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Abstract: The rapid evolution of microelectronics and display technologies has driven the demand
for advanced manufacturing techniques capable of precise, high-speed microchip transfer. As devices
shrink in size and increase in complexity, scalable and contactless methods for microscale placement
are essential. Laser-induced forward transfer (LIFT) has emerged as a transformative solution, offering
the precision and adaptability required for next-generation applications such as micro-light-emitting
diodes (µ-LEDs). This study optimizes the LIFT process for the precise transfer of silicon microchips
designed to mimic µ-LEDs. Critical parameters, including laser energy density, laser pulse width, and
dynamic release layer (DRL) thickness are systematically adjusted to ensure controlled blister formation,
a key factor for successful material transfer. The DRL, a polyimide-based photoreactive layer, undergoes
photothermal decomposition under 355 nm laser irradiation, creating localized pressure that propels
microchips onto the receiver substrate in a contactless manner. Using advanced techniques such as
three-dimensional profilometry, X-ray photoelectron spectroscopy, and ultrafast imaging, this study
evaluates the rupture dynamics of the DRL and the velocity of microchips during transfer. Optimization
of the DRL thickness to 1 µm and a transfer velocity of 20 m s−1 achieves a transfer yield of up to 97%,
showcasing LIFT’s potential in µ-LED manufacturing and semiconductor production.

Keywords: laser-induced forward transfer; micro-light-emitting diode; blister actuation; contactless
transfer; microchip

1. Introduction

The increasing demand for advanced display technologies, particularly in automotive,
wearable, and augmented reality devices, has accelerated the development of flexible,
rollable, and energy-efficient displays. To meet these diverse form factor requirements,
micro-light-emitting diodes (µ-LEDs) are recently gaining attention as a next-generation
display technology due to their superior brightness characteristics, long lifespans, and
rapid response times, rendering them ideal for use in various modern applications [1,2].
However, despite their potential, the commercialization of µ-LED displays remains a
challenge, primarily due to high production costs and scalability issues related to the
transfer of millions of µ-LEDs onto panels. To mitigate these issues, various cost-effective
transfer methods have emerged for µ-LEDs, including polydimethylsiloxane (PDMS)-based
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transfer, electrostatic pickup transfer, fluidic transfer, and laser-induced transfer [3–5].
Among these, laser-induced forward transfer (LIFT) has garnered significant attention as a
promising solution to these challenges, owing to its high-speed, contamination-free, and
precise transfer capabilities [6,7].

LIFT operates by using a pulsed laser to ablate a photoreactive polymer-based sac-
rificial layer, such as a dynamic release layer (DRL), thereby generating a gas pressure
that propels materials from a donor substrate to a receiver substrate [8]. This non-contact,
high-throughput transfer process is particularly well suited for applications such as µ-LED
assembly, as demonstrated previously by Marinov et al. [9]. LIFT enhances transfer speeds
by enabling the simultaneous transfer of multiple µ-LEDs, achieving rates exceeding 100
million units per hour, thereby addressing scalability issues and potentially lowering pro-
duction costs. However, while various studies have focused on the process results of LIFT,
the specific dynamic behaviors and mechanisms involved in the transfer of solid materials,
particularly during the laser ablation process, remain unexplored.

In this study, we investigated the application of the LIFT process for the transfer of
silicon microchips, which were designed to mimic µ-LEDs, while focusing on the intricate
dynamics of blister actuation during the transfer process. For this purpose, the microchips
were positioned on a transparent glass substrate coated with a photoreactive polyimide-
based DRL, selected due to its exceptional photothermal properties [10]. Upon exposure
to 355 nm laser irradiation, the DRL underwent photothermal decomposition, generating
gaseous by-products and forming blisters that propelled the microchips to the receiver
substrate in a precise contactless manner. To achieve a comprehensive understanding of the
forces driving this process, three-dimensional (3D) profilometry was employed to analyze
the sequential blister behavior, including rupture, under varying laser conditions. X-ray
photoelectron spectroscopy (XPS) was employed to confirm the chemical transformations
within the DRL, while ultrafast imaging was used to capture the time-resolved motion of
the microchips during transfer, providing critical insights into their velocity and impact
behavior. Finally, following meticulous optimization of the donor substrate, the transfer
yield was evaluated for offering new possibilities for LIFT application in µ-LED display
fabrication and semiconductor technologies.

2. Materials and Methods
2.1. Materials

Polyamic acid solution (80% NMP/20% aromatic hydrocarbon), hydrofluoric acid
(ACS reagent, 48%) were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used
without further purification. Carrier glass (ultraviolet transmittance 95%) with size of
2 mm × 2 mm and thickness of 0.1 mm, 6 inch SOI wafer with top layer thickness of 5 µm
and oxide layer thickness of 1 µm were purchased. For the transfer process, thermal release
tape and PDMS (Sylgard 184, Dow Corning, Midland, MI, USA) was purchased.

2.2. Donor Substrate Preparation

Polyamic acid solution was spin-coated on the carrier glass using a two-step process:
1000 rpm for 20 s followed by 3000–7000 rpm for 120 s to modify the thickness. The
thickness of PI was measured using an alpha-step. After spin-coating, it was partially cured
on a hot-plate at 100 ◦C for 5–80 min to control the embedding depth of microchips within
the polyimide. Microchip arrays were prepared by creating a hole pattern by the usage
of photolithography. After patterning holes on the top layer of the SOI wafer, Inductively
Coupled Plasma Reactive Ion Etching (ICP-RIE) was performed to etch the top silicon
layer using the Bosch process (ICP 400 W, Platen 5 W, SF6, O2, C4F8 gas atmosphere) and
to expose the underlying oxide layer [11]. Subsequently, the SiO2 layer was removed by
wet etching using HF [12]. Thermal release tape was used to pick up the top layer, which
was then transferred onto a pre-cured polyimide-glass substrate [13]. During this process,
microchips sinks into the polyimide which ensures well embedding from 0.1 µm to 0.9 µm.
The polyimide had been partially cured to ensure good adhesion, and the release of the
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top layer was completed by applying uniform pressure on a 110 ◦C hot-plate for 30 s. A
weight of 100 g was placed on top to ensure even contact and successful transfer of the layer
followed by the full curing process of polyimide on a vacuum for 2 h on 200 ◦C. Finally,
microchip array was patterned with photolithography and etched with ICP-RIE.

2.3. Receiver Substrate Preparation

PDMS was prepared as the receiver substrate by mixing the prepolymer and curing
agent in a 10:1 ratio [14]. The elastic modulus of PDMS was primarily controlled by the
ratio of prepolymer to curing agent, with a higher prepolymer content resulting in a softer
and more elastic material [15]. This elasticity not only enhances the adhesive capability of
the PDMS for capturing microchips but also helps absorb impact forces during the transfer
process.

2.4. Laser-Induced Forward Transfer

The donor and receiver substrates were positioned facing each other on a specially
designed optical alignment stage, capable of movement in the x, y, and z axes, as well
as rotation. A pulsed UV laser (λ = 355 nm) was irradiated to the interface between the
DRL and the carrier glass to transfer microchip arrays into the receiver substrate. The laser
energy density was controlled through modulation of the laser’s frequency (130–250 kHz),
pulse width (1–3.8 µs), and focus depth (0.1 mm–0.3 mm). Continuous measurements of
the laser energy density were performed using a Thorlab thermal power detector, with the
laser beam being consistently irradiated during measurement.

2.5. Morphology Analysis

3D images of the blisters and step height were characterized using a 3D optical
profilometer. The Profilm3D optical profiler utilized white light interferometry (WLI) for
non-contact surface measurements. This method provided precise surface profiles and
ensured detailed characterization of the blisters and step height. Cross-sectional image of
was obtained by Cryo-Focused Ion Beam-Scanning Electron Microscope.

2.6. X-Ray Photoelectron Spectroscopy (XPS) Analysis

The chemical state study of etch elements were performed High-Performance X-ray Pho-
toelectron Spectroscopy: HP-XPS (BS101, K-ALPHA+, Thermo Fisher Scientific Inc. (Oxford,
UK)) using monochromated Al Kα X-ray source (hν = 1486.6 eV, power = 12 kV, 72 W) at a
spot size of 400 µm in diameter with charge compensation using two flood gun (low energy
electron and Ar+ ion) at the Busan Center of Korea Basic Science Institute (KBSI).

3. Results and Discussion

The full LIFT process is schematically shown in Figure 1a. This process requires a
donor substrate, which consists of microchips attached to an ultraviolet (UV)-reactive
photopolymer layer known as the DRL. The DRL plays a crucial role in facilitating the
separation or transfer of material upon laser irradiation. For the purpose of this study,
polyimide (PI) was selected as the DRL material due to its strong photoreactive properties,
which render it highly suitable for achieving clean and efficient ablation under UV laser
exposure [16–18]. The PI layer was coated onto a transparent carrier glass substrate.
Figure 1b displays the scanning electron microscopy (SEM) image of the donor substrate,
showing an array of microchips partially embedded in the DRL. Each microchip measures
50 µm × 50 µm, with a spacing of 5 µm between adjacent chips.
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leading to the breakage of chemical bonds within the PI, particularly C=O and C–O bonds 
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PI following laser irradiation. In the pristine PI, deconvolution of the C 1 s peak shows 

Figure 1. (a) Schematic of the LIFT process, (b) SEM image of the microchip array, (c) FIB cross-
sectional image of the microchip, (d) schematic illustration of the photothermal reaction at the PI–glass
interface, showing breakage of the C=O and C–O bonds and subsequent gas generation, and (e) XPS
data recorded for the PI before and after laser irradiation.

To further investigate the structures and embedded depths of the microchips, a focused
ion beam (FIB) cross-section image was captured (Figure 1c), revealing that a shallow por-
tion of the microchip was securely embedded in the DRL. This embedded depth determines
the adhesion strength with which the microchip is attached to the donor layer.

Opposite the donor substrate, a receiver substrate with a silicone-based adhesive
surface, i.e., PDMS, was positioned to capture the microchips during the transfer process.
This adhesive layer ensures secure attachment of the microchips following transfer. Subse-
quently, the LIFT process was initiated by directing a pulsed UV laser with a wavelength of
355 nm through the carrier glass, which possesses a transmittance of 95% at this wavelength.
The laser beam specifically targets the interface between the carrier glass and the DRL,
causing rapid localized heating [19]. This heat induces a photothermal reaction, leading
to the breakage of chemical bonds within the PI, particularly C=O and C–O bonds [20].
As these bonds break, gaseous by-products such as carbon monoxide (CO) are generated
at the interface between the PI and the carrier glass, as shown in Figure 1d [10,21,22]. As
the gas accumulates at the interface between the PI and the glass layer, pressure builds
up, causing the PI layer to expand and form blisters. The rapid expansion of these blisters
provides the force necessary to propel the microchips away from the DRL surface and onto
the receiver substrate in a precise, non-contact manner. During this process, it is essential
that the laser energy is carefully controlled, as excessive pressure within the DRL can lead
to rupture of the blisters, resulting in contamination of the transferred chips.

To further investigate the chemical changes occurring in the DRL during laser irradia-
tion, X-ray photoelectron spectroscopy (XPS) was employed, and the results are presented
in Figure 1e. The high-resolution C 1s spectra were analyzed to evaluate the bonding
environments within the PI both before and after laser treatment. Curve fitting of the C
1s peak was carried out using CasaXPS 2.3.26 software, and all spectra were referenced
to the C 1s signal at 284.6 eV (corresponding to adventitious carbon) to ensure accurate
comparison. The XPS spectra reveal distinct changes in the chemical composition of the
PI following laser irradiation. In the pristine PI, deconvolution of the C 1 s peak shows
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contributions from several functional groups, including C–C bonds at 284.55 eV, C–N bonds
at 285.5 eV, C–O bonds at 286.45 eV, and C=O bonds within the imide ring at 288.31 eV.
Upon exposure to the UV laser at an energy density of 1 W cm−2, significant reductions
in the C–N, C–O, and C=O peak intensities compare to C–C bonds were observed, in-
dicating the breakdown of these bonds during the photothermal ablation process [23].
More specifically, the reduction in the C–N and C=O peak intensities suggests that laser
irradiation induces decomposition of the PI structure, viz., cleavage of the carbonyl (C=O)
and ether (C–O) bonds. This decomposition results in the release of volatile species, such
as CO and carbon dioxide (CO2), which are responsible for gas generation at the PI–glass
interface [24]. These gaseous products contribute to the pressure build up within the DRL,
which ultimately drives blister formation and facilitates transfer of the microchips. The
XPS data corroborate the proposed mechanism of laser-induced decomposition and gas
evolution, further highlighting the critical role of chemical bond cleavage in the dynamic
release process. The observed chemical modifications in the DRL are directly linked to the
efficient material transfer that occurs during the LIFT process. This blister formation is
crucial for transferring material from the donor substrate to the receiver substrate during
the LIFT process.

Figure 2a shows the representative 3D structure of a blister, which consists of a
hemispherical bulge with the highest point at its center. The blister formed at a laser energy
density of 0.6 W cm−2, which is above the blistering threshold, was found to possess a
diameter of 15 µm and a height of 0.2 µm [25–27]. This result indicates the ability of the
laser to generate stable blisters under controlled conditions. As demonstrated in Figure 2b,
the blister formation behavior depends strongly on the laser energy density [28]. Upon
increasing the laser energy density from 0.6 to 1.2 W cm−2, the height of the blister in the
DRL (thickness, t = 1 µm) increased accordingly. This result suggests a direct relationship
between laser energy density and blister formation, as higher energy densities lead to
greater expansion within the DRL [29,30]. However, when the energy density exceeded
1.4 W cm−2, the excessive energy input resulted in rupture of the DRL, as shown in Figure
S2 [31]. This finding underscores the importance of identifying an appropriate laser energy
density range to promote blister formation without damaging the donor layer because
an overly high energy input can compromise the structural integrity of the DRL [19]. In
addition, since the residue dispersed by rupture can contaminate the microchip to be
transferred, it is important to operate above the blistering limit while remaining below the
rupture limit to transfer the microchip without such contamination [32]. To further explore
the parameters affecting blistering, the laser energy density was fixed at 1 W cm−2, and
the DRL thickness (t) and laser pulse width (τ) were adjusted, as shown in Figure 2c,d.
Figure 2c shows the relationship between the DRL thickness and the dimensions of laser-
responsive region (i.e., blister or rupture). It can be seen that the dimensional behavior of the
laser-responsive region varied significantly with an increasing DRL thickness under fixed
laser conditions. More specifically, when the DRL thickness reached 2 µm, the diameter of
the laser-affected area increased. However, at thicknesses beyond 2 µm, rupture occurred,
causing the diameter to decrease. Blister formation was observed only at a DRL thickness
of 1.5 µm (marked in green), with both thicker and thinner layers leading to rupture. This
can be explained by the thermal and mechanical properties of the DRL. For example, at
1.5 µm, the laser energy is efficiently absorbed and converted into localized expansion,
generating sufficient pressure to induce blister formation without exceeding the mechanical
limits of the DRL. This layer is sufficiently thick to avoid rupture but forms localized
heat accumulation. For DRL thicknesses >2 µm, the absorbed energy is distributed across
a larger volume, leading to an increase in the internal pressure, and eventual rupture
as the mechanical strength of the material is exceeded. This rupture event reduces the
effective blister size as the structure collapses. Conversely, when the DRL is thinner than
1.5 µm, the layer lacks the mechanical stability to withstand localized pressure, resulting in
rupture despite an adequate energy input. Furthermore, this thin layer concentrates heat,
leading to intense stress and failure before a blister can fully develop [19,33]. These findings
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highlight the importance of the DRL thickness in ensuring stable blister formation. Indeed,
optimization of the DRL thickness ensures efficient energy absorption and expansion
without rupture, facilitating reliable material transfer during the LIFT process.
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As another laser parameter, the effect of the laser pulse width (τ) on the blister/rupture
behavior was examined at a DRL thickness of 1.5 µm. As shown in Figure 2d, blister
formation occurs at a pulse width of 1 µs (marked in green). The energy deposition over
this short timeframe effectively concentrates the thermal energy, creating sufficient pressure
to propel the material (e.g., the microchips) onto the receiver substrate in a controlled
manner [34]. As the pulse width increases beyond 1 µs, the size of the laser-responsive
region expands due to the longer interaction time between the laser and the PI. This
leads to increased heat diffusion and a larger volume of DRL being affected by the laser.
Consequently, the thermal energy spreads over a wider area within the DRL, reducing the
rate of localized pressure build up, but still allowing excess pressure to accumulate over
time. The extended interaction time promotes more significant internal gas generation,
which leads to a sudden and uncontrolled release of gas, resulting in rupture rather than
controlled blister formation [35]. At longer pulse widths (τ > 1 µs), the slower rate of
energy deposition enables the heat to penetrate deeper into the DRL, further affecting its
mechanical stability [36]. This prolonged exposure can cause material degradation within
the DRL, weakening its structural integrity and rendering it more prone to rupture under
excessive internal pressure. Table S1 provides comparative analysis on the parameters
affecting blister formation in this study. These findings suggest that the pulse width directly
affects both the thermal dynamics and mechanical stability of the DRL, indicating its critical
role during optimization of the LIFT process.



Nanomaterials 2024, 14, 1926 7 of 12

Considering the influence of different laser parameters on the structural behavior
of blistering in the DRL (Figure 2), a non-contact LIFT process was implemented for
microchips. A custom-made optical alignment stage was engineered to facilitate this
process, providing precise adjustments along the x, y, and z axes, as well as rotational
control (Figure 3a and Figure S3). The upper section of the stage (Part A) secures the
donor substrate, allowing for fine positional adjustments to ensure accurate alignment
during transfer. The lower section (Part B) accommodates the receiver substrate and offers
rotational capabilities to further enhance alignment precision. This stage enables meticulous
tuning of the substrate position, ensuring stable, repeatable, and accurate transfer outcomes
throughout the LIFT process. The three sets of time-resolved images shown in Figure 3b
represent the motion of the microchip at three distinct average flying velocities (i.e., 10, 20,
and 40 m s−1) by adjusting laser energy density (1~1.4 W cm−2), allowing a comparison of
transfer behaviors to be performed under these conditions [25,37,38]. At a laser density of
1 W cm−2, the microchip exhibited rapid acceleration within the first 100 µs of flight,
reaching its peak velocity before beginning to decelerate significantly after 200 µs, indicating
a clear loss of kinetic energy. When the laser density was increased to 1.2 W cm−2, the
microchip maintained its speed for a longer duration (0–400 µs) before undergoing a more
gradual deceleration between 400 and 600 µs. In contrast, at 1.4 W cm−2, the microchip
sustained a high acceleration and velocity throughout the observed time period, even at the
600 µs mark. This controlled speed suggests a more balanced dissipation of energy, which
could potentially reduce the risk of damage during transfer to the receiver substrate. Optical
microscopy (OM) and time-resolved imaging were then employed to depict microchip
transfer to the receiver substrate with a 10 µm spacing between the donor and receiver
substrates. For transfer yield analysis, we used Python 3.11 and ImageJ 1.54k software,
utilizing its image sensing function to analyze whether the microchips were misaligned
after transfer (as shown in Figure S4). To facilitate this analysis, a grid was overlaid
on the array as a reference framework, enabling precise measurement of deviations in
distance and angle. The analysis revealed that while the initial spacing between chips
on the donor substrate was 8 µm, the misaligned chips exhibited a deviation of 2 µm
in spacing. Additionally, angular misalignment was evaluated, and chips that rotated
beyond 5◦ threshold were categorized as misaligned [9]. At a laser density of 1 W cm−2,
the microchips were transferred without damage, but misalignment occurred, likely due
to air resistance affecting the microchips during flight. In contrast, the OM image of
the transfer conducted at 1.2 W cm−2 shows successful, damage-free, and well-aligned
transfers. However, at 1.4 W cm−2, the lack of sufficient deceleration before impact caused
the microchips to reach the substrate at a high velocity, resulting in potential damage or
failure upon impact. These observations emphasize the critical role of the transfer velocity
in achieving optimal results [39]. Thus, at energy density, such as 1 W cm−2, damage may
be avoided, but misalignment can occur due to the influence of air resistance. Conversely,
at higher energy, i.e., 1.4 W cm−2, the microchip cannot decelerate adequately, increasing
the risk of damage during transfer. In contrast, 1.2 W cm−2 of energy, although relatively
high, allows the microchip to overcome air resistance, maintain alignment, and reduce the
impact force, leading to successful, damage-free transfer.

Furthermore, Figure 3c demonstrates how the transfer quality (e.g., alignment and
yield) can be affected by the spacing between the donor and receiver substrates. For the
purpose of this study, the spacing was controlled, varying from direct contact to 30 µm.
When the substrates were in direct contact with one another (i.e., contact mode), the LIFT
process achieved a high transfer yield. However, it has previously been reported that ensur-
ing a small but controlled spacing between the donor and receiver substrates is essential for
consistency in scalable LIFT applications, particularly for industrial applications [40]. Thus,
while contact-based transfers may initially provide higher yields, they pose additional risks,
such as substrate damage, contamination, and an inconsistent transfer quality, especially
during mass production. By introducing appropriate spacing (i.e., non-contact mode), these
issues can be mitigated, resulting in more consistent and repeatable transfers.
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Figure 3. (a) Schematic representation of the custom-designed optical alignment stage for the non-
contact LIFT process. (b) Series of time-resolved images at different laser energy densities. The
corresponding OM images show the transferred microchips on the receiver substrates. (c) OM images
of the receiver substrate with varying spacings.

However, as the spacing was increased from 10 to 30 µm, the transfer yield decreased to
42.7%. This reduction in yield can be attributed to multiple factors, including air resistance
and the rotational momentum of the microchips [41,42]. When the laser is not perfectly
centered on the microchip, rotational motion occurs, and as the gap widens, the rotational
angle increases due to the longer flight time [43]. This enhanced rotation often leads to
misalignment upon landing, further diminishing the transfer yield.

While narrowing the spacer gap can improve the transfer yield, the aim of this study
was to optimize the physical properties and structural configuration of the donor substrate
to further enhance the results. Thus, Figure 4 presents the results of experiments performed
to impart additional precise control on the donor substrate and improve the LIFT process,
specifically in the case where the microchips are embedded within the DRL. Two key pa-
rameters of the donor substrate were optimized to achieve higher transfer yields, namely
the DRL thickness and the embedding depth of the microchips within the DRL. The LIFT
process was conducted on microchip arrays at a laser energy density of 1.2 W cm−2 with
23.5 µJ of pulse energy. Laser irradiation on the microchips utilized a scanning method with
single exposure, achieved through a focusing lens that produced a spot size of 50 µm. A
detailed analysis of transfer yield and classification of microchips into categories (successful
transfers, misaligned transfers, and failed transfers) is illustrated in Figure S4. To provide
further clarity regarding the experimental setup, the laser scanning speed was 500 mm/s,
corresponding to a calculated chip-to-chip scan rate of approximately 16 µs. This setup
highlights the precision and efficiency of the scanning method employed during the LIFT
process. Additionally, the focused beam ensured uniform energy distribution across the mi-
crochip arrays, minimizing defects caused by uneven irradiation. For a visual depiction of the
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experimental configuration, including the focused beam and alignment mechanism, Figure
S1 in the Supplementary Materials serves as a reference. In support of these observations,
Figure S5a presents additional analyses, where transfer yield was plotted as a function of
the embedding depth of the microchip within the DRL, as well as the embedding depth-
to-DRL thickness ratio. These results provide deeper insights into how variations in the
embedding depth of the microchip and DRL thickness influence transfer efficiency under
different laser energy density conditions. Furthermore, Figure S5b complements this analysis
with plots showing the correlation between DRL thickness and transfer yield under varying
laser energy densities. The results reveal that each DRL thickness has an optimal laser energy
density, beyond which the transfer mechanism transitions from blister-mediated transfer to
rupture-induced transfer, resulting in a gradual decline in yield. For thinner DRL layers
(e.g., 0.75 µm), transfer yield increases as the energy density approaches the optimal value.
However, maintaining high transfer yields at higher energy densities requires thicker DRL
layers. These findings underscore the importance of identifying the optimal laser energy
density for each DRL thickness to maximize and sustain high transfer yields. This highlights
the need for fine-tuning laser parameters to ensure broader applicability across diverse DRL
configurations and material conditions. As shown in Figure 4a, optimization of the DRL
thickness had a significantly impact on the microchip transfer yield. More specifically, in
cases where the DRL was too thick (t > 1.5 µm), excess energy absorption led to considerable
pressure build up, which resulted in excessive energy being transferred to the microchip.
Eventually, the microchip was unable to settle stably on the receiver substrate and bounced
off, reducing the transfer efficiency. Conversely, when the DRL was too thin (t < 0.75 µm),
premature rupture, as discussed in Figure 2c, not only disrupted blister formation but also
resulted in contamination of the transferred microchips, thereby reducing the overall yield.
Notably, an optimal DRL thickness of 1 µm produced the highest transfer yield, reaching up to
97%. The embedding depth of the microchips within the DRL, which influences the adhesion
properties between the microchips and the DRL, was further optimized by controlling the
pre-curing time of the DRL precursor, as shown in Figure 4b. In this experiment, the DRL
thickness was fixed at the optimized value of 1 µm. During the early stages of curing, the
PI remains in a semi-fluid state, allowing the microchips to embed more deeply within the
DRL. As the curing process progresses and the PI solidifies, the increased stiffness restricts
further embedding, resulting in shallower placements, with microchips embedding at depths
of up to 0.9 µm [44,45]. This variation in the embedding depth directly was found to affect the
blistering dynamics and the transfer efficiency. To further illustrate this relationship, Table S3
has been included, providing a comparative analysis of the effect of DRL curing time on the
embed depth of microchips. Moreover, the results presented in Figure 4b show that shorter
curing times (5–10 min) result in deeper microchip embedding, which impairs efficient release
during the LIFT process and lowers the transfer yield. As the curing time was increased, the
embedding depth decreased up to 0.1 µm, positioning the microchips more favorably for
release. However, excessive curing times led to insufficient embedding, weakening adhesion
between the microchips and the DRL, and resulting in microchip loss prior to transfer [46].
The highest transfer yield was achieved at a curing time of ~40 min, with embedding depth of
0.3 µm at which point the embedding depth provided an optimal balance for effective release.
Table S2 summarizes a comparative evaluation of the parameters influencing transfer yield
in this study. Figure 4c presents an OM image of the donor substrate bearing an array of
microchips, while Figure 4d shows the corresponding image for the receiver substrate with a
transfer yield of ~97%. These images confirm the successful, defect-free transfer of microchips,
made possible by precise optimization of the DRL thickness and the microchip embedding
depth. Overall, this study demonstrates the critical influence of the thickness and curing time
on controlling the microchip embedding depth, which maximizes the transfer efficiency by
preventing issues related to inadequate or excessive embedding.
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4. Conclusions

This study presents a comprehensive exploration of the laser-induced forward transfer
(LIFT) process, with a focus on the optimizing laser parameters and the donor substrate
characteristics to achieve more efficient and reliable microchip transfer. By fine-tuning key
variables, such as the laser energy density, the dynamic release layer (DRL) thickness, and
the pulse width, precise control was achieved over blister formation, which is essential for
avoiding contamination and blister rupture. Notably, a DRL thickness of 1 µm provided
the ideal balance for achieving stable blister dynamics. Ultrafast imaging revealed that a
transfer velocity of 20 m s−2 offered the optimal trade-off between the air resistance and the
impact force, ensuring accurate and damage-free microchip placement. Consequently, the
optimized process achieved a maximum transfer yield of ~97%, representing a substantial
improvement in efficiency compared to previous systems. In practical applications of
micro LED transfer, a post-transfer soldering process is typically necessary to establish
reliable electrical connections between the micro LEDs and the receiver substrate [9]. With
further development of post-process for practical micro LED applications, the LIFT process
could be fully realized as a complete method for micro LED fabrication. These findings
offer critical insights for advancing the LIFT process, thereby rendering it a promising
technique for scalable, high-precision applications in micro-light-emitting diode displays
and semiconductor devices.
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LIFT process; Figure S4: Classification and analysis of transferred microchips; Figure S5: Analysis on
key parameters influencing transfer yield; Table S1: Comparison of parameters for blister formation;
Table S2: Comparison of parameters for transfer yield; Table S3: Comparative analysis of the effect of
DRL curing time on the embed depth of microchips.
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