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Abstract

Somatic mosaicism is an important cause of disease, but mosaic and somatic variants are often
challenging to detect because they exist in only a fraction of cells. To address the need for
benchmarking subclonal variants in normal cell populations, we developed a benchmark
containing mosaic variants in the Genome in a Bottle Consortium (GIAB) HG002 reference
material DNA from a large batch of a normal lymphoblastoid cell line. First, we used a somatic
variant caller with high coverage (300x) Illumina whole genome sequencing data from the
Ashkenazi Jewish trio to detect variants in HG002 not detected in at least 5% of cells from the
combined parental data. These candidate mosaic variants were subsequently evaluated using
>100x BGI, Element, and PacBio HiFi data. High confidence candidate SNVs with variant allele
fractions above 5% were included in the HG002 draft mosaic variant benchmark, with 13/85
occurring in medically relevant gene regions. We also delineated a 2.45 Gbp subset of the
previously defined germline autosomal benchmark regions for HG002 in which no additional
mosaic variants >2% exist, enabling robust assessment of false positives. The variant allele
fraction of some mosaic variants is different between batches of cells, so using data from the
homogeneous batch of reference material DNA is critical for benchmarking these variants.
External validation of this mosaic benchmark showed it can be used to reliably identify both
false negatives and false positives for a variety of technologies and detection algorithms,
demonstrating its utility for optimization and validation. By adding our characterization of
mosaic variants in this widely-used cell line, we support extensive benchmarking efforts using it
in simulation, spike-in, and mixture studies.
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Introduction

Germline variant calling in human genome studies typically targets heterozygous and
homozygous variants occurring at variant allele fractions (VAFs) of 50% or 100%, respectively.
However, variants can occur at lower fractions if they are only present in a subset of cells due to
somatic mosaicism, making them harder to detect and requiring different variant calling
methods to identify and characterize them. Somatic mutations occur within a genome after
conception, are typically not inherited, and are only present in a subset of cells. While many of
these mutations are non-pathogenic, others can cause unrestricted cell growth and lead to
cancer or play roles in the development of neurodegenerative, monogenic, and complex
diseases (Freed, Stevens, and Pevsner 2014; Truty et al. 2023). An initiative by the National
Institutes of Health (NIH) Common Fund called Somatic Mosaicism across Human Tissues
(SMaHT, https://smaht.org/) has been instituted to establish a repository of mosaic variants
from various healthy tissue types and address the lack of resources to study somatic mosaicism.
This effort has recognized a need for benchmarks to evaluate and validate low frequency variant
calling methods. In this work, we use the term ‘mosaic variants’ to mean variants present in
some cells but not all cells in a large batch of DNA from the deeply-characterized Genome in a
Bottle (GIAB) normal lymphoblastoid cell line HG002.

Previous GIAB benchmarks using whole-genome sequencing (WGS) have focused on
characterizing germline small (Zook et al. 2014, 2016, 2019; Chin et al. 2020; Wagner, Olson,
Harris, Khan, et al. 2022; Wagner, Olson, Harris, McDaniel, et al. 2022) and structural (Parikh et
al. 2016; Zook et al. 2020; Wagner, Olson, Harris, McDaniel, et al. 2022) variants which generally
ignore variants with <30% VAF. These benchmark sets include high confidence variant calls and
regions. The benchmark variants are confident homozygous and heterozygous variants in a
sample relative to a reference genome (VCF file), and the benchmark regions (BED file) are
genomic regions that are confidently identified as homozygous reference or a benchmark
variant. The benchmark variants enable users to identify true positives and false negatives in
their query callset, and benchmark regions enable the identification of false positive variants.
The reliable identification of errors (RIDE) principle is used to determine if a GIAB benchmark
set is fit for purpose, specifically the identifying false positives and false negatives across a
variety of high-quality methods (Olson et al. 2023). In addition to the GIAB benchmark sets, the
GIAB Consortium has worked with the Global Alliance for Genomics and Health (GA4GH) to
define best practices for benchmarking small variants (Krusche et al. 2019). While the GIAB
benchmark sets and benchmarking methods have been used to evaluate small and structural
variant calling methods, as well as training machine learning and deep learning based variant
calling methods, low frequency or mosaic variants in GIAB reference materials have not been
previously characterized.

Characterization of mosaic variants in GIAB reference materials would allow researchers to use
the GIAB reference materials and genome sequencing data generated from the material to
validate mosaic and somatic variant calling methods, as well as other uses such as negative
controls when evaluating methods for detecting off-target genome edits. To ensure that NGS
protocols and bioinformatic pipelines can accurately and reliably detect low frequency
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mutations, well-characterized reference samples are needed. Previous efforts developing
benchmarks for low frequency variants have used a variety of strategies. For example, data from
four historical cell lines were mixed in a variety of ratios to mimic mosaic variants at different
fractions (Ha et al. 2023, 2022). However, because these are germline variants, some mosaic
and somatic variant callers will filter them, and there is a lack of clarity in accurately identifying
true negatives. Therefore, cancer-focused benchmarks have taken other approaches, like
injecting synthetic somatic variants into real data (Ewing et al. 2015), simulating tumor
subclonality (Salcedo et al. 2024), creating synthetic DNA with somatic mutations spiked into a
normal background sample (Sims et al. 2016), engineering normal samples to contain somatic
variants (Pfeifer et al. 2022), comparing paired tumor and normal cell lines derived from a single
individual (Fang et al. 2021; McDaniel et al. 2024), and creating mixtures of cell lines from
different individuals (Jones et al. 2021).

Here, we complement these previous efforts by leveraging publicly available homogenous
batches of DNA reference materials linked to explicit consent for public genome data sharing. By
characterizing the baseline mosaic variants in this cell line, it can be used more robustly as a
negative control or background in many of the other benchmarking approaches (e.g., when
modifying reads to contain mutations, adding spike-in DNA with mutations, or mixing with other
samples). Specifically, we present an initial mosaic benchmark for the GIAB HG002 reference
material from a broadly-consented individual from the Personal Genome Project (Ball et al.
2012). The GIAB reference material (RM) used for this study originates from a large
homogenous batch of DNA isolated from the HG002 cell line (Zook et al. 2016). Mosaic variants
in this RM DNA may be from somatic mosaicism in the individual’s B cells or from mutations
that have arisen during the cell line generation and culturing process. To generate this new
benchmark we used a trio-based approach (Figure 1). We first identified potential mosaic
variants using the 300x coverage Illumina sequencing data and the Strelka2 tumor/normal
somatic variant caller with son (HG002) as the tumor sample and parents (HG003 + HG004) as
the normal sample. High-coverage orthogonal sequencing data for the NIST HG002 RM DNA
was used to validate the low frequency variant calls identified by Strelka2. While there is some
preliminary evidence of possible mosaics occurring above 30% VAF in human genome data, this
study focused on somatic mosaic variants (≤ 30 % VAF).
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Figure 1 - Trio-based methodology using high coverage Illumina data, Strelka2 somatic caller,
and orthogonal next generation sequencing datasets for candidate mosaic variant detection and
validation in HG002. (A) AJ trio (NIST RM - HG002, HG003, and HG004) sequencing and
reference mapping (GRCh38) were initially performed by Zook et al 2016. (B) In silico sample
mixtures were created using HG002 and HG003, treating HG003 as normal and the mixtures as
tumor, to determine the limit of detection for variant allele fraction. Strelka2 somatic calling and
benchmarking with hap.py was conducted using the GIAB mixtures to estimate a limit of
detection (LOD). (C) To identify potential mosaic and de novo variants, a tumor-normal Strelka2
somatic run, with HG002 (son) as tumor and HG003+HG004 (combined parents) as normal, was
performed. (D) The Strelka2 callset was benchmarked against the GIAB v4.2.1 small variant
benchmark with vcfeval to create a candidate variant set, and three orthogonal high-coverage
short- and long-read sequencing technologies were used for validation.
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Results

Mosaic benchmark set generation and characterization

The HG002 mosaic benchmark set includes 85 validated and manually curated SNVs and
benchmark regions covering 2.45 Gbp (Figure 2). To arrive at this benchmark, first, potential
mosaic variants in the HG002 NIST RM DNA were identified using the 300× Illumina AJ trio
dataset and the Strelka2 somatic variant caller, with HG002 (son) data as tumor and HG003 +
HG004 (parents) as normal. Strelka2 callset contained ≈1.27 million passing and filtered SNVs
and indels, with 425,679 potential mosaic variants after excluding variants in the AJ Trio v4.2.1
GIAB small variant benchmark. Exclusion of AJ trio v4.2.1 complex and structural variants in
HG002 further reduced the number of potential somatic variants to 366,728 (Supplemental
Figure 2). While only 1,916 SNVs and 21 indels passed the Strelka2 filter, we kept filtered
variants for downstream analysis (Supplemental Table 2) to reduce the probability of missing
variants based on our in silicomixture experiments (Supplemental Figure 1).

To define our mosaic benchmark variants and regions, we evaluated support for the 366,728
potential mosaic variants across multiple short- and long-read technologies with at least 100x
coverage per technology. We created a database with these potential mosaics that included
Strelka2 VCF annotations, read support metrics from multiple sequencing technologies, and
genomic context (Data Availability). Using an initial set of heuristics (Supplemental Figure 3),
we filtered this database and identified 135 variants for manual curation. After manual curation,
an additional 50 variants were excluded due to either lack of long-read support, high coverage
short-read support, or low VAF reported by Strelka2 (Figure 2). Many of these excluded SNVs
were detected in one or both parents (HG003 and/or HG004) and were found in GRCh38
segmental duplication regions associated with mapping errors and copy number variation. To
create the HG002 mosaic benchmark v1.0 BED file, we excluded genomic regions with tandem
repeats and homopolymers, regions containing variants that could not be confidently
determined to be >5% or <2% VAF (Supplemental Figure 3 - yellow squares), and regions
<50bp, since small benchmark regions can cause problems with benchmarking complex
variants.
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Figure 2 - Manually curated potential mosaic variants (135) depicted as vertical lines and arranged by increasing Strelka2 variant
allele frequency (X-axis, left to right). Colored dots represent HG002 Illumina 300x (teal) and orthogonal tech datasets for each
variant (BGI 100x - red, Element 136x - green, and PacBio HiFi 108x - purple) with corresponding bam-readcount VAFs located on the
X-axis. Shaded area indicates the range of VAF (5% to 30%) of variants targeted for inclusion in the benchmark. The top facet
illustrates 85 high-confidence SNVs included in the HG002 mosaic benchmark v1.0, while the bottom facet shows 50 SNVs excluded
from the benchmark.
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Benchmark variant and region characteristics

The HG002 mosaic benchmark v1.0 contains 85 SNVs with VAFs between 5% to 30% (Figure 3a,
99% one-sided confidence interval > 0.05, calculated based on the combined read support
across multiple orthogonal sequencing technologies, Figure 2, Supplemental Figure 5, Data
Availability). The mosaic benchmark included 2.45 Gbp (89.5% of the GRCh38 non-gapped
assembled bases in the autosomes) with 891,240 regions, ranging from 50 bp - 76.6 kbp (Data
Availability). The benchmark set included variants in challenging genomic regions with two of
the 85 variants in homopolymers and two in low mappability regions (Figure 3b). While no
mosaic benchmark variants were observed in GRCh38 coding regions, 13 of 85 (~15%) variants
are in medically relevant genes (Wagner, Olson, Harris, McDaniel, et al. 2022), and benchmark
regions included > 90% of the bases in these genes (Supplemental Table 4). The HG002 mosaic
benchmark regions include a total of 417,752,807 bases in medically relevant genes, and
included > 90% of bases in 3,871 medically relevant genes.
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Figure 3. SNV variant allele fractions (VAF) (a) for HG002-GRCh38 mosaic benchmark v1.0 and
manually curated variants excluded from the benchmark. Values represent VAFs combined
across all orthogonal technologies (BGI, Element, Illumina, PacBio Revio, and Sequel). Dashed
vertical lines represent the targeted VAF range (5% - 30%) for the HG002 mosaic benchmark.
Manually curated variant counts based on GIAB GRCh38 genome stratifications (b) reveal most
mosaic benchmark v1.0 variants occur in easy-to-map and non-homopolymer regions of the
genome.
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Mosaic Variants Reveal GIAB Material Batch Effects

We identified differing VAF profiles for the benchmark mosaic variants between the large batch
of DNA distributed as NIST RM 8391 and various unknown batches of non-reference material
DNA from Coriell (GM24385/NA24385, Supplemental Table 1). For both Element and PacBio
Revio, the mosaic benchmark VAFs were significantly higher than datasets generated using
non-RM DNA, so that these differences are likely to result from changes in the cell line rather
than random sampling (Figure 4). The larger difference for PacBio Revio suggests additional
clonal changes prior to its sequencing. While variants differed in VAF between batches, they
generally were present in all batches.

Figure 4. Mosaic variants change VAF between batches of DNA. HG002 mosaic benchmark
variant allele fractions (VAFs) for NIST reference material (RM) 8391 and different batches of
non-RM DNA (Coriell, NA24385) for two orthogonal technologies (Element and PacBio Revio).
Higher VAFs were observed in direct VAF comparisons between materials compared to GIAB
reference material. Coverage: Element RM: 136x, non-RM: 100x; PacBio Revio RM: 48x,
non-RM: 120x.

External Validation

Eight somatic variant calling groups submitted callsets for use in validating the draft mosaic
benchmark. Most groups used the same GIAB HG002 Illumina 300x data used to generate the
mosaic v1.0 benchmark, one group provided an in-house HG002 40x callset, and others
produced additional short- (Element 70x and 100x, PacBio Onso 35x) and long-read (PacBio
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Revio 130x) HG002 callsets (Supplemental Table 5). The evaluations focused on curating
differences between external callsets and a draft version of the mosaic benchmark generated
from both HG002 RM (NIST RM 8391) and non-RM (Coriell, NA24385) data. Unlike the final
benchmark, the draft benchmark included some non-RM data because RM data from some
technologies were not yet available.

During the evaluation, we found that the draft mosaic benchmark variants were reliable, but
some variants were incorrectly filtered by our initial heuristics. For example, we had initially
ignored candidate mosaic variants with lower than normal coverage, because low coverage
regions generally were associated with alignment errors around larger germline variants.
However, some true mosaic variants were ignored but kept in the benchmark regions, so we
modified the heuristics for v1.0 to only ignore variants below the 0.5% quantile in coverage for
all datasets combined or HiFi only. Additionally, the draft benchmark had missed some variants
substantially different in VAF between RM and non-RM DNA, so we only used RM DNA data for
the v1.0 benchmark.

We observed a single case of a true mosaic SNV missed by our trio-based approach, identified
by one method using only HG002 data (chr10:106867519). Interestingly, this variant appears to
be a heterozygous germline variant in the father (HG003), but HG002 inherited the reference
allele from HG003 and HG004, so it appears to be a true mosaic variant in HG002 that matches
the father’s variant but occurred independently (Supplemental Figure 5), which has been seen
previously (Fasching et al. 2021). This variant and the adjacent 50bps on either side were not
included in the benchmark VCF or BED files, so the parents can be used as normal when
evaluating tumor/normal somatic variant callers. It is possible there may be additional mosaic
variants missed by the benchmark like this if they coincide with parental germline variants, but
this was the only one identified during the external evaluation.

The external evaluation results informed refinement of the draft benchmark into v1.0, which
considered only NIST RM 8391 data adding 15 mosaic SNVs no longer filtered by our heuristics,
for a total of 85 HG002 mosaic benchmark v1.0 variants. Using hap.py to compare the external
callsets to the v1.0 benchmark, a majority of mosaic benchmark variants (> 87%) were present
in short- and long-read callsets by the six groups that used high-coverage datasets. Most
variants in the external validation callsets not present in the v1.0 benchmark as identified by
hap.py had VAFs below 5%, our established limit of detection, suggesting that the HG002
mosaic benchmark v1.0 reliably identifies false positives. We further curated 163 SNVs with VAF
between 5 and 30% in external callsets but not in the draft benchmark and found that all but
two were likely mapping errors due to segmental duplications or copy number variants in
HG002, systematic sequencing errors, local alignment errors around germline insertions, or
batch effects (for callsets from non-RM sequencing data)(Supplemental Tables 6). One SNV
(chr6:150458314) is likely a true mosaic variant near a 4bp insertion on the other haplotype
that was missed by our mosaic benchmark, but present in callsets from all eight external
validator groups. The other remaining variant (chr1:242208421) is likely a true mosaic variant
though likely <5% VAF in the RM DNA. These two variants along with 50bp flanking sequences
were removed from the mosaic v1.0 bed to generate HG002 mosaic benchmark v1.1.
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Discussion and Conclusions

GIAB benchmark sets have focused on germline variants, which occur 50% or 100% VAF, higher
than typical mosaic or somatic variants. To address the need for a benchmark for variants with
lower VAFs, which occur in only a fraction of the cells, we developed the first GIAB mosaic SNV
benchmark for the highly characterized HG002 genome using data from the GIAB AJ trio (son
and parents). We substituted a combined parental BAM for the typical matched normal sample
(Figure 1c), and followed best practices for somatic variant calling (Koboldt 2020) and
developing benchmarks (Olson et al. 2023) by filtering out normal variants and artifacts,
performing manual curation to confirm the candidate mosaic set, and comparing the
benchmark with orthogonal methods.

We identified 85 benchmark SNVs in the HG002 reference material DNA with VAFs between 5%
and 30% by high-coverage Illumina and orthogonal short- and long-read methods (BGI, Element,
and PacBio HiFi) (Figure 2). External validation confirmed that the benchmark set can be used to
reliably identify errors in somatic and mosaic variant callsets. Variants were included in the
HG002 mosaic benchmark v1.0 for several reasons: a) passed decision tree heuristics that
required sufficient confidence the variants were >5% VAF to be included or <2% VAF to be
ignored, b) support in long reads for difficult-to-map regions, c) confirmation by manual
curation, and d) typical coverage of the region.

While variants <5% VAF were not retained in this mosaic benchmark due to the limit of
detection (LOD) of our discovery approach, further investigation using library preparation that
corrects DNA damage due to extraction protocols (Chen et al. 2017), deeper sequencing,
high-accuracy sequencing technologies, unique molecular identifiers, and/or incorporation of
low fraction somatic variant callers (Xiang et al. 2023) are needed to assess if these lower
fraction variants should be included in a future HG002 mosaic benchmark version.

External validation of the benchmark confirmed that the benchmark meets GIAB’s RIDE
principle across a variety of somatic and mosaic variant callers. Specifically, manual curation
determined it reliably identifies both false positives and false negatives across variant calling
methods and sequencing technologies.

While DNA batch effects have not previously been reported in GIAB samples when looking at
germline variants, we identified substantial batch effects for mosaic variants when comparing
HG002 NIST RM 8391 and non-RM (Coriell - NA24385) using mosaic VAF data. Given the higher
VAFs found for mosaic benchmark variants in sequencing datasets generated using non-RM
DNA, we suggest using datasets generated using NIST HG002 RM DNA to perform mosaic
benchmarking.

We envision the HG002 mosaic benchmark as a GIAB somatic resource applied in use cases
including, but not limited to: 1) benchmarking mosaic variant callers, 2) as negative controls for
either WGS somatic callers or targeted clinical sequencing in tumor-only mode, 3)
benchmarking somatic variant callers in tumor-normal mode using GIAB mixtures, 4) as a

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted December 5, 2024. ; https://doi.org/10.1101/2024.12.02.625685doi: bioRxiv preprint 

https://paperpile.com/c/J7SrCK/XrO2
https://paperpile.com/c/J7SrCK/D5TJ
https://paperpile.com/c/J7SrCK/o4CC
https://paperpile.com/c/J7SrCK/TUEU
https://doi.org/10.1101/2024.12.02.625685


dataset which germline researchers can use to filter low fraction somatic variants from their
data, and 5) benchmarking for some types of off-target genome edits. Currently, the most
commonly used small variant benchmarking methods, e.g., hap.py and rtg vcfeval, do not
consider VAF or properly handle differences in how low frequency variants are represented in
VCFs. Benchmarking methods development and community defined best practices will
significantly improve the utility of the mosaic benchmark set and, in turn, low frequency variant
calling performance.

The Medical Device Innovation Consortium (MDIC) is a public-private partnership with the aim
of advancing regulatory science for the development and assessment of medical devices. MDIC
launched the Somatic Reference Sample (SRS) Initiative to develop reference samples that can
be widely distributed, so that all stakeholders can have access to the same reference samples.
To meet this goal, the SRS Initiative intends to genetically engineer the well-characterized GIAB
HG002 genome (Zook et al. 2016) with somatic variants. To establish a baseline for the
engineered cell lines, the mosaic benchmark set generated in this study using the unedited AJ
trio genomes will be used to assess and validate on and off-target edits of clinically relevant
cancer variants in HG002.

We report a new HG002 mosaic variant benchmark v1.1 generated using a trio-based
framework with GIAB RM and Strelka2 to produce a high-confidence mosaic call set. This
benchmark is important given growing interest from the research community in understanding
somatic mosaicism, such as the NIH Common Fund project Somatic Mosaicism Across Human
Tissues (SMaHT at https://smaht.org/). This HG002 mosaic benchmark will also serve as the
genomic background for the upcoming SRS Initiative, a MDIC project, focused on providing RMs
to improve cancer and disease diagnostics.

Methods

Reference Material High-Coverage Whole Genome Datasets

High coverage (>100x) whole genome sequencing datasets were generated using three different
short-read and one long-read sequencing platforms. High-coverage (300x) Illumina short-read
data, previously described (Zook et al. 2016), was used to identify potential mosaic variants.
Briefly, six vials of NIST reference gDNA from the GIAB Ashkenazi Jewish (AJ) trio cell lines
(HG002- son, HG003- father, HG004- mother; Figure 1a) were extracted and Illumina TruSeq
PCR-free kit was used to generate paired-end libraries. DNA from each replicate library was
multiplexed and sequenced with 2x148bp on an Illumina HiSeq2500 v1 in Rapid mode at NIST
(Gaithersburg, MD). Pooled reads from each GIAB sample were mapped to GRCh38 genome
(GCA_000001405.15, hs38d1) using NovoAlign v3.02.07 and BAM files were generated, sorted,
and indexed with SAMtools v0.1.18. High coverage reads (300x) from the GIAB AJ Trio (NBCI
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Biosample SAMN03283347, SAMN03283345, SAMN03283346; PGP huAA53E0, hu6E4515,
hu8E87A9) were retained for subsequent processing in this study (Table 1, Figure 1a).

Additional high-coverage HG002 orthogonal datasets were used for mosaic variant validation:
BGI (100x), Element (standard and long insert - 136X total), and PacBio HiFi (Sequel and Revio-
106x total). High coverage PCR-free 2x150bp BGI data was generated by BGI using the DNBSEQ
sequencing platform and basecalled using the DNBSEQ basecalling software with default
parameters. Reads were aligned to the hg38 genome
(https://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/latest/hg38.fa.gz) using bwa-mem
v0.7.17. For Element, standard (400bp) and long insert (1.3 kb) libraries were prepared with 1μg
gDNA of HG002 NIST RM, the Kapa Hyper Prep Kit, and Kapa UDI. Seven rounds of Covaris
shearing were performed on the DNA libraries, which were subsequently treated with USER
enzyme and circularized with Adept Rapid PCR Free workflow using the Element Library
Compatibility Kit v1. In a separate run for each insert size, 2x150bp libraries were sequenced
across both flow cell lanes on the Element Biosciences AVITI™ platform. Reads from each run
were mapped to GRCh38-GIABv3
(https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24
385_son/Element_AVITI_20231018/) using bwa-mem v0.7.17 and SAMtools v1.18 was used to
assess mapping results for each insert size. All PacBio libraries were created and sequenced at
Pacific Biosciences. Two libraries were previously generated (Wenger et al. 2019), which
sheared HG002 NIST RM gDNA using a Megaruptor and 20kb protocol. Size selection was
performed on a sageELF DNA system (Sage Science) to capture 10kb and 15kb bands for
sequencing. Band sizes were verified on an Agilent 2100 BioAnalyzer using a DNA 12000 kit used
as input into the SMRTbell® prep kit 3.0, and sequenced to 30x and 28x-fold coverage,
respectively, on a PacBio Sequel System. Default parameters were used to generate consensus
(CCS) reads. Using pbmm2 with CCS presets, reads were subsequently aligned to
GRCh38_no_alt_analysis reference and phased with WhatsHap v0.7. A PacBio Revio library was
created (unpublished, 2023) by shearing 6μg HG002 NIST RM gDNA with a Megaruptor 3 and
using 4.5μg as input for the SMRTbell® prep kit 3.0. PippinHT size selection followed along with
a 10kb cut. PacBio Revio polymerase and sequencing kits were used for sample prep for
sequencing to 48x-fold coverage at Pacific Biosciences, and two SMRT cells were subsequently
run for the HG002 sample (24 hour movies). Using the PacBio HiFi-human-WGS-WDL pipeline
(https://github.com/PacificBiosciences/HiFi-human-WGS-WDL), HiFi reads were aligned
independently to GRCh38-GIABv3
(https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24
385_son/PacBio_HiFi-Revio_20231031/).
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Table 1 - GIAB AJ trio (HG002 - son, HG003 - father, and HG004 - mother) and orthogonal
datasets for HG002 mosaic benchmark generation. Sequencing data was generated using NIST
reference material DNA (NIST RM 8391 for HG002 and NIST RM 8392 trio). See supplemental
table 6 for non-reference material (Coriell - NA24385) datasets.

* Data publicly available on the PacBio website (https://www.pacb.com/connect/datasets/) as
well as GIAB FTP site
(https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24
385_son/PacBio_HiFi-Revio_20231031).

Library NIST ID Coverage SRA
Accession #

Publication

Illumina
2x148bp

HG002 300x SRX847862-

SRX848005

Zook et al.
2016

Illumina
2x148bp

HG003 300x SRX848006-

SRX848173

Zook et al.
2016

Illumina
2x148bp

HG004 300x SRX848174-

SRX848317

Zook et al.
2016

BGI

2x150bp

HG002 100x SRX22242218 This study

Element
2x150bp,

standard

HG002 81x SRR30945810 This study

Element
2x150bp,

long
insert

HG002 55x SRR30945809 This study

PacBio
HiFi

Sequel

10kb

HG002 30x SRX5327410 Wenger et al.
2019

PacBio
HiFi

Sequel

15kb

HG002 28x SRX6908796,
SRX6908797,
SRX6908798

Unpublished

PacBio
HiFi
Revio
20kb

HG002 48x NA Unpublished*
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In Silico Mixtures to Assess Limit of Detection

A minimum VAF of 5% for variants to include in the mosaic benchmark set was identified using
in-silico mixtures of HG002 and HG003. AJ trio Illumina WGS 300x datasets were subset to
chromosome 20 and downsampled using SAMtools (v1.9) to create simulated HG002 + HG003
samples with six different allele fractions (AFs), HG002 unmixed (50% AF), 50% HG002 + 50%
HG003 (25% AF), 20% HG002 + 80% HG003 (10% AF), 10% HG002 + 90% HG003 (5% AF), 2%
HG002 + 98% HG003 (1% AF), and HG003 unmixed (0% AF). Variant calling was performed with
the Strelka2 app on DNAnexus® (Strelka v2.8.4 and SAMtools v1.5) using hs37d5 as the
reference. Callsets were benchmarked with hap.py in the precisionFDA app and analyzed to
ascertain a limit of detection (LOD; Figure 1b). Recall was observed for all SNVs at 99% and 97%
for passing SNVs down to 5% VAF, and respectively, fell to 25% and 8% approaching 1% VAF
(Supplemental Figure 1). Based on these preliminary results, we targeted variants with VAFs >
5% and <30% for inclusion in the HG002 mosaic benchmark set. The GIAB v4.2.1 small variant
benchmark only includes variants down to 30% VAF.

Mosaic Benchmark Set Generation

For the HG002 mosaic benchmark set generation, an initial set of mosaic variants was identified
using the Strelka2 somatic variant caller and characterizable genomic regions as the intersection
of the GIAB HG002, HG003, and HG004 v4.2.1 benchmark regions, excluding complex (i.e.,
nearby) variants in any sample. Complex variants were excluded as they tend to cause errors
due to differences in variant representation. These initial variants and genomic regions were
refined based on a set of heuristics defined based on observations from manually curating
targeted subsets of the initial mosaic variants.

The initial set of low fraction variants in HG002 (son) were identified with the Strelka2 somatic
variant caller in the Strelka2 DNAnexus® app (Strelka v2.9.10 and SAMtools v1.13) and AJ trio
300x WGS data (Figure 1c) using the HG002 BAM as tumor, a combined parental BAM (HG003 +
HG004) as normal, and the GRCh38 reference including the hs38d1 decoy FASTA, where the job
run was split by chromosome. SNV and indel VCFs were concatenated into a single VCF. Variants
with a FILTER column value of VARIANT_DETECTED_IN_NORMAL (i.e., HG003 and HG004) were
removed using bcftools v1.16, while variants not detected in the normal sample with the
Strelka2 tumor allele read (TAR) depth value > 5 were retained. The merged VCF was formatted
with custom scripts for downstream analyses.

Next, variants in the GIAB HG002 v4.2.1 small variant benchmark were excluded from the initial
set of low fraction variants. The reformatted Strelka2 VCF compared to the v4.2.1 benchmark
set using vcfeval v3.11 with the --squash-ploidy flag and the intersection of the HG002, HG003,
and HG004 v4.2.1 benchmark regions as target regions (Supplemental Table 1). The resulting
set of low VAF variants were further refined using custom scripts to exclude regions with GIAB
AJ trio v4.2.1 complex and structural variants (Supplemental Figure 2). From the resulting set of
low VAF variants, Strelka2 passing variants are referred to as candidates and non-passing
variants as putative mosaic variants.
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A database of candidate and potential mosaic variants was generated for the development and
application of a set of heuristics used to define the final mosaic benchmark set. The mosaic
variants database (Data Availability) contained variant information from the Strelka2 VCF,
variant support from multiple orthogonal sequencing datasets, and genomic context
annotations. Bam-readcount (Khanna et al. 2021) was used to calculate reference and alternate
allele read support for HG002 Illumina (300x) and orthogonal HG002-GRCh38 BAMs from three
WGS datasets (Table 1): BGI (100x), Element (standard and long insert - 136x total), and PacBio
HiFi (Sequel and Revio: 106x total). To remove low quality variants, base and mapping quality
filters (-b25, -q40) and a minimum threshold of > 2 read support per orthogonal tech for each
variant was applied. The read support counts were used to calculate overall VAF estimates and
confidence intervals per orthogonal dataset. Binomial confidence intervals (CI) were calculated
using binconf R package (Agresti and Coull 1998; Brown, Tony Cai, and DasGupta 2001;
Newcombe 2001). Independent orthogonal CIs used a one-sided confidence coefficient of 95%,
while the combined orthogonal CI used a one-sided confidence coefficient of 99%. The GIAB
GRCh38 genome stratifications (Supplemental Table 1) were used to annotate variants in the
database with genomic context using bcftools v1.15.

A series of heuristics (Supplemental Figure 3) were used to identify variants for manual
curation. This process used combined orthogonal CIs, PacBio read depth thresholds, removed
variants that overlap germline indels, and partitioned the data by genomic context. In order to
be considered for manual curation, we required a ≥ 0.01 (using a 99% one-sided confidence
interval) lower CI threshold of the VAF from the combined orthogonal technologies for
easy-to-map variants and a ≥ 0.05 (using a 95% one-sided confidence interval) lower PacBio CI
threshold for variants in difficult-to-map regions.

The HG002 mosaic SNV benchmark was defined using the following heuristics in a decision tree
(Supplemental Figure 3). Initial filtering of the mosaic database (366,728) removed variants
with a combined orthogonal upper CI < 0.03. Of the passing variants (6,178), those that fell
below the 0.5% quantile thresholds for either total number of reads across combined
orthogonal methods or PacBio depth were filtered. Next, database variants that overlapped
germline indels were removed. Variants with x_ci/n_ci (i.e., total number of variant reads across
combined orthogonal methods/total number of reads across combined orthogonal methods) >
0.5 were removed. Database variants that remained were then partitioned into easy-to-map
and not easy-to-map (i.e., low mappability) bins. A combined orthogonal lower CI > 0.05 filter
was applied to the easy-to-map variants (2,323), with 121 passing and were retained for manual
curation. Not easy-to-map variants (1,668) were partitioned into homopolymer and
non-homopolymer bins. After applying a PacBio lower CI > 0.05 threshold, 14 not easy-to-map,
non-homopolymer variants passed, and totaled 135 mosaic database variants for manual
curation (Supplemental Figure 3: green boxes). Variants that did not adhere to decision tree
heuristics were excluded from the benchmark VCF. if they were likely false positives or <2% VAF.
Variants were excluded from both VCF and BED files if the evidence was unclear or the VAF
could not be confidently determined to be < 0.02 or > 0.05 (Supplemental Figure 3: red, yellow
boxes).
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Mosaic Benchmark set Characterization and External Validation

HG002 mosaic benchmark variants in medically relevant genes were identified by intersecting
the benchmark VCF with a BED file containing coordinates for genes in a previously generated
curated list of 5,026 medical relevant genes (MRGs) (Wagner, Olson, Harris, McDaniel, et al.
2022). MRG coverage info and the number of bases occurring in HG002 mosaic benchmark
regions were obtained by comparing the mosaic benchmark BED and GRCh38 full MRG BED
files.

The draft mosaic benchmark set was shared with eight groups working on somatic or mosaic
variant calling methods for external validation. Each group compared their somatic or mosaic
callset(s) against a draft version of the HG002 mosaic benchmark to determine if the benchmark
set can be used to reliably identify errors (Olson et al. 2023). Tumor-normal and/or tumor-only
mode(s) were used to generate callsets with commercial and open-source variant calling tools.
Methods from the eight groups are available in the Supplemental Methods. Using the hap.py
(Krusche, n.d.) benchmarking tool with vcfeval (Cleary et al. 2015) option enabled, the external
callsets were compared against the HG002 mosaic benchmark v1.0 and also a combined HG002
mosaic benchmark v1.0 plus GIABv4.2.1 HG002 germline small variant benchmark VCF to assess
if the benchmark could reliably identify false positives.

Supplemental Information

See Supplemental Methods for external callset methods.

Supplemental Tables

Supplemental Table 1: Sequencing data and resources used to generate and characterize
benchmark set.

Supplemental Table 2: Variant allele fraction counts for the potential HG002 mosaic variant
database. Bold text indicates VAF bins targeted for inclusion in the benchmark set. Candidate
variants passed the Strelka2 filter and putative variants were filtered.

Supplemental Table 3: 135 manually curated variants that met mosaic decision tree heuristics

Supplemental Table 4: HG002 mosaic benchmark variants (13) that overlap medically relevant
genes (MRGs) and number of bases in mosaic benchmark regions and fraction of genes covered
by benchmark regions.
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Supplemental Table 5: External somatic callsets and hap.py results from comparisons against
the HG002 mosaic benchmark v1.0. The benchmark set contains 85 high confidence mosaic
SNVs. SUPPORTED column represents the number of true positives (TP) from a mosaic v1.0
benchmark comparison and EXTRA columns represent query - false positives ( FP) from a
combined mosaic v1.0 + GIAB v4.2.1 small variant benchmark comparison are reported for
passing SNVs. Some FPs may be true mosaic variants at low VAF. > Q0 and > Q10 represent
variant quality score thresholds for a specified callset. Note that these comparisons were
intended to evaluate the accuracy of the benchmark and not evaluate performance of each
method, because the participants were not blinded, some methods were experimental, and
most methods are under active development. +In addition, PacBio Revio sequencing was not
from the NIST RM DNA, so many putative FPs appear to be true mosaic variants >5% VAF in
their cell line and not in the NIST RM DNA.

Supplemental Table 6: Curated passing FP SNVs (5-30% VAF) from external somatic callsets.

Supplemental Table 7: Software list

Supplemental Figures
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Supplemental Figure 1: Limit of detection (LOD) was established at 5% variant allele fraction
(VAF) using Strelka2 callsets from six in-silico mixtures of GIAB reference 300x samples (subset
to chromosome 20), HG002 (son) and HG003 (father), as a control. X-axis values indicate the
different samples, ranging from 0% AF (HG003 unmixed) to 50% AF (HG002 unmixed). Callsets
for each mixture were benchmarked in the precisionFDA app.
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Supplemental Figure 2: Variant counts from the Strelka2 tumor-normal run with the GIAB AJ
trio, benchmarking, and filtering steps to generate a list of potential mosaic variants (366,728
vcfeval false positives) for database creation.
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Supplemental Figure 3: Mosaic benchmark decision tree for filtering potential mosaic variants
to produce a list for manual curation. A series of heuristics were applied to the potential mosaic
database (* starting at bottom left) using combined orthogonal CI thresholds and other
attributes for candidate set determination. The tree resulted in three groups of variants: green
boxes indicate variants to curate, yellow represents variants excluded from benchmark VCF and
BED, and red variants excluded from benchmark VCF but not BED. Values in parentheses are
variant counts for each step of the decision tree.
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Supplemental Figure 4: VAF distributions for all manually curated variants (135) in
high-coverage Illumina (300x) and orthogonal (BGI - 100x, Element - 136x, PacBio HiFi - 106x)
datasets generated from NIST HG002 reference material.
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Supplemental Figure 5: VAF distributions for the 85 HG002 mosaic benchmark variants in
high-coverage Illumina (300x) and orthogonal (BGI - 100x, Element - 136x, PacBio HiFi - 106x)
datasets generated from NIST HG002 reference material.
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Supplemental Figure 6: IGV profiles of variants (A) included in and (B,C) excluded from the
HG002 mosaic benchmark after manual curation. Profile A depicts an HG002-specific candidate
mosaic SNV (chr1:98259119 - not detected in parents), while B and C show a putative and
candidate SNV (chr6:126382244 and chr10:106867519). The first three data tracks are the
HG002 (son), HG003 (mother), and HG004 (father) 300X coverage Illumina data. The following
tracks are for HG002 BGIseq dataset, Element, PacBio Sequel, and ONT-UL datasets.
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Data availability

The HG002 mosaic benchmark v1.1 files and external validation VCFscan be found at the
Genome in a Bottle ftp site:
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA2
4385_son/mosaic_v1.10/GRCh38/SNV

Mosaics database used to generate benchmark is located at
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA2
4385_son/mosaic_v1.10/GRCh38/SNV/SupplementaryFiles/

Medically relevant gene (MRG) full BED from Wagner et al 2022 is here:
https://github.com/usnistgov/cmrg-benchmarkset-manuscript/blob/master/data/gene_coords/
unsorted/GRCh38_mrg_full_gene.bed

Sequencing data and data resources used to generate and characterize the mosaic benchmark
set are listed in Supplemental Table 1.

Code availability

Code used in this study can be accessed at the following github repo:
https://github.com/usnistgov/giab-HG002-mosaic-benchmark
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identified in this paper in order to specify the experimental procedure adequately. Such

identification is not intended to imply recommendation or endorsement of any product or

service by NIST, nor is it intended to imply that the materials or equipment identified are

necessarily the best available for the purpose.
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