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Abstract

B3GNT5, a critical member of the β-1,3-N-acetylglucosaminyl transferase gene family

involved in lactose and glycosphingolipids biosynthesis, has been documented to promote

tumor-infiltrating T-cell responses. Our research utilized the Pan-Cancer dataset from The

Cancer Genome Atlas (TCGA) to explore the functional role of B3GNT5. Our study demon-

strated that the antibody-driven inhibition of B3GNT5 diminished T cell-mediated anti-tumor

responses in both in vitro and in vivo settings. By analyzing RNA-seq data from Genotype-

Tissue Expression (GTEx) and TCGA databases, we observed differential expression levels

of B3GNT5 across various tumor types accompanied by an unfavorable prognostic correla-

tion. We further utilized integrated clinical survival data from TCGA and immune cell infiltra-

tion scoring patterns to identify significant associations between B3GNT5 expression and

immune checkpoints, cancer stemness, chemokines, chemokine receptors, and immune-

activating genes. B3GNT5’s expression was highly correlated with different immunoregula-

tory factors, including T cell infiltration, chemokine receptors, and activation genes. Subse-

quent experiments discovered that suppressing B3GNT5 expression in pancreatic

adenocarcinoma cells significantly reduced their tumorigenicity by limiting sphere-forming

ability and self-renewal capacity, thus underscoring B3GNT5’s vital role as a prognostic fac-

tor in immune regulation across pan-cancer. Our findings suggest that B3GNT5 presents a

viable target for cancer immunotherapy by enabling effective communication between can-

cer stem cells and immune cells during tumor treatment.

Introduction

Cancer is a major contributor to mortality rates in developed and developing countries, and

the accompanying clinical load is estimated to rise in tandem with population growth and

aging demographics. This phenomenon is particularly pronounced in underdeveloped

nations, where approximately 82% of the worldwide populace makes its home [1]. Despite the

continued progression and evolution of medical technologies, encompassing surgical proce-

dures, radiotherapy, chemotherapy, as well as immunotherapies, the clinical outcomes for
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patients in advanced stages of cancer remain unfulfilling. This is particularly true when exam-

ining the detrimental effects that some treatments may have on these individuals [2]. There-

fore, the prompt detection of molecular targets is imperative to augment the therapeutic

potency and specificity. This can be effectively achieved via Pan-cancer Analysis [3].

Glycosphingolipids (GSLs) are a vast group of glycoconjugates that occur in cellular mem-

branes. GSLs carry out distinctive functions within the cell membrane, owing to the individual

core structures they possess. Compared to alternative membrane lipids, GSLs exhibit signifi-

cant molecular intricacy [4]. It plays a vital role in cellular adhesion, migration, modulation of

signaling proteins, and engagement with pathogens and toxins [5, 6]. B3GNT5, a member of

the β-1,3-N-acetylglucosaminyl transferase family, catalyzes the transfer of N-acetylglucosa-

mine (GlcNAc) from UDP-GlcNAc to galactose positioned at the non-reducing end of the car-

bohydrate chain through β-1,3-linkage. This enzyme plays a vital role in lactose biosynthesis

and generates new lactose series of glycosphingolipids (GSL). B3GNT5 initiates the synthesis

of lactotriosylceramide by transferring N-acetylglucosamine to the C-3 position of galactose

within lactose ceramide. Lactose ceramide synthase is an alternative name for B3GNT5 due to

this function. B3GNT5-mediated glycolipid synthesis has been reported to play significant bio-

logical roles in B cell activation [7], preimplantation development, and nervous system devel-

opment [8, 9] in multiple studies. Elevated levels of B3GNT5 appear to be significantly

associated with the advancement of breast, lung, and ovarian carcinoma [10–12]. B3GNT5-

mediated glycosphingolipids are essential for the differentiation of acute myeloid leukemia

(AML) cells [13].

In this research, we explored the expression of B3GNT5 and its correlation with cancer

prognosis by utilizing data from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expres-

sion (GTEx), and Cancer Cell Line Encyclopedia (CCLE) databases obtained through the

UCSC XENA database. Furthermore, we examined how B3GNT5 expression correlates with

immune cell infiltration score, cell cycle, immune checkpoints, immunosuppressive genes,

immune-activating genes, chemokine receptors, chemokines, and drug resistance. Our find-

ings offer novel perspectives on the function of B3GNT5 across various cancers, suggesting a

potential mechanism by which B3GNT5 influences the tumor microenvironment (TME), can-

cer immunotherapy, and cancer stem cell (CSC) stemness.

Materials and methods

Data collection

We obtained RNA-seq and clinical information from the TCGA and GTEx databases to ana-

lyze 33 types of tumors alongside normal tissues. Data on tumor cell lines were sourced from

the CCLE database, while information on DNA copy number and methylation was gathered

via the cBioPortal database (https://www.cbioportal.org/).

Survival prognosis analysis and its relationship with clinical stage

We utilized Kaplan-Meier analysis to assess the overall survival (OS) among patients whthin

the TCGA cohort. In addition, univariate Cox regression analysis was performed to ascertain

the prognostic significance of B3GNT5 concerning OS, disease-specific survival (DSS), dis-

ease-free interval (DFI), and progression-free interval (PFI) across various cancer cases. Statis-

tical analysis and visualization were performed with the "survival" and "survminer" packages in

R software version 4.1.1, Hypothesis testing was conducted through Cox regression, with a P-

value below 0.05 considered statistically significant.
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Gene set enrichment and gene set variation analyses

We conducted a Pearson correlation analysis to examine the association between B3GNT5

and all genes using TCGA data. Gene set enrichment analysis (GSEA) was conducted using

the “clusterProfiler”R package, employing parameters: nPerm set to 1,000, minGSSize to 10,

maxGSSize to 1,000, and a p-value threshold of 0.05. Genes associated with B3GNT5 and a P-

value less than 0.05 were selected, and GSEA was carried out using gene sets from the Reac-

tome pathway database. To identify pathways most closely related to B3GNT5, we utilized the

’GSVA’ R package to perform gene set variation analysis (GSVA). We categorized the 33

tumor types into two categories based on the median expression levels of B3GNT5 (high versus

low expression). The reference genes was obtained from the Molecular Signature Database

(MSigDB; http://software.broadinstitute.org/gsea/msigdb/index.jsp), with statistical signifi-

cance defined as P< 0.05."

Immune cell infiltration

We acquired immune cell infiltration scores related to TCGA data from the TIMER2 and

ImmuCellAI databases (http://timer.cistrome.org/ and http://bioinfo.life.hust.edu.cn/web/

ImmuCellAI/). To evaluate the extent of immune cell infiltration, patients were categorized

into two groups (B3GNT5 high-expression and low-expression) for each TCGA tumor type

based on the median B3GNT5 expression level.

Association of B3GNT5 with IC50 values of anti-tumor drugs. Using over 1,000 cancer

cell lines, we assessed response data for 192 anti-tumor drugs. The association between

B3GNT5 expression levels and the IC50 of these drugs was illustrated with the R package

"ggplot2".

Cell lines

The Panc-1 cell line, initially obtained from ATCC USA, was provided by Renyi Qin from the

Affiliated Tongji Hospital in China. It was cultured in RPMI-1640 medium, enriched with

10% fetal bovine serum (FBS), L-glutamine, and 1% penicillin/streptomycin, and incubated at

37˚C in a 5% CO2 atmosphere.

Transfections

Panc-1 cells were seeded in six-well plates and transfected with sh-B3GNT5 and an empty vec-

tor (Negative Control). Lentiviruses encoding sh-B3GNT5 were obtained from Genechem

(Shanghai, China) and the transfections were performed based on the manufacturer’s guide-

lines. Lipofectamine was selected as transfection reagent which we purchased from Thermo

Fisher Scientific (USA).

Suspension sphere culture and differentiation

As previously described [14], Lentivirus-transduced PANC-1 cells (1000 cells/mL) were cul-

tured in suspension using serum-free DMED-12 medium (Hyclone, Logan, UT, USA) supple-

mented with B27 (1:50; Invitrogen, Carlsbad, CA, USA), 20 ng/mL epidermal growth factor

(PeproTech EC, London, UK), and 100 ng/mL basic fibroblast growth factor. (PeproTech) [13].

Statistical analysis

The data were presented as mean ± standard error of the mean and differences between groups

were evaluated using a two-tailed Student’s t-test. Statistical analysis was conducted with R

program version 4.1.1, considering a significance level of P< 0.05. (two-tailed).
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Results

Analysis of B3GNT5 expression variability and correlations across pan-

cancer

We analyzed the expression levels of B3GNT5 among various cancer types using GTEx data-

base data as controls. Our findings demonstrated that upregulation of B3GNT5 in eighteen dif-

ferent cancers, including cervical squamous cell carcinoma and endocervical adenocarcinoma

(CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal carci-

noma (ESCA), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma

(HNSC), kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney

renal papillary cell carcinoma (KIRP), acute myeloid leukemia (LAML), lower-grade glioma

(LGG), liver hepatocellular carcinoma (LIHC), lung squamous cell carcinoma (LUSC), pancre-

atic adenocarcinoma (PAAD), rectum adenocarcinoma (READ), stomach adenocarcinoma

(STAD), uterine corpus endometrial carcinoma (UCEC), and uterine carcinosarcoma (UCS).

On the other hand, we observed downregulation of B3GNT5 in five tumors which include

breast invasive carcinoma (BRCA), prostate adenocarcinoma (PRAD), skin cutaneous mela-

noma (SKCM), testicular germ cell tumor (TGCT), and thyroid carcinoma (THCA) (Fig 1A).

B3GNT5 expressional abundance in multiple cancer forms establishes its oncogenic signifi-

cance, with ESCA, LUSC and HNSC demonstrating the highest expression levels (Fig 1B). The

gene expression analysis was conducted on normal human tissues obtained from the GTEx

database, and a comparative was conducted to assess the relative expression levels of B3GNT5.

The findings revealed that this gene was most highly expressed in lung, muscle, and bone mar-

row tissues (Fig 1C). In various cancer cell lines, the expression of B3GNT5 was evaluated,

revealing that the HNSC, ESCA, small cell lung cancer (SCLC), and PAAD cell lines exhibited

the highest levels of B3GNT5 expression (Fig 1D).

We conducted an investigation into the correlation between B3GNT5 expression levels and

the clinical significance of cancer therapies. Through our analysis of various stages of cancer

defined by the World Health Organization (WHO) and B3GNT5, we discovered that the higher

the stage in KICH, LIHC, LUAD, PAAD, THCA, and UCEC, the greater the expression of

B3GNT5 (Fig 2A–2F). These findings indicate a notable reduction in B3GNT5 expression as

stages advance in BRCA, COAD, MESO, and SKCM (Fig 2G–2J). Hence, the aberrant B3GNT5
expression observed in cancer cells may be closely linked to cancer progression and prognosis.

Comprehensive analysis of B3GNT5 genetic alterations and their

correlations in pan-cancer

We conducted a thorough analysis on alterations in pan-cancers, encompassing a total num-

ber of 10,953 patients, to identify potential genetic modifications of B3GNT5 that could be

linked to tumorigenesis. Our analysis detected genetic alterations (including missense muta-

tions, amplification, deep deletion, truncating mutations, and structural variants) in around

6.0% of the cases (S1 Fig). The most common changes across various cancer types were ampli-

fications of B3GNT5 gene, followed by mutations and deep deletions (Fig 3A). In LUSC,

ESCA, UCS, CHOL, HNSC, LUAD, CESC, KICH, PAAD, READ, bladder urothelial carci-

noma (BLCA), STAD, BRCA, TGCT, SARC, COAD, KIRP, OV, PCPG, LGG, GBM, PRAD,

and SKCM, there was a positive correlation was observed between the copy number and

B3GNT5 expression levels. However, in the case of UVM, the relationship between copy num-

ber and B3GNT5 expression was negative (Fig 3B). In THCA, LAML, CESC, COAD, BLCA,

KICH, MESO, UVM, UCEC, HNSC, ESCA, ACC, KIRP, PCPG, STAD, PAAD, LIHC UCS,

SKCM, LUSC, Thymoma (THYM), LGG, and GBM, it was found that the degree of
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methylation in the promoter region of B3GNT5 is adversely linked with the its expression.

Conversely, a positive correlation between methylation levels and B3GNT5 expression was

identified exclusively in OV (Fig 3C).

Fig 1. The expression levels of B3GNT5 across pan-cancer were detailed as follows: (A) B3GNT5 expression in tumor

tissues from The Cancer Genome Atlas (TCGA) and normal tissues from TCGA and Genotype-Tissue Expression (GTEx)

databases. (B) B3GNT5 expression in tumor tissues from the TCGA database; (C) B3GNT5 expression in normal tissues

from the GTEx database. (D) B3GNT5 expression in tumor cell lines from the Cancer Cell Line Encyclopedia (CCLE)

database, with mean values represented by datapoints. Statistical significance was denoted by *p< 0.05, **p < 0.01,

***p < 0.001, and ****p< 0.0001, with "ns" indicated not significant.

https://doi.org/10.1371/journal.pone.0314609.g001
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Impact of B3GNT5 expression on prognosis and survival across pan-cancer

We investigated the possible impacts of B3GNT5 expression on prognosis by scrutinizing its

correlation with patient survival. By performing Kaplan-Meier OS analysis, we found that

B3GNT5 was a determinative element for the prognosis of HNSC, KIRP, LGG, LIHC, LUAD,

MESO, PAAD, SARC, and UVM patients, signifying its potential involvement in these diseases

Fig 2. For pan-cancer B3GNT5 expression across various World Health Organization (WHO)-defined cancer stages,

the differential expression for specified tumor types from the TCGA database is illustrated in Fig A–J. Statistical

significance is marked by *p< 0.05, **p < 0.01, ***p < 0.001, ****p< 0.0001, with ’ns’ denoting not significant.

https://doi.org/10.1371/journal.pone.0314609.g002
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(S2 Fig). B3GNT5 was identified as an element influencing the risk of several cancers, includ-

ing ACC, HNSC, KICH, KIRP, LGG, LIHC, LUAD, MESO, PAAD, SARC, THCA, THYM,

and UVM, as demonstrated by univariate Cox regression analysis (Fig 4A). The DSS analysis

determined that B3GNT5 played a protective role for patients afflicted with PCPG, but acted as

a risk element for individuals diagnosed with HNSC, KICH, KIRP, LGG, LIHC, LUAD,

Fig 3. Analysis of B3GNT5 genetic alterations. (A) Mutation status across various tumors; (B) the association between

B3GNT5 expression and gene copy number; and (C) the association between B3GNT5 expression and methylation levels.

https://doi.org/10.1371/journal.pone.0314609.g003
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MESO, PAAD, SARC, and UVM (Fig 4B). According to the DFI analysis, the involvement of

B3GNT5 proved risky in cases of KIRP, LUAD, and PAAD (Fig 4C). In accordance with the

PFI analysis, B3GNT5 stood as a perilous element in instances of ACC, KICH, KIRP, LGG,

LUAD, PAAD, SARC, and UVM (Fig 4D).

Fig 4. Univariate Cox regression analysis of B3GNT5 expression in TCGA pan-cancer. (A) Forest maps illustrating the

association linking B3GNT5 expression with overall survival (OS), (B) disease-specific survival (DSS), (C) disease-free

interval (DFI), (D) and progression-free interval (PFI). Red indicates significant results.

https://doi.org/10.1371/journal.pone.0314609.g004
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B3GNT5-related gene pathways: Insights into cell cycle and immune

regulation in pan-cancer
We performed a screening of B3GNT5-related genes and subjected them to subsequent enrich-

ment analyses to elucidate the mechanism underlying cancer carcinogenesis involving

B3GNT5. Using GSEA in 33 tumor types sourced from TCGA, we identified specific pathways

associated with B3GNT5. Our findings revealed that B3GNT5 is significantly linked to path-

ways regulating the cell cycle and immune response in several malignancies such as CESC,

ESCA, KIRP, LUAD, OV, PAAD, and STAD. Additionally, B3GNT5 was also strongly associ-

ated with the pathways involved in immunoregulatory interactions between lymphocytes and

non-lymphocytes, cytokine communication, natural immune response, and acquired immune

response in LGG, PCPG, KICH, and BRCA tumors. Therefore, our findings revealed that

B3GNT5 is pivotal in modulating the cell cycle and tumor immune microenvironment in

malignant tumor cells (Fig 5A–5F). The GSVA investigation findings evince that B3GNT5
expression has a correlation with the foremost 50 pathways of the Molecular Signatures Data-

base (MsigDB). We observed that DNA repair, Oxidative phosphorylation, MYC targets, Bile

acid metabolism, and K-Ras signaling had an adverse correlation with the GSVA score of

B3GNT5 among the 33 cancer classifications (Fig 5G).

B3GNT5 expression and its impact on tumor microenvironment and

immune cell infiltration across pan-cancer

We stratified the TCGA samples derived from 33 distinct types of tumors into two cohorts

according to the median expression of B3GNT5. We then performed a comparative analysis of

the correlated signature score for each tumor across the elevated and reduced expression levels

of B3GNT5 to explore the plausible roles of B3GNT5 within the tumor microenvironment

(TME). Our findings indicated significant associations between B3GNT5 and various critical

pathways, namely nucleotide excision repair, DNA damage response, mismatch repair, DNA

replication, base excision repair, epithelial-to-mesenchymal transition (EMT), immune check-

points, and CD8-T effector (Fig 6A). We utilized the ESTIMATE algorithm to evaluate stromal

and immune cell infiltration across the RNA sequencing profiles of 33 cancer types derived

from TCGA database. Our findings indicate that B3GNT5 expression exhibits significant posi-

tive correlations with stromal, ESTIMATE, and immune scores; meanwhile, it displays nega-

tive associations with tumor purity scores in LGG, KICH, PCPG, ACC, BRCA, GBM, THCA,

and PRAD. Conversely, B3GNT5 expression is negatively related to stromal, ESTIMATE, and

immune scores while positively associated with tumor purity score in ESCA, STAD, and

LUSC (Fig 6B).

To gain deeper insights into how B3GNT5 expression affects immune cell infiltration, we

performed correlation analyses using two independent sources of immune cell infiltration data-

sets. According to our findings from the TIMER2 database, B3GNT5 expression showed a posi-

tive correlation with levels of effective and resting memory CD4+ T cells, neutrophils, and

macrophages (Fig 7A), conversely, it shows a negative correlation with B cells, central memory

CD4+ T cells, Th1 CD4+ T cells, NK T cells, and regulatory T cells (Tregs) in the TCGA pan-

cancer cohort (Fig 7B). Our analysis using the ImmuCellAI database demonstrated that

B3GNT5 expression had an inverse association with CD8+ T cell infiltration levels in THYM,

TGCT, LUSC, HNSC, CESC, STAD, SKCM, SARC, and ESCA, while showing a positive corre-

lation in UVM and ACC (Fig 7C). Furthermore, B3GNT5 expression was positively linked to

infiltration levels of Tregs, macrophages, and neutrophils while negatively related to those of B

cells and CD8+ T cells. These findings align with the results from the TIMER2 database and

suggested that B3GNT5 may contribute to decreased infiltration of B lymphocytes and CD8+ T
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lymphocytes, while promoting the accumulation of MDSCs, Tregs, and tumor-associated mac-

rophages (TAMs), thus potentially explaining its role as a risk factor in various tumor types.

Fig 5. Gene set enrichment analysis (GSEA) of B3GNT5 across pan-cancer. (A–F) Top 20 GSEA terms for the

specified tumor types: A: LUAD; B: OV; C: PAAD; D: BRCA; E: LGG; F: PCPG. (G) Gene set variation analysis

(GSVA) of B3GNT5 across pan-cancer with the Top 50 GSEA terms for the indicated tumor types.

https://doi.org/10.1371/journal.pone.0314609.g005
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B3GNT5 expression correlates with immune markers and pathways,

highlighting its role across various cancers and immunotherapy

We explored how B3GNT5 levels correlate with a range of immune-related markers, including

genes that activate the immune system, those that suppress it, as well as various chemokines

and their receptors. Our analysis indicated a positive correlation between B3GNT5 and

immune activation markers, including CD276, PVR, NT5E, STING1, and TNF-SF18 (Fig 9A),

as well as immunosuppressive genes TGF-ΒR1, IL-10PR, KDR, CD274, PDCD1LG2, IL-10,

and IDO1 in the pan-cancer cohort (Fig 7D). Furthermore, our results indicated a close associ-

ation between B3GNT5 expression and immune checkpoints across various cancer types in the

TCGA database (Figs 8 and S3). Moreover, our analysis demonstrated a positive association

Fig 6. (A) The heatmap illustrates the correlation linking B3GNT5 expression with tumor microenvironment (TME) characterization; (B) ESTIMATE analysis

examines B3GNT5 expression across pan-cancer.

https://doi.org/10.1371/journal.pone.0314609.g006
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between B3GNT5 expression and chemokines including CXCL8, CXCL5, and CXCL16, as

well as chemokine receptors such as CXCR2, CCR1, and CCR8 (Fig 9B and 9C). Additionally,

we generated heatmaps to visualize the association between B3GNT5 expression and genes

related to pyroptosis (Fig 9D), major histocompatibility complex (MHC) (Fig 9E), autophagy

Fig 7. Immune cell infiltration analysis. (A) The association linking B3GNT5 with infiltration levels of macrophage lymphocytes, neutrophil cells, and

regulatory T lymphocytes (Tregs) using TIMER2 data. (B) The association linking B3GNT5 with infiltration levels of B cells, CD4+ T lymphocytes, and CD8

+ T lymphocytes using TIMER2 data. (C) Association between B3GNT5 and infiltration level of the indicated immune cells through ImmuCellAI data. (D) The

heatmap illustrates the relationship linking B3GNT5 expression with immunosuppressive status-related genes. *p< 0.05, **p< 0.01, ***p < 0.001, and

****p< 0.0001.

https://doi.org/10.1371/journal.pone.0314609.g007
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(S4A Fig), ferroptosis (S4B Fig), M6A (S4C Fig), EMT upregulation (S5A Fig), EMT downre-

gulation (S5B Fig), TGF-β1 signaling (S6A Fig), and Wnt-β1-catenin signaling (S6B Fig).

These results offer significant evidence regarding the potential mechanisms by which B3GNT5

influences cancer progression and immune-based therapies.

Fig 8. Immune cell infiltration analysis. The associationg linking B3GNT5 expression with the immune checkpoints

in ACC, BLCA, BRCA, CESC, CHOL, COAD, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (DLBC), ESCA,

GBM, HNSC, KICH, KIRC, KIRP, LAML, LGG, LIHC, LUAD, LUSC, MESO, OV, PAAD, PCPG, PRAD, and READ

(A–X).

https://doi.org/10.1371/journal.pone.0314609.g008
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B3GNT5 expression correlates with sensitivity to key anticancer drugs: A

comprehensive analysis of IC50 associations

In our study, we evaluated a total of 192 anticancer drugs and identified the IC50 values of 159

drugs showed a significant correlation with B3GNT5 levels. Based on significant positive or

Fig 9. Heatmaps presenting the association between B3GNT5 expression and immunoregulation correlated genes.

(A) Genes of immune activation, (B) chemokine genes, (C) chemokine receptor genes, (D) pyroptosis genes, and (E)

major histocompatibility complex (MHC) genes. *p< 0.05, **p< 0.01, ***p< 0.001, and ****p< 0.0001.

https://doi.org/10.1371/journal.pone.0314609.g009

PLOS ONE Pan-cancer analysis of B3GNT5

PLOS ONE | https://doi.org/10.1371/journal.pone.0314609 December 13, 2024 14 / 22

https://doi.org/10.1371/journal.pone.0314609.g009
https://doi.org/10.1371/journal.pone.0314609


negative correlations, we selected the top 20 drugs, including Nutlin-3a (r = 0.341,

P = 1.915 × 10−22), PRIMA-1MET (r = 0.331, P = 5.08 × 10−20), Elephantin (r = 0.325,

P = 2.35 × 10−19), Sabutoclax (r = 0.314, P = 5.46 × 10−18), PCI-34051 (r = 0.307,

P = 2.32 × 10−17), Nilotinib (r = 0.295, P = 1.26 × 10−16), AMG-319 (r = 0.287,

P = 1.34 × 10−15), MIRA-1 (r = 0.2846, P = 2.08 × 10−15), Oxaliplatin (r = 0.1948,

P = 1.66 × 10−14), Fulvestrant (r = 0.1969, P = 1.79 × 10−14), PD173074 (r = 0.2739,

P = 1.84 × 10−14), AZD4547 (r = 0.2714, P = 3.50 × 10−14), Sorafenib (r = 0.2704,

P = 4.18 × 10−14), EPZ004777 (r = 0.2614, P = 6.19 × 10−14), I-BRD9 (r = 0.2692,

P = 6.65 × 10−14), BIBR-1532 (r = 0.2689, P = 7.94 × 10−14), Vorinostat (r = 0.2656,

P = 1.16 × 10−13), MIM1 (r = 0.2607, P = 4.19 × 10−13), MK-8776 (r = 0.2526, P = 2.52 × 10−12),

and Zoledronate (r = 0.2512, P = 6.51 × 10−12, Fig 10A–10U).

Impact of B3GNT5 downregulation on self-renewal in pancreatic cancer

cells: A sphere formation study

In order to research the effects of B3GNT5 heterotopic expression on PAAD cells, we cultured

a stable pancreatic cancer cell line (PANC-1) with sh-RNA inhibition of B3GNT5. To assess

self-renewal ability of cells generated in serum-free conditions, the number and size of spheres

were evaluated. The results showed that PANC-1 cells with downregulated B3GNT5 expres-

sion displayed smaller spheres than those in the negative control (NC) group, as shown in Fig

11A. Additionally, the number of cells per sphere exhibited a marked reduction in the Sh-

B3GNT5 group relative to the NC group (Fig 11B, P<0.01). Cells with downregulated

B3GNT5 expression had fewer spheres formed over three passages than those in the NC group

(Fig 11C, P<0.01).

Discussion

Over the past few years, the use of inhibitors targeting immune checkpoints in immunotherapy

has become a vital treatment strategy for multiple cancer types, leading to significant advances

in cancer therapy [15]. The discovery and development of specific inhibitors for immune check-

points, including CTLA-4 and programmed cell death protein 1 (PD-1), have revolutionized

cancer immunotherapy. However, the efficacy of these therapies has varied significantly among

different types of cancers and individuals. While certain malignancies such as lung cancer,

breast cancer, and melanoma have exhibited promising outcomes with immunotherapeutic

strategies, the potential of immunologically "cold" tumors like PAAD remains unclear. There-

fore, it is important to investigate the distinct characteristics and fundamental mechanisms

underlying the heterogeneous outcomes of immunotherapy among different cancer types. Can-

cer stem cells (CSCs) possess unique properties that enable them to evade immune recognition

and elimination [16]. Multiple studies have recently established that CSCs are capable of shap-

ing the immunosuppressive and tumor-promoting environment of TME via modulation of var-

ious immune cells, contributing to resistance towards immunotherapeutic approaches.

Identifying the critical binding target between CSCs and cancer immunotherapy would be a sig-

nificant advancement in this field. Given the potential for enhanced tumor cell immunogenicity

and T cell activation, inhibition of GSL synthesis through suppression of B3GNT5 expression

may be implemented as a complementary approach along with current immunotherapeutic

strategies, including PD-1 blockade [17]. Study has indicated a noteworthy decrease in B3GNT5
expression during differentiation of glioblastoma stem cells [18], suggesting that B3GNT5 could

potentially serve as a connecting link.

In this research, we performed an initial assessment of B3GNT5 expression and its prognos-

tic relevance across multiple cancer types, revealing high expression levels to be present in 18
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of these tumors. Upon conducting Kaplan-Meier overall survival analysis, we identified

B3GNT5 as a risk element for patients across nine tumor types. Furthermore, our univariate

Cox regression analysis disclosed that this gene acted as a risk element in twelve different

tumor types. Similarly, B3GNT5 was implicated as a protective element in patients with PCPG

but as a risk factor across eleven other tumor types according to our DSS analysis. These con-

sistent findings indicate that B3GNT5 may possess proto-oncogenic properties across a

Fig 10. Drug resistance analysis. The association between B3GNT5 expression and IC50 for different anticancer drugs (A–U).

https://doi.org/10.1371/journal.pone.0314609.g010
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majority of tumor types. By means of gene set enrichment analysis (GSEA) involving B3GNT5,

we successfully identified strong correlations between this gene and numerous pathways

related to cell cycle control and immune signaling, particularly immunoregulatory interactions

between lymphocytes and non-lymphocytes, which encompasses a total of 135 genes, inclusive

Fig 11. Modulating B3GNT5 expression influences the self-renewal capability of PAAD cells in vitro. (A) Sphere formation was observed in Panc-1

cells with B3GNT5 suppression at various time intervals. (B) Quantification of cell numbers within each sphere was conducted. (C) The number of

spheres formed per 1000 cells reflects sphere-forming ability, relative to negative control group. **P< 0.01. NC denotes the negative control group; sh-

B3GNT5 refers to small hairpin B3GNT5.

https://doi.org/10.1371/journal.pone.0314609.g011
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of receptors and cellular adhesion molecules that regulate the response of lymphocyte-related

cells (i.e., B-, T-, and NK lymphocytes) towards to self-antigens, tumor antigens, and also to

pathogens [19–23]. The findings of this investigation suggest a strong link between

B3GNT5 and the regulation of immune microenvironment in tumors, as well as ligand-

receptor communication between malignant cells and lymphoid cells. Prior research has

demonstrated that such immune cells can maintain the stemness and viability of cancer

stem cells (CSCs) [24]. In our study, we observed that decreased B3GNT5 expression

negatively impacts the self-renewal capacity of PAAD cells. Consequently, these results

infer that the influence of B3GNT5 on immune cells within the TME plays a regulatory

role in CSC stemness and malignant features. Further research is needed to explicate the

underlying mechanisms. CD8+ T cells, which belong to the T lymphocyte population,

are cytotoxic killer cells essential for cell-mediated immunity, particularly within tumor

tissues [25, 26]. The activation and formation of memory in cytotoxic CD8+ T lympho-

cytes are dependent on CD4+ T lymphocytes [27]. Multiple studies have found strong

correlations between CSC stemness and CD8+ T cells in multiple cancer types [28]. For

instance, CSCs can produce TGF-β and CCL2, which inhibite CD8+ and CD4+ T cell

activation and proliferation [29]. Furthermore, certain chemokine family members such

as CCL1, CCL2, and CCL5, which are highly expressed by CSCs in different cancer

types, stimulate the infiltration of T-reg cells into the tumor microenvironment [29–

31]. Moreover, in prostate cancer, CSCs secrete tenascin-C to hinder the activation and

proliferation of CD8+ and CD4+ T cells through interaction with α5β1 integrin located

on T cells [32]. Interestingly, T cells also regulate CSC stemness. Low IFN-γ levels acti-

vate the PI3K/AKT/NOTCH1 pathway and promote CSC stemness. In NSCLC, CD8+ T

cells mainly produce IFN-γ [33]. Our analysis using two distinct data sources indicates

that B3GNT5 expression is inversely associated with CD8+ T lymphocytes, CD4+ T lym-

phocytes, and natural killer cells, which could help shed light on the connection between

B3GNT5 and diverse tumor types. T-reg cells prevent dangerous tumor cells from attack

by cytotoxic CD8+ T lymphocytes [34, 35]. Many research pieces demonstrate that T-

reg cells secrete IL-10, thereby promoting leukemic stem cell stemness through activa-

tion of PI3K/AKT/OCT4/NANOG pathways in AML [36]. Additionally, our immune

cell infiltration data suggest that Treg infiltration levels and B3GNT5 expression are

positively correlated, implying that even a large group of cytotoxic CD8+ T cells’ func-

tioning is limited, and B cells are responsible for antigen presentation. Activated B cells

from a control donor’s peripheral-blood lymphocytes (PBL) present antigens to CD4

+ and CD8+ T cells [37, 38]. This selective presentation of cognate antigens using sur-

face Ig molecules leads to tumor-infiltrating B cells (TIL-Bs) delivering antigens more

efficiently than tumor dendritic cells (DCs). DCs excite CD4+ and CD8+ TILs in the

lymph nodes, followed by TIL-Bs initiating recall responses in the tumor. TIL-Bs act as

local antigen-presenting cells (APC) that provide secondary stimulation to CD4+ TILs,

allowing their survival and proliferation for an extended period [39, 40]. Interestingly,

B3GNT5 expression negatively correlates with B cell and CD8+ T cell infiltration levels

while positively correlating with immune-activating and immunosuppressive genes

across pan-cancer, which supports the potential role of B3GNT5 as an immune check-

point molecule and a focal point of the CSC-immune cell crosstalk. We surmise that

B3GNT5 regulates signal pathways or cell death processes, such as EMT, Wnt-β1-cate-

nin, TGF-β1 signaling, pyroptosis, autophagy, or ferroptosis, which have all been related

to B3GNT5 in our analysis, to impact CSC-immune cell crosstalk and carcinogenic bio-

logical properties.
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Our study has several limitations that must be acknowledged. Additional experiments are

necessary to evaluate the mechanisms by which B3GNT5-mediated interactions of cancer stem

cells (CSCs) with immune cells, as well as to validate the potential of B3GNT5 as an immune

checkpoint target in clinical trials. To conclude, we conducted a comprehensive analysis of

B3GNT5 across various cancer types and highlighted its potential significance in regulating the

immune response and serving as a prognostic indicator for patients. B3GNT5 is capable of

suppressing the activation and proliferation of T lymphocytes by promoting the secretion of

TGF-β and CCL2 by CSCs (cancer stem cells). These factors not only inhibit the function of

effector T cells, but also enhance the infiltration of regulatory T cells (Tregs) into TME, thus

inhibiting the anti-tumor immune response. B3GNT5 may become one of the risk factors of

most tumors by promoting the accumulation of cells that suppress the immune response, such

as Tregs and tumor-associated macrophages (TAMs). Abnormal synthesis of GSLs mediated

by B3GNT5 may alter the glycosylation pattern on tumor cell membranes, subsequently

impacting immune cell recognition and function.For example, in pancreatic cancer cell line

PANC-1, a decrease in cell self-renewal ability was observed after down-regulation of B3GNT5

expression, indicating the importance of B3GNT5 in maintaining the characteristics of tumor

stem cells. In addition, B3GNT5 is also associated with key pathways such as DNA repair path-

way, epithelial-mesenchymal transition (EMT) and immune checkpoints. Abnormal activa-

tion or inhibition of these pathways may further aggravate the phenomenon of tumor immune

escape, so that tumor cells can better adapt to unfavorable environment and escape the attack

of host immune system. To sum up, B3GNT5 affects tumor immune response through many
mechanisms, and its role in tumor occurrence and development can not be ignored. In the future,
more experimental data are needed to further explore the specific mechanism of B3GNT5 and its
possibility as a potential therapeutic target.

Supporting information

S1 Fig. Genetic alteration analysis of B3GNT5: The mutation status of B3GNT5 in different

tumors.

(TIF)

S2 Fig. Link between Kaplan–Meier overall survival estimates and B3GNT5 expression lev-

els. (A–I) The connection between B3GNT5 expression and Kaplan–Meier overall survival

across Pan-Cancer types from the TCGA database is shown. The median B3GNT5 expression

value for each tumor type was used as the threshold value.

(TIF)

S3 Fig. Immune cell infiltration analysis. The correlation linking B3GNT5 expression with

immune checkpoints in SARC, SKCM, STAD, TGCT, THCA, THYM, UCEC, UCS, and

UVM (A–I).

(TIF)

S4 Fig. Heatmaps presenting the association linking B3GNT5 expression with immunoreg-

ulation-related genes. (A) Autophagy genes, (B) ferroptosis, and (C) M6A. *p < 0.05,

**p< 0.01, ***p< 0.001, and ****p < 0.0001.

(TIF)

S5 Fig. Heatmaps presenting the association between B3GNT5 expression and immunoreg-

ulation-related genes. (A) EMT upregulated genes and (B) EMT downregulated genes.

*p< 0.05, **p< 0.01, ***p < 0.001, and ****p< 0.0001.

(TIF)
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S6 Fig. Heatmaps presenting the association between B3GNT5 expression and immunoreg-

ulation-related genes. (A) TGF-β1-signaling genes and (B) Wnt-β1-catenin-signaling genes.

*p< 0.05, **p< 0.01, ***p < 0.001, and ****p< 0.0001.

(TIF)
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