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Abstract: Advancing neuromorphic computing technology requires the development of versatile
synaptic devices. In this study, we fabricated a high-performance Al/LiNbO3/Pt memristive synapse
and emulated various synaptic functions using its primary key operating mechanism, known as
oxygen vacancy-mediated valence charge migration (VO-VCM). The voltage-controlled VO-VCM
induced space-charge-limited conduction and self-rectifying asymmetric hysteresis behaviors. More-
over, the device exhibited voltage pulse-tunable multi-state memory characteristics because the
degree of VO-VCM was dependent on the applied pulse parameters (e.g., polarity, amplitude, width,
and interval). As a result, synaptic functions such as short-term memory, dynamic range-tunable
long-term memory, and spike time-dependent synaptic plasticity were successfully demonstrated by
modulating those pulse parameters. Additionally, simulation studies on hand-written image pattern
recognition confirmed that the present device performed with high accuracy, reaching up to 95.2%.
The findings suggest that the VO-VCM-based Al/LiNbO3/Pt memristive synapse holds significant
promise as a brain-inspired neuromorphic device.
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1. Introduction

Recent advances in information and intelligence technologies, such as the Internet of
Things, big data analysis, data-intensive image process, and artificial intelligence, have
significantly increased the demand for novel electronic devices that enable fast and efficient
data computation [1,2]. The conventional von Neumann architecture is anticipated to
encounter inherent limitations due to its bottleneck effect, which arises from serial data
processing and high power consumption. This bottleneck is primarily due to the separation
of data processing units and memory units in von Neumann computing architectures [3,4].
To address this critical issue, neuromorphic computing devices have garnered substantial
interest. Neuromorphic computing aims to replicate the functionality of the human brain,
particularly in processing, storing, and transmitting data in parallel [5,6]. The parallel
processing capability of neuromorphic computing allows simultaneous data computation
across multiple interconnected nodes, which can effectively mimic the neural networks of
the human brain. This can lead to exceptional performance in complex data processing,
pattern recognition, and autonomous learning, with remarkable power efficiency [7,8].

In biological neural networks, data processing occurs through the modulation of
synaptic plasticity, which connects multiple neurons [6,9,10]. The memristive behaviors
of analog memristors closely mimic the key functionalities of biological synapses. Specif-
ically, memristors exhibit voltage-controlled dynamic changes in electrical conductance
as well as nonvolatile data retention [11]. This allows analog memristors to act as elec-
tronic synapses capable of expressing electronic data in multi-level conductance states
across a large dynamic range, enabling synaptic weight updates with high linearity and
symmetry and ensuring spatiotemporal variability with fluctuation [1,12]. These character-
istics enable analog memristors to mimic the learning capabilities of biological synapses.
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Consequently, various in-memory architectures, known as memristive synapses, have
been demonstrated based on several memristive switching mechanisms, including the
electromigration of valence charges (e.g., defect charges [13,14] and metal ions [15,16]), elec-
trochemical metallization [17,18], phase transitions [19,20], ferroelectric polarization [21,22],
and redox reactions in organic materials [23,24]. Among these, oxygen vacancy (VO)-
mediated valance charge migration (VCM) in oxide materials is particularly advantageous.
The electric field-controlled VO-VCM not only allows reversible filamentary switching but
also enables fine-tuning of resistance levels [25,26]. In essence, the degree of VO-VCM can
be precisely controlled by adjusting the parameters of the applied voltage pulses to the
device (e.g., polarity, amplitude, width, and interval) [27].

To demonstrate VO-VCM-based memristive synapses, various oxide materials such as
HfO2 [28–30], TiO2 [31,32], WO3 [33,34], Ta2O5 [27,35], and LiNbO3 [36,37] have garnered
significant attention due to their intrinsic point defects, diverse growth methods, valence
charge control techniques, and excellent resistive switching characteristics. Among these
oxide materials, LiNbO3 stands out for its potential to achieve uniform analog switching,
owing to its oxygen octahedron structure [38,39]. In rhombohedral LiNbO3, oxygen atoms
share faces along the polar trigonal axis, and these oxygen octahedra are interspersed
with Li and Nb atoms. This arrangement provides four pathways along the edges of
the octahedron, allowing for easy migration of VO within the lattice [40,41]. Given these
intrinsic advantages, LiNbO3-based synaptic devices have recently attracted considerable
interest [42–48]. As noted earlier, the degree of VO-VCM directly influences the synaptic
characteristics of memristive devices. Consequently, the VO-VCM behavior in LiNbO3
can effectively emulate synaptic characteristics, such as the linear and symmetric potentia-
tion/depression of synaptic weights [36,37,44] as well as spike-timing-dependent synaptic
plasticity [42]. To enhance the VO-VCM properties in LiNbO3, several techniques have been
recently proposed and demonstrated to control the VO density in single-crystalline LiNbO3.
For example, methods like crystal ion slicing using low-energy Ar+ irradiation [42–46]
and locally tailored strain doping through He+ or H+ ion implantation are effective for
controlling the VO density in LiNbO3 [47,48]. However, despite the previse VO control
offered by these techniques, they complicate the device fabrication process. Therefore, a
simpler, more straightforward method is needed to fabricate VO-VCM-mediated LiNbO3
memristors. For future applications in artificial neural networks, it is essential to develop a
memristive synapse array in a crossbar architecture that utilizes a simplified fabrication
process. In this context, directly growing LiNbO3 onto the electrode material is crucial.

In this work, we investigate the facile fabrication of simple VO-VCM-based Au/LiNbO3/
Pt memristive synapses and characterize their synaptic characteristics. The top-to-bottom
Au/LiNbO3/Pt devices were fabricated by directly sputtering LiNbO3 onto the Pt bottom
electrode, followed by the formation of an Al top electrode onto the LiNbO3 active layer.
Here, we report the effects of LiNbO3 growth temperature on the material properties and
their corresponding synaptic characteristics in VO-VCM-based Au/LiNbO3/Pt memristors.
To provide insight into the device operation, the charge transport mechanisms are also
thoroughly analyzed and discussed in detail.

2. Experimental Details

Figure 1a shows the fabricated device structure of the top-to-bottom contact two-
terminal Al/LiNbO3/Pt memristor. First, a Ti adhesion layer (≈3 nm thick) was deposited
by D.C. sputtering at 450 ◦C onto the SiO2/Si substrate to enhance adhesion between the Pt
bottom electrode and the substrate. Subsequently, a 120 nm thick, mirror-like Pt (111) layer
was deposited onto the Ti adhesion layer via D.C. sputtering at 500 ◦C. Next, a 50 nm thick
LiNbO3 layer was grown at 180–320 ◦C on the Pt/SiO2/Si substrate using R.F. magnetron
sputtering with an R.F. power of 80 W. During the 60 min LiNbO3 deposition, the working
pressure was maintained at 25 mTorr, while a gas mixture of Ar (12 sccm) and O2 (6 sccm)
was continuously supplied. Finally, circular Al top electrodes (100 µm in diameter) were
formed onto the LiNbO3 layers.
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the growth temperature increased to 250 °C, the LN-250 sample exhibited a smooth and 
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Figure 1. (a) Schematic of the Al/LiNbO3/Pt memristive synapse. Surface FE-SEM images of the
(b) LN-180, (c) LN-250, and (d) LN-320 layers grown on (111) Pt/SiO2/Si substrates at different
temperatures of 180, 250, and 320 ◦C, respectively. (e) Wide-angle XRD patterns of the LN-180,
LN-250, and LN-320 samples. (f) Deconvoluted XRD pattern at the Bragg angle of ~40.1◦, showing
the portions of (111) Pt and (113) LiNbO3 phases. The insets in (b–d) show the zoomed-in view of
each sample.

The surface morphology of the LiNbO3 layers was monitored using field-emission
scanning electron microscopy (FE-SEM) with a Hitachi S4800 electron microscope (Tokyo,
Japan). Crystallographic structures and lattice phases were analyzed via X-ray diffraction
(XRD) using a Bruker D8 Advance (Madison, WI, USA) with a Cu Kα1 radiation source.
The valence states of the LiNbO3 components were examined using X-ray photoelectron
spectroscopy (XPS) with a Thermos Fisher Scientific ESCALab250Xi system (Waltham,
MA, USA). The ferroelectric properties of the LiNbO3 layers were evaluated using po-
larization vs. voltage (P–V) measurements with a Precision RT66C Ferroelectric Tester
(Radiant, Albuquerque, NM, USA). The electrical characteristics and synaptic functions
of the Al/LiNbO3/Pt memristor were assessed using a B1500A/B1530A semiconductor
parameter analyzer (Keysight, Santa Rasa, CA, USA).

3. Results and Discussion

In thin-film devices, the homogeneity of crystal grains is crucial for maintaining stable
on-state current flow because crystalline defects such as grain boundaries and pits can
increase leakage current, potentially leading to device failure. To investigate the effect of
growth temperature on the film texture, we deposited three different LiNbO3 layers at 180,
250, and 320 ◦C and assessed their morphological properties. For simplicity, we refer to
the samples grown at these temperatures as LN-180, LN-250, and LN-320, respectively. As
shown in the FE-SEM image of LN-180 (Figure 1b), the LiNbO3 layer grown at the low
temperature of 180 ◦C displayed an inhomogeneous and rough surface. However, when
the growth temperature increased to 250 ◦C, the LN-250 sample exhibited a smooth and
well-merged surface (Figure 1c). In contrast, the surface of the LN-320 sample became
rough again when the growth temperature increased up to 320 ◦C (Figure 1d).

The surface morphology is closely related to the crystallographic properties of thin
films. Therefore, we performed XRD analysis on the LiNbO3 samples. Figure 1e shows
the XRD patterns of LN-180, LN-250, and LN-320 layers deposited onto Pt (111)/SiO2/Si
substrates. In all samples, three predominant XRD peaks were observed at Bragg angles of
~40.1◦, ~46.7◦, and ~67.8◦. The peaks at ~46.6◦ and ~67.8◦ are well known to correspond
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to the (220) and (400) crystal planes of diamond-structured Si [49], while the peak at
approximately 40◦ is associated with both the (111) Pt and (113) LiNbO3 phases [50]. As
deconvoluted in Figure 1f, the XRD peak at ~40.1◦ originated from the (111) phase of cubic
Pt [51], while that at ~40.3◦ was attributed to the (113) phase of rhombohedral LiNbO3 [52].
According to a previous study by Ono et al. [50], when LiNbO3 is grown on a (111) Pt
substrate, it tends to increase along preferential orientations perpendicular to the (001)
and (113) directions. This suggests that the LiNbO3 layers in this study were effectively
grown along the rhombohedral (113) phase direction without segregation into Nb2O5
and LiNb3O8. When comparing the intensity of the (113) LiNbO3 peak, the XRD results
correlate well with the FE-SEM images. Specifically, the LN-250 sample exhibited a stronger
(113) LiNbO3 peak intensity than LN-180, while LN-320 showed a significant degradation
in crystallinity. Based on the XRD and FE-SEM analyses, we can conclude that the LiNbO3
sample grown at 250 ◦C is more suitable for fabricating high-quality memristive devices
than those grown at other temperatures.

Next, the valence states of the elemental species were investigated through XPS
analysis. Figure 2a–c present the Li 1s and Nb 4s core-level spectra of the LiNbO3 layers
grown at 180–320 ◦C, respectively. In all samples, distinct peaks were observed for both Li
1s and Nb 4s at 54.9 and 60.3 eV, respectively.
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that the stoichiometric composition of Li and Nb remained nearly identical across the LN-
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Figure 2. XPS spectra of the LiNbO3 layers grown at different temperatures. Li 1s and Nb 4s core
levels of (a) LN-180, (b) LN-250, and (c) LN-320. Nb 3d core levels of (d) LN-180, (e) LN-250, and
(f) LN-320. O 1s core levels of (g) LN-180, (h) LN-250, and (i) LN-320.

Regardless of the growth temperature, there were no significant changes in the peak
positions or the intensity ratio between Li 1s to Nb 4s, as seen in Figure 2a–c. This indicates
that the stoichiometric composition of Li and Nb remained nearly identical across the
LN-180, LN-250, and LN-320 samples [53,54]. To further explore the valence states of Nb,
high-resolution XPS measurements were performed for the Nb 3d core level. Figure 2d–f
show that the Nb 3d spectrum can be deconvoluted into two distinct components: Nb5+

and Nb4+. The doublet peaks of 3d5/2 at 209.8 eV and 3d3/2 at 207.1 eV correspond to
Nb5+ [54,55], while additional doublet peaks at 209.1 eV (3d5/2) and 206.4 (3d3/2) represent
Nb4+. The presence of Nb4+ in LiNbO3 is closely related to the formation of VO, which
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compensates for two electrons within the Nb site [56,57]. Eventually, VO acts as a donor
within the LiNbO3 lattice [58]. The existence of VO was further confirmed through the O
1s core-level spectra, as shown in Figure 2g–i, where two characteristic oxygen bonds are
evident: Nb-O-Li at 530.1 eV and VO at 531 eV [53].

As previously discussed, VO plays a crucial role in facilitating the VCM-based mem-
ristive switching behavior in LiNbO3. Therefore, we evaluated the current–voltage (I–V)
characteristics of the Al/LiNbO3/Pt memristors. It was observed that the I–V characteristics
varied depending on the morphological properties of LiNbO3. Particularly, the memristors
fabricated with LN-320 exhibited unstable and leaky I–V curves, while the devices using LN-
180 and LN-250 demonstrated stable memristive switching characteristics (see Figure S1).
However, when the sweep voltage (Vsw) exceeded ±3 V, the LN-180 device also showed
unstable I–V behaviors with sudden glitches (Figure S1a–c). Based upon these results, we
accordingly focused further electrical characterization on the LN-250 sample. As shown in
Figure 3a, the LN-250 memristor clearly revealed voltage polarity-dependent asymmetric
hysteresis loops (see the inset of Figure 3a). Moreover, both the memory window and
on-state current increased progressively with increasing Vsw. The device demonstrated
robust self-rectifying memristive characteristics [42–48], which are advantageous for con-
trolling the linear and symmetric potentiation/depression of synaptic weights [36,44] and
for suppressing sneak path currents during the depression process [59,60].
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In VO-VCM-based memristors, the memristive switching behaviors can be attributed
to two primary mechanisms. The first involves the migration and redistribution of VO,
leading to changes in electrical conductance by forming VO channels, resulting in filamen-
tary conduction (i.e., memristive switching via filamentary conduction) [36,45]. The second
mechanism is the gradual change in the on-state current, mediated by VO-VCM, which
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modulates the potential barrier at the electrode/oxide interface (i.e., memristive switching
via interfacial barrier modulation) [44,46,61]. To gain further insight into the observed
switching behavior of the LN-250 memristor, we analyzed its conduction mechanism using
the space-charge-limited conduction (SCLC) model [62,63], which is associated with the
VO-VCM behavior in oxide materials [43–46]. The I–V relationship for SCLC conduction is
given by the following:

JSCLC =
9
8

εiµθ
V2

d3 , (1)

where εi is the static dielectric constant of the oxide, µ is the carrier mobility, θ is the ratio of
free carrier density to trapped charge density, and d is the oxide thickness.

In Region I (see inset in Figure 3a), when a low positive voltage (Vsw > 0) was applied
to the device, the current increased linearly with the applied voltage (i.e., slope ≈ 1.12). As
the magnitude of Vsw further increased, the current followed Child’s law with a slope of
approximately 2.11 (i.e., I ∝ V2). After this point, the slope sharply increased to 5.85, indicat-
ing that the high-electric field created a temporary conductive area region, corresponding
to trap-limited SCLC [36,45]. Upon returning to the lower Vsw region in Region II (see
inset in Figure 3a), the current followed Child’s law again, with a slope of approximately
2.35, consistent with the trap-filled SCLC mechanism [46]. In the negative Vsw region
(Region III, Figure 3c), the slope was found to be 2.11, also consistent with the trap-limited
SCLC mechanism. However, in Region IV, at higher negative voltages, the slope changed,
indicating that charge transport shifted to a different mechanism than SCLC. To identify
the appropriate mechanism in Region IV, we replotted and analyzed the I–V curve using
several transport models, such as Poole–Frenkel (P-F) emission, Fowler-Northeim tun-
neling, and Schottky emission. Then, we found that the P-F emission model provided
the best fit to the measured I–V curve (see Figure S2). According to the literature [48,64],
P-F emission is predominantly governed by the trap-limited bulk conduction mechanism,
given by the following:

JPF = qµNcEexp

[
−q
(
ϕT −

√
qE/πε0εr

)
kT

]
, (2)

where q is the elementary charge, µ is the electronic drift mobility, Nc is the density of
states in the conduction band, E is the electric field, k is a Boltzmann constant, ϕT is the
trap energy level, ε0 is the permittivity of free space, and εr is the dielectric constant of the
material. From this, the slope in the P-F plot can be given as follows:

Slope = m

(
q3

πε0εr(kT)2

)1/2

, (3)

where m is the constant that distinguishes the main conduction mechanism. For example,
m = 1 for P-F emission, and m = 2 for shallow traps [64,65]. From the ln(J/E) vs. E1/2

plot (Figure 3d), two distinct slopes were observed: 0.00129 and 0.00258 in Regions IV
and V, respectively. Since the refractive index (εr

1/2) of LiNbO3 is reported to be 2.28 in
the literature [43,48,66], the value of m in Region IV was found to be unity. This suggests
that P-F emission dominates the charge conduction in Region IV. Similarly, the m value in
Region V was found to be 2, indicating that shallow trap-mediated P-F emission governs
the conduction in this region.

Based on the above results, we here interpret the plausible charge transport mechanism
in the present Au/LiNbO3/Pt memristor. Figure 4 illustrates the VO-VCM-mediated SCLC
behavior at various bias voltages. From the XPS results, we assume the existence of VO in
the LiNbO3 active layer. During the fabrication of the Au/LiNbO3/Pt device, the LiNbO3
layer was grown directly onto the Pt metallic electrode. Consequently, a large amount of
VO is likely to be distributed at the bottom region of LiNbO3 near the Pt electrode, as the
high density of grain boundaries forms in the initial LiNbO3 layer deposited on the Pt
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electrode [45]. At zero bias (Figure 4a), the potential barrier at the LiNbO3/Pt interface
(i.e., Schottky-like barrier at the metal/oxide interface) is expected to be slightly lower
due to the reduction in electrochemical potential caused by VO [43,46]. Similarly, the
potential barrier at the Au/LiNbO3 interface is also reduced, as abundant VO is generated
during the final growth stage of LiNbO3 that resides underneath the Au top electrode.
As shown on the right side of Figure 4a, the fabricated Au/LiNbO3/Pt device thus acts
like a two-diode-connected resistor. Here, it should be noted that the exact origin of the
Schottky-like potential barrier remains unclear. However, prior studies [43–46,67–70] have
observed rectifying behaviors at metal/LiNbO3 interfaces (e.g., Au, Cr, Pt, and Ti), likely
due to VO-induced Fermi-level pinning [69,70], which contributes to the formation of
Schottky-like barriers.
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When a positive bias (Vsw = V1↑ > 0) is applied with the Pt electrode grounded, VO
migrates (i.e., VO-VCM) toward the Pt electrode along the grain boundaries (Figure 4b),
resulting in the formation of localized VO clusters (i.e., VO group) near the Pt interface
due to vacancy–vacancy interactions [71,72]. Simultaneously, the charges from the migrat-
ing VO contribute to trap-controlled SCLC within the LiNbO3 active layer (e.g., Region I).
As VO clusters near the Pt electrode, they reduce the local electrochemical potential, fur-
ther lowering the potential barrier at the LiNbO3/Pt interface [43,47]. This process sus-
tains a high on-state current at a relatively high bias voltage (Vsw). The on-state current
persists until the VO clusters are redistributed by applying a negative Vsw. Therefore,
the high on-state current remains even when the Vsw decreases to a lower voltage (e.g.,
Vsw = V2↓ < V1↑ in Region II), leading to memristive hysteresis in the I–V characteristics of
the Au/LiNbO3/Pt device.

After switching the voltage (Vsw) to the negative V3↑ (Figure 4c), the clustered VO
groups begin to disintegrate, allowing VO to migrate toward the Au/LiNbO3 interface. This
initiates trap-controlled SCLC at this bias state (e.g., Region III). It is important to note that
the density of migrated VO will not increase further, even with the application of a higher
negative Vsw. This is because VO clusters near the LiNbO3/Pt interface tend to remain
stable. Specifically, since VO tends to stabilize in its neutral valence state (VO

0) [73], the
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density of electromigrating VO is limited. Hence, the charge transport mechanism changes
from trap-controlled SCLC to P-F emission, characterized by minimal current flow (e.g.,
Region IV). When a more negative voltage (Vsw = V4↑ << 0) is applied, the conducting path
is abruptly disconnected due to the rupture of [47] localized VO clusters at the LiNbO3/Pt
interface (Figure 4d). Consequently, the potential barrier at the LiNbO3/Pt interface
significantly increases, allowing only a small current to flow through the shallow trap-
mediated P-F emission (e.g., Region V). Therefore, this type of Au/LiNbO3/Pt memristor
exhibits the rectified asymmetric hysteresis characteristics.

The VO-VCM-mediated potential barrier modulation presents an opportunity to emu-
late synaptic functions because multiple memristive states with varying on-state current
levels can be achieved by adjusting the potential barrier at both the Au/LiNbO3 and
LiNbO3/Pt interfaces. To explore this, we examined the synaptic functions of the LN-250
memristor. First, we evaluated the dependence of memristive hysteresis characteristics on
the number of voltage sweeps (nsw). Figure 5a,b show the evolution of the on-state current
observed after applying 20 consecutive voltage sweeps with a dual-sweep mode and a
single-sweep mode, respectively. For the dual-sweep mode with a sweep time (tsweep) of 2 s
(see inset in Figure 5a), the device clearly exhibited the hysteresis loops, while the maximum
current increased rapidly and tended to saturate as the nsw increased (see also Figure 5c).
In the case of the single-sweep mode with a tsweep of 1 s (see inset in Figure 5b), similarly,
the maximum current increased with increasing the nsw (see also Figure 5d). These indicate
that the LN-250 memristor could demonstrate data accumulation in response to the number
of consecutive voltage biases (i.e., cumulative learning behavior). Additionally, the device
displayed the stable retention characteristics of the multilevel conductance states, which
are essential for demonstrating the synaptic functions. As shown in Figure 5e, the device
exhibited tenacious data retention characteristics for multiple memory states. Namely,
four clear multilevel states, which had been performed by applying voltage pulses with
pulse amplitudes (Vpulse) of +5, +4, +3, and −4 V, were tenaciously maintained after 5000 s
(Figure 5e). Similarly, as can be seen from Figure 5f, four different tenacious memory states
were also achieved by changing the pulse width (tpulse).
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These basic learning behaviors and tenaciously retainable multi-states characteristics
are evident for the synaptic activity of the Au/LiNbO3/Pt memristor. To examine the
synaptic functionality, firstly, we thus measured the excitatory postsynaptic current (EPSC)
characteristics. Figure 6a displays the EPSC transient curves of the LN-250 memristor,
measured at a read-out voltage (Vread) of 1.2 V after applying a single voltage pulse with
varying Vpulse and tpulse. When a single voltage pulse (i.e., a presynaptic stimulus) was
applied to the device, the electric pulse-stimulated postsynaptic current (∆PSC) stabilized
rapidly after an initial decay. Notably, the magnitude of the retained ∆PSC depended
on both Vpulse and tpulse. For instance, when Vpulse = 4 V (left panel of Figure 6a), the
residual ∆PSC increased with longer tpulse. Furthermore, the device demonstrated a Vpulse-
dependent enhancement of ∆PSC, with greater ∆PSC values observed at Vpulse = 4.5 V
(right panel of Figure 6a) compared to Vpulse = 4 and 4.25 V. These behaviors are similar to
biological synapses, where synaptic plasticity depends on the duration and strength of the
stimuli. Thus, it can be inferred that applying consecutive stimuli with moderate Vpulse
and tpulse gradually strengthens the synaptic plasticity, enabling the LN-250 memristor to
mimic biological synaptic functions.
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The above hypothesis can be tested by examining the short- and long-term-memory
(STM/LTM) characteristics. As a first step, we evaluated the paired pulse facilitation
(PPF) characteristics to investigate the short-term enhancement of synaptic strength. PPF
measures the cumulative ∆PSC when two consecutive stimuli are applied. The interval
between the two pulses (tinter) is critical for determining PPF activity because the ∆PSC
triggered by the second pulse plays a key role for updating the synaptic weight from its
previous state. To assess PPF, we measured the ∆PSC values as a function of tinter, which
varied from 5 to 100 ms, while keeping tpulse, Vpulse, and Vread constant at 500 µs, 4 V, and
1.2 V, respectively. Similar to the EPSC characteristics, the PPF curves exhibited typical
transient behavior in response to the applied voltage pulses. However, in the case of PPF,
the residual ∆PSC value increased following the second pulse (Figure 6b), indicating that
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the synaptic weights were enhanced from the initial ∆PSC triggered by first pulse to the
updated ∆PSC state induced by the second pulse. Notably, as tinter increased, the updated
∆PSC values significantly decreased, leading to a weakening of data retention. This is
likely due to the diffusion of grouped VO clusters into the bulk region during tinter period,
driven by concentration gradients [73]. Furthermore, the difference between the first pulse-
initiated and second pulse-updated ∆PSC values (A2 − A1) decreased exponentially with
increasing tinter. Consequently, the PPF index ((A2 − A1)/A1 × 100%) also showed an
exponential decay as a function of tinter (Figure 6c). This tinter-dependent PPF decay can be
attributed to two distinct phases of synaptic weight relaxation [74,75]:

PF index = C1exp(−t/τ1) + C2exp(−t/τ2), (4)

where C1 and C2 are the initial PPF values for the rapid and slow relaxation phases, respec-
tively; τ1 and τ2 are the time constants associated with these two phases, respectively. By
fitting the experimental data to Equation (4) (shown as the red line in Figure 6c), τ1 and τ2
of the LN-250 memristor were estimated to be 10.09 and 434.08 ms, respectively. In biologi-
cal synapses, the fast relaxation time enables producing a temporally enhanced synaptic
response by short-interval stimuli through rapid resetting of synaptic response. In contrast,
the slow relaxation time supports long-term synaptic plasticity even with prolonged inter-
vals in between repeated stimuli [76]. These time constants of biological synapses differ,
depending on the characteristics of various synapses (e.g., neurotransmittances, receptor
properties, and synaptic roles) [77,78]. Among biological synapses that are responsible for
the learning action, the rapid relaxation time typically ranges from a few milliseconds to
tens of milliseconds, while the slow relaxation time persists from a hundred milliseconds
to a few seconds [79,80]. Therefore, it can be surmised that the present Au/LiNbO3/Pt
memristor may effectively replicate the basic synaptic functions of biological synapses.

In biological synapses, the transition from STM to LTM plays a fundamental role in
synaptic learning. STM temporarily updates the memory state, with the corresponding
synaptic weight rapidly reverting to its initial state. In contrast, LTM represents a semiper-
manent change in synaptic weight, achievable through the application of a large number
of consecutive stimuli. This is akin to the rehearsal ability of the human brain [74,81],
which can enhance the STM-to-LTM transition probability through repetitive practices.
Such a rehearsal action can also be demonstrated in the Au/LiNbO3/Pt memristor. After
selecting the pulse parameters (i.e., Vpulse = 4 V, tpulse = 500 µs, and tinter = 9.5 ms) based
on multiple assessments of varying key pulse parameters (see Figure S3), we investigated
the STM-to-LTM transition behavior, i.e., rehearsal activity, as a function of the number of
applied pulses (npulse = 16, 32, 64, and 128). As shown in Figure 7, consecutive potentiation
pulses led to a sequential update of the synaptic weight. Notably, the device exhibited a
strong dependence on both the updated synaptic weight and its retention characteristics as
a function of npulse. Specifically, the consecutive potentiation pulses facilitated an increase
un ∆PSC values as npulse increased. Furthermore, the transient time (τtran) of the updated
∆PSC also increased from 0.084 to 0.679 s as npulse was increased from 16 to 128, respectively.
These results indicate that the device supports STM-to-LTM transition activity, which is
characteristic of synaptic learning and memory functions. This STM-to-LTM transition in
the Au/LiNbO3/Pt memristor can be attributed to VO-VCM-mediated potential barrier
modulation. As discussed earlier, applying a positive bias voltage promotes the VO-VCM
behavior within the LiNbO3 active layer. Consequently, the degree of VO-VCM increases
with consecutive voltage pulses, leading to enhanced VO clusterization. This, in turn, in-
creases SCLC in the LiNbO3 active layer and reduces the potential barrier at the LiNbO3/Pt
interface. Moreover, the strong VO clusterization results in robust retention of the hysteretic
memory state. Thus, both ∆PSC and τtran increase as npulse increases, enabling the effective
STM-to-LTM transition in the Au/LiNbO3/Pt memristor.
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After observing the STM-to-LTM transition, we examined the long-term potentiation
(LTP) and long-term depression (LTD) characteristics by applying continuous 100 LTP and
100 LTD pulses (i.e., VLTP and VLTP). To evaluate the dependence of the ∆PSC dynamic
range on the applied Vpulse magnitude, we varied both VLTP and VLTP amplitudes, while
other parameters were fixed at tLTP = 600 µs, tLTD = 1 ms, tinter = 10 ms, and Vread = 1.2 V
(see the upper panel of Figure 8a). As shown in Figure 8a, the dynamic range of ∆PSC
increased with both VLTP and VLTP. For high learning accuracy and efficient training in
the electronic synapse, both a wide dynamic range and good linearity are essential [82].
However, the LN-250 memristor exhibited non-linear and asymmetric LTP/LPD behavior.
To improve both the linearity and symmetricity of the LTP/LTD characteristics, pulse mod-
ulation techniques such as the pulse magnitude modulation [83,84] and pulse frequency
modulation [12,85] have been suggested in the literature. Therefore, we attempted to
improve both linearity and symmetricity by using incremental VLTP and VLTP schemes
while keeping other parameters fixed at tLTP = 300 µs, tLTD = 500 µs, tinter = 10 ms, and
Vread = 1.2 V (see the upper panel of Figure 8b). As shown in Figure 8b, both linearity and
symmetricity were significantly improved using the incremental pulse scheme.

As noted above, the linearity and symmetricity of the LTP/LTD characteristics directly
affect the learning accuracy and training efficiency of the synapse. To assess the impact
of these characteristics on image pattern recognition accuracy, we performed a theoretical
simulation using the Modified National Institute of Standard and Technology (MNIST)
handwritten digit dataset. The MNIST simulation was based on the backpropagation
learning rule in an artificial neural network system, which includes 60,000 and 10,000
handwritten training and testing images, respectively. For this simulation, we assumed
that the neural network consisted of a synthetic multilayer structure, including one input,
three hidden, and one output layers (Figure 9a). Each training image of a handwritten
digit was designed as a 28 × 28 pixel grid, converted into 784 input neuron vectors for
the input layer. These input vectors were propagated through the three hidden layers
(128 → 64 → 32 nodes) to the 10 output neurons. Based on updated synaptic weights for
each test image, the pattern recognition accuracy was determined at the output layer by
comparing the actual database values with the predicted output value. Then, the overall
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accuracy for all the test images was calculated as a percentage of the correct prediction
by matching and comparing the predicted values with the true values. Through multiple
runs of the MNIST simulation using the experimental data from Figure 8a,b, we found
that the incremental pulse scheme achieved higher recognition accuracy than the identical
pulse scheme (Figure 9b). For example, the pattern recognition accuracy increased from
93.5% (using the identical pulse scheme at 10 epochs) to 95.2% (using the incremental pulse
scheme at 10 epochs). These results confirm that higher accuracy can be achieved when
symmetric and linear LTP/LTD data are introduced to the neural network.
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simulation using the experimental LTP/LTD data shown in Figure 8.

Finally, to examine the perceptron role of the LN-250 memristor as an electronic
synapse, we measured its spike-timing-dependent plasticity (STDP) characteristics. In
an electronic synapse, the perceptron role can be identified by observing the temporal
difference between pre- and postsynaptic states [86–88]. The STDP measurement allows us
to determine the synaptic weight change (∆w) by varying the timing difference between
pre- and postsynaptic spike pulses (i.e., ∆t = tpost − tpre). The variation of ∆t-dependent
∆w is typically used to assess the perceptron role of the electronic synapse. As shown in
Figure 10, the LN-250 memristor successfully demonstrated four different types of Hebbian
learning rules. Specifically, the asymmetric Hebbian (Figure 10a), asymmetric anti-Hebbian
(Figure 10b), symmetric Hebbian (Figure 10c), and symmetric anti-Hebbian (Figure 10d)
rules were realized by varying the polarity and/or shape of the applied spike pulses (see
Figures S4–S7 for detailed ∆t-dependent spike pulse shapes). As seen in Figure 10a–d, in all
four cases, ∆w decays exponentially with increasing ∆t. From the ∆t-dependent ∆w decay
curves, the STDP time constant (τs) can be parametrized using the following equations [89]:

∆w = A·exp
(
−∆t2

τ2
s

)
+ ∆w0 (for symmetric Hebbian rules) (5)

∆w = A·exp
(
−∆t

τs

)
+ ∆w0 (for asymmetric Hebbian rules) (6)

where A is the scaling factor, and ∆w0 is the constant synaptic weight that is independent
of ∆t-dependent ∆w. By fitting the experimental data to Equations (5) and (6), the τs values
were estimated to be 21.63, 40.26, 16.21, and 24.58 ms for the asymmetric Hebbian, asym-
metric anti-Hebbian, symmetric Hebbian, and symmetric anti-Hebbian cases, respectively.
These values fall within the timescale typical for biological synapses in the human brain (i.e.,
τs ≈ a few tens of milliseconds) [90]. Furthermore, since rapid ∆w changes within a narrow
∆t timescale are essential for parallel computing in neural networks, clear decay of ∆t-
dependent ∆w is advantageous for future neuromorphic circuit applications. In summary,
the present Au/LiNbO3/Pt memristive synapse demonstrated excellent functionalities as
an electronic synapse, having comparable and even better synaptic performance than other
VO-VCM-based memristive synapses (See Table 1).
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Table 1. Comparison of materials and synaptic parameters for VO-VCM-based memristive synapse.

Materials
Pulse Condition for LTP and LTD

Dynamic
Range

Linearity
(LTP/LTD)

Pattern
Recognition

Accuracy
Ref.Pulse

Scheme VLTP/VLTD tLTP/tLTD tinter

Pt/HfO2/HfOx/TiN Identical –0.8 V/2 V 1 µs/2 µs ~0.3~0.7 mA [28]
TiN/Al:HfO2/TiN Identical 2.5 V/–2.4 V 100 µs 3~9 µS 22%/60% 94.5% [29]

Au/TiO2/Au Identical 10 V/–10 V 50 ms 50 ms ~0.1~1 µA [31]
ITO/TiOx/TiOy/TiN Identical 1 V/–1 V 50 µs ~240~47 µA 0.89/0.69 [32]

W/WO3−x/Pt Identical 1.8 V/–1.8 V 400 µs ~28~32 mA 0.81 [34]

Pt/Ta2O5/HfO2/TiN Incremental 0.8~–1.2
V/1~1.2 V 10 µs 0~6 mS 27.03%/27.23% 69.88 [35]

Au/LiNbO3/Pt Identical +15 V/–15 V 100 ms ~17~23 µA [37]
Au/LiNbO3/Pt Identical 4 V/–4 V 40 ms 50 ms ~22~29 µA 1.2/2.7 [36]

This Work Incremental 2~4.5
V/–0.5~3.5 V

300 µs/500
µs 10 ms 0~2 µA 0.16/0.32 95.2%

4. Conclusions

The biological synaptic functions were effectively emulated using a memristive
synapse, consisting of a top-to-bottom Al/LiNbO3/Pt two-terminal device that operates
based on the VO-VCM mechanism. The device was fabricated by directly depositing a
rhombohedral (113) LiNbO3 active layer onto a cubic (111) Pt bottom electrode, followed
by the formation of a lithographic Al top electrode. The presence of VO enabled VO-VCM-
mediated SCLC in the LiNbO3 active layer, resulting in rectified asymmetric hysteresis
characteristics. Furthermore, the device successfully demonstrated a range of synaptic
functions by manipulating multiple memory states through control of the magnitude of
Vpulse and the width of tpulse. It achieved an image pattern recognition accuracy of up
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to 95.2% in the MNIST simulation and exhibited versatile Hebbian learning behaviors
in its STDP characteristics. These results highlight the potential of the VO-VCM-based
Al/LiNbO3/Pt memristor for neuromorphic computing applications.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nano14231884/s1: Figure S1. (a) I–V characteristic curves of the
Al/LiNbO3/Pt memristive devices composed of the (a–c) LN-180, (d–f) LN-250, and (g–i) LN-320
layers. Figure S2. (a) Schottky plot, (b) Fowler–Nordheim plot, (c) SCLC plot, and (d) Poole–
Flenkel plot at the negative bias voltage region for the LN-250 memristive synapse. Figure S3.
Dependence of ∆PSC on tpulse performed at the LTP and LTD operations: (a) tpulse = 200 µs for
LTP, (b) tpulse = 400 µs for LTP, (c) tpulse = 600 µs for LTP, (d) tpulse = 800 µs for LTP, (e) tpulse = 1 ms
for LTP, and (f) tpulse = 1 ms for LTD. Vpulse were 4–4.5 V and −2–−3 for LTP and LPD, respectively.
Figure S4. Applied pulse schemes for demonstrating the asymmetric Hebbian learning rule when
(a) ∆t = −5 ms, (b) ∆t = −20 ms, (c) ∆t = −40 ms, (d) ∆t = +5 ms, (e) ∆t = +20 ms, and (f) ∆t = +40 ms.
Figure S5. Applied pulse schemes for demonstrating the asymmetric anti-Hebbian learning rule when
(a) ∆t = −5 ms, (b) ∆t = −20 ms, (c) ∆t = −40 ms, (d) ∆t = +5 ms, (e) ∆t = +20 ms, and (f) ∆t = +40 ms.
Figure S6. Applied pulse schemes for demonstrating the symmetric Hebbian learning rule when
(a) ∆t = −5 ms, (b) ∆t = −20 ms, (c) ∆t = −40 ms, (d) ∆t = +5 ms, (e) ∆t = +20 ms, and (f) ∆t = +40 ms.
Figure S7. Applied pulse schemes for demonstrating the symmetric anti-Hebbian learning rule when
(a) ∆t = −5 ms, (b) ∆t = −20 ms, (c) ∆t = −40 ms, (d) ∆t = +5 ms, (e) ∆t = +20 ms, and (f) ∆t = +40 ms.
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