the redundant set of measures [18,19].

The process of blade wear itself can be visible in the vibration signal in at least two
aspects. First, a worn tool will be a source of stronger dynamic interactions during the
contact of the tool with the material, which can manifest itself in specific frequencies related
to the kinematics of the cutting process, as well as in the natural frequencies of the system.
Additionally, changes in a wide band of frequencies related to the phenomenon of friction
that increases with tool wear can be expected [20].

Many algorithms are used for this purpose, starting with all kinds of methods for
creating combinations of primary measures and selecting the most informative ones [17-20].
Examples are as follows: PCA—Principal Component Analysis, KPCA—Kernel Principal
Component Analysis, LDA—Linear Discriminant Analysis, ICA—Independent Compo-
nent Analysis [21], SVD—Singular Value Decomposition [22,23], REE—Recursive Feature
Elimination, FD—Fisher’s Discrimination, and CA—Correlation Analysis [24,25].

Two basic methods of diagnostic inference, prediction and classification, are used to
assess the degree of tool cutting edge wear. Predictive methods make it possible to predict
the degree of tool wear, expressed for example by the amount of wear. In the classification
method, the assessment of the tool condition is expressed descriptively (with a label), in
the simplest case in a binary form. Two-state identification is a practical approach under
industrial conditions [26-28].

The suitability or unsuitability of a tool must be predetermined by an indicator of wear,
such as edge wear, surface deterioration and others. In turn, exceeding certain diagnostic
measures that best assess the condition of the cutting edge will allow classification. For
this purpose, in addition to performing a series of tests, the experience of the operator or
technologist is also needed. In practice, it is not obvious to define these two states, and
CNC machine operators are often guided by intuition and the decision to replace the tool is
not always the right one [29].
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Inference methods, both predictive and classification-based, are based on various
mathematical models. The parameters of the model constituting the basis for diagnostic in-
ference can be determined on the basis of data obtained in specially conducted experiments
or on the basis of data obtained in real machining conditions, using learning algorithms,
incl. machine learning. For the purposes of machine learning and diagnostic inference,
many different mathematical models are offered in the literature [30-32].

The tool wear prediction model should be selected according to the type of cutting
edge wear. For example, if the wear process is dominated by surface abrasion, the use of a
simple linear or nonlinear regression model may be sufficient. However, if several forms of
wear occur simultaneously, the use of multidimensional models is required. Such a multi-
dimensional wear mechanism occurs, e.g., when cutting Metal Matrix Composites (MMCs).
These composites are used in modern automotive, aerospace and marine industries due to
their unique mechanical properties. Parts made from this material are lighter than those
made from steel, while maintaining similar strength properties, rigidity and the ability to
operate at high temperatures and under hard operating conditions.

An innovative example of the use of metallic composite materials is the Hubble tele-
scope’s 3.6 m long antenna boom offering the desired stiffness. It is made of an Al6061 alloy
matrix composite reinforced with graphite fibers. Another example of the use of MMCs is
the Space Shuttle Orbiter. For its construction, B/ Al composite was used for parts of the
fuselage and landing gear, saving 45% of the weight [33].

Metal Ceramic Composites (MCCs) are composed of at least two phases clearly sepa-
rated by an interfacial boundary. One of these phases is a reinforcing phase (SiC or Al,O3).
The metal matrix is formed by light metal alloys (Al, Ti, Mg). Depending on the type
of structural material, the reinforcement typically accounts for 10-40% of the composite
composition. There are two basic methods for producing MCCs: ex situ, in which the rein-
forcing phase is prepared in a separate process and is separately introduced into the matrix,
comprising composites reinforced with SiC particles, and in situ, where a reinforcing phase
is formed during the metallurgical process as a result of chemical reactions [34].

An example is the Aluminum Ceramic Composite (AMC) used in the study. The
microstructure of such a composite is shown in Figure 1.

Figure 1. Microstructure of the Aluminum Ceramic Composite (AMC) used in the study (DU-
RALCAN E35.10S). The microstructures of the samples were revealed after etching in the Mi2Al
reagent according to the PN-75/H-04512. The microstructure observations of the above samples were
performed at image magnifications of 100x (a) and 500x (b) [35].

Due to the addition of hard silicon carbide SiC particles in the structure, these materials
are classified as hard to cut [36]. Research shows that the significant size of SiC particles and
their percentage increase in the mass of the workpiece leads to accelerated tool wear [37].
This is due to the more frequent contact of the cutting edges and corners with the hard
carbides. The result of the above phenomenon is the occurrence of adhesive and abrasive
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wear during machining, which have a destructive effect on the tool structure [38,39]. They
are manifested by the formation of a build-up which, under the influence of the forces
applied, can detach from the cutting edge elements or adversely affect tool wear and the
associated increase in temperature during operation.

The aim of the work is to evaluate various prediction and classification models de-
termined by machine learning methods in diagnosing the condition of cutting tools dur-
ing Ceramic Composite milling characterized by 10% of reinforcement in the form of
ceramic particles.

The research results fill two research gaps. The first concerns the identification of the
wear pattern of the cutting edge during milling of the Aluminum Ceramic Composite. The
second gap concerns the comparison and assessment—using the example of the considered
machining case—of the usefulness of different diagnostic inference models.

2. Materials and Methods
2.1. Processing Conditions

A monolithic cylindrical end mill cutter with polycrystalline-type diamond (PCD)
cutting edges was used (Figure 2) for machining. Tools were mounted in thermal holders.
Machining was carried out with the parameters listed in Table 1. The parameters used
are typical for fine and extra-fine machining. The tests were carried out on a DMC70V
machining center with a maximum spindle speed of n = 30,000 rpm.

|
_—
——
A
Figure 2. PCD end mill cutter (diameter D; = 10 mm).
Table 1. Tool and machining parameters.
Tool Parameters Value
end mill cutter diameter D1 [mm] 10
number of cutting edges z 2
Machining parameters 1st set 2nd set
spindle speed n [rpm] 15,923 28,662
cutting speed vc [m/min] 500 900
cutting feed rate vf [mm/min] 1115 2006
feed per tooth fz [mm/edge] 0.035 0.035
axial cutting depth ap [mm] 5 5
radial depth of cut ae [mm] 0.1 0.1

The blade wear value VBc was calculated as the average of the edge wear measure-
ments of both blades. The blade edge wear was measured using a ZEISS Discovery V20
stereo laboratory microscope.

2.2. Measurement of Cutting Force and Vibration Acceleration

During the milling operation, the cutting force components and the acceleration
of vibration were measured in the following directions: feed direction (X), normal feed
direction (Y) and axial direction (Z).

To measure vibration acceleration, a three-component piezoelectric sensor from Briiel &
Kjeer mounted on a thread on the workpiece was used, from which signals were transmitted
to a NEXUS Briiel & Kjeer amplifier. The components of the total force were measured using
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a piezoelectric platform from which signals were transmitted to KISTLER load amplifiers.
The diagram of the measurement system is shown in Figure 3.

Spindle

T

|
|
|
|
|
|
|
.
|
|
|

Cutter | direction of tool rotation

Vibration sensor

Workpiece

Fx, Fy, Fz a, a, a,
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Figure 3. Scheme of the force and vibration measurement system.

2.3. Creation of Signal Measures

Force and vibration acceleration signals were recorded during successive machin-
ing operations. A total of 140 signals from process realizations with a cutting speed of
v =500 m/min and 159 signals from a cutting process with a speed of v, = 900 m/min
were recorded. After a certain number of end mill passes, the flank wear VBc of the tool
was measured.

Signal segments corresponding to the full penetration of the cutting edge into the
workpiece material were analyzed (periods of entry and exit of the cutting edge from the
material were omitted). Example recordings of the vibration acceleration signal (in the
Y—uay direction) and the force signal (in the Y—F), direction), complete and after removal of
the signal fragment unrelated to the cutting process, are presented in Figure 4. In addition,
as indicated in Figure 4, the input and output phases of the cutting edge from the material
were discarded.

Frequency bands of 500 Hz detected by the algorithm as active were combined into
wider bands if they were adjacent. In these bands, the rms value of acceleration signals was
determined. Using the results of the spectral analysis across the band, the Rice frequency
was also calculated.

Other measures were determined in the time domain over the full measurement
bandwidth. The following parameters calculated from one-second fragments of recordings
were used as measures of force and vibration signals: rms values, the peak value of
the signal, the average peak value (five averages divided into time intervals of 0.2 s),
amplitude, average value, clearance factor, form factor, crest factor, impulse factor, kurtosis
and Rice frequency.

A measure of the average peak value calculated from several maximum values was
used to reduce the importance of random (unique) impulse phenomena that may not be
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(a)

related to tool wear. Finally, sixty-one signal measures were determined. In addition, the
cutting speed v, was also used as one of the parameters for model learning.

(b)
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Figure 4. (a-d). Example signal recordings of vibration acceleration and force (a,b), and cut sections
of tool input and output in and out of the workpiece material (c,d).
2.4. Creating Data for the Training Set and the Test Set
Assuming that the defined signal measures (SMs) could be correlated with each other,
an analysis of the relations between the individual SMs was performed, and all relations
strongly correlated with others and simultaneously weakly correlated with VBc were
initially rejected. Finally, thirty-four signal measures were included in further analysis
(Table 2. Cutting speed v, was used as the distinguished independent quantity.
Table 2. Measures taken into account in training diagnostic models.
Symbol Description Frequency Band
ax_rms_(1000.0, 2500.0) Rms value of vibration acceleration 1.0-2.5 kHz
ax_rms_(7000.0, 8000.0) Rms value of vibration acceleration 7.0-8.0 kHz

ax_mean_peak
ax_CF

ax_FF
ax_f.Ricea

Average peak value of vibration accelerations
Crest factor of the vibration acceleration signal
Form factor of the vibration acceleration signal
Rice frequency

Full
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Table 2. Cont.
Symbol Description Frequency Band
7 ay_rms_(1500.0, 2500.0) Rms value of vibration acceleration 1.5-2.5 kHz
8 ay_rms_(3000.0, 3500.0) Rms value of vibration acceleration 3.0-3.5kHz
9 ay_rms_(7500.0, 8000.0) Rms value of vibration acceleration 7.5-8.0 kHz
10 ay_rms_(11,000.0, 11,500.0) Rms value of vibration acceleration 11.0-11.5 kHz
11 ay_mean_peak Average peak value of vibration accelerations
12 ay_avg Average value of the vibration acceleration signal
13 ay_CF Crest factor of the vibration acceleration signal Full
14 ay_FF Form factor of the vibration acceleration signal u
15 ay_IF Impulse factor for vibration acceleration
16 ay_kurt Vibration acceleration kurtosis
17 az_mean_peak Average peak value of vibration accelerations
18 az_avg Average value of the vibration acceleration signal
19 az_CF Crest factor of the vibration acceleration signal
20 az_FF Form factor of the vibration acceleration signal Full
21 az_IF Impulse factor for vibration acceleration
22 az_kurt, Vibration acceleration kurtosis
23 az_f.Ricea Rice frequency
24 Fy_rms Effective value of the dynamic component of the force
25 Fy_mean_peak Average peak force
26 Fy_avg Average value of the force signal Full
27 Fy_amp_sqrt The root amplitude of the force signal u
28 Fy_CF Crest factor of the force signal
29 Fy_FF Form factor of the force signal
30 Fz_rms Effective value of the dynamic component of the force
31 Fz_mean_peak Average peak force
32 Fz_avg Average value of the force signal Full
33 Fz_CF Crest factor of the force signal
34 Fz_FF Form factor of the force signal
35 Ve Cutting speed -

Table 2 presents symbols of acceleration signal measures (symbol a) and forces (symbol
F). The indices x, y and z indicate the direction of measurement. Some of the measures were
determined in selected frequency bands, as indicated in the last column. The definitions of
individual measures can be found, for example, in [40].

A total of 1456 structured data records were created (SM1, SM», ... SM3y4; v, and VBc).
With the aim of using signal measures to train diagnostic models, all records were divided
into two sets:

e  Training set (75% of the records);
o  Test set (25% of the records); records were assigned to the subsets in a random manner
(non-return draw).

2.5. Diagnostic Models

Predictive and classification diagnostic models were tested. A predictive model means
that the output of the model is a predicted value of a specific form of cutting edge wear. In
the case of classification model, a cutting edge is classified into a specific category based on
its suitability for processing. Binary classification was used, i.e., the cutting edge wear is
assessed as acceptable or unacceptable.

All diagnostic models were built using supervised machine learning. Due to the
number of input signals and the method of inference, the following models were consid-
ered [41]:

(a) One-dimensional.

e  Simple regression (SR).



Materials 2024, 17,5783

8 of 17

(b)

Multidimensional.

Multiple linear regression (MLR);

Elastic net regression (ENR);

Classification and regression trees (CART);
Random forest (RF);

Nearest neighbor algorithm (NNA);
Multilayer perceptron (MLP).

2.6. Quality Measures of the Diagnostic Models

To assess the quality and effectiveness of the obtained models, the following measures

were used:

(a)

(b)

With regard to the predictive models:

e  Root Mean Square Error (RMSE);

e  Standard Deviation of RMSE (o0_RMSE);
e  Coefficient of Determination (R?).

with regard to the classification models the measure listed below in the so-called
confusion matrix (Table 3).

Table 3. Confusion matrix for binary problem [42].

Predicted Class Predicted Class
Positive (P) Negative (N)
Real class: Positive + True Positive (TP) False Negative (FN)
Real class: Negative — False Positive (FP) True Negative (TN)

Where:

True Positives (TP): when the actual value is Positive class and prediction is also Positive.
True Negatives (TN): when the actual value is Negative class and prediction is
also Negative.

False Positives (FP): when the actual is Negative, but the prediction is Positive. Also
known as the Type I error.

False Negatives (FN): when the actual is Positive, but the prediction is Negative. Also
known as the Type Il error.

Based on the values defined in Table 3, the following measures were calculated:

Accuracy: A measure of how often the classifier makes the correct prediction. It is the
ratio between the number of correct predictions and the total number of predictions:

Accuracy = (TP + TN)/(TP + TN + EN + FP) (@)

Precision: A measure of correctness that is achieved in true prediction. It determines
how many predictions are actually positive out of all the total positive predicted:

Precision = TP/(TP + FP) (2)

Sensitivity: A measure of actual observations which are predicted correctly, i.e., how
many observations of positive classes are actually predicted as positive. It is defined
as the ratio of the total number of correctly classified positive classes divide by the
total number of positive classes:

Sensitivity = TP /(TP + FN) 3)
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e  F1: Anumber between 0 and 1 and the harmonic mean of precision and sensitivity:
F1=2-TP/(2TP + EN + FP) 4)

3. Results
3.1. Tool Wear

The photos in Figure 5 show examples of tool wear observed during the tests. In each
of the cases shown, the wear in the form of abrasive wear of the flank surface dominates.
There is also strength wear on the edge of the blade, in the form of chipping of the corners
and partial fracture of the cutting edge. However, these forms of wear are random, i.e.,
they appear only in some cases. Based on the above, the width of abrasive wear of the flank
surface, VBc [mm], was adopted as the tool wear criterion.

partial breakage of the cutting edge

strength wear
corner chipping

abrasive wear/

Figure 5. Photographs of tool wear and measuring method for the cutting edge wear.

To illustrate the nature of the relationship between the tool wear and the diagnostic
measures, Figure 6 shows a sample relationship for one of the signal measures (Fy_amp_sqrt).
A significant scatter of values can be seen, which is reflected in the relatively low Pearson
correlation coefficient (0.696). The graph also shows that the measured values obtained
during milling at a speed of v, = 900 m/min “overlap” with the values obtained during
cutting at a speed of v, = 500 m/min.

0.30
r-Pearson = 0.696
0.251
®
__ 0201
3
— 0151
J
[+4]
>
0.10-
0.05-
Vc
® 500
0.00 ® 900
10 20 30 40 50

Fy_amp, sqrt

Figure 6. Example of the relationship between the VBc value and the signal measure Fy_amp_sqrt in
the training set.

In order to determine the critical value VBc for the classification model, the relationship
between VBc and the surface roughness parameter Rz was determined (Figure 7).
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Figure 7. Relationship between VBc and the surface roughness Rz.

It can be seen that from the value of VBc = 0.2 mm the roughness Rz shows an intensive
increase. Assuming that the value Rz is critical for the quality of the processing, and its
permissible value is 4 um, VBc = 0.2 mm was fixed as the limit value of wear in the
binary classification.

3.2. Predictive Diagnostic Models
3.2.1. One-Dimensional

To determine the predictive diagnostic model based on the simple regression out of all
the signal measures (Table 2), four measures, Fy_avg, Fy_rms, Fy_mean peak and Fy_amp,sqrt,
the most strongly correlated (high R? in Table 4) with the variable VBc, were chosen. The
quality measures of the obtained models are presented in Table 4.

Table 4. Quality measures of the predictive one-dimensional diagnostic model (simple regression).

Measure MS RMSE o_RMSE R?
Fy_avg 0.063780 0.0270937 0.522
Fy_rms 0.067685 0.0263348 0.695

Fy_mean peak 0.069352 0.0302427 0.549

Fy_amp, sqrt 0.0490801 0.0270609 0.696

The best results were obtained for the measure Fy_amp, sqrt. The plot of the prediction
error for this model is shown in Figure 8.

0.15
[ ]
L]
0.10- s =
E ..s L ] L ]
L ]
= 0.05 . :.0 : *
= * . .
£ 15 8 i ..“'!!! : b ‘
@ o
0.00 $,00 ¢ !
e . ....o *Ts . :: ofo® '. ' o..
= * [avg® | .
4‘: L] .. L ] l.
B -0.051 o . . @ * : °
g
o L
010 +
-0.15 |
0.05 0.10 015 0.20 0.25
VBc [mm]

Figure 8. Prediction error for predictive diagnostic models based on simple regression.
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3.2.2. Multidimensional

Four multidimensional predictive diagnostic models based on MLP, ENR and CART

were created. The models’ parameters were selected using k-fold cross-validation for k = 10.
In the case of the SR model and the ENR method, the suitability of individual SM; was also
assessed using recursive feature elimination with cross-validation [42]. Other modifiable
hyperparameters fitted during model building were as follows:

(a)
(b)

(@)

For the ENR, the proportion of two sets regularizations and the multiplicative factor
of the corresponding expressions in the penalty function.

In regression using the CART, the maximum tree depth.

For the RF, the maximum number of MS; considered at a given split, the number of
trees in the forest and the inclusion or not of bootstrap samples [33].

Due to the set of measurement signals, two variants were tested:

Full set of signal measures;

Reduced set of signal measures.

Full set of signal measures

Table 5 shows the quality measures obtained for each model.

Table 5. Quality measures of the predictive multidimensional diagnostic models (full set of sig-

nal measures).

Model RMSE o-RMSE R?
SR 0.0221 0.0020 0.7543
ENR 0.0241 0.0028 0.7037
CART 0.0179 0.0015 0.8605
RF 0.0117 0.0009 0.9573

cient of determination on the test set of R?

The best model obtained during the cross-validation test, model RF, achieved a coeffi-
=0.9573. The prediction error for this model is

shown in Figure 9.

Figure 9. Prediction error for the RF model.
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(b)

Reduced set of signal measures

By analyzing the relevance of MS; in both the CART and RF methods, it was found

that many MS; are not relevant or are highly insignificant. These include information on
the cutting speed v, and SM based on vibration accelerations in the y-direction (designation
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ay). Therefore, it was decided to attempt to simplify the system by eliminating some MS;
associated with specific measurement directions or physical quantities. In particular, the
removal of the parameter v., which has to be entered into the system by the operator and
can therefore be prone to errors, seems significant.

The value of the coefficient of determination determined on the test set for the best RF
model decreased from R? = 0.957 to R? = 0.949 (RMSE = 0.1896, 0-RMSE = 0.0021), while
the maximum absolute prediction error did not exceed 0.038 mm. The model still seems
useful. The resulting prediction errors for the test set are shown in Figure 10.
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Figure 10. Prediction error for the simplified RF model.

3.3. Classification Models Derived from Prediction Models
Three classification models derived from prediction models were tested:

(a) Simple regression (SR).
(b) Random forest (RF) with the full set of signal measures.
(¢) Random forest (RF) with the selected set of signal measures.

The obtained model quality measures are presented in Tables 6-8.

Table 6. Quality measures of the classification diagnostic model based on SR prediction model

(Fy_amp_sqrt measure).

Forecast Class VBc > 0.2 mm

Forecast Class VBc < 0.2 mm

Actual class VBc > 0.2 mm 72 (TP) 23 (FN)
Actual class VBc < 0.2 mm 26 (FP) 243 (TN)
Accuracy 0.865
Precision 0.735
Sensitivity 0.758
F1 0.746
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Table 7. Quality measures of the classification diagnostic model based on the RF multidimensional
prediction model (full set of SM;).

Forecast Class VBc > 0.2 mm  Forecast Class VBc < 0.2 mm

Actual class VBc > 0.2 mm 83 (TP) 12 (FN)
Actual class VBc < 0.2 mm 3 (FP) 266 (TN)
Accuracy 0.959
Precision 0.965
Sensitivity 0.874
F1 0.917

Table 8. Quality measures of the classification diagnostic model based on the RF multidimensional
prediction model (full set of SM;).

Forecast Class VBc > 0.2 mm  Forecast Class VBc < 0.2 mm

Actual class VBc > 0.2 mm 88 (TP) 7 (EN)
Actual class VBc < 0.2 mm 3 (FP) 266 (TN)
Accuracy 0.973
Precision 0.967
Sensitivity 0.926
F1 0.946

3.4. Classification Models Constructed Directly from Raw Data

The following classification models constructed directly from raw data were tested:
CART, RF, NNA and MLP. Two cases were analyzed:

(a) Full set of signal measures;
(b) Reduced set of signal measures.

From the considered models, the best model was initially selected based on the cross-
validation test performed on the training set. The test results are presented in Table 9.

Table 9. Results of preliminary tests of models on the training set.

Accuracy
Model Full setof SM; Reduced set of SM;
CART 0.881 0.881
RF 0.969 0.966
NNA 0.743 0.726
MLP 0.988 0.960

The highest quality for the full set of SMs was demonstrated by the MLP model. Its
quality parameters on the test set are presented in Table 10. For the reduced set of SM;, the
best model was RF. Results are presented in Table 11.

Table 10. Quality measures of the classification MLP diagnostic model based (full set of SM;).

Forecast Class VBc > 0.2 mm  Forecast Class VBc < 0.2 mm

Actual class VBc > 0.2 mm 88 (TP) 7 (FN)
Actual class VBc < 0.2 mm 3 (FP) 266 (TN)
Accuracy 0.973
Precision 0.967
Sensitivity 0.926

F1 0.946
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Table 11. Quality measures of the classification RF diagnostic model based (full set of SM;).

Forecast Class VBc > 0.2 mm  Forecast Class VBc < 0.2 mm

Actual class VBc > 0.2 mm 89 (TP) 6 (FN)
Actual class VBc < 0.2 mm 4 (FP) 265 (TN)
Accuracy 0.973
Precision 0.957
Sensitivity 0.937
F1 0.947

4. Discussion of the Results

During machining of the Aluminum Matrix Composite materials (AMC), the dominant
form of wear of the cutting edge is abrasive wear of the flank surface. However, there are
also—sporadically—forms of strength wear (Figure 5), e.g., chipping of the cutting edge.
As a result, the relationship between the amount of cutting edge wear and diagnostic signal
measures is relatively weak statistically (compare Figures 5 and 6). Only in some cases, the
relationship between cutting edge wear and a single signal measure may be strong enough
to effectively assess the condition of the cutting edge on its basis.

However, in general, multidimensional models should be considered to have an
advantage over simple models in terms of diagnostic performance. This is confirmed by the
quality measures of the diagnostic models created (Table 12). They allow for comparison of
the accuracy of all types of models considered in this paper. The table presents only the
results of the best variants in the individual model groups discussed.

Table 12. Comparison of the accuracy of different diagnostic models.

Predictive Models RMSE o_RMSE R?

(1) One-dimensional 0.0491 0.0271 0.696

(for Fy_amp, sqrt)

(2) Multidimensional:

e RF 0.0117 0.0009 0.9573

(full number of SM;) ’ ’ ’

e RF 0.0380 0.0009 0.949

(reduced number of SM;) ’ ’ ’

Classification models Accuracy Precision Sensitivity F1
(1) From regression models:

e SR 0.865 0.735 0.758 0.746
e RF

(full number of SM;) 0.959 0.965 0.874 0.917
e RF 0.973 0.967 0.926 0.946
(reduced number of SM;) ’ ’ ’ ’

(2) From raw data—full number of SM;:

e MLP 0.973 0.967 0.926 0.946
(3) From raw data—reduced number of

SMiZ

e RF 0.973 0.957 0.937 0.947

The presented results clearly indicate that the advantage of multidimensional models
applies to both prediction and classification models, and is reflected in quality measures as
accuracy, precision and sensitivity.

From the tables in Sections 3.2 and 3.3, it can also be concluded in particular that the
multidimensional predictive models have a smaller maximum prediction error and average
absolute prediction error than the one-dimensional model (0.036 mm vs. 0.050 mm and
0.026 mm vs. 0.045 mm, respectively). Multidimensional classification models also show a
lower number of Type I and II errors.
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It can be stated that the accuracy at the level of 0.7 that was achieved for the considered
machining case is a very good result in industrial conditions. As wear approaches the
accepted wear limit (0.2 mm), the level of expected error allows reasonable diagnostic deci-
sions to be made. It does however indicate that the models tend to ignore the exceedance
of the wear limit value. However, the percentage of these cases seems to be small.

The sensitivity of the model to possible interference from measurement systems and
the supervised process must also be considered. In the case of multidimensional models
that operate on multiple measures of measurement signals, there is a risk that disturbed
data, both at the learning and testing stages of the model, and subsequently during its
application, can significantly affect the generated results. Distortions can be the result
of failure or calibration of the measurement system, e.g., sensors, acquisition paths and
signal processing. To recognize these distortions, it is necessary to use systems that monitor
the correct operation of the measurement system. Disturbances may also originate from
anomalies associated with atypical conditions of the supervised process or specific forms
of tool wear.

Therefore, in specific situations, the choice of inference model should include con-
sideration of adopting a trade-off between the precision of the prediction or classification
and the reliability of the data fed into the model.

In this paper, such a possibility was proven on the example of a regression RF model.
It was shown that it is possible to obtain an efficient classification model even if the
measurement system is significantly simplified and after eliminating the parameter v..

As already emphasized, the obtained results concern the machining of a specific
composite. Since there are no studies in the literature on the diagnostics of the milling
process of this composite, it is not possible to compare the obtained results with the
results obtained by other researchers. However, the findings regarding the advantage
of multidimensional models over one-dimensional models are convergent with other
researchers [41-44].

5. Conclusions

The article presents the usability of different diagnostic models to assess tool wear
during face milling of Aluminum Matrix Composite (AMC). Prediction and classification
models were created and tested. Random forest, nearest neighbor, and multilayer percep-
tion neural networks were used for inference about the edge wear, one-dimensional simple
regression and multidimensional regression trees. As the input, values for the diagnostic
models’ various measures of signals obtained from measurements of cutting forces and
vibration accelerations of the workpiece were used.

Tests showed that multidimensional models are generally more effective than one-
dimensional models in both classification and prediction tasks. Tests allowed prediction and
recognition of the tool wear with an accuracy at the level 0.97, which is practically accepted.

Although the one-dimensional model is less accurate, its advantage is the lower level
of complexity and the resulting greater reliability of the system for acquiring and processing
diagnostic signals.

Future research should demonstrate the extent to which the conclusions identified
in the research presented in this article can be transferred to other processing conditions.
The tests will be extended to other types of composites and their machining using various
cutting speeds and other machining parameters.
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