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Abstract: Genome-wide association studies performed in patients with coronavirus disease 2019 41 

(COVID-19) have uncovered various loci significantly associated with susceptibility to SARS-42 

CoV-2 infection and COVID-19 disease severity. However, the underlying cis-regulatory genetic 43 

factors that contribute to heterogeneity in the response to SARS-CoV-2 infection and their impact 44 

on clinical phenotypes remain enigmatic. Here, we used single-cell RNA-sequencing to quantify 45 

genetic contributions to cis-regulatory variation in 361,119 peripheral blood mononuclear cells 46 

across 63 COVID-19 patients during acute infection, 39 samples collected in the convalescent 47 

phase, and 106 healthy controls. Expression quantitative trait loci (eQTL) mapping across cell 48 

types within each disease state group revealed thousands of cis-associated variants, of which 49 

hundreds were detected exclusively in immune cells derived from acute COVID-19 patients. 50 

Patient-specific genetic effects dissipated as infection resolved, suggesting that distinct gene 51 

regulatory networks are at play in the active infection state. Further, 17.2% of tested loci 52 

demonstrated significant cell state interactions with genotype, with pathways related to interferon 53 

responses and oxidative phosphorylation showing pronounced cell state-dependent variation, 54 

predominantly in CD14+ monocytes. Overall, we estimate that 25.6% of tested genes exhibit gene-55 

environment interaction effects, highlighting the importance of environmental modifiers in the 56 

transcriptional regulation of the immune response to SARS-CoV-2. Our findings underscore the 57 

importance of expanding the study of regulatory variation to relevant cell types and disease 58 

contexts and argue for the existence of extensive gene-environment effects among patients 59 

responding to an infection. 60 

 61 

Keywords: single-cell RNA-seq, expression quantitative trait loci (eQTL), SARS-CoV-2 62 

infection, COVID-19, gene-environment interactions  63 
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Main text: 64 

Susceptibility to viral infection varies widely among individuals, influenced by a 65 

combination of host genetics and environmental factors. However, the precise contribution of each 66 

to immune response variation and disease progression remains unclear. Recent advances have 67 

demonstrated the considerable role of host genetics in shaping human immune response variation 68 

through expression quantitative trait loci (eQTL) mapping, applied to various immune cell subsets 69 

both at baseline and after exposure to immune stimuli and live pathogens. These ‘immune response 70 

eQTL’ studies have identified numerous genetic variants that underlie differences in immune 71 

responses to infection, including both cell type-specific eQTL and eQTL induced only upon 72 

infection (i.e., response eQTL)1–5. However, a significant limitation of these studies is that immune 73 

response measurements were largely collected in vitro, raising questions about the role of gene-74 

environment interactions during viral infection in vivo.  75 

More recently, efforts have expanded to explore other forms of genetic interaction effects, 76 

facilitated by the availability of population-scale cohorts genotyped and characterized by single-77 

cell RNA sequencing6. Continuous cell state-dependent eQTL—eQTL that interact with specific 78 

cellular contexts defined at single-cell resolution—have been shown to explain more variation in 79 

gene expression than conventional, non-interacting eQTL7. Notably, autoimmune risk variants 80 

were enriched in these state-dependent loci7,8, highlighting the critical importance of cellular 81 

context in understanding disease-relevant genetic variants.  82 

The global COVID-19 pandemic highlighted the possible consequences of the spread of a 83 

novel virus in a naïve population. Particularly in the initial waves of the pandemic, substantial 84 

immune response variation and disease heterogeneity was observed among individuals infected 85 

with SARS-CoV-2, the virus that causes COVID-19. While a fraction of individuals succumbed 86 
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to severe disease, some developed typical influenza-like symptoms, while others harbored 87 

asymptomatic SARS-CoV-2 infections9. Although much of this variation can be attributed to 88 

environmental and social determinants10, genetic factors also clearly play a role.  89 

Genome-wide association studies (GWAS) conducted for SARS-CoV-2 susceptibility and 90 

COVID-19 severity phenotypes revealed a handful of genome-wide significant loci associated 91 

with these traits11–13, often in genes related to viral immunity, including IFNAR2 and OAS113. An 92 

eQTL mapping study performed in peripheral blood mononuclear cells (PBMCs) collected from 93 

healthy individuals exposed to SARS-CoV-2 in vitro also found that response eQTL were highly 94 

cell type-dependent, often specific to the SARS-CoV-2 infection condition in the myeloid 95 

compartment5. Despite these findings, few studies have examined how genome-wide cis-96 

regulatory genetic variation influences immune response diversity directly in patients during active 97 

viral infection14. 98 

In this study, we explore the nature of genetic interaction effects in the context of bona fide 99 

SARS-CoV-2 infection, using patient cells sampled prior to the rollout of COVID-19 vaccines and 100 

during longitudinal follow-up. We specifically investigate cell type-specific, disease state-specific, 101 

and cell state-dependent gene regulatory heterogeneity, providing new insights into how genetic 102 

variation shapes immune responses in vivo. 103 

 104 

Single-cell profiling reveals severity-dependent cellular restructuring in COVID-19 patients  105 

In this study, we used single-cell RNA-sequencing to profile the transcriptomes of PBMCs 106 

collected from 106 healthy control donors, 63 hospitalized COVID-19 patients during the acute 107 

stage of infection (days after symptom onset [DSO] ≤ 20 days, mean DSO at time of sampling = 108 

12.1 days), and 39 samples obtained from a subset of recovered COVID-19 patients resampled at 109 
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various time points following their initial primary infection (“follow-ups”, DSO > 20 days, mean 110 

DSO = 128.8 days) (Fig. 1A, Fig. S1A, Table S1). Across individuals, we captured 361,119 high-111 

quality single-cell transcriptomes (n = 163,639 cells from controls, n = 131,457 cells from acute 112 

patients, and n = 66,023 cells from follow-ups). Clustering followed by cell type label transfer 113 

annotation from a multimodal human PBMC reference dataset (Hao et al.15, detailed in Methods) 114 

revealed 30 distinct immune cell types at fine-scale resolution (Fig. 1B).  115 

We next sought to dissect the extent to which SARS-CoV-2 infection induces shifts in 116 

underlying cell type composition across acutely-infected individuals compared to non-infected 117 

healthy controls and recovered donors. Although all COVID-19 patients included in this study 118 

were hospitalized at the time of sample collection, these patients spanned a range of clinical disease 119 

severity, allowing us to evaluate the effect of severity on various molecular phenotypes. Disease 120 

severity was assessed using a five-point scale of respiratory support needed at the time of acute 121 

patient sampling, encompassing the following categories: Moderate (MOD, n = 16), Severe (SEV, 122 

n = 17), 2-Critical (CRIT2, n = 9), 3-Critical (CRIT3, n = 20), and 4-Critical (CRIT4, n = 1). A 123 

summary of basic demographic information stratified by disease severity can be found in Table 124 

S1. Non-critical patients were defined as those requiring no oxygen supplementation (moderate 125 

disease) or oxygen supplementation through a nasal cannula (severe disease), whereas critical 126 

patients required mechanical ventilation, ranging from non-invasive ventilation (CRIT2) and 127 

intubation (CRIT3) to extracorporeal membrane oxygenation (CRIT4).  128 

We found that SARS-CoV-2 infection remodels the baseline cell type composition of 129 

PBMCs observed in healthy individuals, with the magnitude of disease severity further modifying 130 

this effect. The myeloid compartment displayed the most obvious infection- and severity-131 

dependent changes: classical CD14+ monocytes were markedly expanded in all patient groups 132 
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compared to healthy donors (p < 1 x 10-10 for all comparisons against controls; here, all critical 133 

patients [CRIT2 – 4] were considered as a single group), with the greatest expansion seen in severe 134 

and critical cases (Fig. 2A). In the follow-up samples, CD14+ monocyte proportions reverted back 135 

to frequencies similar to those seen in baseline healthy control donors (Fig. 2A), suggesting that 136 

this monocytic expansion is indeed infection-induced. Further, we observed that the frequency of 137 

CD14+ monocytes was strongly associated with disease severity, with more severe cases 138 

consistently displaying a greater proportion of classical monocytes (Pearson’s r = 0.60, p = 6.8 x 139 

10-6) (Fig. 2B).  140 

We also detected reductions of CD56bright natural killer (NK) cells (p < 2 x 10-4) and 141 

plasmacytoid dendritic cells (pDC) (p < 4 x 10-3) in all severity groups compared to non-infected 142 

individuals (Fig. 2A). pDCs are known for their ability to secrete large quantities of type I 143 

interferon (IFN) following viral infection16, and NK cells are key facilitators of antiviral immunity, 144 

with CD56bright NK cells being efficient producers of IFN-γ, TNF-α, and GM-CSF17. Our 145 

observations are in line with previous studies showing reductions in frequencies of both NK cells 146 

and pDCs in critical patients compared to healthy controls18–21. Together, this suggests that SARS-147 

CoV-2 infection induces atypical cell type composition that largely resolves after the infection 148 

clears, particularly in cell populations known to be important in cytokine production and antiviral 149 

immune responses.  150 

 151 

Disease severity underlies variation in the transcriptional response to SARS-CoV-2 in 152 

hospitalized COVID-19 patients  153 

To tease apart how variation in disease severity influences the transcriptional immune 154 

response to SARS-CoV-2 across cell types, we formally modeled the effect of severity on global 155 
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gene expression estimates among COVID-19 patients sampled during the acute phase of disease 156 

(n = 63) within each cell type independently. In these analyses, we defined a set of top-level cell 157 

type populations by combining our fine-scale clusters into major groups corresponding to the six 158 

main cell types that comprise PBMCs, including CD4+ T cells, CD8+ T cells, B cells, NK cells, 159 

CD14+ monocytes, and CD16+ monocytes. Within this broader set of cell populations, we 160 

collapsed our single-cell gene expression estimates into pseudobulk estimates per sample, 161 

generating six bulk-like gene expression matrices that were used for subsequent modeling. We 162 

considered respiratory support score (described above) as a proxy for overall disease severity, and 163 

modeled severity score as a numeric variable, which allowed us to capture genes with expression 164 

levels linearly correlated with severity.  165 

By far, CD14+ monocytes showed the largest number of genes associated with severity (n 166 

= 1,613, 14.8% of the transcriptome; FDR < 0.05), while other cell types had much less prominent 167 

effects (< 1.0% severity-associated genes) (Table S2). As expected, severity-associated genes 168 

largely overlapped those distinguishing COVID-19 patients from healthy controls (i.e., infection-169 

associated genes, |log2FC| > 0.5, FDR < 0.05) across cell types (gene set overlap: 2.1-fold, p < 1 x 170 

10-10) (Fig. S1B, S1C, Table S3). Principal component analysis (PCA) on the CD14+ monocyte 171 

pseudobulk expression data revealed that variation in disease severity had a noticeable impact on 172 

the transcriptional response of these cells, reflected in principal component (PC) 1 (10.9% percent 173 

variance explained [PVE]) and PC2 (7.9% PVE), which both separated non-critical patients 174 

(moderate/severe) from critical patients (Fig. 2C).  175 

We then performed gene set enrichment analysis for the MSigDB Hallmark pathways22 to 176 

define the functional pathways differentiating the transcriptional signatures of COVID-19 patients 177 

along the spectrum of disease severity in our cohort (Fig. 2D, Table S4). We identified various 178 
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immune response pathways significantly associated with severity, including TNF-α signaling via 179 

NF-κB in all cell types tested (FDR = 0.03 in CD16+ monocytes and FDR < 2 x 10-3 in other cell 180 

types), and IFN-γ response (FDR < 4 x 10-4), IFN-α response (FDR < 0.08), and inflammatory 181 

response (FDR < 4 x 10-4) in CD14+ monocytes, CD4+ T cells, and CD8+ T cells (Fig. 2D). All of 182 

these enrichments were detected among genes more highly expressed in less severe cases, 183 

suggesting that such patients engage stronger proinflammatory and antiviral immune responses 184 

compared to those with more severe disease presentations. Importantly, these findings are unlikely 185 

to be confounded by potential sampling biases, as sampling time point (i.e., DSO) showed no 186 

significant association with respiratory support score (Pearson r = 0.11, p = 0.37) (Fig. S1D). With 187 

the exception of TNF-α signaling, these pathway enrichments were cell type-specific, implicating 188 

classical monocytes, helper T cells, and cytotoxic T cells as the subsets most influenced by 189 

variation in disease severity and morbidity. Only the oxidative phosphorylation pathway was 190 

consistently elevated in more severe cases (FDR < 1.5 x 10-3 in CD4+ T cells, CD8+ T cells, NK 191 

cells, and CD16+ monocytes), suggesting a rewiring of metabolism in patients who poorly respond 192 

to SARS-CoV-2 (Fig. 2D). 193 

To better characterize severity-associated heterogeneity in the transcriptional immune 194 

response, we computed single-sample gene set enrichment analysis (ssGSEA) scores capturing the 195 

activity of various functional pathways within each sample across cell types (detailed in Methods). 196 

Consistent with our enrichment analyses, the level of respiratory support was negatively correlated 197 

with ssGSEA inflammatory response scores (Pearson r = -0.30, p = 0.016) (Fig. 2E) and TNF-α 198 

signaling scores (Pearson r = -0.40, p = 1.1 x 10-3) (Fig. 2F) in B cells and CD8+ T cells, 199 

respectively. Similarly, respiratory support score was also positively associated with oxidative 200 

phosphorylation scores in CD4+ T cells (Pearson r = 0.33, p = 7.7 x 10-3) (Fig. 2G). Moreover, we 201 
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created an antigen processing and presentation score based on the corresponding Biological 202 

Process gene set23, given the previously reported finding that SARS-CoV-2 inhibits the major 203 

histocompatibility complex (MHC) class I pathway, a pathway that plays a crucial role in antiviral 204 

immunity in lung epithelial cells24. Antigen processing scores were negatively correlated with 205 

severity in CD14+ monocytes (Pearson r = -0.38, p = 2.1 x 10-3) (Fig. 2H), while no significant 206 

association was found in any other cell type that we tested (p > 0.20), indicating that antigen 207 

presentation-associated functions are shut down in circulating classical monocytes in severe 208 

patients. 209 

 210 

Genetic interaction effects shape transcriptional response variation during acute SARS-211 

CoV-2 infection 212 

All individuals were genotyped for 4.19 million single nucleotide polymorphisms (SNPs), 213 

allowing us to delineate the role of cis-regulatory genetic and gene-environment interaction effects 214 

in the context of SARS-CoV-2 infection in patient-derived cells. To directly measure the 215 

contribution of cell type-specific and disease state-specific genetic variation during the course of 216 

a viral infection, we mapped cis-eQTL, defined as SNPs located either within or flanking (±100 217 

kilobases, kb) each gene of interest, using the pseudobulk expression estimates for all six major 218 

cell types independently in i) healthy controls and ii) COVID-19 patients sampled during acute 219 

infection. To increase our power to detect shared and cell type- or disease state-specific effects, 220 

we utilized a multivariate adaptive shrinkage framework (mash)25 to leverage information about 221 

the underlying correlation structure within our dataset.  222 

Across cell types and infection conditions, we identified 2,725 genes with at least one 223 

significant cis-eQTL [local false sign rate (lfsr) < 0.10 in at least one cell type-condition pair, 224 
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35.6% of genes tested; referred to as eGenes] (Fig. 3A, Table S5). B cells (n eGenes = 1,481) and 225 

CD16+ monocytes (n eGenes = 1,438) exhibited the fewest genetic effects, while CD14+ 226 

monocytes displayed the greatest number (n eGenes = 2,127) (Fig. 3A). Most genetic effects were 227 

shared between healthy individuals and COVID-19 patients within a given cell type—84.8% on 228 

average, referred to as ‘shared’ eGenes (lfsrCTL < 0.1 and lfsrCOVID < 0.3 or vice versa)—and many 229 

of these shared eGenes were also common across cell types, with 59.0% shared across four or 230 

more cell types (Fig. S2).  231 

In stark contrast, some cell types, particularly CD14+ monocytes and NK cells, displayed 232 

a substantial proportion of condition-specific eGenes, where genetic effects were observed 233 

exclusively in either control or COVID-19 conditions. Notably, CD14+ monocytes and NK cells 234 

displayed the greatest fraction of infection-dependent genetic effects (24.8% in NK cells and 235 

22.3% in CD14+ monocytes), much higher than the average of 11.0% in other cell types. Strikingly, 236 

across all cell types, the overwhelming majority of condition-specific genetic effects (86.3–97.0%) 237 

were eQTL observed exclusively in COVID-19 patients rather than in healthy individuals, 238 

underscoring the virus’s profound impact on the genetic regulation of immune responses (Fig. 3A).  239 

Condition-specific eGenes were highly cell type-specific, with monocytes possessing a 240 

particularly large number of COVID-19-specific eGenes (CD14+ monocytes n = 370, CD16+ 241 

monocytes n = 129), further highlighting the abundance of SARS-CoV-2 response eQTL in the 242 

myeloid lineage (Fig. 3B). One prime example of a monocyte-specific response eQTL is the top 243 

cis-eQTL for SCAMP1 (rs6453393), a gene involved in cytokine secretion, vesicular trafficking, 244 

and membrane transport26. This variant exhibited a strong genetic effect unique to CD14+ 245 

monocytes in COVID-19 patients (lfsr = 2.5 x 10⁻⁷), but no significant effect in other cell types or 246 
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conditions (lfsr > 0.50) (Fig. 3C). These findings highlight the crucial role of genetic factors in 247 

shaping the monocyte response to SARS-CoV-2 infection in vivo. 248 

 249 

Response eQTL effects are substantially weaker in the innate immune cells of recovered 250 

individuals  251 

Given the abundance of disease state-specific regulatory variation present in COVID-19 252 

patients and absent in healthy individuals, we hypothesized that these eGenes detected only in 253 

patients may represent genetic effects only observed during the active infection state. To test 254 

whether these genetic effects disappear as infection resolves, we mapped cis-eQTL in our cohort 255 

of recovered COVID-19 patients who were resampled at various time points following primary 256 

SARS-CoV-2 infection (DSO > 20 days, n = 39). We then focused on the innate immune cell 257 

compartment (i.e., monocytes and NK cells) to determine how disease state-specific regulatory 258 

variation may shift in the convalescent period, as these cell types displayed the greatest number of 259 

SARS-CoV-2 response-specific genetic effects (‘response eGenes’, n reQTL: 370 in CD14+ 260 

monocytes, 262 in NK cells, and 129 in CD16+ monocytes) (Fig. 3B). Among these cell type-261 

specific response eGene sets, effect sizes were significantly higher in acute patients compared to 262 

follow-ups (p < 1 x 10-10 in all three cell types). Indeed, for many eGenes, the effect sizes in follow-263 

up individuals reverted back to the magnitude observed in healthy controls (Fig. 4A), an outcome 264 

that was seen across cell types. This result held true even after adjusting for sample size differences 265 

across disease state groups and when focusing on the 21 individuals with paired acute and follow-266 

up samples (Fig. S3A).  267 

To explicitly measure the extent of reQTL effect size reversion coinciding with recovery, 268 

we calculated a paired ΔreQTL metric, defined as the difference in magnitude of a response 269 
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eGene’s effect size in follow-ups compared to COVID-19 patients (i.e., |follow-up βreQTL| - 270 

|COVID-19 patient βreQTL|) specifically in CD14+ monocytes. Here, we considered only the effect 271 

size magnitude because the vast majority of response eGenes had effect sizes with concordant 272 

signs in the patient and follow-up groups (Fig. S3B). For comparison, we also computed this 273 

change in response magnitude for the set of shared eGenes between COVID-19 patients and 274 

healthy controls (n = 1,653). The mean ΔreQTL for response eGenes was below zero (mean 275 

ΔreQTL = -0.10), substantially lower than that for shared eGenes (mean = 0.07) (Fig. 4B). This 276 

value was also significantly lower than expected by chance (p < 0.001), as determined by randomly 277 

sampling the same number of genes (n = 370) from shared CD14+ monocyte eGenes 1,000 times 278 

(Fig. S3C). These results indicate that infection mediates dynamic genetic effects and plays a 279 

significant role in disease state-dependent gene-environment interactions. 280 

 281 

Cell state-dependent cis-regulatory effects are prevalent in CD14+ monocytes and can 282 

capture clinical features of patient cohorts 283 

We identified several immune and metabolism-related pathways, including TNF-α 284 

signaling via NF-κB, oxidative phosphorylation, IFN-γ and IFN-α responses, inflammatory 285 

response, and apoptosis, as being strongly associated with disease severity across multiple cell 286 

types in COVID-19 patients (Fig. 2D). Given this, we hypothesized that some of the patient-287 

specific genetic effects detected might be driven by heterogeneity in functional cell states within 288 

these clinically relevant pathways. To determine whether cell states defined at the single-cell level 289 

are dynamically regulated by cis variation, we directly mapped single-cell eQTL in COVID-19 290 

patients using our comprehensive single-cell data.  291 
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To measure cell state-dependent cis-regulatory effects, we applied a continuous measure 292 

of cell state, which has been shown to capture more state-dependent regulatory variation than 293 

discrete classifications. For each pathway, we calculated a numeric score summarizing the activity 294 

for each single cell using ssGSEA (see Methods for details). To map continuous state-dependent 295 

cis-eQTLs within each cell type, we used a poisson mixed-effects interaction model, a method that 296 

has proven successful in identifying state-dependent eQTLs in CD4+ T cells7. This model tests for 297 

genotype-cell state interactions by modeling unique molecular identifier (UMI) counts per gene as 298 

a function of genotype at the eQTL variant. We controlled for donor- and cell-level covariates, 299 

including age, sex, gene expression PCs, genotype PCs, total UMI count, and mitochondrial UMI 300 

percentage (illustrated in Fig. 5A). 301 

For each cell type, we focused on the top gene-SNP pairs identified as eQTLs in COVID-302 

19 patients from the pseudobulk analysis (ranging from 1,395 genes in B cells to 2,084 genes in 303 

CD14+ monocytes) to assess cell state-dependent genotype effects. Of the six pathways 304 

considered, we detected 1,022 significant cell state-dependent interactions with genotype 305 

(likelihood ratio test [LRT] q value < 0.10) across all cell type and cell state combinations, mapping 306 

to 468 unique eGenes total (17.2% of tested genes) (Fig. 5B, Table S6). CD14+ monocytes 307 

displayed the largest number of cell state-dependent eQTL across pathways (n = 569 eGenes), 308 

while other cell types exhibited more modest state-dependent effects (n = 0 – 171 eGenes). In 309 

CD14+ monocytes, five of the six pathways were associated with over 50 state-dependent loci, 310 

including oxidative phosphorylation (n = 223), IFN-α response (n = 99), IFN-γ response (n = 98), 311 

TNF-α signaling via NF-κB (n = 73), and inflammatory response (n = 66) (Fig. 5B). 312 

Oxidative phosphorylation stood out as the functional state most associated with dynamic 313 

state-dependent genetic effects, with 223 eGenes detected, corresponding to 10.7% of those tested. 314 
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One of the top oxidative phosphorylation-dependent variants was rs835044 (LRT q = 8.2 x 10-3), 315 

a lead cis-eQTL 2 kb upstream of NDUFA12, a gene encoding the A12 subunit of mitochondrial 316 

complex I27, which shows a strong genetic effect in cells with high oxidative phosphorylation 317 

scores (quantiles 4 - 6) but virtually no genetic effect in cells with low scores (quantile 1) (Fig. 318 

5C). Loss-of-function variants in NDUFA12 have been linked to a wide array of clinical 319 

phenotypes, most frequently a progressive neurodegenerative disorder known as Leigh 320 

syndrome27,28, suggesting that variation in A12 subunit levels can have substantial clinical 321 

consequences.  322 

Many cell state-dependent eQTL were also found for the IFN-α and IFN-γ response 323 

pathways, with 4.0% and 3.9% of tested eGenes showing state-dependent genetic variation, 324 

respectively. One such variant was rs1937023, a lead cis-eQTL upstream of IFI44, an interferon-325 

stimulated gene encoding interferon-induced protein 44, which only displays a genetic effect in 326 

cells with high IFN-α response scores (LRT q = 0.041) (Fig. 5D). Experimental knockout of IFI44 327 

in mammalian airway epithelial cells led to increased respiratory syncytial virus (RSV) titers29, 328 

suggesting that variation in IFI44 levels can have functional repercussions specifically in the 329 

context of viral infection.  330 

 331 

Cis-genetic signals colocalize with COVID-19 disease severity risk loci exclusively in COVID-332 

19 patients 333 

Genome-wide association studies (GWAS) provide a means to link regions of the genome 334 

with particular traits of interest, giving us the ability to uncover associations with complex disease 335 

phenotypes. Cis-genetic effects that colocalize with GWAS signals are strongly enriched for causal 336 

drivers of variation in disease susceptibility across individuals30. To evaluate whether our response 337 
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eQTL may mechanistically underlie any known COVID-19 GWAS risk loci, we performed 338 

colocalization analysis using GWAS results derived from the COVID-19 Host Genetics 339 

Initiative11, a consortium that has conducted the largest COVID-19 GWAS to date13. We integrated 340 

our eQTL mapping data in healthy controls, COVID-19 patients, and follow-ups across cell types 341 

with two GWAS meta-analyses for COVID-19 disease severity phenotypes: critical illness (A2, 342 

very severe respiratory-confirmed COVID-19 versus population) and hospitalization (B2, 343 

hospitalized versus population)11 to test for common etiological genetic signals.  344 

 Across cell types and disease states, we detected 19 signals across 6 unique eGenes that 345 

significantly colocalized (posterior probability of colocalization [PP4] > 0.80) with critical illness 346 

or hospitalization GWAS risk loci (defined as GWAS SNP meta p-value < 1 x 10-4) (Table S7). 347 

Of these eGenes, 50% (3 out of 6) colocalized with eQTL exclusively found in COVID-19 patients: 348 

IFNAR2 in CD4+ T cells (critical illness and hospitalization GWAS), JAK1 in CD16+ monocytes 349 

(hospitalization GWAS only), and SNRPD2 in CD14+ monocytes (hospitalization GWAS only). 350 

Notably, two of these genes, JAK1 and IFNAR2, are key canonical mediators of the immune 351 

response, both playing critical roles in cytokine signal transduction and interferon response 352 

pathways31,32. The lead SNP driving the colocalization signal for IFNAR2 in CD4+ T cells of 353 

patients, rs9636867 (PP4A2 = 0.84, PP4B2 = 0.84) (Fig. 6A, right), has previously been shown to 354 

colocalize for severe COVID-19 outcomes in whole blood and CD4+ T cells of COVID-19 patients 355 

and was estimated to be causal33,34. This colocalization signature was noticeably absent in healthy 356 

controls (Fig. 6A, left) and in follow-ups (Fig. S4A). Similarly, the lead SNP driving the eQTL 357 

signal in SNRPD2, rs7246757, colocalized in CD14+ monocytes of acute COVID-19 patients 358 

(PP4B2 = 0.87) (Fig. 6B, right), and the gene itself has been implicated as a protein-protein 359 

interaction network hub gene associated with SARS-CoV-2 infection35. Again, this colocalization 360 
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signature was entirely absent in control (Fig. 6B, left) and follow-up samples (Fig. S4B), indicating 361 

that variation in severe COVID-19 outcomes may, in part, be due to cis-regulatory variants that 362 

exert their effects in disease-specific and cell type-specific manners.  363 

 364 

Discussion  365 

Prior studies have leveraged in vitro pathogen challenges and immune stimulations to 366 

probe gene regulatory variation in cells, reporting hundreds of response eQTL in different infection 367 

contexts1–5,36,37. This experimental approach involves the isolation and culture of primary immune 368 

cells from healthy donors, which are then subsequently challenged in laboratory settings. Unlike 369 

previous immune response eQTL studies, here we measure genetic effects directly in cells derived 370 

from patients responding to a pathogen, revealing considerable context specificity in genetic 371 

regulation that is arguably more relevant to disease associations than that measured in controlled 372 

in vitro systems. We show that cell type-specific, disease state-specific, and cell state-dependent 373 

genetic variation is abundant, affecting 25.6% of all genes tested across cell types and disease 374 

states and is particularly common in CD14+ monocytes and NK cells. Further, we establish that 375 

single cells can harbor distinct genetic effects that are dependent on their underlying 376 

immunological or metabolic functional states and that, in certain cases, these continuous states are 377 

associated with clinical features of patients. More broadly, genetic interaction effects likely play a 378 

role in dynamically modulating immune responses throughout the course of an infection and may 379 

also contribute to differential disease outcomes, especially considering the fact that monocytes, 380 

and more generally cells in the myeloid compartment, are susceptible to immune dysregulation 381 

following SARS-CoV-2 infection38,39.  382 
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Of particular clinical interest is biological variation in the interferon response, a critical 383 

antiviral pathway induced upon the detection of viral pattern recognition receptors. This response 384 

involves the induction of IFNs, a group of cytokines that directly inhibit viral replication and 385 

activate bystander immune cells, such as dendritic cells and monocytes40. Variation in the timing 386 

and magnitude of the IFN response across individuals is well-documented, particularly in the 387 

context of SARS-CoV-2 infection41–44. Multiple studies have linked this variation with differences 388 

in COVID-19 severity and disease progression, revealing a dual role for IFNs in the clinical course 389 

of COVID-1945,46. In the blood, the upregulation of type I IFNs and IFN-stimulated genes (ISGs) 390 

shortly after initial infection is associated with protection21, but their delayed induction is a 391 

hallmark of severe disease47–49. Sustained IFN signaling has also been shown to inhibit the 392 

development of appropriate antibody responses, ultimately leading to increased disease pathology 393 

and severity44. We also observe a relationship between IFN signaling and severity, with milder 394 

COVID-19 cases displaying elevated expression of IFN-α and IFN-γ response genes specifically 395 

in T cells and CD14+ monocytes. 396 

Of note, we detect 224 eGenes (47.8% of all state-dependent eGenes identified) across cell 397 

types with expression levels simultaneously dependent on both underlying genetic variation and 398 

the magnitude of the IFN response itself, revealing it to be one of the pathways most associated 399 

with cell state-dependent genetic interaction effects. This finding only adds to the complexity of 400 

how dynamic immune response variation is connected to variation in molecular traits, here through 401 

an interaction with host genetics, which may ultimately have downstream effects on disease 402 

phenotypes. Indeed, we find that IFN response scores calculated at the single-cell level correlate 403 

with patient severity. Together, our results argue that gene-environment interactions are abundant 404 

and likely play a direct role in the clinical setting.  405 
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While we identify only a handful of colocalizing eQTL, of the eGenes that colocalize with 406 

COVID-19 disease severity phenotypes, half are detected only in COVID-19 patients, indicating 407 

that SARS-CoV-2 infection is necessary to induce these signals. Similar disease state-dependent 408 

colocalization has been described previously, with the variant rs8176719 colocalizing only in T 409 

effector memory cells 16 hours post-anti-CD3/CD28 stimulation for both severity and 410 

susceptibility COVID-19 GWAS at the RALGDS2 locus33. In the same study, the intronic risk 411 

variant in IFNAR2, rs9636867, the same lead SNP-eGene pair for which we identify a patient-412 

specific colocalization signal in CD4+ T cells, colocalized with severe COVID-19 disease only for 413 

symptomatic individuals who were SARS-CoV-2+ in CD4+ T cells33. A different COVID-19-414 

associated intronic risk variant in IFNAR2, rs13050728, has also been shown to increase IFNAR2 415 

expression in classical monocytes specifically in COVID-19 patients compared to healthy controls 416 

in an independent study14.  417 

These findings highlight the role that context specificity plays in the genetic regulation of 418 

disease associated-traits and stress the importance of measuring molecular phenotypes in pertinent 419 

environmental conditions and cell types. They also raise the question of how gene-environment 420 

interactions may contribute to the problem of missing heritability, the phenomenon in which only 421 

a small fraction of overall trait heritability is explained by trait-associated variants50,51. Although 422 

trait-associated loci are enriched for eQTL52, only ~40% of GWAS variants colocalize with eQTL 423 

in relevant tissues, which drops to ~20% for autoimmune trait GWAS53,54. More recently, trait 424 

mapping studies have been extended to incorporate a larger array of quantitative traits, including 425 

alternative splicing55, chromatin accessibility, and histone modification levels37. The inclusion of 426 

alternative regulatory mechanisms has significantly increased the number of colocalizing loci and 427 
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heritability estimates of GWAS phenotypes, yet a large proportion of heritability remains 428 

unexplained, potentially due to context-specific gene-environment interactions. 429 

Although we have described how gene-environment interactions can shape immune 430 

responses in one specific viral infection setting, it is necessary to define how such effects contribute 431 

to a wider range of disease states and environmental contexts to better understand the genetic and 432 

environmental underpinnings of immune response variation across individuals. As the number of 433 

patient cohorts with single-cell phenotyping and genotyping data rise, it will be important to extend 434 

this framework to other single-cell eQTL mapping studies to measure the full extent of cell state-435 

dependent regulatory heterogeneity. 436 

  437 
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 645 

Fig. 1. Summary of the study cohort and aims. (A) Study design (left) and examples of various 646 

gene-environment interactions, including cell type-, disease state-, and cell state-dependent effects, 647 

evaluated in this study (right). (B) UMAP visualization of all cells (n = 361,119) collected across 648 

healthy control, acute COVID-19 patient, and follow-up samples (n = 208 samples). ASDC: 649 

AXL+SIGLEC6+ dendritic cells, CD4+ CTL: cytotoxic CD4+ T cells, cDC: conventional dendritic 650 

cells, dnT: double-negative T cells, Eryth: erythrocytes, gdT: gamma delta T cells, HSPC: 651 

hematopoietic stem and progenitor cells, ILC: innate lymphoid cells, MAIT: mucosal associated 652 

invariant T cells, mono: monocytes, NK: natural killer, pDC: plasmacytoid dendritic cells, TEM: 653 

T effector memory, TCM: T central memory.    654 
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 655 

Fig. 2. Effects of COVID-19 disease severity on underlying cell type composition and 656 

transcriptional signatures in hospitalized patients. (A) Cell type proportions stratified by 657 

disease severity at the time of sample collection. (B) Correlation between respiratory support score 658 

at the time of patient sampling and frequency of CD14+ monocytes. (C) PCA decomposition of 659 

the CD14+ monocyte expression data in COVID-19 patients colored by respiratory support score. 660 

(D) Hallmark enrichments for severity effects in COVID-19 patients across cell types. Colored 661 

circles represent pathways with FDR < 0.10; gray circles represent non-significant pathways. Only 662 

pathways significant in three or more cell types are shown. (E-H) Correlation between respiratory 663 

support score and ssGSEA scores in various cell types for (E) inflammatory response, (F) TNF-α 664 
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signaling, (G) oxidative phosphorylation, and (H) antigen processing. In (B) and (E-H), p-values 665 

and best-fit lines were obtained from linear regression models.  666 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2024. ; https://doi.org/10.1101/2024.12.03.626676doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.03.626676
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

 667 

Fig. 3. Cis-regulatory effects are cell type-specific and disease state-specific. (A) Number of 668 

shared and disease state-specific eGenes within each cell type. (B) Significant condition-specific 669 

eGene (lfsrCTL < 0.10 and lfsrCOVID > 0.30, lfsrCOVID < 0.10 and lfsrCTL > 0.30) sharing patterns 670 

across cell types in healthy controls and COVID-19 patients. Patient-specific eGene sets are 671 

highlighted by color per cell type. (C) Example of a patient-specific genetic effect (i.e., SARS-672 

CoV-2 response eQTL) present only in CD14+ monocytes in the gene SCAMP1 (healthy controls, 673 

top plots; COVID-19 patients, bottom plots). 674 
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 676 

Fig. 4. SARS-CoV-2 response eQTL effects revert to baseline in longitudinal follow-up 677 

samples. (A) Effect sizes for the cell type-specific reQTL gene sets plotted across innate immune 678 

cell types in healthy controls, patients, and follow-up samples. All eQTL effect sizes correspond 679 

to mash posterior effect sizes. (B) Distribution of the change in eQTL effect sizes between follow-680 

up and patient samples (defined as |follow-up βeQTL| - |COVID-19 patient βeQTL|) for response 681 

eQTL (n = 370, blue) and shared eQTL (n = 1,653, gray) in CD14+ monocytes. Dashed lines 682 

represent the mean Δ response magnitude for the respective gene sets. 683 

  684 
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 685 

Fig. 5. Cell state-dependent single-cell eQTL are prevalent, particularly in CD14+ monocytes 686 

of COVID-19 patients. (A) Schematic of how cell state-dependent single-cell eQTL were 687 

evaluated. For each cell type independently, a poisson mixed effects (PME) model was fit to the 688 

UMI counts for each gene, correcting for various biological and technical covariates, to test for the 689 

interaction between genotype (0, 1, 2) and various functional cell state scores (represented by the 690 

green gradient bar). In this instance, no genetic effect is observed among cells with a low immune 691 

score (light green), whereas cells with a high immune score display a substantially larger genotype 692 

effect (dark green). (B) Number of significant cell state-dependent eQTL (LRT q-value < 0.10) for 693 
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each functional cell state tested (x-axis) across cell types. (C-D) UMAP visualizations of all CD14+ 694 

monocytes in COVID-19 patients colored by (C) oxidative phosphorylation score quantiles and 695 

(D) IFN-α response score quantiles (left), and examples of cell state-dependent eQTL for each of 696 

the corresponding functional pathways (right). In these examples, single-cell gene expression 697 

estimates (y-axis) are plotted by genotype and binned by cell state score quantiles for each 698 

visualization, although we treated cell state as a continuous variable in our models. The quantiles 699 

shown directly correspond to the UMAP quantile scale. 700 

 701 

  702 
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 703 

Fig. 6. Colocalization signals for COVID-19 disease severity phenotypes are specific to 704 

COVID-19 patients. (A) The lead SNP for IFNAR2, rs9636867, colocalizes in CD4+ T cells for 705 

hospitalization due to severe COVID-19 in patients (right) but not controls (left). (B) The lead 706 

SNP for SNRPD2, rs7246757, colocalizes in CD14+ monocytes for hospitalization due to severe 707 

COVID-19 in patients (right) but not controls (left). For both (A) and (B), the larger plots on the 708 

left show the correlation between GWAS p-values (x-axis) and eQTL p-values (y-axis) in controls 709 

and patients. The smaller plots on the right show Manhattan plots for the GWAS signal (top) and 710 

the eQTL signal in the COVID-19 patients (bottom). The lead SNP is depicted as a purple 711 

diamond.  712 
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Materials and Methods 718 

Participants and samples. We prospectively investigated hospitalized COVID-19 patients 719 

between April 2020 and December 2021 who initially presented with a symptomatic infection and 720 

positive SARS-CoV-2 nasopharyngeal swab polymerase chain reaction. All participants were 721 

admitted to the Centre Hospitalier de l’Université de Montréal (CHUM) and recruited into the 722 

Biobanque Québécoise de la COVID-19 (BQC19)56. Patients had no known prior exposure to 723 

SARS-CoV-2 (i.e., all infections were primary infections), were not vaccinated at the time of 724 

primary sampling (days after symptom onset [DSO] ≤ 20), and did not undergo plasma transfer 725 

therapy. Blood draws were performed during the acute phase of SARS-CoV-2 infection (defined 726 

as DSO ≤ 20 days, mean DSO = 12.1 days, DSO range = 6 - 20 days, n = 63 samples) and during 727 

various convalescent follow-up time points (defined as DSO > 20 days, mean DSO = 128.8 days, 728 

DSO range = 31 - 370 days) for a subset of individuals sampled during the acute phase (n = 39 729 

samples). Additionally, PBMCs collected prior to the COVID-19 pandemic from healthy control 730 

individuals living in Montréal, Canada (n = 18 samples) were processed for single-cell data 731 

collection in parallel with infected patient samples. We also computationally integrated a set of 732 

publicly available healthy controls (n = 90 individuals) described in Randolph et al. (2021)4, which 733 

is detailed below (“Single-cell RNA-sequencing data processing and integration”). The study was 734 

approved by the respective IRBs (multicentric protocol: MP-02-2020-8929 for BQC19 735 

participants; CHUM protocol 19.387 for control individuals) and written, informed consent was 736 

obtained from all participants or, when incapacitated, their legal guardian before enrollment and 737 

sample collection.  738 

 739 
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DNA sequencing and imputation. DNA was extracted from whole blood using the Chemagic™ 740 

DNA Blood 400 H96 kit (Perkin Elmer, CMG-1091). SNP genotyping was conducted using the 741 

Axiom™ Precision Medicine Research Array from Applied Biosystems (Applied Biosystems, 742 

902981) per the manufacturer’s instructions. The array was processed using the GeneTitan™ 743 

Multi-Channel instrument (Applied Biosystems). All samples were grouped with the Axiom 744 

Analysis Suite 5.1.1 software, and the “Best Practice Workflow” was performed using the 745 

following high-quality call rate parameters: Axiom_PMRA.r3 library and threshold configuration 746 

Human.v5 with minimum call rate of 97.0%. Marker quality control tests were performed on a 747 

subset of ancestrally homogeneous participants, who were determined via comparison to 2,504 748 

individuals across 5 super populations from the 1000 Genomes Project Phase 3 data 57. Batch effect 749 

quality control and replicate discordance checks were performed, and variants that failed either 750 

test were removed. Only single nucleotide variants with single character allele-codes (A, C, G, or 751 

T) (PLINK --snps-only ‘just-acgt’ option) were retained. Additionally, variants with low allele 752 

frequencies (minor allele frequency [MAF] < 0.001), low genotyping call rates (marker-wise 753 

missingness < 0.01), a deviation from Hardy-Weinberg equilibrium (HWE) (p-value < 1x10-6), 754 

and positioned in regions of high link disequilibrium (LD) were removed.   755 

Sample quality filtering was performed considering the set of filtered genotypes described 756 

above. Outlier samples with a high genotype missingness rate (overall missing genotype rate > 757 

0.04) or high/low principal component corrected heterozygosity rate on autosomal chromosomes 758 

(> ±3SD, respectively) were considered low quality and removed. Sex chromosome composition 759 

was determined by estimating X chromosome marker heterozygosity using PLINK (--check-sex 760 

0.4 0.7). Individuals with discordant self-reported sex and genetic sex were removed prior to 761 

genotype imputation. All other samples that passed quality control filters were used for imputation. 762 
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Genotype phasing and imputation was performed using the Michigan Imputation Server58 with the 763 

TOPMed reference panel59. After imputation, variants with a posterior genotype probability (GP) 764 

< 90% were set to missing within each individual using QCTOOL (v2.0.7, -threshold 0.9 filter). 765 

 766 

Whole blood processing. At the time of sampling, whole blood was collected in up to three tubes 767 

containing acid citrate dextrose (ACD) and processed within 6 hours of collection. Blood from the 768 

same donor was pooled and centrifuged at 400 g for 10 min at room temperature (RT). After 769 

centrifugation, plasma was collected, aliquoted, and stored at -80°C. The remaining blood was 770 

topped up to 30 ml with HBSS medium at RT. Ficoll-Paque separation was then used to isolate 771 

PBMCs. PBMCs were washed with R+ (RPMI 1640 + 0.1M HEPES + 20 U/ml Penicillin-772 

Streptomycin), resuspended in 5 ml R+ with 10% fetal bovine serum (FBS), and counted with 773 

Trypan blue. Cells were spun down at 400 g for 10 min at 4°C and resuspended in cold FBS at 20 774 

M/ml. A freezing solution of FBS with 20% DMSO was added drop-by-drop to the cell suspension 775 

while the tube was continuously agitated. Cell suspensions were transferred into cryovials (1 776 

ml/vial), immediately placed into Mr. Frosty Freezing Containers, and stored at -80°C. The 777 

following day, PBMCs were transferred to liquid nitrogen for long-term storage.  778 

 779 

Sample processing for single-cell RNA-sequencing. PBMCs were thawed in groups of 3 to 4 780 

samples (processing batch 1) or 16 to 19 samples (processing batch 2), rested for 2 hours in RPMI 781 

1640 supplemented with 10% FBS (Corning, MT35015CV), 2 mM L-glutamine (ThermoFisher 782 

Scientific, 25-030-081), and 10 ug/ml gentamicin (ThermoFisher Scientific, 15710064), and 783 

subsequently processed for single-cell collection. Cells from different samples were pooled per 784 

processing batch for a total of 29 multiplexed sample batches (n = 124 samples). For each 785 
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multiplexed cell pool, 12,000 cells were targeted for collection using the Chromium Next GEM 786 

Single Cell 3’ Reagent (v3.1 Dual Index chemistry) kit (10x Genomics, 1000268). After GEM 787 

generation, the reverse transcription (RT) reaction was performed in a thermal cycler as described 788 

(53°C for 45 min, 85°C for 5 min), and post-RT products were stored at -20°C for up to one week 789 

until downstream processing. 790 

 791 

Single-cell RNA-sequencing library preparation and sequencing. Post-RT reaction cleanup, 792 

cDNA amplification and sequencing library preparation were performed as described in the Single 793 

Cell 3’ Reagent Kits v3.1 (Dual Index) User Guide (10x Genomics). Briefly, cDNA was cleaned 794 

with DynaBeads MyOne SILANE beads (ThermoFisher Scientific, 37002D) and amplified in a 795 

thermal cycler using the following program: 98°C for 3 min, [98°C for 15 s, 63°C for 20 s, 72°C 796 

for 1 min] x 11 cycles, 72°C 1 min. After cleanup with the SPRIselect reagent kit (Beckman 797 

Coulter, B23317), libraries were constructed by performing the following steps: fragmentation, 798 

end-repair, A-tailing, double-sided SPRIselect cleanup, adaptor ligation, SPRIselect cleanup, 799 

sample index PCR (98°C for 45 s, [98°C for 20 s, 54°C for 30 s, 72°C for 20 s] x 14 cycles, 72°C 800 

1 min), and double-sided SPRIselect size selection. Prior to sequencing, all multiplexed single-cell 801 

libraries were quantified using the KAPA Library Quantification Kit for Illumina Platforms 802 

(Roche, 50-196-5234). For each processing batch (n = 2), libraries were pooled in an equimolar 803 

ratio and sequenced 100 base pair paired-end on an Illumina NovaSeq 6000 (processing batch 1 804 

average mean reads per cell = 48,613, average median genes detected per cell = 1,627; processing 805 

batch 2 average mean reads per cell = 59,246, average median genes detected per cell = 2,007). 806 

 807 
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Single-cell RNA-sequencing data processing and integration. FASTQ files from each 808 

multiplexed capture library were mapped to the pre-built GRCh38 human reference transcriptome 809 

(downloaded 10x Genomics) using the cellranger (v6.0.2) count function60. souporcell (v2.0, 810 

Singularity v3.4.0)61 in --skip_remap mode was used to demultiplex cells into samples based on 811 

genotypes from a common variants file (1000 Genomes Project samples filtered to SNPs with ≥ 812 

2% allele frequency in the population, downloaded from https://github.com/wheaton5/souporcell). 813 

For each sample batch, hierarchical clustering of the known genotypes obtained from DNA-814 

sequencing and cluster genotypes estimated by souporcell was used to assign individuals to 815 

souporcell cell clusters. All samples except for three were successfully demultiplexed; samples 816 

unable to be confidently assigned to a set of cells were removed (n samples retained = 121). After 817 

demultiplexing, Seurat (v4.3.0, R v4.0.3)62 was used to perform cell-level quality control filtering. 818 

One sample was removed due to a very low number of cells captured (n = 20 cells total), leaving 819 

a total of 120 samples. High-quality cells were retained for downstream analysis if they had: 1) a 820 

“singlet” status called by souporcell, 2) between 500 – 4000 genes detected (nFeature_RNA), 3) a 821 

mitochondrial UMI percentage < 20%, and 4) less than 25,000 total molecules (nCount_RNA), 822 

leaving 236,143 cells. Gene filtering was performed using the CreateSeuratObject min.cells 823 

parameter, in which only genes present in at least five cells were kept (n = 30,986 genes). 824 

 Due to the large discrepancy between the number of cells assayed in healthy control 825 

individuals (n = 38,663) versus acute and convalescent samples (n = 197,480) in our dataset, we 826 

integrated a publicly available set of high-quality cells derived from control, non-infected 827 

individuals (n = 124,976 cells, 90 samples) described in Randolph et al., (2021)4, hereafter referred 828 

to as the “non-infected IAV controls”. First, we removed IAV-derived transcripts (n = 10 genes) 829 

from the raw count matrix of the non-infected IAV controls. Next, we merged all datasets, split 830 
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the resulting Seurat object by dataset (“COVID batch1”, “COVID batch2” or “IAV controls”), and 831 

ran SCTransform63 to normalize and scale the UMI counts within dataset. We simultaneously 832 

regressed out variables corresponding to experiment batch, percent mitochondrial UMIs per cell, 833 

and individual label in all datasets, and additionally, regressed out sampling time point (e.g., 834 

control, acute, follow-up) in the COVID data. We then integrated the three datasets together using 835 

the SelectIntegrationFeatures, PrepSCTIntegration, FindIntegrationAnchors, and IntegrateData 836 

framework62. After integration, dimensionality reduction was performed via UMAP (RunUMAP 837 

function, dims = 1:30) and PCA (RunPCA function, npcs = 30). A Shared Nearest Neighbor Graph 838 

was constructed using the FindNeighbors function (dims = 1:20, all other parameters set to 839 

default), and clusters were subsequently called using the FindClusters algorithm (resolution = 0.5, 840 

all other parameters set to default)62. In total, our integrated dataset consisted of 361,119 high-841 

quality cells across all samples (n = 236,143 from the combined COVID datasets, n = 124,976 842 

from the non-infected IAV dataset, n = 208 samples altogether). 843 

 844 

Cell type assignment. We performed cell type annotation via label transfer to map cell type 845 

information onto our data. To perform the label transfer, we downloaded a multimodal human 846 

PBMC reference dataset derived from scRNA-seq paired with CITE-seq as described in Hao et 847 

al.15. We followed the Seurat v4 Reference Mapping workflow, consisting of the 848 

FindTransferAnchors and MapQuery functions, with the Hao et al. reference dataset used as our 849 

reference UMAP and the following parameters: normalization.method = “SCT” and 850 

reference.reduction = "spca". These fine-scale populations were then collapsed into the following 851 

broad super populations encompassing the six major cell types found in PBMCs using the 852 

predicted.celltype.l2 definitions derived from Hao et al.: CD4+ T cells = c("CD4 CTL", "CD4 853 
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Naive", "CD4 Proliferating", "CD4 TCM", "CD4 TEM", "Treg"), CD8+ T cells = c("CD8 Naive", 854 

"CD8 Proliferating", "CD8 TCM", "CD8 TEM"), NK cells = c("NK", "NK Proliferating", 855 

"NK_CD56bright"), CD14+ monocytes = "CD14_monocytes", CD16+ monocytes = 856 

"CD16_monocytes", and B cells = c("B intermediate", "B memory", "B naive"). In total, we 857 

annotated 342,127 high-quality cells falling into the major PBMC populations across all 858 

individuals and conditions (n CD4+ T cells = 153,479, CD8+ T cells = 53,562, CD14+ monocytes 859 

= 70,060, CD16+ monocytes = 5,446, B cells = 34,805, NK cells = 24,775). 860 

 861 

Calculation of pseudobulk estimates. Pseudobulk estimates were used to summarize single-cell 862 

expression values into bulk-like expression estimates within samples. This was performed for all 863 

six major cell types (CD4+ T cells, CD8+ T cells, B cells, CD14+ monocytes, CD16+ monocytes, 864 

NK cells). Within each cell type cluster for each sample, raw UMI counts were summed across all 865 

cells assigned to that sample for each gene using the sparse_Sums function in textTinyR (v1.1.3) 866 

(https://cran.r-project.org/web/packages/textTinyR/textTinyR.pdf), yielding an n x m expression 867 

matrix, where n is the number of samples included in the study (n = 208) and m is the number of 868 

genes detected in the single-cell analysis (m = 30,986) for each of the 6 clusters.  869 

 870 

Calculation of residuals for modeling. For each cell type, lowly-expressed genes were filtered 871 

using cell type-specific cutoffs (removed if they had a median logCPM < 1.0 in CD14+ monocytes, 872 

< 1.5 in CD4+ T cells, < 2.0 in B cells and CD8+ T cells, < 2.5 in CD16+ monocytes, and < 3.0 in 873 

NK cells), leaving the following number of genes per cell type: CD4+ T cells = 10,337, CD8+ T 874 

cells = 10,036, B cells = 10,179, CD14+ monocytes = 10,882, CD16+ monocytes = 9,398, and NK 875 

cells = 9,882. Within each cell type, only samples with ≥ 5 cells per sample were kept for 876 
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downstream modeling. Further, three samples were removed for downstream analysis because they 877 

consistently clustered as outliers on gene expression PCAs for multiple cell types (one COVID-19 878 

patient at the acute infection time point and two non-infected IAV controls), leaving the following 879 

number of samples per cell type:  880 

Cell type N healthy controls N patients N follow-ups 

B 106 63 38 

CD4+ T 106 63 39 

CD8+ T 106 63 39 

CD14+ monocytes 106 63 39 

CD16+ monocytes 47 44 39 

NK 63 63 39 

 881 

After removing lowly-expressed genes, normalization factors to scale the raw library sizes were 882 

calculated using calcNormFactors in edgeR (v 3.26.8)64. The voom function in limma (v3.40.6)65 883 

was used to apply these size factors, estimate the mean-variance relationship, and convert raw 884 

pseudocounts to logCPM values. The inverse variance weights calculated by voom were obtained 885 

and included in the respective lmFit call for all downstream models unless otherwise noted65. 886 

 887 

Calculation of per-individual ssGSEA scores. To construct the ssGSEA Hallmark pathway 888 

scores, we calculated single sample Gene Set Enrichment Analysis (ssGSEA) scores from the 889 

pseudobulk COVID-19 patient logCPM gene expression estimates corrected for age, sex, dataset, 890 

and the number of cells for a given cell type collected per sample using the Gene Set Variation 891 

Analysis (GSVA, v1.32.0) package in R with default parameters and method = "ssgsea"66. ssGSEA 892 
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is a method that allows you to summarize gene expression patterns for any desired target gene set, 893 

and for each sample, it will return a score representative of that gene set. These scores were 894 

calculated per cell type, and for each of the pathway-specific ssGSEA scores, the input gene set 895 

was derived from either a Hallmark or Gene Ontology (GO) Biological Process gene set22. The 896 

following gene sets were used to define the per-sample pathway scores: (1) inflammatory response 897 

score – Hallmark inflammatory response pathway, (2) TNF-α score – Hallmark TNF-α signaling 898 

via NF-κB pathway, (3) oxidative phosphorylation score – Hallmark Oxidative phosphorylation 899 

pathway, and (4) antigen processing score – GO Biological Process antigen processing and 900 

presentation pathway. 901 

 902 

Modeling SARS-CoV-2 infection effects. Only healthy controls and COVID-19 patients sampled 903 

during the primary infection time point were retained for modeling of infection effects (i.e., follow-904 

up samples were excluded). The following linear model was used to identify genes differentially 905 

expressed between healthy control individuals and COVID-19 patients: 906 

 907 

E(i,j) ~ 

{
  
 

  
 

 β
0
(i) + β

age
(i)⋅age(j) + β

sex
(i)⋅sex(j) + β

dataset
(i)⋅dataset(j) +

β
counts

(i)⋅counts(j) + εctl(i,j) if condition = ctl

 
 

 β
0
(i) + β

COVID
(i) + β

age
(i)⋅age(j) + β

sex
(i)⋅sex(j) + 

   β
dataset

(i)⋅dataset(j) + β
counts

(i)⋅counts(j) + εCOVID(i,j) if condition = COVID

 908 

 909 

Here, E(i,j) represents the expression estimate of gene i for individual j, β
0
(i) is the global intercept 910 

accounting for the expected expression of gene i in a non-infected female measured in the COVID 911 

batch 1 dataset, and β
COVID

(i) represents the global estimate of the effect of SARS-CoV-2 infection 912 

in patients per gene. Age represents the mean-centered, scaled (mean = 0, sd = 1) age per 913 
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individual, with β
age

(i) being the effect of age on expression levels, sex represents the self-914 

identified sex for each individual (factor levels = “Female”, “Male”), with β
sex

(i) capturing the 915 

effect of sex on expression, dataset represents the dataset in which the sample was obtained (factor 916 

levels = "COVID batch 1", "COVID batch 2", "IAV controls"), with β
dataset

(i) capturing the dataset 917 

effect, and counts represents the number of cells captured within that cell type for sample j, with 918 

β
counts

(i) capturing the effect of cell number on expression. Finally, εcdt represents the residuals for 919 

each respective condition (control or COVID) for each gene i, individual j pair. The model was fit 920 

using the lmFit and eBayes functions in limma65, and the estimates of the global infection effect 921 

β
COVID

(i) (i.e., the differential expression effects due to SARS-CoV-2 infection) were extracted 922 

across all genes along with their corresponding p-values. We controlled for false discovery rates 923 

(FDR) using an approach analogous to that of Storey and Tibshirani2,67, which derives the 924 

distribution of the null model empirically. To obtain a null, we performed 10 permutations, where 925 

infection status label (i.e., control/COVID) was permuted across individuals. We considered genes 926 

significantly differentially expressed upon infection if they had β
COVID

 |log2FC| > 0.5 and an FDR 927 

< 0.05. 928 

 929 

Modeling COVID-19 disease severity effects within patients. To model the effect of COVID-930 

19 disease severity on gene expression, we restricted our analyses to COVID-19 patients sampled 931 

during the primary infection time point for which we had information about disease severity (n = 932 

63). Disease severity was assessed using a five-point scale of respiratory support needed at the 933 

time of patient sampling that includes the following categories: 0-Moderate = no supplemental 934 

oxygen (n = 16); 1-Severe = nasal cannula (n = 17); 2-Critical = non-invasive ventilation (n = 9); 935 

3-Critical = intubation (n = 20); 4-Critical = extracorporeal membrane oxygenation (ECMO) (n = 936 
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1). The following model was used to evaluate the effect of severity at the time of patient sampling 937 

on expression: 938 

E(i,j) ~ β
0
(i) + β

severity

 
(i)⋅severity(j) + β

age
(i)⋅age(j) + β

sex
(i)⋅sex(j) + β

BMI
(i)⋅BMI(j)+  939 

   β
dataset

(i)⋅dataset(j) + β
counts

(i)⋅counts(j) + ε (i,j) 940 

Here, E(i,j) represents the expression estimate of gene i for individual j, β
0
(i) is the global intercept 941 

accounting for the expected expression of gene i in a female COVID-19 patient, and β
severity

 
(i) 942 

indicates the effect of severity on gene i during the primary sampling time point. Severity 943 

(severity(j)) represents respiratory support score per individual and was treated as a numeric 944 

variable. Body mass index (BMI) represents the mean-centered, scaled (mean = 0, sd = 1) BMI 945 

per individual, with β
BMI

(i) being the effect of BMI on expression levels. If BMI was not reported 946 

for an individual (n missing = 26), this missing data was filled with the average BMI across 947 

patients. All other terms in the model are equivalent to that described in “Modeling SARS-CoV-2 948 

infection effects”. The model was fit using the lmFit and eBayes functions in limma65, and the 949 

estimates of β
severity

(i) were extracted across all genes along with their corresponding p-values. 950 

We again controlled for false discovery rates (FDR) by empirically deriving the null distribution. 951 

To obtain a null, we performed 10 permutations, where respiratory support score (i.e., 0 - 5) was 952 

permuted across patients. We considered genes significantly correlated with disease severity if 953 

they had an FDR < 0.05. 954 

 955 

Gene set enrichment analyses. The R package fgsea (v1.10.1)68 was used to perform gene set 956 

enrichment analysis for the severity effects using the H hallmark gene sets23. Ranked t-statistics 957 

for each cell type were obtained directly from the topTable function in limma65, and the 958 

background set for a cell type was the set of genes sufficiently expressed (i.e., passed the lowly-959 
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expressed gene filter threshold) for that cell type. Pre-ranked t-statistics were used to perform the 960 

enrichment using fgsea with the following parameters: minSize = 15, maxSize = 500, nperm = 961 

100,000. Normalized enrichments scores (NES) and Benjamini-Hochberg adjusted p-values 962 

output by fgsea were collected for each analysis. 963 

 964 

eQTL mapping and integration with mashr. eQTL mapping was performed for each cell type 965 

using the pseudobulk expression data. A linear regression model was used to ascertain associations 966 

between SNP genotypes and expression levels. Input expression matrices were quantile-967 

normalized within each set of disease state samples (i.e., healthy controls, acute COVID-19 968 

patients, and follow-ups) prior to association testing. eQTL were mapped separately for each 969 

disease state using the R package MatrixEQTL (v2.3)69. Prior to mapping, SNPs were filtered 970 

using the following criteria in our COVID-19 dataset and the Randolph et al. dataset separately: 971 

1) keep those with a minor allele frequency > 5% across all individuals, 2) exclude those with > 972 

10% of missing data, and 3) exclude those that deviate from Hardy-Weinberg equilibrium at p < 973 

10-5 (--maf 0.05 --geno 0.10 --hwe 0.00001 PLINK v1.9 filters)70. Only SNPs that passed these 974 

filters and were present in both datasets were retained and merged across datasets (n = 4,194,100 975 

SNPs kept). Local associations (i.e., putative cis-eQTL) were tested against all SNPs located 976 

within the gene body and 100 kilobases upstream and downstream of the transcription start site 977 

(TSS) and transcription end site (TES) for each gene tested.  978 

 Within our follow-up samples, some individuals were sampled multiple times during the 979 

convalescent period. To avoid counting these genetically duplicate samples more than once when 980 

eQTL mapping, we downsampled the follow-ups to include only a single sample with DSO > 20 981 

per individual. For each individual with multiple follow-up time points, we chose to keep the 982 
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sample with the maximum DSO, which dropped our sample size from n = 39 to n = 26. This 983 

duplicate sampling structure was not present in the healthy control or acute COVID-19 samples, 984 

so the full sample set was used to map eQTL for these disease states. 985 

We accounted for unmeasured surrogate confounders by performing PCA on a correlation 986 

matrix based on the gene expression data. Subsequently, up to 15 principal components (PCs) were 987 

regressed out prior to performing the association analysis for each gene. A specific number of PCs 988 

to regress in each cell type-disease state pair, corresponding to the number of PCs that led to the 989 

detection of the largest number of eQTL in each condition, was then chosen empirically (Table 990 

S8). To avoid spurious associations resulting from population structure, the first two eigenvectors 991 

obtained from a PCA on the genotype data using SNPRelate (v1.20.1, gdsfmt v1.22.0)71 were 992 

included in the linear model. Other covariates included were age (mean-centered, scaled), sex, 993 

number of cells detected per sample, and dataset. 994 

To gain power to detect cis-eQTL effects, we implemented mashr25, which leverages 995 

sharing information across cell types and disease states. We considered a set of shared genes that 996 

were expressed across all cell types (n = 7,646). For each of these genes, we chose the single top 997 

cis-SNP, defined as the SNP with the lowest FDR across all cell types (n = 6) in the acute COVID-998 

19 patient condition, to input into mashr. We extracted the effect sizes and computed the standard 999 

errors of these betas from the Matrix eQTL outputs for each gene-SNP pair across cell types and 1000 

conditions. We defined a set of strong tests (i.e., the 7,646 top gene-SNP associations) as well as 1001 

a set of random tests, which we obtained from randomly sampling 200,000 rows of a matrix 1002 

containing all gene-SNP pairs tested merged across conditions. The mashr workflow was as 1003 

follows: i) the correlation structure among the null tests was learned using the random test subset, 1004 

ii) the data-driven covariance matrices were learned using the strong test subset (from 5 PCs), iii) 1005 
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the mash model was fit to the random test subset using canonical and data-driven covariance 1006 

matrices, and iv) the posterior summaries were computed for the strong test subset. We used the 1007 

local false sign rate (lfsr) to assess significance of our posterior eQTL effects and considered a 1008 

gene-SNP pair to have a significant eQTL effect if the lfsr was < 0.10.  1009 

 1010 

Calculation of functional cell state scores per cell. To obtain the cell state scores used for 1011 

modeling cell state-dependent single-cell eQTL, first, the raw single-cell UMI counts across all 1012 

samples were obtained per cell type. All subsequent processing steps were performed for each cell 1013 

type independently. Raw cell counts in the form of a Seurat object were split by dataset, and 1014 

SCTransform was used to normalize and scale the UMI counts within dataset, regressing the 1015 

effects of experiment batch, percent mitochondrial UMIs per cell, and age in all datasets, and 1016 

additionally, sex in the COVID batch 1 and batch 2 datasets. The SelectIntegrationFeatures, 1017 

PrepSCTIntegration, FindIntegrationAnchors, and IntegrateData pipeline was then used to 1018 

integrate cells, returning all features following integration (features.to.integrate = all_features)60. 1019 

The scaled data matrix (@scale.data slot) of the integrated data, which holds the residuals of the 1020 

corrected log-normalized integrated counts, was obtained, and these values were used to calculate 1021 

ssGSEA scores (using the same parameters described above in “Calculation of per-individual 1022 

ssGSEA scores”) per cell for our pathways of interest. Here, we applied ssGSEA to the full scaled 1023 

SCTransform gene x cell matrix, allowing us to generate cell state scores for each single cell in the 1024 

dataset. Our pathways of interest included the following immune-related and metabolism-related 1025 

pathways in the MSigDB Hallmark gene sets (n = 6)22: Apoptosis, Inflammatory response, 1026 

Interferon-α response, Interferon-γ response, Oxidative phosphorylation, and TNF-α signaling via 1027 

NF-κB. 1028 
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 1029 

Modeling cell state-genotype interaction effects. We used a poisson mixed effects model to test 1030 

for cell state-dependent eQTL because this model has previously been used to detect significant 1031 

cell state-genotype interaction effects in single-cell data7. Only COVID-19 patients sampled 1032 

during the primary infection time point were included in these analyses (n = 63). Single-cell eQTL 1033 

modeling was performed independently in each cell type; for each cell type, we tested the gene-1034 

SNP pairs for which we had evidence of a significant eQTL (lfsr < 0.10) within patients in the 1035 

pseudobulk eQTL analysis (n genes: B cells = 1,395, CD4+ T cells = 1,804, CD8+ T cells = 1,508, 1036 

CD14+ monocytes = 2,084, CD16+ monocytes = 1,410, NK cells = 1,523). For CD4+ T cells, we 1037 

downsampled the number of cells prior to constructing the model inputs to 60,000 cells due to 1038 

vector size constraints in R. To control for genetic background and latent confounders, we included 1039 

both genotype and expression PCs in our cell state eQTL models. We computed genotype PCs 1040 

using the same approach as above in “eQTL mapping and integration with mashr”. Expression 1041 

PCs were calculated from non-batch corrected integrated and scaled counts using the same method 1042 

as described in “Calculation of functional state scores per cell,” but omitting the batch correction 1043 

step (i.e., no variables were regressed in the SCTransform call). PCA was run on the cell x gene 1044 

matrix of non-corrected integrated and scaled counts subset on the top 3,000 variable features 1045 

using the prcomp_irlba function in the R package irlba (v2.3.5.1)72.  1046 

To test for interactions with cell state, we used the following poisson mixed effects 1047 

interaction model, where each gene’s UMI counts were modeled as a function of genotype as well 1048 

as additional donor-level and cell-level covariates. For each gene: 1049 

 1050 

 1051 
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log(𝐸𝑖) ~ β0
 + β

G

 𝑋𝑑,𝐺 + β
dataset

 𝑋𝑑,𝑑𝑎𝑡𝑎𝑠𝑒𝑡  + βage

 𝑋𝑑,𝑎𝑔𝑒  + β
sex

 𝑋𝑑,𝑠𝑒𝑥  + β
nUMI

 log (𝑋𝑖,𝑛𝑈𝑀𝐼) 1052 

+ β
MT

 𝑋𝑖,𝑀𝑇 + ∑ β
𝑔𝑃𝐶𝑘

 𝑋𝑑,𝑔𝑃𝐶𝑘

3

𝑘=1

+ ∑ β
𝑒𝑃𝐶𝑘

 𝑋𝑖,𝑒𝑃𝐶𝑘

5

𝑘=1

+ β
cell state

 𝑋𝑖,𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒   1053 

+ β
G x cell state

 𝑋𝑑,𝐺𝑋𝑖,𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒+ (𝜙𝑑  | d) + (𝜅𝑏 | b) + ε
  1054 

 1055 

Here, E is the expression of the gene in cell i, β
0
 is the intercept, and ε represents the residuals. All 1056 

other βs represent fixed effects for various covariates in cell i, donor d, or experimental batch b as 1057 

follows: G = genotype at the eQTL variant, dataset = dataset from which sample originates, age = 1058 

scaled age of donor, sex = sex of donor, nUMI = number of UMI per cell (accounts for sequencing 1059 

depth), MT = percent of mitochondrial UMIs per cell, gPC = genotype PCs, ePC = single-cell 1060 

expression PCs prior to batch correction, and cell state = functional cell state score per cell 1061 

(described above). Donor was modeled as a random individual effect (𝜙𝑑  | d) to account for the 1062 

fact that multiple cells were sampled per individual, and experimental batch was also modeled as 1063 

a random effect (𝜅𝑏 | b). Finally, β
G x cell state

 𝑋𝑑,𝐺𝑋𝑖,𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 represents the cell state x genotype 1064 

interaction term of interest.  1065 

 Single-cell poisson mixed interaction models were fit using the glmer function in the lme4 1066 

R package (v 1.1-29) with the following parameters: family = "poisson", nAGQ = 0, and control 1067 

= glmerControl(optimizer = "nloptwrap")73. To determine significance, we used a likelihood ratio 1068 

test (LRT) comparing two models, one with and one without the cell state interaction term and 1069 

calculated a p-value for the test statistic against the Chi-squared distribution with one degree of 1070 

freedom. To correct for multiple hypothesis testing, we performed one permutation in which cell 1071 

state scores were permuted across all cells per pathway tested, and we obtained a null LRT p-value 1072 

distribution using the same framework as above with our permuted data. We then calculated q-1073 
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values for the cell state-genotype interaction term using the empirical p-value distribution across 1074 

all tested eQTL using the empPvals and qvalue functions from the qvalue package (v2.16.0)74. 1075 

 1076 

Colocalization of GWAS and eQTL signals. Specifically for colocalization analyses, eQTL were 1077 

remapped in each cell type-disease state pair with Matrix eQTL69 using a 1 megabase (Mb) cis-1078 

window, with all other modeling parameters kept constant, to broaden our search space and 1079 

increase our probability of detecting colocalized variants. We assessed colocalization between our 1080 

identified eQTLs in each cell type-disease state pair and the COVID-19 GWAS meta-analyses of 1081 

European-ancestry subjects from the COVID-19 Host Genetics Initiative (HGI)11 release 7 1082 

(https://www.covid19hg.org/results/r7/). We tested two outcomes: “critical illness” and 1083 

“hospitalization” (named A2 and B2, respectively by the COVID-19 HGI). A Bayesian analysis 1084 

was implemented using the coloc (v5.1.0.1)75 R package with default settings to analyze all 1085 

variants in the 1 Mb genomic locus centered on the lead eQTL in the single-cell data. We only 1086 

considered GWAS loci with associations below 1 x 10-4. We defined colocalization as PP4 > 0.8, 1087 

where PP4 corresponds to the posterior probability of colocalization between eQTL and GWAS 1088 

signals. Colocalization was visualized using the R package LocusCompareR (v1.0.0)76 with 1089 

default parameters, except for the genome parameter which was set to "hg38". LD r2 with the lead 1090 

SNP was calculated using the default "EUR" population. 1091 

  1092 
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 1093 

Fig. S1. Sampling time points and global SARS-CoV-2 infection effects. (A) Distribution of 1094 

days since symptom onset (DSO) at the time of sample collection across acute and convalescent 1095 

COVID-19 patients in our cohort. Samples were considered to be in the acute phase of infection if 1096 

DSO ≤ 20 (red line), and samples with DSO > 20 were considered follow-ups. (B) Numbers and 1097 

proportions (y-axis) of genes significantly differentially expressed (|log2FC| > 0.5, FDR < 0.05) in 1098 

COVID-19 patients compared to healthy controls. (C) Overlap between the set of significantly 1099 

differentially expressed genes upon infection (blue circle, left) and the set of genes significantly 1100 

correlated with disease severity (red circle, right). (D) Correlation between respiratory support 1101 

score and days since symptom onset (DSO). P-value and best-fit slope were determined from a 1102 

linear regression model correcting for dataset.  1103 

  1104 
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 1105 

Fig. S2. Sharing patterns among disease-state-shared eGenes. Significant eGene sharing 1106 

patterns among disease-state-shared eGenes (lfsrCTL < 0.1 and lfsrCOVID < 0.3 or lfsrCOVID < 0.1 and 1107 

lfsrCTL < 0.3) in healthy controls and COVID-19 patients across cell types.  1108 

  1109 
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Fig. S3. Cell type-specific response eQTL patterns. (A) Distribution of effect sizes for the cell 1111 

type-specific reQTL sets plotted across cell types in healthy controls (“ctl”), patients (“COVID-1112 

19”), and follow-ups (“follow-up”) for the full sample set, as well as a downsampled set in the 1113 

control (“ctl downsample”) and patient (“COVID-19 downsample”) groups. Downsampled sets 1114 

mirrored the follow-up data structure (n = 26 samples) and were derived as follows: i) for controls, 1115 

26 individuals were randomly sampled from the control group, and ii) for patients, the 21 follow-1116 

up individuals with a corresponding acute infection time point sample were included. Here, all 1117 

eQTL effect sizes are taken directly from Matrix eQTL (i.e., prior to running mash). (B) Paired 1118 

reQTL effect sizes in COVID-19 patients (“COVID”) and follow-ups (“FOLLOW”) across cell 1119 

types. The change in effect size for each gene from patient to follow-up samples is plotted as a 1120 

black line. (C) The observed mean Δ response magnitude across the 370 CD14+ monocyte-specific 1121 

reQTL (red dotted line) compared to the null expectation when permuting random sets of shared 1122 

eGenes of the same size (n = 370) and computing their mean (n permutations = 1,000, null shown 1123 

in gray). The observed mean is significantly lower (p < 0.001) than random expectation.  1124 

  1125 
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 1126 

Fig. S4. Colocalization patterns in COVID-19 follow-up samples. (A) The colocalization signal 1127 

for the lead SNP rs9636867 (IFNAR2, CD4+ T cells, GWAS: hospitalization due to severe COVID-1128 

19) is absent in follow-ups. (B) The colocalization signal for the lead SNP rs7246757 (SNRPD2, 1129 

CD14+ monocytes, GWAS: hospitalization due to severe COVID-19) is absent in follow-ups. For 1130 

both (A) and (B), the larger plot on the left shows the correlation between GWAS p-values (x-1131 

axis) and eQTL p-values (y-axis) in follow-ups. Smaller plots on the right show Manhattan plots 1132 

for the GWAS signal (top) and the eQTL signal in follow-ups (bottom). The lead SNP is depicted 1133 

as a purple diamond.   1134 
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Table S8. Gene expression principal components (PCs) regressed in the pseudobulk eQTL 1135 

analysis. PCs regressed and number of significant eQTL per cell type and disease state are 1136 

reported. 1137 

Cell type 

N Regressed PCs N genes < 0.10 FDR, Matrix eQTL 

Control COVID-19 Follow-up Control COVID-19 Follow-up 

CD14+ 

monocytes 

1 to 3 1 to 14 1 to 2 430 1286 56 

CD16+ 

monocytes 

1 1 1 10 49 6 

CD4+ T 1 to 10 1 to 4 1 to 2 1665 730 77 

CD8+ T 1 to 12 1 to 13 1 to 3 424 274 25 

B 1 to 5 1 to 8 1 285 192 9 

NK 1 to 13 1 to 6 1 to 2 74 230 9 

 1138 
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