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Abstract10

Enhancers are discrete DNA elements that regulate the expression of eukaryotic genes. They are important11

not only for their regulatory function, but also as loci that are frequently associated with disease traits.12

Despite their significance, our conceptual understanding of how enhancers work remains limited. CRISPR-13

interference methods have recently provided the means to systematically screen for enhancers in cell culture,14

from which a formula for predicting whether an enhancer regulates a gene, the Activity-by-Contact (ABC)15

Score, has emerged and has been widely adopted. While useful as a binary classifier, it is less effective at16

predicting the quantitative effect of an enhancer on gene expression. It is also unclear how the algebraic17

form of the ABC Score arises from the underlying molecular mechanisms and what assumptions are needed18

for it to hold. Here, we use the graph-theoretic linear framework, previously introduced to analyze gene19

regulation, to formulate the default model, a mathematical model of how multiple enhancers independently20

regulate a gene. We show that the algebraic form of the ABC Score arises from this model. However, the21

default model assumptions also imply that enhancers act additively on steady-state gene expression. This22

is known to be false for certain genes and we show how modifying the assumptions can accommodate this23

discrepancy. Overall, our approach lays a rigorous, biophysical foundation for future studies of enhancer-gene24

regulation.25

Introduction26

Much of our current understanding of how genes are regulated arose from classical studies in bacteria of the27

lac operon and λ-phage [1]. However, the eukaryotic context differs from the bacterial in many significant28

ways. One key difference is that, in bacteria, regulatory DNA is found proximal to the gene, typically within29

1kb upstream of the transcription start site (TSS), whereas eukaryotic regulatory sequences are found in30

discrete pieces that may be proximal to, or distal from, the TSS. The eukaryotic regulatory elements known31

as enhancers form a particularly important class. Enhancers were originally defined as DNA sequences which32

could drive the expression of genes in a location and orientation independent manner [2, 3]. Since these initial33

discoveries, many native enhancers have been identified which play critical roles in a variety of processes,34

such as embryonic development [4], physiology [5] and evolution [6]. Genetic variation in enhancers has35

also been shown to mediate risk for complex disease [7], Mendelian disease [8] and cancer [9]. Based on36

these and many other studies, we know that enhancers can be located over 1Mb from a target gene TSS,37

an individual enhancer may regulate multiple genes, some genes are regulated by multiple enhancers and38

the set of enhancers actively regulating a given gene may depend on cellular context. These properties have39

made it difficult to identify the rules governing enhancer-gene regulation.40

Given their importance, much attention has been given to systematically identifying enhancer sequences41

and the genes they regulate. An important breakthrough has been the development of high-throughput42

CRISPR interference (CRISPRi) screens, which enable putative enhancer sequences to be perturbed in cell43
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culture and the resulting effect on expression of a target gene to be measured [10–13]. These screens typically44

measure quantitative effects on gene expression as the proportional change in mean gene expression over a45

cell population. We call this quantity the fractional change and, given its importance in this paper, define46

it formally as follows: let ψ(g) denote the wild-type mean expression level of a gene g, in whatever units47

are used to measure it, and let ψ(g,��eq) denote the mean expression level of g after an enhancer of g, eq, has48

been perturbed. The fractional change of eq is then the non-dimensional quantity,49

f(g, eq) :=
ψ(g)− ψ(g,��eq)

ψ(g)
. (1)

The fractional change for thousands of putative enhancer-gene connections has been measured and compu-50

tational methods have assessed whether the observed fractional change is statistically different from zero.51

Current efforts are now focused on two main questions. First, what can we learn about enhancer biology52

from these screens? Second, can the results from these screens be used to develop computational methods53

which can predict which enhancers regulate which genes in arbitrary cellular contexts?54

The Activity-by-Contact (ABC) model has been proposed as a way to make progress on both of these55

questions [11]. The ABC model is based on the mechanistic notion that an enhancer’s effect on gene56

expression depends on the intrinsic strength of the enhancer (activity) and the frequency with which it57

comes into physical proximity to the gene promoter (contact). The ABC model gives rise to the ABC58

Score, a quantitative formula which is intended to predict the fractional change observed in an enhancer59

perturbation experiment. For a gene, g, with N putative enhancers, e1, · · · , eN , the ABC Score for a specific60

enhancer eq, is given by,61

ABC(g, eq) :=
αqγq

α1γ1 + · · ·+ αNγN
, (2)

where αi represents the activity of ei and γi represents the contact frequency between ei and the promoter of62

g. In [11] a putative enhancer was defined as a chromatin-accessible DNA element of approximately 500 base63

pairs; αi was assigned using measures of chromatin state of the enhancer, such as DNase-Seq and H3K27ac64

ChIP-Seq; γi was assigned using the contact frequency between a putative enhancer and the gene promoter,65

as measured by Hi-C; and the sum in the denominator of Eqn.2 was taken over all putative enhancers within66

5Mb of g.67

The ABC Score is reasonably effective at predicting the results of CRISPRi screens. When considered68

as a binary classifier, the ABC Score has achieved a precision of 59% at 70% recall benchmarked against a69

database of nearly 4,000 putative enhancer-gene connections in the K562 cell line [11]. Similar performance70

has also been observed in other cell types [11, 14] and in subsequent benchmarking against other CRISPRi71

screens in K562 cells [15, Fig.S8a]. We emphasize that the ABC Score is computed directly from genomic72

data orthogonal to the CRISPRi experiment. As such, it has no free parameters and does not require73

fitting or training. The classification ability of the ABC Score and its modest input data requirements have74

resulted in its widespread use to interpret non-coding genetic variation [14, 16, 17], identify enhancers in75

disease related contexts [18, 19] and investigate the dosage effect of transcription factor concentration on76

gene expression [20].77

Despite its practical utility as a binary classifier, the ability of the ABC Score to predict the fractional78

change is fundamentally limited [11, Fig.3c]. From Eqn. 2, it is clear that the sum of the ABC Scores over79

all putative enhancers of a given gene is equal to 1,80

N∑
i=1

ABC(g, ei) = 1 . (3)

We define the total fractional change of a gene to be the sum of the fractional changes of all enhancers for81

the gene, f(g, e1) + · · ·+ f(g, eN ). If the ABC model were perfectly reflecting the fractional change, so that82

ABC(g, ei) = f(g, ei), it would predict that the total fractional change for all genes is equal to 1. However,83

experimentally, a range of total fractional changes has been observed from 0 to greater than 3 [10, 11, 14,84

21–23]. This incompatibility is a consequence of the algebraic structure of the ABC Score formula and85
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cannot be resolved in a straightforward way. For example, it cannot be resolved by using different types of86

epigenomic data to assign values to αi or γi.87

What, if anything, about enhancer biology can be concluded from the successes and limitations of the88

ABC Score? We believe that considering this question requires a formal description of the ABC model. The89

original description of the ABC model is informal, in the sense that the relationships between the mechanisms90

of activity and contact and the ABC Score formula were not determined by formal mathematical arguments.91

In consequence, the biological and biophysical assumptions that underlie formulas of this kind have not been92

clarified.93

In the present paper, we present a strategy for the formal mathematical modeling of enhancer-gene94

regulation. We introduce the default model, a set of assumptions for how multiple enhancers independently95

regulate a gene. We show that a formula with the same algebraic structure as the ABC Score formula in96

Eqn.2 can be rigorously derived from a special case of the default model. This clarifies the assumptions that97

underlie the ABC Score formula. However, these assumptions also imply that the total fractional change98

of a gene is equal to one. We show how changing the assumptions of the default model can lead to total99

fractional changes which are less than or greater than one. More generally, the framework introduced here100

offers a rigorous foundation for future studies of enhancer-gene regulation.101

Results102

An activation-communication model of enhancer function103

Our approach to modelling enhancer-gene regulation is based on the linear framework, a method of using104

graphs to analyse biomolecular systems [24–26] that has been previously introduced to study gene regulation105

[26]; see [27, 28] for up-to-date reviews. The graphs in question have vertices that are linked by labelled,106

directed edges. The vertices represent molecular states of DNA, the edges represent transitions between these107

molecular states and the labels represent the transition rates, which are positive numbers with dimensions108

of (time)−1.109

An example linear framework graph is shown in Fig.1a. This graph, which we have called H, represents a110

single enhancer which can be either activated (filled red circle) or not and in communication with its target111

gene (curved arrow) or not. It thereby captures the two main notions in the original ABC model, although112

we prefer to speak here of “communication” rather than of “contact” (see below). These two features of the113

enhancer are treated in the graph as being independent of each other: the rates for becoming activated or114

deactivated do not depend on the state of communication, and the rates for making or losing communication115

do not depend on the state of activation. Independence will be one of the central features of our treatment116

and will appear both in how an individual enhancer is treated, as in this example in Fig.1a, and in how a117

gene is regulated by multiple enhancers, as we will explain below.118

The graph H in Fig.1a represents a coarse-graining of the actual complexity of enhancer-gene regulation119

(Fig.1b). Activation is intended to capture processes local to the enhancer sequence such as transcription120

factor binding, chromatin reorganisation, nucleosome remodelling, recruitment of co-regulators or transcrip-121

tion of the enhancer sequence itself to generate enhancer RNA. Communication refers to the processes by122

which information is transferred from the enhancer to its target gene. Many communication mechanisms123

have been proposed including physical contact through DNA looping [29], diffusion of regulatory molecules124

[30] and phase separation [31]. We thus use the word ‘communication’ instead of ‘contact’ to reflect that125

enhancer-gene regulation may not require physical contact. It is, of course, possible that the specific ac-126

tivation or communication mechanisms may differ between enhancers. The value of this coarse-graining127

lies in not making commitments about the underlying mechanism, at the price of ignoring the potential128

consequences of how activation and communication are implemented in molecular terms. This particular129

coarse-graining will facilitate our clarification of the ABC Score formula below.130

Having provided an example of a linear framework graph and explained how it describes the biological131

context that we will be studying, we now go into the details of the linear framework. We will make use of132

the example in Fig.1a throughout this work.133
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Figure 1: The activation-communication coarse graining. a) An example linear framework graph, H,
representing a coarse-grained view of an enhancer. Each vertex contains a schematic of the enhancer (circle)
and its target gene (black rectangle with the transcription start site marked with an arrow). The enhancer
may be activated (filled red circle) or communicating (curved arrow to the target gene), encoded in the
notation (i, j) used to denote vertices. The edge labels show that activation and communication take place
independently of each other. b) A more detailed picture of the molecular complexity that may underlie
the coarse-grained graph in panel a, as described further in the text. c) The example graph H in panel
a is the graph product of two simpler 2-vertex graphs, Ka, which represents activation, and Kc, which
represents communication. The product structure of H is equivalent to the independence of activation and
communication.

Preliminaries on the linear framework134

Notation and terminology135

We will start by introducing some basic ideas about linear framework graphs. We will use a letter like G136

or H to refer to a graph. Vertices will generally be denoted i, j, etc. We will use the notation i ∈ G to137

mean the state i from the graph G. Edges will be denoted i → j and edge labels will be denoted ℓ(i → j).138

So, using the notation for the example graph H in Fig.1a, ℓ((0, 0) → (0, 1)) = ℓ((1, 0) → (1, 1)) = kc (the139

notation for the vertices in this graph arises from its product structure and will be explained later). If some140

feature X is being discussed for different graphs, we will sometimes use brackets, as in X(G), or a subscript,141

as in XG, to specify the graph in question. We will use the word structure to refer to just the vertices and142

edges of a graph, ignoring the edge labels; when we say “graph”, we will always be including the labels, even143

when they are not mentioned explicitly.144

The Markov process145

A graph G is equivalent to a finite-state, continuous-time, time-homogeneous Markov process [25, 28, 32].146

This stochastic behaviour can be understood as follows. If the system is in state i, then for each edge i→ j147

which leaves i, a “firing” time is randomly chosen from the exponential probability distribution, λ exp(−λt),148

where λ is the transition rate of that edge, λ = ℓ(i → j), and the edge with the lowest firing time is taken,149
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at that time. This generates a stochastic trajectory of states and transitions. If we follow a trajectory up150

to time T and measure the proportion of time spent in state i, then that ratio stabilises with increasing T151

to become the steady-state probability of state i [32], which we will denote by u∗i (G). Provided G is strongly152

connected, this quantity does not depend on the state in which the trajectory starts and the steady-state153

probability is a property of the graph [25]. A strongly connected graph is one in which any two distinct154

vertices, i and j ̸= i, are connected by a directed path, i = i1 → i2 → · · · → ik = j. The example graph H155

in Fig.1a is strongly connected but ceases to be if the edges (1, 1) → (1, 0) and (1, 1) → (0, 1) are removed.156

We will assume from now on that all our graphs are strongly connected.157

Thermodynamic equilibrium and steady-state probabilities158

One of the advantages of the linear framework is that, provided the graph is finite, its steady-state probabil-159

ities can be calculated algebraically in terms of the edge labels. (We will encounter an infinite graph below160

but, as we will see, we do not have to deal with them directly and can work only with finite graphs.) If the161

graph can reach thermodynamic equilibrium the algebra can be done quite easily but, importantly, it can162

also be done when the graph is away from thermodynamic equilibrium, although the formulas become more163

complicated. A graph can reach thermodynamic equilibrium if, and only if, it satisfies two conditions. First,164

it must be reversible, so that if there is an edge i→ j, then there is also an edge j → i, which represents the165

reverse of the process that corresponds to i→ j. Second, it must satisfy the cycle condition: the product of166

the label ratios around any cycle of reversible edges must be 1. The graph in Fig.1a is evidently reversible167

and has only one cycle of reversible edges, (0, 0) ⇋ (1, 0) ⇋ (1, 1) ⇋ (0, 1) ⇋ (0, 0), for which the product168

of label ratios is169 (
ka
la

)(
kc
lc

)(
la
ka

)(
lc
kc

)
= 1 . (4)

For this graph, the independence of activation and communication ensures that the graph can reach ther-170

modynamic equilibrium.171

When a graph can reach thermodynamic equilibrium, its steady-state probabilities can be calculated as172

follows. First, choose any vertex as a reference; let us call it 1. Second, choose any path of reversible edges173

from 1 to the state in question, say i: 1 ⇋ i1 ⇋ · · · ⇋ ik = i. The steady-state probability of i is then174

proportional to the product of the label ratios along this path,175

u∗i (G) ∝
(
ℓ(i1 → i2)

ℓ(i2 → i1)

)
× · · · ×

(
ℓ(ik−1 → ik)

ℓ(ik → ik−1)

)
. (5)

It is a simple consequence of the cycle condition that the quantity on the right-hand side of Eqn.5 does176

not depend on the choice of path from 1 to i. The proportionality constant in Eqn.5 is readily obtained177

by exploiting the fact that the sum of all the probabilities must be 1, so that, if the vertices are denoted178

1, · · · , N , then u∗1(G) + · · ·+ u∗N (G) = 1. If we follow this prescription for the graph in Fig.1a, we find that,179

for example,180

u∗(1,1)(G) =
(ka/la)(kc/lc)

1 + (ka/la) + (kc/lc) + (ka/la)(kc/lc)
. (6)

=
ka

ka + la
· kc
kc + lc

(7)

(We will sometimes use a ”·” to denote multiplication to make formulas like this look clearer.) The reor-181

ganisation of Eqn.6 into Eqn.7 reveals a product structure in the algebra whose significance will emerge182

below. The formula in Eqn.6 is the same as would arise from equilibrium statistical mechanics. It is one183

of the features of the linear framework that it reduces to equilibrium statistical mechanics for systems that184

are at thermodynamic equilibrium but also yields algebraic formulas for systems away from thermodynamic185

equilibrium.186
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Product graphs as models of independence187

In studying gene regulation, a very helpful construction is that of a product graph, because it captures the188

default situation in which two or more genetic systems operate independently of each other. The example189

graph in Fig.1a is a case in point. This graph H is the product of the graphs Ka and Kc in Fig.1c. Here,190

Ka is a two-vertex graph that represents just the activation of the enhancer and Kc is a two-vertex graph191

that represents just the communication.192

We will use Ka and Kc to describe the product graph construction. We will do this in two steps. We193

will first specify the vertices and edges by building the product structure, denoted Ka×Kc, and then we will194

specify the labels to get the product graph, denotedKa⊗Kc. As we will see below, product structures underlie195

other constructions in which the independence of the product graph is broken, which is why it is helpful to196

distinguish structures and graphs. The vertices in Ka ×Kc are ordered pairs, (i, j), of vertices i ∈ Ka and197

j ∈ Kc. The edges in Ka ×Kc arise from the edges in either component Ka or Kc, taken independently of198

the state of the other component. In other words, if i1 → i2 is any edge in Ka, then (i1, j) → (i2, j) is an199

edge in Ka ×Kc, for all j ∈ Kc; similarly, if j1 → j2 is any edge in Kc, then (i, j1) → (i, j2) is an edge in200

Ka ×Kc, for all i ∈ Ka; these are the only edges in Ka ×Kc. This prescription yields the structure of the201

graph H in Fig.1a.202

The labels of the product graph, Ka ⊗Kc, are also inherited from those in Ka or Kc, independently of203

the state of the other component,204

ℓKa⊗Kc
((i1, j) → (i2, j)) = ℓKa

(i1 → i2) and ℓKa⊗Kc
((i, j1) → (i, j2)) = ℓKc

(j1 → j2) .

We see that Ka ⊗Kc corresponds exactly to the graph H in Fig.1a. The graph product precisely captures205

the sense in which the components of the product, here Ka and Kc, operate independently of each other:206

the transitions in either component are unaffected, as to their occurrence and their rates, by the state of the207

other component.208

In the more general case of a product of m graphs, the vertices are naturally indexed as ordered tuples,209

(i1, · · · , im).210

One of the consequences of the product graph construction is that its steady-state probabilities are easily211

calculated. If K1, · · · ,KN are any set of N strongly connected graphs, then the steady-state probabilities212

in the product graph K1 ⊗ · · · ⊗KN can be computed by multiplying the steady-state probabilities in the213

individual graphs,214

u∗(i1,··· ,iN )(K1 ⊗ · · · ⊗KN ) = u∗i1(K1) · · · u∗iN (KN ) . (8)

Eqn.8, which is proved in [26], again captures the sense in which the components K1, · · · ,KN are indepen-215

dent of each other. We note that Eqn.8 holds even for graphs which are unable to reach thermodynamic216

equilibrium.217

We can see Eqn.8 at work for the graph in Fig.1a, which is the product of the graphs Ka and Kc in218

Fig.1c. If we follow the prescription in Eqn.5, we see that219

u∗1(Ka) =
ka/la

1 + ka/la
and u∗1(Kc) =

kc/lc
1 + kc/lc

. (9)

If we apply Eqn.8 to the formulas above, we see that,220

u∗(1,1)(Ka ⊗Kc) =

(
ka/la

1 + ka/la

)(
kc/lc

1 + kc/lc

)
=

ka
ka + la

· kc
kc + lc

, (10)

which recovers the expression in Eqn.7, whose algebraic product structure is now seen to reflect the underlying221

product graph.222

Eqn.8 for individual vertices has a straightforward extension to subsets of vertices. To explain this, let223

K be any graph and let S ⊆ K be any subset of vertices in K. The steady-state probability of being in any224

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2024. ; https://doi.org/10.1101/2024.11.29.626072doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.29.626072
http://creativecommons.org/licenses/by-nc-nd/4.0/


vertex of S, denoted u∗S(K), is given by u∗S(K) =
∑

i∈S u
∗
i (K). Now suppose, as above, that K1, · · · ,KN225

are any strongly connected graphs. Let Si ⊆ Ki be any subset of vertices of Ki and let S1 × · · · × SN be226

the corresponding set product in K. This set product, for which we use, for convenience, the same notation227

as for the product structure, has the obvious definition that it consists of all those tuples (i1, · · · , iN ) where228

ik ∈ Sk. It is then a simple consequence of Eqn.8 that,229

u∗S1×···×SN
(K1 ⊗ · · · ⊗KN ) = u∗S1

(K1) · · · u∗SN
(KN ) . (11)

One of the implications of Eqn.11 is that if we take ij to be a coordinate that runs over the vertices of Kj ,230

then the probability that ij has a particular value, say ij = b, remains the same irrespective of the other231

factors in the graph product,232

u∗{ij=b}(K1 ⊗ · · · ⊗KN ) = u∗{ij=b}(Kj) . (12)

Eqn.12 follows from Eqn.11 because the subset {ij = b} in K1 ⊗ · · · ⊗KN is the product subset,233

K1 × · · · ×Kj−1 × {ij = b} ×Kj+1 × · · · ×KN ,

and u∗Ki
(Ki) = 1. We can see an example of Eqn.12 at work in Figure 1. Let {a=1} = {(1,0), (1,1)} be the234

subset of vertices of H in which the enhancer is activated. Then Eqn.12 shows that u∗{a=1}(H) = u∗1(Ka).235

We will make further use of Eqn.12 in what follows.236

The gene expression response237

The graphs we have considered up to now are models of the regulatory state of the gene. We now discuss238

how to incorporate the production and degradation of mRNA. The standard approach in the literature is239

known as kinetic modeling and uses a Markovian framework based on the chemical master equation [33]. We240

follow this same approach within the graph-theoretic setting introduced here.241

At any given time, the state of gene expression is specified by a certain number of molecules of the242

corresponding mRNA. This number increases by 1 each time RNA polymerase transcribes the gene and243

decreases by 1 each time an mRNA molecule is degraded or lost through transport out of the nucleus. We244

can represent such an expression system by the (semi)-infinite pipeline structure, P , in which the state p245

represents the number p of mRNA molecules, from p = 0 onwards, and the edges correspond to mRNA246

production, p→ p+ 1, and degradation or loss, p→ p− 1 (Fig.2a).247

Given a gene-regulatory graph, G, we represent the overall system of regulation and expression by a248

copy-number graph, G ⋉ P , that will be derived from the product structure, G × P (Fig.2b). The states of249

G ⋉ P are identical to those of G × P but G ⋉ P may not have all the edges that are present in G × P .250

Each state in G ⋉ P keeps track of the regulatory state of the gene and the number of mRNA molecules251

that are present. We now discuss how to assign labels to this graph (Fig.2b). We assume that each state,252

i ∈ G, has a corresponding non-negative rate of mRNA production, ri(G) ≥ 0. If rk(G) = 0, so that mRNA253

production is not possible in state k of G, then the edges (k, p) → (k, p+ 1) are removed from G× P for all254

p ∈ P . (Note that edge labels must always be positive.) This is the only way in which the structure of G⋉P255

differs from that of G×P . If rk(G) > 0, we will assume that the rate of mRNA production does not change256

with the number of mRNA molecules that have been expressed, so that ℓ((k, p) → (k, p + 1)) = rk(G) for257

any p ∈ P . As for mRNA degradation or loss, this takes place independently of the regulatory system, so258

the most parsimonious assumption is that its rate is proportional to the number of mRNAs that are present259

and is independent of the regulatory state. Accordingly, we may write ℓ((k, p) → (k, p − 1)) = δ(G) · p for260

any k ∈ G and any positive p ∈ P , where δ(G) is the degradation rate constant. Finally, we assume that261

regulatory transitions do not depend on gene expression, so that ℓ((i, p) → (j, p)) = ℓG(i→ j) for all i, j ∈ G262

and for all p ∈ P . A compact way to visually represent a copy-number graph is shown in Fig.2c.263

At steady state, G ⋉ P gives rise to a probability distribution over the mRNA copy number. We will264

define the response of the gene, which we will denote by R(G), to be given by the average of this number265

distribution,266

R(G) :=
∑
(i,p)

p · u∗(i,p)(G⋉ P ) . (13)
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We note that R(G) ≥ 0.267

Because G ⋉ P is not a finite graph, the prescription given in Eqn.5 for calculating steady-state proba-268

bilities no longer works. (G⋉P is also not at thermodynamic equilibrium, unless every regulatory state has269

the same rate of mRNA production, as can be checked by following the cycle condition formula in Eqn.4.)270

However, we can appeal to a very useful theorem, due to Sanchez and Kondev, which tells us that we do271

not have to operate on G⋉ P in order to calculate R(G) [34]. Translating their work into the graph-theory272

language used here, we find that the response of the gene can be calculated in terms of the average of ri(G)273

over only the the steady-state probabilities of G, normalized by δ(G),274

R(G) =
1

δ(G)

∑
i∈G

ri(G) · u∗i (G) . (14)

It follows that, although infinite graphs arise to represent the mRNA expression system, we do not need to275

work with them to calculate the mean steady-state expression R(G), under the assumptions made above.276

Sanchez and Kondev did not use graph theory in their work, so we provide an independent graph-based277

proof of Eqn.14 in the Methods. In subsequent work, we will show how the copy-number graphs introduced278

here lead to generalizations of the results of [34] but we do not need that for the present paper.279

This result provides some justification for reducing the notational clutter from multiple instances of P .280

We will refer to the regulatory graph G when we mean G on its own, and to the copy-number graph G when281

we mean G⋉P , defined for some specified choice of production rates ri(G) and degradation rate δ(G). These282

parameters may not be explicitly mentioned when speaking of a copy-number graph but they should be kept283

in mind.284

As an illustration of Eqn.14, we will assign production rates to the graph in Fig.1a and compute its285

response. We will make the assumption that mRNA is only produced when the enhancer is both activated286

and communicating (Fig. 2d). The mRNA production rates of H are therefore given by287

r(0,0)(H) = r(1,0)(H) = r(0,1)(H) = 0 and r(1,1)(H) = r . (15)

We can now use Eqn.14 to calculate the response, R(H), taking advantage of Eqn.10, in which we exploited288

the product graph decomposition H = Ka ⊗Kc. We see that,289

R(H) =
r

δ
·
(

ka
ka + la

)(
kc

kc + lc

)
. (16)

It follows from Eqns.9 and 12 that we can interpret ka/(ka + la) as the probability that the enhancer is290

activated and, similarly, kc/(kc + lc) as the probability that the enhancer is communicating. Eqn.16 tells us291

that the response of H is the product of the ratio of production to degradation, the probability of activation292

and the probability of communication.293

This concludes our analysis of a gene regulated by a single enhancer using the activation-communication294

coarse graining. We now turn to considering how multiple enhancers work together to regulate gene expres-295

sion.296
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Figure 2: Modeling mRNA production and degradation through copy-number graphs. a) The pipeline
structure P represents the number of mRNA molecules and their production and loss. b) An example
regulatory graph, G, and the resulting copy-number graph G ⋉ P . In this example G has two production
states, X and Y , with corresponding mRNA production rates rx and ry respectively. We note that G⋉P is
a sub-structure of G× P ; it has the same vertices but lacks the edges corresponding to a production rate of
zero. G and P also do not operate independently in G⋉ P because the mRNA production rates depend on
the regulatory state. c) A compact way to represent G ⋉ P . The production states are outlined in purple
with corresponding mRNA production rates. The degradation rate, δ, is shown above the arrow from purple
squiggles (mRNA) to the empty set ∅. d) The compact representation of the graph H ⋉ P , where H is
given in Fig.1a. The only production state is the state (1, 1), in which the enhancer is both activated and
communicating, which has production rate r.

A default model of how multiple enhancers independently regulate a gene297

We now introduce the default model of enhancer-gene regulation. This is a set of assumptions for how298

multiple enhancers collectively regulate a gene in an independent manner. We previously introduced the299

product graph construction which represents independence between regulatory graphs. We now broaden300

those assumptions to also allow for mRNA production. We expect this default model construction to be of301

general interest. In the next section we will show how a special case of the default model clarifies the ABC302

Score formula.303
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Consider a gene, g, that is regulated by N enhancers, e1, · · · , eN . We will assume that enhancer el is304

modelled by the graph Gl. We make no assumptions about Gl other than the prevailing assumption that305

all our graphs are strongly connected. Gl could be substantially more complicated than the graph in Fig.1a306

and could incorporate, for example, chromatin organisation, nucleosomes, co-regulators, post-translational307

modifications, chromosome conformation, etc [26]. In particular, there is no requirement that Gl should be308

able to reach thermodynamic equilibrium. At this point our assumptions are very general and could apply309

to essentially any enhancer, when considered from a Markovian perspective.310

We denote the graph that models the collective regulation of the enhancers by G and describe how G is311

defined in terms of the Gl.312

The first assumption says that each enhancer has its own individual effect.313

1. Individuality. Each enhancer el, when acting in the absence of any of the other enhancers, drives gene314

expression at the rate ri(Gl) ≥ 0 for each state i ∈ Gl, and gives rise to the response R(Gl), as defined315

by Eqn.13. If the enhancer is unable to drive expression on its own, then ri(Gl) = 0 for every state316

i ∈ Gl.317

The next two assumptions specify how the enhancers work together.318

2. Regulatory independence. Each enhancer acts independently of all the others, so that the regulatory319

graph of G is given by the product graph G1 ⊗ · · · ⊗GN .320

3. Production-rate summation. Each enhancer independently influences mRNA production. Accordingly,321

if (i1, · · · , iN ) is a state in G, then its mRNA production rate is a sum of the corresponding production322

rates in each enhancer graph:323

r(i1,··· ,iN )(G) = ri1(G1) + · · ·+ riN (GN ) . (17)

The summation of rates in Assumption 3 arises for the following reason. If each enhancer influences mRNA324

production independently, then the time at which an mRNA is produced will be the minimum of the times325

at which each individual enhancer has its effect on production. These individual times are exponentially326

distributed with rates rij (Gj) for state ij in Gj . The minimum of several exponentially distributed random327

variables is a random variable that is also exponentially distributed, with rate given by the sum of the328

individual rates. This leads to Eqn.17. The final assumption specifies the degradation rates.329

4. Uniform degradation. Since mRNA degradation is a separate process to gene regulation and gene330

expression, we consider the characteristic degradation rate to be a property of the gene, not the331

enhancer. As such, each graph Gl is assumed to have the same degradation rate, δ(Gl) = δ for all l,332

and the mRNA degradation rate of G is also δ: δ(G) = δ.333

For any set of copy-number graphs G1, . . . , GN , we denote the copy-number graph which models their334

collective effect on transcription according to Assumptions 1 to 4 by the graph335

G1 ⊛ · · ·⊛GN . (18)

Example constructions using the default model are given in Fig.3.336

Assumptions 1 to 4 specify our default model of how enhancers collectively regulate a gene. Whether337

any of the default model assumptions hold for an individual gene is a question that has to be addressed338

experimentally. In particular, we would expect that Assumption 3 would eventually break down as more339

enhancers are added to a gene since production rates will be limited by the physical processes involved in340

transcription. Our goal here is to rigorously work out the consequences of these assumptions, so that we341

know what to expect when the assumptions do hold and can compare these predictions to what is found342

experimentally. Of particular significance is that the assumptions above imply that the collective response343

of the enhancers is always the sum of their individual responses,344

R(G1 ⊛ · · ·⊛GN ) = R(G1) + · · ·+R(GN ) . (19)
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Figure 3: Two examples a and b of the default model construction. The copy-number graphs are depicted
in compact format, as shown in Fig.2c but omitting the degradation symbols for clarity. Production states
are outlined in bold purple with corresponding production rates in purple text. The model in b is adapted
from Figure 9 of [26].

A proof of this fundamental property of the default model is given in the Methods.345

A recent commentary has argued that formal definitions and rigorous modeling are necessary to inves-346

tigate whether a set of enhancers is “greater than the sum of its parts” [35]. We fully agree and suggest347

that the notion of independence encoded by the default model, which gives rise to Eqn.19, could serve as a348

definition of what it means for a gene to be the sum of its parts.349

Transcription in the default model relies on the presence of enhancers. It is well known that the promoter350

sequences at some eukaryotic genes are sufficient to drive transcription even in the absence of distal enhancers351

[36, 37]. It is a future area of research to incorporate the role of core promoter elements and promoter proximal352

regulatory sequences along with their interactions with distal enhancers.353

A clarification of the ABC Score formula354

Enhancer perturbation and deletion fidelity355

To see how formulas similar to the ABC Score can be derived from the default model, we need to consider356

how to formally model perturbations to enhancers such as genetic deletions or CRISPRi. As previously,357

we will assume that the target gene g is collectively regulated by enhancers e1, · · · , eN . We assume that358

enhancer ei is modeled by the graph Gi and that g is modeled by G1 ⊛ · · · ⊛ GN . Let us consider what359

happens when enhancers el1 , · · · , elk are perturbed in such a way that they are considered to no longer be360

working to regulate g. We will use a similar notation to that for the fractional change in the Introduction and361

denote the graph that arises from this perturbation as G|��el1 , · · · ,��elk . In analogy to the fractional change,362
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we can define the deletion effect of the perturbation, ∆(G; el1 , · · · , elk), to be the proportional change in363

response of g,364

∆(G; el1 , · · · , elk) :=
R(G)−R(G|��el1 , · · · ,��elk)

R(G)
. (20)

It is important to keep in mind that the deletion effect is defined in terms of a model of gene regulation,365

whereas the fractional change is defined in terms of experimental data. The definition in Eqn.20 implicitly366

assumes that the system has returned to steady state following the perturbation. Furthermore, Eqn.20 says367

nothing about how the enhancer is perturbed or whether a CRISPRi perturbation has the same effect as a368

genetic deletion.369

To calculate the deletion effect using Eqn.20, we need to know the perturbed graph, G|��el1 , · · · ,��elk . We370

assume that the graph shows deletion fidelity, which implies that the perturbation completely abrogates the371

function of the targeted enhancers and does not influence other enhancers. Let m1, · · · ,mp be the remaining372

indices in 1, · · · , N after l1, · · · , lk have been removed.373

5. Deletion fidelity. The regulatory graph of G|��el1 , . . . ,��elk is the graph product Gm1
⊗· · ·⊗Gmp

, and the374

production rates in G|��el1 , . . . ,��elk are directly inherited from G,375

r(im1
,··· ,imp )

(G|��el1 , . . . ,��elk) = rim1
(Gm1

) + · · ·+ rimp
(Gmp

) . (21)

Deletion fidelity ensures that if G obeys Assumptions 1-4, then G|��el1 , · · · ,��elk also obeys Assumptions 1-4376

for the remaining enhancers em1 , . . . , emp and that, for the copy-number graphs,377

G|��el1 , · · · ,��elk = Gm1
⊛ · · ·⊛Gmp

. (22)

Using Eqn.22, it follows from Eqn.19 that,378

R(G|��el1 , · · · ,��elk) = R(Gm1
) + · · ·+R(Gmp

) , (23)

and so the formula for the deletion effect in Eqn.20 tells us that,379

∆(G; el1 , · · · , elk) =
R(Gl1) + · · ·+R(Glk)

R(G1) + · · ·+R(GN )
. (24)

Eqns.23 and 24 are general properties that hold for the default model whenever Assumption 5 of deletion380

fidelity also holds. They allow us to formalise the notion of enhancer additivity, which we will discuss below,381

but, first, let us turn to the ABC Score formula.382

The Independent-Activation-Communication (IAC) model383

In the default model, the graph representing each individual enhancer can be arbitrarily complicated. To384

show how the ABC Score formula can arise from the default model, we need to impose the further assumption385

that each enhancer is modeled by the activation-communication coarse graining shown in Figs.1a and 1b.386

6. The activation-communication coarse-graining. Enhancer ei is described by the graph Hi, where Hi is387

the same graph as H in Fig.2d. Specifically, Hi is the graph product of an activation graph, Ka,i, with388

labels ka,i, la,i, and a communication graph, Kc,i, with labels kc,i, lc,i (Fig.1c), and Hi = Ka,i ⊗Kc,i.389

The only non-zero production rate of Hi occurs in the state in which the enhancer is both active and390

communicating, where the rate is ri.391

The overall regulatory system is then described by G = H1 ⊛ · · ·⊛HN (Fig. 4, Fig.S1). We call the model392

obeying Assumptions 1-6 the Independent-Activation-Communication (IAC) model. It follows from Eqn.16393

that the response of enhancer i in the IAC model is given by394

R(Hi) =
ri
δ

(
ka,i

ka,i + la,i

)(
kc,i

kc,i + lc,i

)
. (25)
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Figure 4: The Independent-Activation-Communication (IAC) model. A gene described by the IAC model
follows Assumptions 1-6 for the component graphs H1, . . . ,HN . The ordered pair of binary digits for the
vertices in each Hi represent the activation and communication status, respectively, of each enhancer. Each
Hi has the same structure as the graph in Fig.2d, but different labels, and represents the independence of
activation and communication within each enhancer. Each Hi is assumed to have the same degradation rate
which is omitted for clarity. See also Fig.S1.

Let us define α̃i := ka,i/(ka,i+ la,i) and γ̃i := kc,i/(kc,i+ lc,i) and recall from Eqn.16 that these quantities395

are the probability of activation and the probability of communication, respectively, of enhancer ei. According396

to the fundamental property of the default model in Eqn.19, the response, R(G), of the overall graph,397

G = H1 ⊛ · · ·⊛HN , is given by,398

R(G) =
1

δ

N∑
i=1

riα̃iγ̃i . (26)

Furthermore, as a consequence of deletion fidelity (Assumption 5), it follows from Eqn.24 that the deletion399

effect for enhancer eq is given by,400

∆(G; eq) =
rqα̃qγ̃q

r1α̃1γ̃1 + · · ·+ rN α̃N γ̃N
. (27)

Eqn.27 shows a striking algebraic similarity to the ABC Score formula in Eqn.2. The quantity γ̃i, which401

is the probability of communication, is analogous to the ‘frequency of contact’, γi, that was envisaged402

for the ABC model [11] and appears in Eqn.2. There are different possible interpretations for the other403

terms. One potential interpretation for the term riα̃i in Eqn.27, which is the production rate multiplied404

by the probability of activation, is that it is analogous to the ‘strength of the enhancer’, αi, appearing in405

Eqn.2. Another potential interpretation is that α̃i corresponds to αi and that the production rates ri are406

not represented in the ABC model. If the production rates are assumed to be equal, they would cancel407

out in Eqn.2, which would be consistent with a correspondence between α̃i and αi. Such interpretational408

ambiguities are to be expected because the ABC model is informal, while the IAC model presented here is409

formal. Moreover, our formal model separately specifies the regulatory state of the enhancer and its effect410

on transcription, whereas the ABC model does not make this distinction. An interesting question arises as411

to how numerical values can be assigned to the terms in Eqn.27, and how this may differ from the strategies412

used in [11] to give numerical values to the terms in Eqn.2, but this is an area for future work.413

Eqn.27 is our clarification of the algebraic structure of the ABC Score formula. Eqn.27 rigorously follows414

if enhancers collectively regulate a gene according to the IAC model (Assumptions 1 to 6).415

Enhancer additivity and departures from it416

The default model, satisfying Assumptions 1 to 4, exhibits response additivity, as shown by Eqn.19: the417

response of the gene to all the enhancers acting collectively is just the sum of the responses to each individual418

enhancer. When the default model also obeys Assumption 5 of deletion fidelity, then response additivity has419

a counterpart in the deletion effect, as defined in Eqn.20. This allows us to rigorously define the properties420

of super-additivity and sub-additivity. These departures from the properties of the default model may be421

helpful to interpret the effects of experimental perturbations, such as genetic deletions or CRISPRi, in which422
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subsets of enhancers are prevented from influencing a gene and the effect of these perturbations on the gene423

expression response is measured.424

With Assumptions 1 to 5, if U1, · · · , Um are pairwise disjoint subsets of enhancers, so that Ui ⊆425

{e1, · · · , eN} and Ui ∩ Uj = ∅ when i ̸= j, then it follows from Eqn.24 that the effect of deleting all426

the subsets together is just the sum of the individual deletion effects,427

∆(G;U1 ∪ · · · ∪ Um) = ∆(G;U1) + · · ·∆(G;Um) . (28)

We refer to this property as deletion additivity. Furthermore, it is evident from Eqn.24 that, if all the428

enhancers are deleted, so that U1 ∪ · · · ∪ Um = {e1, · · · , eN}, then the total deletion effect must be 1,429

∆(G;U1) + · · ·+∆(G;Um) = ∆(G; {e1, · · · , eN}) = 1 . (29)

Assuming deletion fidelity, the total deletion effect being 1 is equivalent to the response additivity in Eqn.19.430

A special case of Eqn.29 arises if all enhancers are deleted individually, when, once again, the total deletion431

effect is 1,432

∆(G; e1) + · · ·+∆(G; eN ) = 1 . (30)

Now suppose that a gene g is regulated by N enhancers, e1, · · · , eN , each enhancer is modeled by the433

graph Gi and the regulatory graph of g, G, has the product structure, G1 × · · · ×GN . The labels in G need434

not be related to those of the component graphs Gi, so that G need not be the product graph G1⊗· · ·⊗GN .435

We can no longer calculate R(G) in terms of R(Gi). However, we can still define through Eqn.20 the436

deletion effect ∆(G;U) for any collection U ⊆ {e1, · · · , eN} of enhancers. We say that g exhibits response437

super-additivity if,438

R(G) > R(G1) + · · ·+R(GN ) . (31)

In terms of the deletion effect, this corresponds to when a collective deletion has less effect than the sum of439

the individual deletions, so that,440

∆(G;U1 ∪ · · · ∪ Um) < ∆(G;U1) + · · ·+∆(G;Um) . (32)

Similarly, g exhibits response sub-additivity if,441

R(G) < R(G1) + · · ·+R(GN ) . (33)

and this corresponds to the collective deletion having more effect that the sum of the individual deletions,442

∆(G;U1 ∪ · · · ∪ Um) > ∆(G;U1) + · · ·+∆(G;Um) . (34)

Experimentally, response additivity [15, 23, 38–43], super-additivity [15, 21, 39–44] and sub-additivity443

[38, 40, 41] have all been observed. Because the super-additive and sub-additive findings cannot be accounted444

for by the default model with deletion fidelity, we next consider some extensions of this model that show445

how such effects could arise.446

Mechanisms beyond the default model447

In the following sections, we examine two departures from the default model and consider their impact on448

whether enhancers act additively (Eqn.19), super-additively (Eqn.31) or sub-additively (Eqn.33). This will449

also illustrate how our modeling framework can be used to reason about different biological mechanisms.450

Non-additivity in mRNA production rates451

In the default model, the summation of production rates in Assumption 3 is crucial for the property of452

enhancer additivity in Eqn.19. The production rate is a convenient abstraction that aggregates over many453

underlying molecular mechanisms, such as RNA Polymerase recruitment, pausing and elongation. It is454
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conceivable that, when multiple enhancers jointly influence transcription, the resulting rate is a more complex455

function than simple addition [38]. Here, we consider the effect of dropping Assumption 3.456

Let us assume that we have two enhancers, e1 and e2, which are described by the graphs H1 = Ka,1⊗Kc,1457

and H2 = Ka,2⊗Kc,2, respectively, as specified in Assumption 6 in the coarse-grained version of our default458

model. The overall regulatory graph is given by H1⊗H2, so that e1 and e2 remain independent (Assumption459

2). Note that (Ka,1 ⊗Kc,1) ⊗ (Ka,2 ⊗Kc,2) has a product hierarchy and its vertices are therefore indexed460

by tuples of tuples of the form,461

((a1, c1), (a2, c2)) . (35)

Here, ai and ci, for i = 1, 2, are coordinates for activation and communication, respectively, which take the462

values 0 and 1 in all cases. The graphs H1 and H2 have mRNA production rates, r1 and r2, respectively, as463

specified in Eqn.15 and mRNA degradation rate δ.464

We now consider a copy-number graph, G⋄, whose regulatory graph is given by (Ka,1⊗Kc,1)⊗(Ka,2⊗Kc,2)465

but whose production rates do not obey Assumption 3. Note that we use the same symbol, G⋄, for the466

regulatory graph and the copy-number graph and rely on the context to clarify which is meant. There467

are many ways to assign production rates to the vertices of G⋄ which do not obey Assumption 3; here we468

consider one of the simplest possible ways. We define 3 subsets of vertices of G⋄ in terms of the coordinates469

in Eqn.35: W := {a1 = 1, c1 = 1, a2 = 1, c2 = 1}, U := {a1 = 1, c1 = 1} \W and V := {a2 = 1, c2 = 1} \W .470

We assign the production rate of vertices in U to be r1, of vertices in V to be r2 and of the vertex in W471

to be (1 + µ)(r1 + r2); all other vertices have production rate 0. We can summarise these assumptions in472

the following table, which gives the production rate for each of the 16 states in G⋄ in the coordinate system473

described by Eqn.35.474

state rate state rate
((0, 0), (0, 0)) 0 ((1, 0), (0, 0)) 0
((0, 0), (0, 1)) 0 ((1, 0), (0, 1)) 0
((0, 0), (1, 0)) 0 ((1, 0), (1, 0)) 0
((0, 0), (1, 1)) r2 ((1, 0), (1, 1)) r2
((0, 1), (0, 0)) 0 ((1, 1), (0, 0)) r1
((0, 1), (0, 1)) 0 ((1, 1), (0, 1)) r1
((0, 1), (1, 0)) 0 ((1, 1), (1, 0)) r1
((0, 1), (1, 1)) r2 ((1, 1), (1, 1)) (1 + µ)(r1 + r2)

We further assume that µ ≥ −1 to ensure that the production rate of W does not become negative. If475

µ = 0, then Assumption 3 holds for G⋄ but not otherwise. We also assume that G⋄ has degradation rate δ.476

We now calculate R(G⋄). Using the Sanchez-Kondev theorem in Eqn.14 we have,477

R(G⋄) =
r1u

∗
U (G

⋄) + r2u
∗
V (G

⋄) + (1 + µ)(r1 + r2)u
∗
W (G⋄)

δ
. (36)

Expanding the term on the right hand side of Eqn.36 and rearranging terms results in,478

R(G⋄) =
r1 [u

∗
U (G

⋄) + u∗W (G⋄)] + r2 [u
∗
V (G

⋄) + u∗W (G⋄)] + µ(r1 + r2)u
∗
W (G⋄)

δ
. (37)

Using the fact that the pairs of sets U and W , and, V and W are disjoint gives,479

R(G⋄) =
r1u

∗
U∪W (G⋄) + r2u

∗
V ∪W (G⋄) + µ(r1 + r2)u

∗
W (G⋄)

δ
. (38)

We now note that, by definition, U∪W = {a1 = 1, c1 = 1} and V ∪W = {a2 = 1, c2 = 1}. Given the indepen-480

dence assumption on G⋄, we can apply Eqn.11 and have that u∗{a1=1,c1=1}(G
⋄) = α̃1γ̃1, u

∗
{a2=1,c2=1}(G

⋄) =481

α̃2γ̃2 and u∗W (G⋄) = α̃1γ̃1α̃2γ̃2. Substituting into Eqn.38, we have,482

R(G⋄) =
r1α̃1γ̃1 + r2α̃2γ̃2 + µ(r1 + r2)α̃1γ̃1α̃2γ̃2

δ
. (39)
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Given that483

R(H1) +R(H2) =
r1α̃1γ̃1 + r2α̃2γ̃2

δ
, (40)

we see that e1 and e2 act additively for µ = 0 (Eqn.19), act super-additively for µ > 0 (Eqn.31) and act484

sub-additively for µ ∈ [−1, 0) (Eqn.33).485

Non-independence in regulatory transitions between enhancers486

So far all the graphs we have considered obey regulatory independence as defined by Assumption 2: the state487

of one enhancer does not affect the transitions or the rates of any other enhancer. Let us examine this more488

closely for the IAC model, with just two enhancers, e1 and e2, described by graphs H1 and H2, respectively,489

as in the previous subsection. According to Assumption 6, H1 = Ka,1 ⊗ Kc,1 and H2 = Ka,2 ⊗ Kc,2 and490

the overall regulatory system is therefore described by the graph, G = H1 ⊗H2 = (Ka,1 ⊗Kc,1) ⊗ (Ka,2 ⊗491

Kc,2). Using Eqn.12 and the coordinate system in Eqn.35, we have that u∗{a1=1}(G) = u∗{a1=1}(H1) and492

u∗{a2=1}(G) = u∗{a2=1}(H2). That is, the probability of activation of an enhancer does not depend on the493

presence of the other enhancer. However, if probability of activation is measured by H3K27ac ChIP-Seq, there494

is evidence that perturbation of a single enhancer can result in altered H3K27ac signal at distal enhancers495

[15, 22, 45, 46]. If such changes at the distal enhancer are not caused by the perturbation method itself,496

so that the perturbation obeys the fidelity conditions in Assumption 5, then such experiments suggest that497

there may be non-independence between enhancers at the level of activation.498

In order to model non-independence between enhancers, we will consider a gene to be modeled by the499

graph G♯, where G♯ is the product between an activation graph A♯ and a communication graph C, so that500

G♯ = A♯ ⊗ C (Fig.5). A♯ has the structure Ka,1 × Ka,2, in which Ka,1 and Ka,2 are both present as the501

subgraphs,502

(0, 0)
ka,1

⇌
la,1

(1, 0) and (0, 0)
ka,2

⇌
la,2

(0, 1) ,

respectively (Fig.5a). The remaining labels, on the edges (1, 0) ⇌ (1, 1), which specify the rates of activation503

and deactivation of e2 when e1 is activated, and on the edges (0, 1) ⇌ (1, 1), which specify the rates of504

activation and deactivation of e1 when e2 is activated, can be arbitrary. For simplicity, we assume that505

C = Kc,1 ⊗Kc,2, (Fig.5b), but note that non-independence in communication could be considered similarly.506

G♯ has the same structure as H1 ×H2, and thus still models the activation and communication statuses of507

e1 and e2, but using the form G♯ = A♯ ⊗C allows us to clarify the independence relationships in G♯. Under508

this reorganization, the vertex in Eqn.35 is now described in a new coordinate system as,509

((a1, a2), (c1, c2)) . (41)

We assume that G♯ has the same mRNA production rates as for the IAC model. In terms of the vertex510

subsets W = {a1 = 1, c1 = 1, a2 = 1, c2 = 1}, U = {a1 = 1, c1 = 1} \W and V = {a2 = 1, c2 = 1} \W , the511

vertices in U have production rate r1, those in V have production r2 and those in W have production rate512

r1 + r2; all other vertices have production rate 0. We can summarise this in the following table, in which513

the states are described by the coordinate system in Eqn.41.514

state rate state rate
((0, 0), (0, 0)) 0 ((1, 0), (0, 0)) 0
((0, 0), (0, 1)) 0 ((1, 0), (0, 1)) 0
((0, 0), (1, 0)) 0 ((1, 0), (1, 0)) r1
((0, 0), (1, 1)) 0 ((1, 0), (1, 1)) r1
((0, 1), (0, 0)) 0 ((1, 1), (0, 0)) 0
((0, 1), (0, 1)) r2 ((1, 1), (0, 1)) r2
((0, 1), (1, 0)) 0 ((1, 1), (1, 0)) r1
((0, 1), (1, 1)) r2 ((1, 1), (1, 1)) r1 + r2
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As in the previous section, we can use the Sanchez-Kondev theorem in Eqn.14 to calculate,515

R(G♯) =
r1u

∗
U (G

♯) + r2u
∗
V (G

♯) + (r1 + r2)u
∗
W (G♯)

δ
(42)

=
r1u

∗
U∪W (G♯) + r2u

∗
V ∪W (G♯)

δ
(43)

=
r1u

∗
{a1=1,c1=1}(G

♯) + r2u
∗
{a2=1,c2=1}(G

♯)

δ
. (44)

Given that G♯ = A♯ ⊗C, the probabilities of the sets {a1 = 1, c1 = 1} and {a2 = 1, c2 = 1} factor according516

to Eqn.11. Continuing from Eqn.44 we have,517

R(G♯) =
r1u

∗
{a1=1}(A

♯)u∗{c1=1}(C) + r2u
∗
{a2=1}(A

♯)u∗{c2=1}(C)

δ
(45)

=
r1u

∗
{a1=1}(A

♯)γ̃1 + r2u
∗
{a2=1}(A

♯)γ̃2

δ
. (46)

Eqn.46 shows that the labels of A♯ do not directly appear in R(G♯); they only affect R(G♯) through the518

enhancer activation probabilities u∗{a1=1}(A
♯) and u∗{a2=1}(A

♯). As in the previous section, we note that the519

sum of the individual enhancer responses is,520

R(H1) +R(H2) =
r1α̃1γ̃1 + r2α̃2γ̃2

δ
. (47)

Comparing Eqns.46 and 47, we see that whether the enhancers act additively (Eqn.19), sub-additively521

(Eqn.33) or super-additively (Eqn.31) depends on the terms522

α̃+
1 :=

[
u∗{a1=1}(A

♯)− α̃1

]
and α̃+

2 :=
[
u∗{a2=1}(A

♯)− α̃2

]
. (48)

α̃+
1 represents the change in the probability of activation of enhancer 1 due to the presence of enhancer 2, and523

α̃+
2 represents the change in the probability of activation of enhancer 2 due to the presence of enhancer 1. If524

both α̃+
1 and α̃+

2 are positive, then e1 and e2 act super-additively; if they are both negative, then e1 and e2525

act sub-additively. If α̃+
1 and α̃+

2 are of different signs, then the enhancers may act super-additively or sub-526

additively depending on the relative magnitude of these terms compared to γ̃1, γ̃2, r1 and r2. Experimental527

data in which both α̃+
1 and α̃+

2 have been measured is limited. There are experimentally observed instances528

in which both of these terms are positive [15, 45] but the precise form that the graph A♯ takes in these cases529

is unknown. We are unaware of experiments that have observed α̃+
1 and α̃+

2 of differing signs. Whether530

the experimentally observed non-additivity between enhancers can be explained by the non-independence531

between enhancers as described in this section is a future area of research.532

Figure 5: A model of non-independence in activation between enhancers. (a) The graph A♯ represents
the activation components of each enhancer. A♯ has the structure of Ka,1 ×Ka,2. Labels on the unmarked
edges can be arbitrary. (b) The graph C = Kc,1 ⊗Kc,2 represents the communication components of each
enhancer.
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Discussion533

In this paper, we have introduced mathematical formulations of a default model and an Independent-534

Activation-Communication model (IAC model) for how multiple enhancers collectively regulate a gene. The535

default model encodes the notion that enhancers operate independently of each other (Assumptions 2 and 3).536

At the same time, the default model imposes no assumptions on how the individual enhancers themselves537

are working, at the level of transcription factors, co-regulators, chromatin, etc. They can be arbitrarily538

complicated, so long as they operate within the Markovian setting that is commonly assumed for analysing539

gene regulation. The default model assumptions imply that the collective response of a gene, as measured by540

the mean mRNA level, is the sum of the responses coming from each enhancer individually, which we have541

called response additivity (Eqn.19). The default model explains the mechanistic requirements for a gene to542

exhibit this property and clarifies how ‘independence implies additivity’. We emphasize that independence543

refers here to assumptions about gene regulatory mechanisms whereas additivity refers to the consequences544

of those assumptions on steady-state gene expression. The default model supports the view that response545

additivity is a reasonable baseline against which to assess the collective action of enhancers in regulating a546

gene.547

One of the advantages of the default model is that, because it is mathematically formulated, it allows548

mechanistic departures from its assumptions to be systematically analysed. We have shown how depar-549

tures from Assumptions 2 and 3 can give rise to response super-additivity (Eqn.32) as well as sub-additivity550

(Eqn.34). As we have noted, response additivity [15, 23, 38–43], super-additivity [15, 21, 39–44] and sub-551

additivity [38, 40, 41] have all been observed experimentally. The default model suggests the mechanistic552

assumptions that could be experimentally tested to determine what underlies the observed response be-553

haviour.554

The IAC model is a special case of the default model that further assumes deletion fidelity, which allows555

enhancers to be removed from the collective without influencing the remaining enhancers (Assumption 5),556

and also assumes that individual enhancers can be described at a coarse-grained level in which they are557

independently becoming activated and communicating their state to the gene (Assumption 6). Under As-558

sumptions 1 to 6 for the IAC model, we derive a formula for the deletion effect of an individual enhancer559

(Eqn.27) that shows a striking algebraic relationship to the ABC Score formula in Eqn.2. This relationship560

suggests that the IAC model has accurately captured in mathematical terms the core intuitions behind the561

ABC model from which the Score formula emerged [11].562

A persistent conceptual theme that underlies the results reported here is that of independence. The563

default model assumes that enhancers act independently, both in their regulatory state (Assumption 2) and564

in their effect on mRNA production (Assumption 3). Furthermore the IAC model assumes that individual565

enhancers become activated and communicating independently (Assumption 6). Our clarification of the566

ABC Score formula thus arises from assuming independence between enhancers, along with independence567

of activation and communication within each enhancer. The product construction on graphs and on graph568

structures has been the key mathematical tool for rigorously defining independence, illustrating the value569

of the graph-based linear framework for analysing gene regulation. We note that the concept of deletion570

fidelity (Assumption 5) is also easily defined in the context of graphs.571

Previous work used finite linear framework graphs to describe gene regulation [26]. Here, we have572

introduced copy-number graphs, which have infinitely many vertices that keep track of both regulatory573

states as well as the numbers of expressed mRNAs (Fig.2). Copy-number graphs allowed us to exploit574

the Sanchez-Kondev theorem and calculate the mean mRNA number at steady state in terms solely of575

the finite regulatory graph (Eqn.14). We therefore avoided dealing with infinite graphs despite relying on576

them. Importantly, the linear framework also allows the unknown parameters within graphs to be treated577

symbolically, so that conclusions may be drawn, as we saw above, without the need for assigning numerical578

values to any of the parameters.579

Beyond its utility in clarifying the ABC Score formula, the activation-communication coarse graining in580

Assumption 6 provides an interesting lens through which to investigate enhancers. Many new experimental581

technologies have emerged which allow perturbing entire enhancer sequences as a whole (as opposed to small582

changes to DNA within an enhancer sequence). Such technologies include synthesizing and integrating long583
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DNA sequences [43, 44], modulating the genomic position of an enhancer [47–51], high throughput enhancer584

perturbations with CRISPRi [11–13] and combining CRISPRi screens with rapid protein degradation [52].585

By considering which perturbations affect, and do not affect, activation and communication, it may be586

possible to probe the validity of the activation-communication coarse graining itself.587

As noted in the Introduction, the ABC Score formula has been widely adopted for predicting enhancer-588

gene connections. It has also been suggested that it could be combined with other predictive methods [53]589

and that the ABC model could be used as a guiding principle in formulating other quantitative models590

[54]. We believe the mathematical formulations that we have introduced here provide a foundation for such591

efforts.592

The ABC Score formula is quantitative (Eq.2) but the ABC model that gave rise to it is not a formal593

mathematical model but, rather, an informal statement about the features, of enhancer activation and594

contact, that are believed to be important in determining the response of a gene. Such informal models595

play a critical role in biology but have the disadvantage that the underlying mechanistic requirements are596

not clear. It is therefore difficult to know when the model can be applied and what can be deduced from it597

when it does apply. In contrast, the mechanistic assumptions underlying our formal mathematical models598

are precisely stated—Assumptions 1 to 4 for the default model and Assumptions 1 to 6 for the IAC model—599

making it clear when the model can be applied and suggesting experimental tests to check the assumptions.600

Moreover, if those assumptions are met, then the conclusions we have drawn, such as the response additivity601

of the default model (Eqn.19) and the enhancer deletion formula for the IAC model (Eqn.27), are guaranteed602

to hold as a matter of mathematical logic [55]. If those conclusions are not found experimentally, for example,603

if response additivity is not found, then we know, as a matter of logic, that at least one of the assumptions604

underlying the corresponding model does not hold. This understanding can, in turn, inform experiments to605

determine where the departures from the assumptions occur. Such an approach allows a level of rigorous606

reasoning about enhancer behaviour in gene regulation that is significantly harder to undertake with only607

an informal quantitative model.608

Mathematical theory has typically been introduced to analyse data, but the conceptual issues underlying609

gene regulation are sufficiently intricate that theory may be necessary to understand the kinds of experiments610

that are needed and how the data from them should best be interpreted [56]. Studies of the simple repression611

motif in bacterial gene regulation may have already reached that point [57–60], as reviewed in [61]. The612

foundation provided here, based on the linear framework, may offer similar opportunities in the eukaryotic613

context. We believe our rigorous mathematical approach can play a significant role in investigating the614

intricate interplay of enhancers in regulating gene expression.615
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Methods616

A graph theory interpretation of the Sanchez and Kondev theorem617

In this section we provide a proof of Eqn.14. We follow the Sanchez and Kondev approach described in618

[34] but present it using the graph theory notation and language used in this paper. Sanchez and Kondev619

provide in [34] a recurrence relation for all the moments of the mRNA probability distribution. A graph620

theory interpretation of these results, together with generalisations, will be presented in a separate paper;621

here we focus on the first moment only. We use bold face to denote matrices and vectors.622

The steady-state distribution of a finite graph623

Let G be a finite regulatory graph on the vertex set V (G) = {1, . . . , N}. We define the Laplacian matrix of624

G, L = L(G), to be the N ×N matrix,625

L(G)i,j :=


0 if j ̸= i and j ̸→ i

ℓ(j → i) if j ̸= i and j → i

−
∑

k | i→k ℓ(i→ k) if i = j.

(49)

As mentioned in the main text, G is equivalent to a continuous-time Markov process on the state space626

{1, . . . , N} [25, 28, 32]. Let ui(t) be the probability that the process occupies state i at time t. Then the627

time evolution of the probability vector,628

u(t) := (u1(t), . . . , uN (t))T ,

is given by the master equation629

du(t)

dt
= L(G)u(t) . (50)

If G is strongly connected, then the kernel of L(G) is one dimensional, so there is a unique vector, u∗(G),630

such that L(G)u∗(G) = 0 and u1(G) + · · ·+ uN (G) = 1. u∗(G) is the steady-state probability distribution631

on G.632

The master equation for a copy-number graph633

Let G ⋉ P denote a copy-number graph with regulatory graph G, production rate vector r ∈ RN and634

degradation rate δ. Let Π be the diagonal matrix of production rates, Πi,i = ri and Πi,j = 0 when i ̸= j,635

and let I be the N ×N identity matrix. Let636

u(p, t) :=
(
u(1,p)(G⋉ P ; t), . . . , u(N,p)(G⋉ P ; t)

)T
,

be the vector of probabilities over the regulatory states with mRNA copy number p. It follows from the637

definition of the copy-number graph in the main text that u(p, t) satisfies the master equation,638

d

dt
u(p, t) = Π[u(p− 1, t)− u(p, t)] + δI[(p+ 1)u(p+ 1, t)− pu(p, t)] + L(G)u(p, t) , (51)

in which terms with arguments of p−1 are appropriately omitted when p = 0. The first term of Eqn.51 arises639

from mRNA production, the second term from mRNA degradation and the third term from transitions in640

the regulatory graph. Eqn.51 can be rewritten as,641

d

dt
u(p, t) = Πu(p− 1, t) + δ(p+ 1)u(p+ 1, t)− [Π+ pδI− L(G)]u(p, t) . (52)

We now let642

q(t) :=
∞∑
p=0

u(p, t)
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be the vector of marginal probabilities for the regulatory states. Proceeding from Eqn.52 we have,643

d

dt
q(t) =

∞∑
p=0

d

dt
u(p, t)

= δu(1, t)−Πu(0, t) + L(G)u(0, t)︸ ︷︷ ︸
p=0

+

Πu(0, t) + 2δu(2, t)−Πu(1, t)− δu(1, t) + L(G)u(1, t)︸ ︷︷ ︸
p=1

+

Πu(1, t) + 3δu(3, t)−Πu(2, t)− 2δu(2, t) + L(G)u(2, t)︸ ︷︷ ︸
p=2

+ . . . .

This is a telescoping sum which simplifies to644

d

dt
q(t) = L(G)(u(0, t) + u(1, t) + u(2, t) + . . . ) = L(G)q(t).

It follows that the steady-state marginal probability vector, q∗, lies in the kernel of L(G) and must therefore645

be equal to u∗(G),646

q∗ = u∗(G) . (53)

In other words, the steady-state marginal distribution of regulatory states in a copy-number graph is identical647

to the steady-state distribution of regulatory states in a finite regulatory graph.648

Proof of Eqn.14649

We want to show that,650

R(G⋉ P ) =
∑
(i,p)

p · u∗(i,p)(G⋉ P ) =
1

δ

∑
i∈V (G)

ri · u∗i (G) .

Let u∗(p) denote the steady-state probability distribution over the copy-number graph. (Note the distinction651

with the marginal probability distribution over the regulatory states, u∗(G) =
∑

p u
∗(p).) Let652

µ∗ :=

∞∑
p=1

pu∗(p)

be the corresponding steady-state average copy number vector. Evidently,653

R(G⋉ P ) = 1Tµ∗ , (54)

where 1 is the all-ones column vector of dimension N . Now let654

µ(t) :=
∞∑
p=1

pu(p, t)

be the time-dependent average copy-number vector. It follows from Eqn.52 that,655

d

dt
µ(t) =

∞∑
p=1

p
d

dt
u(p, t)

656

=
∞∑
p=1

p
(
Πu(p− 1, t) + (p+ 1) δu(p+ 1, t)− (Π+ pδI− L(G))u(p, t)

)
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657

=
∞∑
p=1

pΠ (u(p− 1, t)− u(p, t)) +
∞∑
p=1

p ((p+ 1) δu(p+ 1, t)− pδu(p, t)) +
∞∑
p=1

pL(G)u(p, t) (55)

The first summand in Eqn.55 can be simplified to,658

Π ((u(0, t)− u(1, t)) + 2 (u(1, t)− u(2, t)) + · · · ) = Π (u(0, t) + u(1, t) + · · · ) = Πq(t) .

The second summand can be simplified to,659

δ ((2u(2, t)− u(1, t)) + 2 (3u(3, t)− 2u(2, t)) + · · · ) = −δ
∞∑
p=1

pu(p, t) = −δµ(t) .

And the third summand is evidently just L(G)µ(t). Combining these three simplifications, we see that,660

d

dt
µ(t) = Πq(t)− δµ(t) + L(G)µ(t) . (56)

At steady state this becomes,661

δµ∗ − L(G)µ∗ = Πq∗.

Multiplying both sides 1T, and recalling that,662

1TL(G) = 0T and 1TΠ = rT ,

we find that,663

1Tµ∗ =
rTq∗

δ
. (57)

Using Eqns.53 and 54, we see that Eqn.57 becomes,664

R(G⋉ P ) =
rTu∗(G)

δ
(58)

=
1

δ

∑
i∈V (G)

ri · u∗i (G) . (59)

as required. This completes the proof of Eqn.14.665

Proof of response summation in the default model666

In this section we prove Eqn.19 which shows that, within the default model, the collective response of all667

the enhancers is the sum of their individual responses. That is, if G = G1 ⊛ · · ·⊛GN , then668

R(G) = R(G1) + · · ·+R(GN ) . (60)

We consider the case with only two enhancers, N = 2, from which the general case follows easily. Recall669

from the Sanchez and Kondev formula in Eqn.14 that670

R(G) =
1

δ

∑
(i1,i2)

r(i1,i2)(G) · u
∗
(i1,i2)

(G) . (61)

Assumption 3 on response summation tells us that r(i1,i2)(G) = ri1(G1)+ ri2(G2) and Eqn.8 for the product671

graph tells us that u∗(i1,i2)(G) = u∗i1(G1) · u∗i2(G2). Substituting these expressions into Eqn.61 gives the672

following formula for δ ·R(G),673 ∑
(i1,i2)

(ri1(G1) + ri2(G2)) · u∗i1(G1) · u∗i2(G2) .
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We can perform the summation over (i1, i2) in any order, for instance by first summing over i2 and then674

summing over i1. This gives,675

∑
i1

(∑
i2

ri1(G1) · u∗i1(G1) · u∗i2(G2) +
∑
i2

ri2(G2) · u∗i1(G1) · u∗i2(G2)

)
. (62)

In the inner left-hand sum over i2, the terms indexed by i1 are constant and may be extracted from that676

sum to give677

ri1(G1) · u∗i1(G1) ·

(∑
i2

u∗i2(G2)

)
. (63)

Total probability always sums to 1, so that
∑

i2
u∗i2(G2) = 1, and Eqn.63 reduces to678

ri1(G1) · u∗i1(G1) . (64)

Similarly, the inner right-hand sum in Eqn.62 may be written as679

u∗i1(G1) ·

(∑
i2

ri2(G2) · u∗i2(G2)

)
. (65)

We recognise from Eqn.14 that the sum in brackets is the response of graph G2, so that Eqn.65 becomes,680

u∗i1(G1) · δ ·R(G2) . (66)

We can now substitute Eqns.64 and 66 back into Eqn.62 to get,681 ∑
i1

ri1(G1) · u∗i1(G1) +
∑
i1

u∗i1(G1) · δ ·R(G2) . (67)

We recognise from Eqn.14 that the left-hand sum is δ times the response of graph G1. In the right-hand682

sum, we can extract the terms that do not depend on i1 and use once again that the total probability is 1.683

This allows us to rewrite Eqn.67 as,684

δ ·R(G1) + δ ·R(G2) ,

from which we conclude that, indeed,685

R(G) = R(G1) +R(G2) ,

as claimed. This completes the proof of Eqn.19.686

Symbolic computations687

We have provided mathematical proofs for all of our results. However, many of our results were originally688

discovered by exploration using computer algebra systems. Specifically, the Sage [62] computer algebra689

system, and the SymPy [63] and NetworkX [64] Python packages were crucial for the development of this690

paper.691
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Figure S1: IAC model forN = 2 enhancers as a product graph of product graphs. (a)Graphs describing the
activation and communication status of enhancer 1. (b) Graphs describing the activation and communication
status of enhancer 2. (c) The graph H1 whose underlying regulatory graph is Ka,1 ⊗Kc,1. (d) The graph
H2 whose underlying regulatory graph is Ka,2 ⊗Kc,2. (e) The graph H1 ⊛H2 satisfying the default model
Assumptions 1-4 with components H1 and H2. The regulatory graph of H1⊛H2 is given by (Ka,1⊗Kc,1)⊗
(Ka,2 ⊗Kc,2). Each vertex of this graph corresponds to the activation and communication statuses of both
enhancers. For the vertices along the top of the graph, the product-graph binary notation is also provided
using the coordinate system ((a1, c1), (a2, c2)). Reverse edges and labels of most edges are omitted for clarity.
Production states are highlighted in purple with corresponding production rates also in purple font.
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34. Sánchez, Á. & Kondev, J. Transcriptional control of noise in gene expression. Proceedings of the National768

Academy of Sciences 105, 5081–5086 (2008).769

35. Dukler, N., Gulko, B., Huang, Y.-F. & Siepel, A. Is a super-enhancer greater than the sum of its parts?770

Nature Genetics 49, 2–3 (2017).771

36. Van Arensbergen, J., FitzPatrick, V. D., de Haas, M., Pagie, L., Sluimer, J., Bussemaker, H. J. & van772

Steensel, B. Genome-wide mapping of autonomous promoter activity in human cells. Nature Biotech-773

nology 35, 145–153 (2017).774

37. Weingarten-Gabbay, S., Nir, R., Lubliner, S., Sharon, E., Kalma, Y., Weinberger, A. & Segal, E.775

Systematic interrogation of human promoters. Genome Research 29, 171–183 (2019).776

38. Martinez-Ara, M., Comoglio, F. & van Steensel, B. Large-scale analysis of the integration of enhancer-777

enhancer signals by promoters. eLife 12, RP91994 (2024).778

39. Loubiere, V., Almeida, B. P. d., Pagani, M. & Stark, A. Developmental and housekeeping transcriptional779

programs display distinct modes of enhancer-enhancer cooperativity in drosophila. bioRxiv (2023).780

40. Bothma, J. P., Garcia, H. G., Ng, S., Perry, M. W., Gregor, T. & Levine, M. Enhancer additivity and781

non-additivity are determined by enhancer strength in the Drosophila embryo. eLife 4, e07956 (2015).782

41. Scholes, C., Biette, K. M., Harden, T. T. & DePace, A. H. Signal Integration by Shadow Enhancers and783

Enhancer Duplications Varies across the Drosophila Embryo. Cell Reports 26, 2407–2418.e5 (2019).784

42. Lam, D. D. et al. Partially redundant enhancers cooperatively maintain mammalian pomc expression785

above a critical functional threshold. PLOS Genetics 11, e1004935 (2015).786

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2024. ; https://doi.org/10.1101/2024.11.29.626072doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.29.626072
http://creativecommons.org/licenses/by-nc-nd/4.0/


43. Brosh, R. et al. Synthetic regulatory genomics uncovers enhancer context dependence at the Sox2 locus.787

bioRxiv (2022).788

44. Blayney, J. W. et al. Super-enhancers include classical enhancers and facilitators to fully activate gene789

expression. Cell 186, 5826–5839.e18 (2023).790

45. Thomas, H. F. et al. Temporal dissection of an enhancer cluster reveals distinct temporal and functional791

contributions of individual elements. Molecular Cell 81, 969–982.e13 (2021).792

46. Mansour, M. R. et al. An oncogenic super-enhancer formed through somatic mutation of a noncoding793

intergenic element. Science 346, 1373–1377 (2014).794

47. Zuin, J. et al. Nonlinear control of transcription through enhancer–promoter interactions. Nature, 1–7795

(2022).796

48. Rinzema, N. J. et al. Building regulatory landscapes reveals that an enhancer can recruit cohesin to797

create contact domains, engage CTCF sites and activate distant genes. Nature Structural & Molecular798

Biology 29, 563–574 (2022).799

49. Thomas, H., Feng, S., Huber, M., Loubiere, V., Vanina, D., Pitasi, M., Stark, A. & Buecker, C. Enhancer800

cooperativity can compensate for loss of activity over large genomic distances. bioRxiv (2023).801

50. Jensen, C. L., Chen, L.-F., Swigut, T., Crocker, O. J., Yao, D., Bassik, M. C., Ferrell, J., Boettiger, A.802

& Wysocka, J. Long range regulation of transcription scales with genomic distance in a gene specific803

manner. bioRxiv (2024).804

51. Brückner, D. B., Chen, H., Barinov, L., Zoller, B. & Gregor, T. Stochastic motion and transcriptional805

dynamics of pairs of distal DNA loci on a compacted chromosome. Science 380, 1357–1362 (2023).806

52. Guckelberger, P. et al. Cohesin-mediated 3D contacts tune enhancer-promoter regulation. bioRxiv807

(2024).808

53. De Almeida, B. P., Reiter, F., Pagani, M. & Stark, A. DeepSTARR predicts enhancer activity from809

DNA sequence and enables the de novo design of synthetic enhancers. Nature Genetics 54, 613–624810

(2022).811

54. Kim, S. & Wysocka, J. Deciphering the multi-scale, quantitative cis-regulatory code. Molecular Cell.812

Reimagining the Central Dogma 83, 373–392 (2023).813

55. Gunawardena, J. Models in biology: ’accurate descriptions of our pathetic thinking’. BMC Biol. 12, 29814

(2014).815

56. Phillips, R. Theory in Biology: Figure 1 or Figure 7? Trends in Cell Biology 25, 723–729 (2015).816

57. Garcia, H. G. & Phillips, R. Quantitative dissection of the simple repression input–output function.817

Proceedings of the National Academy of Sciences 108, 12173–12178 (2011).818

58. Jones, D. L., Brewster, R. C. & Phillips, R. Promoter architecture dictates cell-to-cell variability in819

gene expression. Science 346, 1533–1536 (2014).820

59. Brewster, R. C., Weinert, F. M., Garcia, H. G., Song, D., Rydenfelt, M. & Phillips, R. The transcription821

factor titration effect dictates level of gene expression. Cell 156, 1312–1323 (2014).822

60. Razo-Mejia, M., Barnes, S. L., Belliveau, N. M., Chure, G., Einav, T., Lewis, M. & Phillips, R. Tuning823

transcriptional regulation through signaling: a predictive theory of allosteric induction. Cell Systems 6,824

456–469.e10 (2018).825

61. Phillips, R., Belliveau, N. M., Chure, G., Garcia, H. G., Razo-Mejia, M. & Scholes, C. Figure 1 theory826

meets figure 2 experiments in the study of gene expression. Annual Review of Biophysics 48, 121–163827

(2019).828

62. The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.6) (2022).829

63. Meurer, A. et al. SymPy: symbolic computing in Python. PeerJ Computer Science 3, e103 (2017).830

64. Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and function using831

NetworkX in Proceedings of the 7th Python in Science Conference (Pasadena, CA USA, 2008), 11–15.832

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2024. ; https://doi.org/10.1101/2024.11.29.626072doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.29.626072
http://creativecommons.org/licenses/by-nc-nd/4.0/

