1 The GluA1 cytoplasmic tail regulates intracellular AMPA receptor trafficking and synaptic

transmission onto dentate gyrus GABAergic interneurons, gating response to novelty

- 3
4
-
-
- 6
7
-
- Gerardo Leana-Sandoval^{4, 2}, Ananth V. Kolli^{4, 2}, Carlene A. Chinn^{2, 3}, Alexis Madrid^{4, 2}, Iris Lo⁴, Matthew A.
5 Sandoval^{1, 2}, Vanessa Alizo Vera^{2, 3}, Jeffrey Simms⁴, Marcelo A. Wood^{2, 3}, Javier Diaz-Alon Sandoval⁴², Vanessa Alizo Vera^{2, 3}, Jeffrey Simms", Marcelo A. Wood^{2, 3}, Javier Diaz-Alonso ⁴².
6
¹ Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA.
² Center for the Neu ¹ Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA.
8 ² Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, I
³ Department of Neurobiolo
- ² Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, 9^{3} Department of Neurobiology & Behavior, University of California at Irvine, CA, 92697, USA.
⁴ Gladstone Institute of
- 9 ³ Department of Neurobiology & Behavior, University of California at Irvine, CA, 92697, USA.
0 ⁴ Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.
² * Correspondence to Javier Díaz-Alonso (
-
-

12 **Abstract**

14 10 The GluA1 subunit, encoded by the putative schizophrenia-associated gene GRIA1, is required 15 for activity-regulated AMPA receptor (AMPAR) trafficking, and plays a key role in cognitive and 15 for activity-regulated AMPA receptor (AMPAR) trafficking, and plays a key role in cognitive and
16 affective function. The cytoplasmic, carboxy-terminal domain (CTD) is the most divergent region acros
17 AMPAR subunits. 16 affective function. The cytoplasmic, carboxy-terminal domain (CTD) is the most divergent regio
17 AMPAR subunits. The GluA1 CTD has received considerable attention for its role during long-ter
18 potentiation (LTP) at C 17 AMPAR subunits. The GluA1 CTD has received considerable attention for its role during long-term
18 potentiation (LTP) at CA1 pyramidal neuron synapses. However, its function at other synapses and,
19 more broadly, its c 18 potentiation (LTP) at CA1 pyramidal neuron synapses. However, its function at other synapses and
19 more broadly, its contribution to different GluA1 dependent processes, is poorly understood. Here
18 used mice with a c 19 more broadly, its contribution to different GluA1-dependent processes, is poorly understood. Here,
18 weed mice with a constitutive truncation of the GluA1 CTD to dissect its role regulating AMPAR
18 localization and fu 19 more broadly, its contribution of the GluA1 CTD to dissect its role regulating AMPAR
19 more with a constitutive truncation of the GluA1 CTD to dissect its role regulating AMPAR
19 More in the directed AMPAR subunit le 21 localization and function as well as its contribution to cognitive and affective processes. We fou
22 GluA1 CTD truncation affected AMPAR subunit levels and intracellular trafficking. Δ CTD GluA1
23 exhibited no memor 22 GluA1 CTD truncation affected AMPAR subunit levels and intracellular trafficking. Δ CTD GluA1 mice
23 exhibited no memory deficits, but presented exacerbated novelty-induced hyperlocomotion and
24 dentate gyrus granul 22 External Communication and Communication affection and dentate gyrus granule cell (DG GC) hyperactivity, among other behavioral alterations. Mechanisticall
25 Glue found that AMPAR EPSCs onto DG GABAergic interneurons w 24 dentate gyrus granule cell (DG GC) hyperactivity, among other behavioral alterations. Mechanisti
25 we found that AMPAR EPSCs onto DG GABAergic interneurons were significantly reduced, presure
26 underlying, at least in 25 we found that AMPAR EPSCs onto DG GABAergic interneurons were significantly reduced, presumably
26 underlying, at least in part, the observed changes in neuronal activity and behavior. In summary, this
27 study dissocia 26 underlying, at least in part, the observed changes in neuronal activity and behavior. In summary, this study dissociates CTD-dependent from CTD-independent GluA1 functions, unveiling the GluA1 CTD as a crucial hub regul underlying, at least in part, the observed changes in neuronal activity and behavior. In summary, this
27 study dissociates CTD-dependent from CTD-independent GluA1 functions, unveiling the GluA1 CTD as
28 a crucial hub re 28 a crucial hub regulating AMPAR function in a cell type-specific manner.
29 **Keywords:** AMPA receptor, GluA1, C-tail, Carboxy-terminal domain, schizophrenia, dentate gyrus,
31 novelty response, LTP, intracellular traffic 28 a crucial hub regulating Ammerical Hub regulation is competended.
28 **Keywords:** AMPA receptor, GluA1, C-tail, Carboxy-terminal domain, scl
31 novelty response, LTP, intracellular trafficking, PV+ interneuron.
32 29

31 Neywords: AMPA receptor, GluA1, C-tail, Carboxy-terminal domain, schizophrenia, dentate gyrus,
31 novelty response, LTP, intracellular trafficking, PV+ interneuron.
32

- 32 novelty response, LTP, intracellular trafficking, PV+ interneuron.
32
-

33 Introduction 35 synapses throughout the CNS. Additionally, specific and sustained increases in the postsynaptic
36 AMPAR complement underlie long-term potentiation (LTP) (Kauer, Malenka et al. 1988, Muller, Joly
37 al. 1988), which pla 36 AMPAR complement underlie long-term potentiation (LTP) (Kauer, Malenka et al. 1988, Muller, al. 1988), which plays a crucial role in forms of learning and memory (Martin, Grimwood et al. 20
33 Nicoll 2017, Gall, Le et a 37 al. 1988), which plays a crucial role in forms of learning and memory (Martin, Grimwood et al. 2000,
38 Nicoll 2017, Gall, Le et al. 2024). AMPARs assemble into heterotetramers of pore-forming subunits
39 (GluA1-4), dec 38 Nicoll 2017, Gall, Le et al. 2024). AMPARs assemble into heterotetramers of pore-forming subunits
39 (GluA1-4), decorated by auxiliary subunits. Subunit composition imparts AMPARs' biophysical
30 properties and traffick 39 (GluA1-4), decorated by auxiliary subunits. Subunit composition imparts AMPARs' biophysical
30 properties and trafficking behavior (Malinow and Malenka 2002, Collingridge, Isaac et al. 2004, Dier
31 and Huganir 2018, Ha 39 (Gluban, Matematical), demain, 2010 (Malinow and Malenka 2002, Collingridge, Isaac et al. 2004,
39 and Huganir 2018, Hansen, Wollmuth et al. 2021, Bessa-Neto and Choquet 2023). At hippocam
39 synapses, GluA1-containing 10 properties and districting behavior (Malinow and Malenka 2002) collingings), isaac et al. 2004) of entiry
11 and Huganir 2018, Hansen, Wollmuth et al. 2021, Bessa-Neto and Choquet 2023). At hippocampal CA1
12 synapses, 11 and Huganir 2021, Hansen, Hansen Particular Particule and The Joseph Endphason.
141 and Huganism (Zamanillo, Sprengel et al. 1999, Hayashi, Shi et al. 2000, Shi, Hayashi et al. 2001). However, AMPAR
14 subunit compositi 43 (Zamanillo, Sprengel et al. 1999, Hayashi, Shi et al. 2000, Shi, Hayashi et al. 2001). However, AMPA
44 subunit composition varies dramatically among cell types and brain regions (Schwenk, Baehrens et
45 2014), and our 44 subunit composition varies dramatically among cell types and brain regions (Schwenk, Baehrens et al.
2014), and our understanding of the mechanisms underlying AMPAR trafficking and function at other
46 synapses, particu 44 subunit composition varies dramatically among cell types and brain regions (Schwenk, Baehrens et al.

1914), and our understanding or included
146 synapses, particularly at synapses onto inhibitory neurons, is limited.
147 Structurally, AMPAR subunits contain an amino-terminal domain (ATD, a.k.a. NTD), a ligand-
148 bindin 47 Structurally, AMPAR subunits contain an amino-terminal don
48 binding domain (LBD), a transmembrane domain which forms the po
49 terminal domain (CTD). Of all these regions, the CTD is the most sequ 1999 binding domain (LBD), a transmembrane domain which forms the pore channel, and a carboxylterminal domain (CTD). Of all these regions, the CTD is the most sequence-diverse, and has therefore
1990 terminal domain (CTD). 19 binding domain (CTD), Of all these regions, the CTD is the most sequence-diverse, and has ther
19 binding domain (CTD), Of all these regions, the CTD is the most sequence-diverse, and has ther
19 die - (Malinow and Male 19 terminal domain (CTD). Of all these regions, the CTD is an amount specific AMPAR trafficking rules
19 terminal domain (Malinow and Malenka 2002, Diering and Huganir 2018, Diaz-Alonso and Nicoll 2021, Bessa-Neto and
19 C 51 (Malinow and Malenka 2002, Diering and Huganir 2018, Diaz-Alonso and Nicoll 2021, Bessa-Neto
52 Choquet 2023, Stockwell, Watson et al. 2024). The GluA2 CTD plays an important role in synaptic
53 scaling (Gainey, Hurvitz 51 (Malinow and Malenka 2002, Diering and Huganir 2018, Diaz-Alonso and Nicoll 2021, Bessa-Neto and
52 Choquet 2023, Stockwell, Watson et al. 2024). The GluA2 CTD plays an important role in synaptic
53 scaling (Gainey, Hur 53 scaling (Gainey, Hurvitz-Wolff et al. 2009, Ancona Esselmann, Diaz-Alonso et al. 2017), and the Gl
54 CTD regulates its subcellular distribution (Boehm, Kang et al. 2006, Luchkina, Coleman et al. 2017
55 However, it is 54 CTD regulates its subcellular distribution (Boehm, Kang et al. 2006, Luchkina, Coleman et al. 2017).
55 However, it is the GluA1 CTD which has received most of the attention. GluA1 CTD interactions with
56 Protein 4.1N 55 However, it is the GluA1 CTD which has received most of the attention. GluA1 CTD interactions with
56 Protein 4.1N and Sap97 can regulate intracellular AMPAR trafficking and synaptic content (Shen, Lia
57 et al. 2000, S For Frontein, it is the GluA₁ However, include intracellular AMPAR trafficking and synaptic content (Shen, Lia
57 et al. 2000, Sans, Racca et al. 2001, Kay, Tsan et al. 2022, Bonnet, Charpentier et al. 2023). During LT
5 Protein 4.1N and Sap97 can regulate intracellular AMPAR trafficking and synaptic content (Shen, Liang
et al. 2000, Sans, Racca et al. 2001, Kay, Tsan et al. 2022, Bonnet, Charpentier et al. 2023). During LTP,
the GluA1 CTD 58 the GluA1 CTD undergoes phosphorylation by CaMKII, PKC and PKA (Barria 1997, Hayashi 2000,
59 Esteban, Shi et al. 2003), and double phospho-null mutation of Serine 831 and 845 in the GluA1 CTD has
60 been shown to block 59 Esteban, Shi et al. 2003), and double phospho-null mutation of Serine 831 and 845 in the GluA1 C
60 been shown to block LTP (Lee, Takamiya et al. 2003). These and other studies support an essenti
61 for the GluA1 CTD in 59 Esteban, Shi et al. 2003), and doorse phospho-numeralism of Serine 832 and style fire side is the GluA1 CTD
60 been shown to block LTP (Lee, Takamiya et al. 2003). These and other studies support an essential role
62 CT for the GluA1 CTD in LTP. However, other evidence suggests a more nuanced role: i) the discovery that
CTD (Ser 831/ Ser 845)-phosphorylated GluA1 accounts for a negligible fraction of GluA1 at synapses *in*
vivo (Hosokawa, 61 for the GluA1 CTD in LTP. However, other evidence suggests a more nuanced role: i) the discovery that
62 CTD (Ser 831 / Ser 845)-phosphorylated GluA1 accounts for a negligible fraction of GluA1 at synapses *in*
63 vivo 62 CTD (Ser 831) Ser 845)-phosphorylated GluA1 accounts for a negligible fraction of GluA1 at synapses in
63 vivo (Hosokawa, Mitsushima et al. 2015) [although another study reported a sizable proportion of ⁶³vivo (Hosokawa, Mitsushima et al. 2015) [although another study reported a sizable proportion of

64 phosphorylated GluA1 (Diering, Heo et al. 2016)], ii) the finding that GluA1 lacking the PDZ-binding
65 motif traffics normally (Kim, Takamiya et al. 2005, Kerr and Blanpied 2012). iii), the demonstration that
66 CTD-l 166 CTD-lacking GluA1 can support basal AMPAR transmission and LTP at hippocampal CA3→CA1
167 synapses (Granger, Shi et al. 2013, Diaz-Alonso, Morishita et al. 2020, Watson, Pinggera et al. 2021).
168 Altogether, the emerg examples of the manner process of the support basel and the support of the Synapses (Granger, Shi et al. 2013, Diaz-Alonso, Morishita et al. 2020, Watson, Pinggera et al. 2014
68 Altogether, the emerging picture is that th examples (Cranger, Shi et al. 2021). Alto denote is that the presence of the GluA1 CTD is unlikely to be an absolute
for all and the emerging picture is that the presence of the GluA1 CTD is unlikely to be an absolute
for requirement for AMPAR-mediated synaptic transmission and LTP at CA1 PNs, where it may instead
TO play a more subtle role (Diaz-Alonso and Nicoll 2021, Bessa-Neto and Choquet 2023, Stockwell, Wat
T1 et al. 2024). However, t 69 play a more subtle role (Diaz-Alonso and Nicoll 2021, Bessa-Neto and Choquet 2023, Stockwell, Wat
et al. 2024). However, the contribution of the GluA1 CTD to synaptic transmission at other synapses,
especially excitator 20 play a more subtle role (Diaz-Alonso and Nicolation 2022) subtle role and Along Persons, et al. 2024). However, the contribution of the GluA1 CTD to synaptic transmission at other synapses,
22 especially excitatory syna

12 et al. 2024). However, the commodition of the Croins of the GluAnnimor of the GluAn especially excitatory synapses onto inhibitory neurons, remains largely unexplored.
The link between glutamatergic dysfunction and neur The link between glutamatery is a mannery performance in gray strangely in the link between glutamatergic dysfunction and neuropsychiatric disorders
74 (Coyle 2006, Lisman, Coyle et al. 2008, Tamminga, Southcott et al. 201 The link between greenhatergic dystement and neuroppy smaller are restrained to the detailshed
75 The link between greenings, Southcott et al. 2012). Specifically, the GRIA1 gene,
75 The link between is well-established as which encodes the GluA1 subunit, has been identified as a risk locus for schizophrenia in genome-wide
association studies (Ripke, O'Dushlaine et al. 2013, Schizophrenia Working Group of the Psychiatric
Genomics 2014), and 26 association studies (Ripke, O'Dushlaine et al. 2013, Schizophrenia Working Group of the Psychiatric
373 Genomics 2014), and postmortem analyses of individuals with schizophrenia show reduced levels of
38 GluA1 in severa 76 association studies (Ripke, O'Dushlaine et al. 2013, Schizophrenia Working Group of the Psychiatric
77 Genomics 2014), and postmortem analyses of individuals with schizophrenia show reduced levels of
78 GluA1 in several 1922 GluA1 in several brain regions, including the hippocampus (Harrison 1991, Eastwood 1996, Yonezaw.
1938 Tani et al. 2022). Excitatory synaptic plasticity, most importantly LTP, is disrupted in CA1 in GluA1 K
1938 Tani 59 GluA1 in several brain regions, including the hippocampus (Harrison 1991, Eastwood 1996, Yonezawa,
79 Tani et al. 2022). Excitatory synaptic plasticity, most importantly LTP, is disrupted in CA1 in GluA1 KO
78 Mice, whi 79 Tani et al. 2022). Excitency symptoms in novelty and salience processing and working memory
81 Teminiscent of some of the symptoms of schizoaffective disorders (Zamanillo D.; Sprengel and Kaiser
82 1999, Reisel, Bannerm 1980 mice, which also exhibit alternative materials, and salisfied processing and working memory,
81 miniscent of some of the symptoms of schizoaffective disorders (Zamanillo D.; Sprengel a
83 Barkus, Feyder et al. 2012, B 1989, Reisel, Bannerman et al. 2002, Bannerman, Deacon et al. 2004, Sanderson, Sprengel et al. 2011,
Barkus, Feyder et al. 2012, Barkus, Sanderson et al. 2014, Bannerman, Borchardt et al. 2018, Panayi,
Boerner et al. 2023) 83 Barkus, Feyder et al. 2012, Barkus, Sanderson et al. 2014, Bannerman, Borchardt et al. 2018, Panayi,
84 Boerner et al. 2023).
85 Using GluA1 CTD truncated (ACTD GluA1) mice, we found that the GluA1 CTD regulates

84 Boerner et al. 2023).
83 Boerner et al. 2023).
85 Using GluA1 CTD truncated ($\triangle CTD$ GluA1) mice, we found that the GluA1 CTD regulates
86 AMPAR subunit protein levels and subcellular distribution. Interestingly, the CTD 85 Using GluA1
86 AMPAR subunit prot
87 GluA1-dependent fui 86 AMPAR subunit protein levels and subcellular distribution. Interestingly, the CTD is required for s
87 GluA1-dependent functions, most notably the regulation of the response to novelty as well as an
88 and despair-rela 87 GluA1-dependent functions, most notably the regulation of the response to novelty as well as anxiety
88 and despair-related behaviors, but not for GluA1-dependent memory processes. Our results suggest
89 that the GluA1 and despair-related behaviors, but not for GluA1-dependent memory processes. Our results suggest
that the GluA1 CTD modulates AMPAR synaptic transmission in a subunit composition-dependent anc
ell type-specific manner. Alt 88 that the GluA1 CTD modulates AMPAR synaptic transmission in a subunit composition-dependent are cell type-specific manner. Altogether, this study expands our understanding of the cell-type specific
81 regulation of exci 1988 that the GluAn Contract that the GluAn Compared that the GluAn Component and Selection-dependent and selection-
1988 that the cell-type specific
1988 that into the neurobiological mechanisms
1988 regulating the putati 91 regulation of excitatory synaptic transmission and sheds light into the neurobiological mechanisms
92 regulating the putative schizophrenia risk-associated GluA1.
93 Materials and Methods 1991 regulating the putative schizophrenia risk-associated GluA1.
93 Materials and Methods
93 Materials and Methods

92 regulating the putative schizophrenia risk-associated GluA1.
93 Materials and Methods 93 Materials and Methods

95 And Animals
96 the Unive
97 in a 12-he
98 homozyg 1999 The University of California, Irvine (protocol numbers AUP-20-156; AUP-23-076). Mice were maintaine
97 In a 12-hour light/dark schedule and had access to food and water, ad libitum. Generation of
98 Interval Animal A 97 in a 12-hour light/dark schedule and had access to food and water, ad libitum. Generation of
98 homozygous HA-ΔCTD GluA1 knock-in (referred to as ΔCTD GluA1) mice was previously described
99 (Diaz-Alonso, Morishita et 98 homozygous HA-ΔCTD GluA1 knock-in (referred to as ΔCTD GluA1) mice was previously des
99 (Diaz-Alonso, Morishita et al. 2020). Genotyping was carried out by TransnetYX Inc.
00 <u>Biochemistry</u> 99 (Diaz-Alonso, Morishita et al. 2020). Genotyping was carried out by TransnetYX Inc.
00
01 Biochemistry WT and ΔCTD GluA1 mouse forebrains were dissected and homogenized in Synaptic Protei

99 (Diaz-Alonso, Morishita et al. 2020). Genotyping was carried out by TransnetYX Inc.
100
101 <u>Biochemistry</u>
102 WT and ΔCTD GluA1 mouse forebrains were dissected and homogenized in Synaptic Protein
103 Extraction Reagen 102 WT ar

103 Extraction Rea

104 #1183617000:

105 (Bernard, Exp 104 #11836170001). Synaptosomes were then obtained following manufacturer's instructions, as in
105 (Bernard, Exposito-Alonso et al. 2022). For immunoblot, whole brain lysates and synaptosomal
106 fractions were denatured 104 #11836170001). Synaptosomes were then obtained following manufacturer's instructions, as in
105 (Bernard, Exposito-Alonso et al. 2022). For immunoblot, whole brain lysates and synaptosomal
106 fractions were denatured 105 (Bernard, Exposito-Alonso et al. 2022). For immunoblot, whole brain lysates and synaptosomal
106 fractions were denatured at 95 °C for 5 min. in Laemmli sample buffer (Sigma, #S-3401) and pro
107 for SDS-PAGE. Immuno-B 106 fractions were denatured at 95 °C for 5 min. in Laemmli sample buffer (Sigma, #S-3401) and pro
107 for SDS-PAGE. Immuno-Blot PVDF membranes (Bio-Rad, #1620177) were blocked with 5% blot
108 grade nonfat milk (Lab Scien 107 for SDS-PAGE. Immuno-Blot PVDF membranes (Bio-Rad, #1620177) were blocked with 5% blotting
108 grade nonfat milk (Lab Scientific, #Mo841) in tris-buffered saline with 0.1% tween 20 (Sigma-Aldrich,
109 #P1379). The foll grade nonfat milk (Lab Scientific, #Mo841) in tris-buffered saline with 0.1% tween 20 (Sigma-Aldrich
109 #P1379). The following primary antibodies were used at a 1:1000 dilution: guinea pig anti-GluA2 CTD
110 (Synaptic Sys 109 #P1379). The following primary antibodies were used at a 1:1000 dilution: guinea pig anti-GluA2 CTD
110 (Synaptic Systems, #182 105), mouse anti-GluA1 ATD (Cell Signaling, #13185S), rabbit anti-GluA3
111 (Alomone Labs, 110 (Synaptic Systems, #182 105), mouse anti-GluA1 ATD (Cell Signaling, #13185S), rabbit anti-GluA3
111 (Alomone Labs, #AGC-010), rabbit anti-GluA4 (Cell Signaling, # 8070), mouse anti PSD-95 (Synaptic
112 systems, #124 01 110 (Synaptic Systems, #182 105), mouse anti-GluA1 ATD (Cell Signaling, #13185S), rabbit anti-GluA3
111 (Alomone Labs, #AGC-010), rabbit anti-GluA4 (Cell Signaling, # 8070), mouse anti PSD-95 (Synaptic
112 systems, #124 01 112 systems, #124 011) and mouse anti-tubulin (Millipore-Sigma, #T9026). HRP-conjugated secondary
113 antibodies raised against the appropriate species were used: anti-rabbit IgG (Vector laboratories #PI-
114 1000), anti-m 113 antibodies raised against the appropriate species were used: anti-rabbit IgG (Vector laboratories #P
114 1000), anti-mouse IgG (Vector laboratories #PI-2000), and anti-guinea pig IgG (Millipore Sigma
115 #AP108P). Mem 114 and the anti-rabbit is a propriate species were vector and the anti-rabbit is also anti-rabbit is also and
115 #AP108P). Membranes were incubated with ClarityTM Western ECL (BioRad, #170-5060). When
116 meeded, membra 115 #AP108P). Membranes were incubated with ClarityTM Western ECL (BioRad, #170-5060). Whe
116 meeded, membranes were incubated in stripping buffer containing Guanidine HCl and β-
117 mercaptoethanol and triton x-100 in p 116 meeded, membranes were incubated in stripping buffer containing Guanidine HCl and β-
117 mercaptoethanol and triton x-100 in pH 7.5 Tris HCl buffer, with gentle agitation at RT for 30 min.
118 Following incubation, me needed, membranes were incubated in stripping buffer containing Guanidine HCl and β-
117 mercaptoethanol and triton x-100 in pH 7.5 Tris HCl buffer, with gentle agitation at RT fo
118 Following incubation, membranes were 118 Following incubation, membranes were rinsed, blocked and incubated with another Ab.
119 <u>Confocal microscopy and image analysis</u>
121 MT and ΔCTD GluA1 brain samples were sectioned (40 μm, coronal) following fixation i 119 Following incubation, membranes were missed, broken and incubated with another Ab.
120 Fonfocal microscopy and image analysis
121 For and ΔCTD GluA1 brain samples were sectioned (40 μm, coronal) following fix
122 Fora 119
120 120 Confocal microscopy and image analysis
121 WT and Δ CTD GluA1 brain samples were sectioned (40 µm, coronal) following fixation in 4%
122 paraformaldehyde. After blocking with 5% swine serum (Jackson Immuno Research, 122 paraformaldehyde. After blocking with 5% swine serum (Jackson Immuno Research, #014-000-121) a
123 2% BSA (Cell Signaling, #9998S) in permeabilizing conditions (0.1% Triton X-100, Sigma-Aldrich,
124 #T8787), samples w

- 2% BSA (Cell Signaling, #9998S) in permeabilizing conditions (o.1% Triton X-100, Sigma-Aldrich,
124 #T8787), samples were incubated overnight at 4° C with the following primary antibodies: rabbit anti-
125 GluA1 ATD (Cell 124 #T8787), samples were incubated overnight at 4° C with the following primary antibodies: rabbit a
125 GluA1 ATD (Cell signaling, #13185, 1:500), guinea pig anti-GluA2 (Synaptic Systems, #182 105, 1:5
125 GluA1 ATD (Cel
- 125 GluA1 ATD (Cell signaling, #13185, 1:500), guinea pig anti-GluA2 (Synaptic Systems, #182 105, 1:500), and
125 GluA1 ATD (Cell signaling, #13185, 1:500), guinea pig anti-GluA2 (Synaptic Systems, #182 105, 1:500), 125 Gluan 125 Gluan and the United States of the United States pig anti-Gluan (Synaptic Systems), 1:500, 1:50
5. 1:5000, 1:5000, 1:5000, 1:5000, 1:5000, 1:5000, 1:5000, 1:5000, 1:5000, 1:5000, 1:5000, 1:5000, 1:500, 1:50
5

127 rabbit anti-GluA3 (Abcam, #AB190289, 1:500) and mouse anti PSD-95 (Synaptic Systems, #124 011, 1:500) followed by incubation with Alexa 488 goat anti-mouse (Life Technologies, #A-11001, 1:500),
Alexa 594 goat anti-rabb 128 1:500) followed by incubation with Alexa 488 goat anti-mouse (Life Technologies, #A-11001, 1:500),
129 Alexa 594 goat anti-rabbit (Life Technologies, #A11012, 1:500), Alexa 647 goat anti-rabbit (Life
130 Technologies, 129 Alexa 594 goat anti-rabbit (Life Technologies, #A11012, 1:500), Alexa 647 goat anti-rabbit (Life Technologies, #A21245, 1:500) and Alexa 568 goat anti-guinea pig (Life Technologies, #A11075, 1:50
131 secondary antibodi 130 Technologies, #A21245, 1:500) and Alexa 568 goat anti-guinea pig (Life Technologies, #A11075
131 secondary antibodies for 2 hours at RT. Slides were mounted with ProLong Gold Antifade Reag
132 DAPI (Cell Signaling Tech Technologies, #A21245, 1:500) and Alexa 568 goat anti-guinea pig (Life Technologies, #A11075, 1:500)
131 secondary antibodies for 2 hours at RT. Slides were mounted with ProLong Gold Antifade Reagent with
132 DAPI (Cell Si

133

132 DAPI (Cell Signaling Technology, #89615).
133 Secondary and Technology, #89615).
134 Confocal images were collected using a Leica Sp8 confocal microscope (Leica Microsystems,
135 Wetzlar, Germany). Dorsal hippocampus f 133
134 Confocal images were collected usi
135 Wetzlar, Germany). Dorsal hippocampus fie
136 radiatum (SR) were acquired using a 63x oil 135 Wetzlar, Germany). Dorsal hippocampus field CA1 images including stratum pyramidale and stratum
136 radiatum (SR) were acquired using a 63x oil objective as a series of 20 z-steps, with a z-step size of 1 μ
137 at a r 136 radiatum (SR) were acquired using a 63x oil objective as a series of 20 z-steps, with a z-step size of 1 µ
137 at a resolution of 1024 x 1024 pixels, and a scanning frequency of 400 Hz. The optical resolution (voxe
138 137 at a resolution of 1024 x 1024 pixels, and a scanning frequency of 400 Hz. The optical resolution (voxel
138 size) per image was 180 nm in the xy-plane and 1.03 μm in the z-plane. Analysis of synaptic localization
139 138 size) per image was 180 nm in the xy-plane and 1.03 µm in the z-plane. Analysis of synaptic localization
139 was performed using Imaris 9.9.1 (Bitplane, South Windsor, CT, USA) and MatLab Runtime R2022b
140 (Mathworks, 139 was performed using Imaris 9.9.1 (Bitplane, South Windsor, CT, USA) and MatLab Runtime R2022b
140 (Mathworks, Natick, MA, USA), as previously described (Bemben, Sandoval et al. 2023). Briefly, the
141 "Spots" tool was 140 (Mathworks, Natick, MA, USA), as previously described (Bemben, Sandoval et al. 2023). Briefly, the
141 "Spots" tool was utilized to assign representative three-dimensional ellipsoid shapes to individual
142 synaptic-li 141 "Spots" tool was utilized to assign representative three-dimensional ellipsoid shapes to individual
142 synaptic-like GluA1, GluA2, GluA3 and PSD-95 puncta. Then "Background Subtraction" was applied
143 deduce backgrou 142 synaptic-like GluA1, GluA2, GluA3 and PSD-95 puncta. Then "Background Subtraction" was applie
143 reduce background signal. A region of interest (ROI) was created to restrict the colocalization
144 and unantification t 143 reduce background signal. A region of interest (ROI) was created to restrict the colocalization
144 quantification to CA1 SR. The number of spots was adjusted qualitatively using the automatically
145 generated and int 144 quantification to CA1 SR. The number of spots was adjusted qualitatively using the automatical
145 generated and interactive "Quality" filter histogram to select dense signal while excluding pur
146 to be background si 145 generated and interactive "Quality" filter histogram to select dense signal while excluding puncta
146 to be background signal. To ensure an accurate spot segmentation of the underlying puncta
147 determined by size, t 146 to be background signal. To ensure an accurate spot segmentation of the underlying puncta
147 determined by size, the "Different Spots Sizes" selection was utilized, adjusting contrast with the
148 "Local Contrast" too 147 determined by size, the "Different Spots Sizes" selection was utilized, adjusting contrast with

148 "Local Contrast" tool. The histogram was adjusted to accurate puncta coverage. Spots were

149 rendered. Once optimal 148 "Local Contrast" tool. The histogram was adjusted to accurate puncta coverage. Spots were then
149 mendered. Once optimal settings for each of these parameters were established for the GluA1, Glu
150 GluA3, or PSD-95 c "Local Contrast" tool. The histogram was adjusted to accurate puncta coverage. Spots were then
149 rendered. Once optimal settings for each of these parameters were established for the GluA1, GluA2,
150 GluA3, or PSD-95 ch Threshold for colocalization was established at 0.7 μ m from the center of neighboring puncta.
Electrophysiology 151 Threshold for colocalization was established at 0.7 µm from the center of neighboring puncta.
152 Electrophysiology
154 Whole-cell patch-clamp recordings were obtained from DG GCs or GABAergic interneurons

152

152
152 Electrophysiology
154 Whole-cell patch-clamp recordings were obtained from DG GCs or GABAergic internet
155 (INs) using acute brain slices from 2-6 months-old male and female mice. 300 μm horizontal sli 154 Whole-cell
155 (INs) using acute b
156 obtained in ice-col
157 NaH₂PO₄, 30 NaHC 155 (INs) using acute brain slices from 2-6 months-old male and female mice. 300 µm horizontal slices w
156 obtained in ice-cold, oxygenated NMDG recovery solution containing (in mM): 92 NMDG, 2.5 KCl, 1.
157 NaH₂PO₄, 156 obtained in ice-cold, oxygenated NMDG recovery solution containing (in mM): 92 NMDG, 2.5 KCl, 1.25
157 NaH₂PO₄, 30 NaHCO₃, 20 HEPES, 25 glucose, 2 thiourea, 5 Na-ascorbate, 3 Na-pyruvate, 0.5 CaCl₂•2 156 obtained in ice-cold, oxygenated NMDG recovery solution containing (in mM): 92 NMDG, 2.5 KCl, 1.2
157 NaH₂PO₄, 30 NaHCO₃, 20 HEPES, 25 glucose, 2 thiourea, 5 Na-ascorbate, 3 Na-pyruvate, 0.5 CaCl,•2 157 NaH₂PO₄, 30 NaHCO₃, 20 HEPES, 25 glucose, 2 thiodica_, 3 Na-ascorbate, 3 Na-pyruvate, 0.5 CaCl₂ –

159 included for at least 30 min. at 34°C in artificial cerebrospinal fluid (aCSF) composed of (in mM): 119
160 NaCl, 2.5 KCl, 1 NaH₂PO₄, 26.2 NaHCO₃, 11 glucose, 2.5 and 1.3 MgSO₄. aCSF was bubbled with 95% C
161 160 NaCl, 2.5 KCl, 1 NaH₂PO₄, 26.2 NaHCO₃, 11 glucose, 2.5 and 1.3 MgSO₄. aCSF was bubbled with 95% (and 5% CO₂. Osmolarity was adjusted to 307-310 mOsm. For recordings, slices were perfused with aC
162 containi and 5% CO₂. Osmolarity was adjusted to 307-310 mOsm. For recordings, slices were perfused with aCSF
161 and 5% CO₂. Osmolarity was adjusted to 307-310 mOsm. For recordings, slices were perfused with aCSF
162 containin 162 containing 100 μM picrotoxin to block GABA A-mediated responses. Recording pipettes (3-6 MΩ) were
163 filled with internal solution containing (in mM): 135 CsMeSO₄, 8 NaCl, 10 HEPES, 0.3 EGTA, 5 QX-314, 4
164 Mg-AT 163 filled with internal solution containing (in mM): 135 CsMeSO₄, 8 NaCl, 10 HEPES, 0.3 EGTA, 5 OX-314, 4
164 Mg-ATP, 0.3 Na-GTP, and 0.1 spermine. Osmolarity was adjusted to 290-292 mOsm, and pH at 7.3–7.4.
165 Membran 164 Mg-ATP, o.3 Na-GTP, and o.1 spermine. Osmolarity was adjusted to 290-292 mOsm, and pH at 7.3–7.4.
165 Membrane holding current, input resistance and pipette series resistance were monitored throughout
166 experiments. 165 Membrane holding current, input resistance and pipette series resistance were monitored throughout
166 experiments. Data were gathered through a IPA2 amplifier/digitizer (Sutter Instruments), filtered at 5
167 kHz, and 166 experiments. Data were gathered through a IPA2 amplifier/digitizer (Sutter Instruments), filtered at 5
167 kHz, and digitized at 10 kHz. Series compensation was not performed during data acquisition. For
168 evoked EPS 167 kHz, and digitized at 10 kHz. Series compensation was not performed during data acquisition. For
168 evoked EPSC recordings, a tungsten bipolar electrode was placed in the DG stratum moleculare (SM),
169 thereby stimul 168 evoked EPSC recordings, a tungsten bipolar electrode was placed in the DG stratum moleculare (S
169 thereby stimulating perforant path (PP) inputs onto DG GCs. Electric pulses were delivered at 0.2 k
170 AMPAR EPSCs we 169 thereby stimulating perforant path (PP) inputs onto DG GCs. Electric pulses were delivered at 0.2 Hz.
170 AMPAR EPSCs were obtained while holding the cell at -70 mV; NMDAR currents were obtained at +40
171 mV. The peak 170 AMPAR EPSCs were obtained while holding the cell at -70 mV; NMDAR currents were obtained at +4c
171 mV. The peak evoked AMPAR response and NMDAR component 100 ms after the stimulation artifact
172 (to avoid contributio 171 mV. The peak evoked AMPAR response and NMDAR component 100 ms after the stimulation artifact
172 (to avoid contribution of the AMPAR EPSC) were used to calculate the AMPAR/NMDAR ratio. In paired
173 pulse ratio (PPR) e 172 (to avoid contribution of the AMPAR EPSC) were used to calculate the AMPAR/NMDAR ratio. In paired
173 pulse ratio (PPR) experiments, stimulation was delivered at an inter-stimulus interval of 50 ms. PPR was
174 calcula 173 pulse ratio (PPR) experiments, stimulation was delivered at an inter-stimulus interval of 50 ms. PPR was
174 calculated by dividing the second EPSC by the first. Input/Output (I/O) relationship was assessed by
175 sti pulse ratio (PPR) experiments, stimulation was delivered at an inter-stimulus interval of 50 ms. PPR w
174 calculated by dividing the second EPSC by the first. Input/Output (I/O) relationship was assessed by
175 stimulati 178 comprised of 5 bursts of spikes (4 pulses at 100 Hz) at 5 Hz applied to the SC fibers at 0.1 Hz, paired with 177 using a theta-burst stimulation (TBS) induction protocol, consisting in four trains of TBS, each train
178 comprised of 5 bursts of spikes (4 pulses at 100 Hz) at 5 Hz applied to the SC fibers at 0.1 Hz, paired
179 pos 177 using a theta-burst stimulation (TBS) induction protocol, consisting in four trains of TBS, each train
178 comprised of 5 bursts of spikes (4 pulses at 100 Hz) at 5 Hz applied to the SC fibers at 0.1 Hz, paired w
179 p 178 comprised of 5 bursts of spikes (4 pulses at 100 Hz) at 5 Hz applied to the SC fibers at 0.1 Hz, paired
179 postsynaptic depolarization at omV, as in (Traunmuller, Gomez et al. 2016). Statistical analysis was
180 perfo 179 postsynaptic depolarization at omV, as in (Traunmuller, Gomez et al. 2016). Statistical analysis was
180 performed at min. 45 after induction. Recordings from cells lost at any point between induction and the
181 end o 180 performed at min. 45 after induction. Recordings from cells lost at any point between induction and
181 end of the experiment (min. 40) were considered until that point.
182 Electrophysiology data was gathered and anal 180 performed at min. 45 after induction. Recordings from cells lost at any point between induction and the
181 end of the experiment (min. 40) were considered until that point.
182 Electrophysiology data was gathered and

182

182 Electrophysiology data was gathered and analyzed using
184 Igor Pro (Wavemetrics).
185 184 Electrophysiology data was gathered and analyzed using Sutterpatch (Sutter Instruments) and
184 Electrophysiology
186 <u>Behavior</u> Mice were group-housed with littermates. Mice were handled for 1 min for 4 consecutive da

185
186 <u>Behavior</u>
187 Mice were group
188 prior to all behavioral tes 187 M
188 prior to al
189 the behav 188 prior to all behavioral testing. At the beginning of each testing day, mice were allowed to acclimate to
189 the behavior room for at least 30 min. before the start of the experiment. Behavioral chambers and
189 the be 189 the behavior room for at least 30 min. before the start of the experiment. Behavioral chambers and
189 the behavior room for at least 30 min. before the start of the experiment. Behavioral chambers and 189 the behavior room for at least 30 min. before the start of the start of the experiment. Behavioral chambers and
International chambers and the experiment. Behavioral chambers and the experiment. Behavioral chambers and

190 objects were cleaned and de-odorized between mice. Behavioral scoring was done by a researcher blind
191 to the genotype. Initial behavioral assessments performed at the Gladstone Institute Behavior Core
192 used male 191 to the generyper initial behavior a decession integer on the Gladstone Institute Behavior 2016
192 used male mice only. Subsequent studies at UC Irvine included both male and female mice, and data
194 Open Field (OF):

192 used male mice only. Subsequent states at UC IRMS matches at UC IRMS and CHIRC MIS (1920)
193 from both sexes were pooled.
195 *Open Field (OF)*: Mice were placed at the center of an OF arena and allowed to explore for 194
195 *Open Field (OF)*: Mice were pla
196 Gladstone experiments, activit
197 Field/Open Field Photobeam A 195Open Field (OF): Mice were placed at the center of an OF arena and allowed to explore for 15 min. In the Gladstone experiments, activity was recorded in a clear acrylic (41 x 41 x 30 cm) chamber using a Flex-
Field/Open 197 Field/Open Field Photobeam Activity System (San Diego Instruments, San Diego, CA) with two 16 x 1
198 photobeam arrays that automatically detected horizontal and vertical (rearing) movements. Rearings
199 were also qua 198 photobeam arrays that automatically detected horizontal and vertical (rearing) movements. Rearings
199 were also quantified. In the UCI experiments, locomotor activity was recorded by an overhead camera
100 in a white, 198 photobeam arrays that automatically detected horizontal and vertical (rearing) movements. Rearings
199 were also quantified. In the UCI experiments, locomotor activity was recorded by an overhead camera
100 in a white, 199 methods quantified in the Interpendent of activity was recorded was analyzed using a tracking

1990 in a white, 30 x 23 x 23 cm plastic chamber and total distance traveled was analyzed using a tracking

1991 analysis c 201 in a which young on plastic chamber and total and total distance analyzed using a trading
201 in analysis code written in MatLab (Github: https://github.com/HanLab-OSU/MouseActivity). The cent
203 in analysis code writ

202 analysis code written in Materia (Cithub: Materia Materia), Materia (Cithub: 1914), Materia (2014)
203
204 *Object Location Memory (OLM) task*: Mice were habituated to a white Plexiglas chamber (30 x 23 x 23 x
205 cm) 203
204 *Object Location Memory (OLM) task*: Mice were habituated to a white Plexiglas chamber (30 x 23 x 23 x
205 cm) for 5 min. daily for 4 days. On the training day, mice were placed in the chamber with two identical
20 203 204 *Doject Location Memory (OLM) task:* Mice were habituated to a white Plexigias chamber (30 x 23 x 23 x
205 cm) for 5 min. daily for 4 days. On the training day, mice were placed in the chamber with two identica
206 obj 206 objects and allowed to explore them for 10 min. On the test day, 24 hours later, mice were placed in the
207 chamber with either object displaced to a different location and allowed to explore the arena for 5 min.
208 207 chamber with either object displaced to a different location and allowed to explore the arena for 5 min.
208 Object identity was counterbalanced between genotypes. The animal's behavior was recorded using an
209 overhe 208 Object identity was counterbalanced between genotypes. The animal's behavior was recorded using an
209 overhead camera and object exploration time scored using the criteria described by (Vogel-Ciernia and
210 Wood 2014 209 overhead camera and object exploration time scored using the criteria described by (Vogel-Ciernia and Wood 2014). Discrimination index (DI) was calculated as follows: (Novel Object Time – Familiar Object Time) / (Novel overhead camera and object exploration time scored using the criteria described by (Vogel-Ciernia and
210 Wood 2014). Discrimination index (DI) was calculated as follows: (Novel Object Time – Familiar Object
211 Time) / (N 211 Time) / (Novel Object Time + Familiar Object Time) x 100. A DI score of +20 or greater was determined
212 as learning. DI was calculated for both training and test day. Exclusion criteria: Mice that scored ±20
213 pref 212 as learning. DI was calculated for both training and test day. Exclusion criteria: Mice that scored ±20 preference for an individual object on training day and mice that explored the objects less than 3 seconds were ex 213 preference for an individual object on training and anice that explored the objects less than 3
214 seconds were excluded from analysis.
215 Novel Objection Recognition (NOR) task: Mice handling and habituation were as

214 preference for an individual only is an individual only that the object on the object only is
215 *Novel Objection Recognition (NOR) task*: Mice handling and habituation were as described for the task. On training day, 215
216 Novel Objection Recognition (NOR) task
217 task. On training day, mice were place
218 explore them for 10 min. The following 217 task. On training day, mice were placed in the chamber with two identical objects and allowed to
218 task. On training day, mice were placed in the chamber with two identical objects and allowed to
218 explore them for 218 explore them for 10 min. The following day (test day), mice were placed back in the chamber with
219 familiar and one novel object and allowed to explore for 5 min. The identity of the novel object was
220 counterbalan explore them for 10 min. The following day (test day), mice were placed back in the chamber with of the miliar and one novel object and allowed to explore for 5 min. The identity of the novel object was counterbalanced bet counterbalanced between genotypes. Discrimination index was calculated as described for OLM. 220 counterbalanced between genotypes. Discrimination index was calculated as described for OLM.

Forced Alternation Y-maze: The forced alternation task was performed using an opaque Plexiglas Y-
223 maze. Each arm was 36 x 21 x 10 cm. On the training trial, mice were placed into a starting arm, facing
224 the center o 225 blocked. After an inter-trial interval of 1 min., mice were placed back in the maze at the same starting
226 arm and allowed to explore all three arms for 5 min. The starting arm and blocked arm were
227 counterbalance 226 arm and allowed to explore all three arms for 5 min. The starting arm and blocked arm were
1977 counterbalanced across mice. The maze was cleaned and deodorized with 70% ethanol between trials.
1978 Total number of arm 226 arm and allowed to explore all three arms for 5 min. The starting arm and blocked arm were
227 counterbalanced across mice. The maze was cleaned and deodorized with 70% ethanol between trials
228 Total number of arm cr 227 counterbalanced across mice. The maze was cleaned and deodorized with 70% ethanol betw
228 Total number of arm crossings and time spent in each arm was scored using a mouse trackin
229 (Any-Maze, Stoelting Co). Mice we 228 Total number of arm crossings and time spent in each arm was scored using a mouse tracking software
229 (Any-Maze, Stoelting Co). Mice were required to enter an arm with at least 2/3 of its body to be
230 considered a 229 (Any-Maze, Stoelting Co). Mice were required to enter an arm with at least 2/3 of its body to be
230 considered a crossing. DI was calculated as Novel Arm Time / (Novel Arm Time + Non-Starting Arm) x
231 100 (Wolf et a (Any-Maze, Stoelting Co). Mice were required to enter an arm with at least 2/3 of its body to be
230 considered a crossing. DI was calculated as Novel Arm Time / (Novel Arm Time + Non-Starting Arm) x
231 100 (Wolf et al., 234 valls, 38 x 5 cm) and two closed arms (with 16.5 cm tall walls), the intersection of the arms was 5 x 5 cm, 232
233 Elevated Plus Maze: Mi
234 walls, 38 x 5 cm) and tw
235 and the entire maze is 6 232 233 Elevated 7 ios muze: Mice were placed in the center of an elevated maze with two open arms (without walls, 38×5 cm) and two closed arms (with 16.5 cm tall walls), the intersection of the arms was 5×5 cm
235 an 235 and the entire maze is elevated 77.5 cm above the ground (Hamilton-Kinder, Poway, CA). Total time
236 spent and distance traveled in each arm were measured across the 10-min session.
237 Forced Swim Test: Mice were ind 236 and the entire masses of entire may give the ground (Hamilton-Miller, Pount, Cali, Poway, 2006)
236 and the entire may be the ground (Hamilton-Kinder).
238 *Forced Swim Test:* Mice were individually placed in a clear p 236 spent and distance traveled in each arm were measured across the 10-min session.
237 *Forced Swim Test: Mice were individually placed in a clear plastic cylinder (25.5 cm diameter x 23 cm
139 height), filled with water* 237 238 Forced Swim Fest: Mice were individually placed in a clear plastic cylinder (25.5 cm diameter x 23 cm
239 height), filled with water at 24°C, for 5 min. The total time spent immobile in the last 3 min. of the ta
241 Li 241
242 height/Dark Transition Test: The light-dark apparatus consisted of an opaque acrylic box (42 x 21 x 25 cm)
243 divided into two compartments (2/3 light, 1/3 dark) with a small opening connecting the two chambers. 241 Was scored. Floating, balancing and the summing were considered immobility (can, Dao et al. 2021).
242 Uight/Dark Transition Test: The light-dark apparatus consisted of an opaque acrylic box (42 x 21 x 25 cm
243 The li 242 242 *Light/Dark Transition Test:* The light-dark apparatos consisted of an opaque acrylic box (42 x 21 x 25 cm)
243 divided into two compartments (2/3 light, 1/3 dark) with a small opening connecting the two chambers.
244 244 The light compartment was made of opaque white walls and lit by an overhead lamp, while the dark
245 compartment was unlit and made of black non-transparent acrylic walls. Mice were first placed in the
246 light compar 245 compartment was unlit and made of black non-transparent acrylic walls. Mice were first placed in the light compartment and allowed to freely explore both chambers for 10 min. The time spent in each chamber, number of c 246 light compartment and allowed to freely explore both chambers for 10 min. The time spent in each
247 chamber, number of crossings, and the latency to enter the dark chamber was recorded using Any-
248 Maze (Stoelting C 247 Islam comparison and allowed to the symptoms of the free to free limit the allowed to free to free to free
248 Islam Contact to free to free to free to free the dark chamber was recorded using Any-
249 Contextual Fear

249
250

248 Maze (Stoelting Co.).
248 Maze (Stoelting Co.).
250 *Contextual Fear Paradigm*: Fear conditioning experiments were conducted using a Med Associates
251 VideoFreeze system. The fear conditioning chamber (24 x 30.5 x 21. 249
250 Contextual Fear Parad
251 VideoFreeze system.
252 attenuating shell (63.

250Contextual Fear Paradigm: Fear conditioning experiments were conducted using a Med Associates
251Contextual Fear Paradigm: Fear conditioning chamber (24 x 30.5 x 21.5 cm) sits inside a sound
252Contenuating shell (63.5 252 attenuating shell (63.5 x 75 x 35.5 cm, Med Associates, Fairfax, Vermont). On the training day
253 were placed into a conditioning chamber and four-foot shocks (0.45 mA, 2s) were delivered a
253 were placed into a cond 252 attenuating shell (63.5 x 75 x 35.5 cm, Med Associates, Fairfax, Vermont). On the training day, mice
253 were placed into a conditioning chamber and four-foot shocks (0.45 mA, 2s) were delivered at min. 5, 7,

253 were placed into a conditioning chamber and four-foot shocks (0.45 mA, 2s) were delivered at min. 5, 7,

9, and 11 of a 13-minute training period. The following day (context recall test), mice were exposed to
255 the conditioned context in the absence of foot shocks for 10 min. Fear generalization was assessed 48
256 hours af 256 hours after the initial training in a different context in a 10 min. Session. In this generalization context,
257 tactile, visual, auditory, and olfactory stimuli were all distinct from the training context. Freezing
2 257 hours are made a lamps in a distinct content content context in any generalization context.
258 behavior was measured at baseline and during conditioning, the contextual recall test, and the generalization test.
259 ge 258 behavior was measured at baseline and during conditioning, the contextual recall test, and the
259 generalization test.
260 For the pre-exposure experiment, on the pre-exposure day mice were placed into the 259 behavior was measured at baseline and during conditioning, the conditioning conditioning chamber for 30 min., with no foot shocks. 24 hours later, on conditioning day, mich the conditioning chamber for 30 min., with no 259 generalization test. 260
261 262 conditioning chamber for 30 min., with no foot shocks. 24 hours later, on conditioning day, mice were placed back into a conditioning chamber for 13 min, with four foot shocks (o.6mA, 2s) delivered 5, 7, 9, and 11. 24 conditioning chamber for 30 min., with no foot shocks. 24 hours later, on conditioning day, mice were
263 placed back into a conditioning chamber for 13 min, with four foot shocks (o.6mA, 2s) delivered at min.
264 5, 7, 9, 264 5, 7, 9, and 11. 24 hours later, on the third day, mice were placed into the conditioned context in the
265 absence of foot shocks for a context recall test, where freezing was measured across a 10 min period.
266 The 265 absence of foot shocks for a context recall test, where freezing was measured across a 10 min period
266 The chamber context remained the same over all three days.
267 Shock reactivity was measured during training by t 266 The chamber context remained the same over all three days.
267 Shock reactivity was measured during training by the VideoFreeze system and expressed as the max motion index. 267
268 Shock reactivity was measured during training by the
269 max motion index.
270 269 Show max motion index.
269 Show reaction index.
271 *Hot plate test*: Hot plate nociception was measured on a black anodized, aluminum plate (IITC Life
272 Science, Woodland Hills, CA) heated to 52°C. Latency to withdr 270
271 Mot plate test: Hot
272 Science, Woodland
273 was measured to th 270
271 271 The plate test: Hot plate nociception was measured on a black anodized, aluminum plate (if it clife)
272 Science, Woodland Hills, CA) heated to 52°C. Latency to withdraw one of the hind paws from the p
273 Stereotaxic 272 Science, Woodland Hills, CA) heated to 52°C. Latency to minimum one of the hims pane nonline plate
273 Stereotaxic Viral Injection
275 Stereotaxic Viral Injection
276 Mice were anesthetized using isoflurane and bilater 274
275 Stereotaxic Viral Injection
276 Mice were anesthetized using isoflurane and bilateral
277 hippocampal DG field (AP: -3.39, ML: ±2.50, DV: -3.4, 274
275 276 Mice were anesthetized us
277 hippocampal DG field (AP:
278 (8₃₉00-AAV₁), kindly share
279 from Addgene. Mice were anesthetized using isoflurane and bilaterally injected using a pulled glass pipette in the
277 hippocampal DG field (AP: -3.39, ML: ±2.50, DV: -3.4, -2.9, -2.4) with 1 µl pAAV-mDlx-GFP-Fishell-1
278 (83900-AAV1), (83900-AAV1), kindly shared by Dr. Gordon Fishell (Dimidschstein, Chen et al. 2016) and purchased
from Addgene.
Statistical Analysis 282 Bata analysis throughout the study was done blind to the experimental condition when possible. 280
281 <u>Statistical Analy</u>
282 Data analysis th
283 Results shown r 281 282 Data analysis throu
282 Data analysis throu
283 Results shown repre
284 samples, and the st
285 performed using Gr 283 Results shown represent the mean ± SEM. The number of independent experiments or biological
284 samples, and the statistical test employed, are indicated in every case. Statistical analyses were
285 performed using Gra samples, and the statistical test employed, are indicated in every case. Statistical analyses were 285 samples, and the statistical test employed, are indicated in every case. Statistical analyses were
285 september of the statistical analyses were analysed. Statistical analyses were were analyzed in the statistical ana 285 performancing Graph Catholics y and SutterPatch software.
Prism 9 and SutterPatch software.
Prism 9 and SutterPatch software.

286
287

287 Results
288 Truncation of the GluA1 CTD affects AMPAR levels and subcellular distribution.

289 Truncation of the GluA1 CTD in AMPAR
290 Truncation of the GluA1 CTD in AMPAR
291 behaviors using ACTD GluA1 mice (Fig. 1A). First, we examined whether GluA1 C
292 AMPAR subunit levels. We observed that GluA1 levels we 290 type-specific synaptic transmission and plasticity, cognitive function, novelty processing and other
291 behaviors using ΔCTD GluA1 mice (Fig. 1A). First, we examined whether GluA1 CTD truncation affect
292 AMPAR subu type-specific synaptic transmission and plasticity, cognitive function, novelty processing and other
291 behaviors using ΔCTD GluA1 mice (Fig. 1A). First, we examined whether GluA1 CTD truncation affects
292 AMPAR subunit 295 GluA1 expression or stability, but does not alter GluA1's synaptic content. In contrast, GluA2 levels were 292 AMPAR subunit levels. We contribute the subsetious of the CTD state of the SPA of the GTD reduced that the loss of the CTD reduced that the loss of the 294 synaptosome-enriched fractions (Fig. 1B, C). These findings suggest that the loss of the CT
295 GluA1 expression or stability, but does not alter GluA1's synaptic content. In contrast, GluA
296 strongly upregulated in 295 GluA1 expression or stability, but does not alter GluA1's synaptic content. In contrast, GluA2 levels we
296 strongly upregulated in $\triangle CTD$ GluA1 samples, both globally and in the synaptic fraction (Fig. 1B, D).
297 Gl 296 Strongly upregulated in $\triangle CTD$ GluA1 samples, both globally and in the synaptic fraction (Fig. 1B, D).
297 GluA₃ levels were unaffected (Fig. 1B, E). Finally, we observed a modest, statistically significant
298 incre 296 strongly upregulated in ∆CTD GluA1 samples, both globally and in the synaptic fraction (Fig. 1B, D).
297 GluA₃ levels were unaffected (Fig. 1B, E). Finally, we observed a modest, statistically significant
298 incre

298 Final and Eucky Hammer (Fig. 22) 298 Finally, we observe a modest, statistically significant
299 Finally, we then examined whether GluA1 CTD truncation affects subcellular AMPAR localizatic
201 Finally sing an antibod 299 increase in GluA4 levels in 2012 1999
200 increase in GluA4 CTD truncation affects subcellular AM
201 Using an antibody against the GluA1 ATD, which detects both WT and ΔCTD trun
202 observed that, as expected, GluA1 300 Using an antibody against the GluA1 ATD, which detects both WT and ∆CTD truncated GluA1, we
302 observed that, as expected, GluA1 immunoreactivity (i.r.) was largely absent from the somata-enriched
303 strata pyramidale (S 302 observed that, as expected, GluA1 immunoreactivity (i.r.) was largely absent from the somata-enri
303 strata pyramidale (SP) in hippocampal fields CA1-CA3 and granulare (SG) in DG in WT samples.
304 Meanwhile, the su 303 strata pyramidale (SP) in hippocampal fields CA1-CA3 and granulare (SG) in DG in WT samples.
304 Meanwhile, the subcellular distribution of ΔCTD GluA1 was more diffuse, suggesting impaired
305 intracellular traffickin Strata Pyramian (SP) in hipper sample is the SD strate (CP) in Detail (Particular Pietra)
304 Meanwhile, the subcellular distribution of ΔCTD GluA1 was more diffuse, suggesting impaired
305 The intracellular trafficking (305 Meanwhile, the subcellular trafficking (Fig. 1G). Quantification of the soma/dendrite GluA1 ir ratio in CA1 and
306 mevealed a significant accumulation of ΔCTD GluA1 in the soma in both regions (Fig. 1H, I), sugge
30 305 intracellular trafficking (Fig. 1G). Quantification of the soma/dendrite GluA1 ir ratio in CA1 and DG
306 revealed a significant accumulation of ΔCTD GluA1 in the soma in both regions (Fig. 1H, I), suggesting
307 that 307 that GluA1 CTD truncation impairs AMPAR soma→dendrite trafficking in CA1 PNs and DG GCs.
308 Interestingly, GluA2 subunits showed a similar redistribution in CA1 (Fig. 1J, K), reminiscent of the
309 pattern found in G Interestingly, GluA2 subunits showed a similar redistribution in CA1 (Fig. 1J, K), reminiscent of the
309 pattern found in GluA1 KOs (Zamanillo D.; Sprengel and Kaiser 1999). GluA2 distribution was not
310 significantly al 309 Interestingly, GluA2 subulation in the a similar realistic suburb. The (Fig. 2) A), reminiscent of the
310 Interestingly altered in DG (Fig. 1J, L). We then turned to confocal microscopy to further analyze G
311 Intere 310 significantly altered in DG (Fig. 1J, L). We then turned to confocal microscopy to further analyze G
311 and GluA2 distribution in field CA1 SR and in DG SM, where most excitatory synapses onto CA1 Pl
312 and DG GCs, r 311 and GluA2 distribution in field CA1 SR and in DG SM, where most excitatory synapses onto CA1 PNs
312 and DG GCs, respectively, occur. Consistent with our previous observations, we found a significant
313 decrease in th 312 and DG GCs, respectively, occur. Consistent with our previous observations, we found a significant
313 decrease in the density of putative synaptic GluA1 puncta in both CA1 SR and DG SM (Suppl. Fig. 1A,
314 The density 313 decrease in the density of putative synaptic GluA1 puncta in both CA1 SR and DG SM (Suppl. Fig. 1/
314 The density of the excitatory postsynaptic marker PSD-95 puncta was slightly reduced in CA1 SR (Suppl. Fig. 18), b 314 The density of the excitatory postsynaptic marker PSD-95 puncta was slightly reduced in CA1 SR (Suppl.
315 Fig. 1B), but not significantly altered in DG SM (Suppl. Fig. 1D). Despite the significant redistribution of
3 315 Fig. 1B), but not significantly altered in DG SM (Suppl. Fig. 1D). Despite the significant redistribution of
316 GluA1, its colocalization with PSD-95 was unaffected in both regions in ΔCTD GluA1 samples (Fig. 1M,
317 316 GluA1, its colocalization with PSD-95 was unaffected in both regions in $\triangle CTD$ GluA1 samples (Fig. 1M, N), suggesting that $\triangle CTD$ GluA1 localization at synapses was not significantly affected. In hippocampal 317 GluAnnia GluAnnia with PSD-95 was unaffected in a synapses was not significantly affected. In hippocampartic in a synapses was unaffected in hippocampartic in $\frac{1}{2}$ or $\frac{1}{2}$ M, suggesting that ∆CTD GluA1 local 317 N), suggesting that ∆CTD GluAn localization at symphone was not symmetry affected. In hippocampal
In hippocampal localization at significant localization affected. In higher was not significantly affected. In

-
- 319 Shi et al. 2009). To reveal possible compensatory changes in AMPAR subunit composition in ΔCTD
320 GluA1 mice, we assessed the distribution of GluA2 and GluA3. Putative synaptic puncta densities were
321 not altered i 320 GluA1 mice, we assessed the distribution of GluA2 and GluA3. Putative synaptic puncta densities we not altered in CA1 SR or DG SM (Suppl. Fig. 1E-H), and neither was their colocalization (Fig. 1O, P).
322 Altogether, 321 out altered in CA1 SR or DG SM (Suppl. Fig. 1E-H), and neither was their colocalization (Fig. 10, P).
322 Altogether, these findings indicate that loss of the GluA1 CTD affects intracellular trafficking, but that
323 t 222 Altogether, these findings indicate that loss of the GluA1 CTD affects intracellular trafficking, but the
323 the synaptic AMPAR complement is largely intact (Fig. 1Q).
324 <u>ACTD GluA1 mice exhibit novelty-induced hype</u>
-
- 324
325

323 the synaptic AMPAR complement is largely intact (Fig. 1Q).
324 Altongether, the GluA1 Complement is largely intact (Fig. 1Q).
325 Altong EluA1 Microsofts intracellular trafficking, but that consisted that the impact of 324
325 ACTD GluA1 mice exhibit novelty-induced hyperlocomotion
326 Having established the impact of GluA1 CTD truncat
327 distribution, we sought to clarify whether GluA1-dependent 326 *Alexandron Martin Limited Mindon CTD truncation in AMPAR levels and subcalistribution, we sought to clarify whether GluA1 dependent regulation of cognitive function.
323 behavior require the CTD. Previous studies have* 327 distribution, we sought to clarify whether GluA1-dependent regulation of cognitive function and
328 behavior require the CTD. Previous studies have shown that GluA1 KO mice have impaired spatia
329 working memory, but distribution, we sought to clarify whether GluA1-dependent regulation of cognitive function and
328 behavior require the CTD. Previous studies have shown that GluA1 KO mice have impaired spatial
329 working memory, but int 329 behavior require the CTD. Previous materials have studied the CMS of Sanderson, Good et al. 2009).
330 Novelty-induced hyperlocomotion is one of the most robust and reproducible phenotypes in GluA:
331 mice (Zamanillo Sa Sa Sa Novelty-induced hyperlocomotion is one of the most robust and reproducible phenotypes in GluA
331 mice (Zamanillo D.; Sprengel and Kaiser 1999, Bannerman, Deacon et al. 2004, Procaccini, Aitta-a
332 al. 2011). To mice (Zamanillo D.; Sprengel and Kaiser 1999, Bannerman, Deacon et al. 2004, Procaccini, Aitta-aho et al. 2011). To assess the contribution of the GluA1 CTD to spatial novelty processing, we quantified
333 locomotion in t 334 homozygous ACTD GluA1 mice, and observed a strong exacerbation of novelty-induced locomotion in
335 ACTD GluA1 mice compared to WTs (Fig. 2A). The center/total distance ratio was similar in WT and locomotion in the open field (OF) test in WT and ΔCTD GluA1 mice. Initially we tested male WT and
334 homozygous ΔCTD GluA1 mice, and observed a strong exacerbation of novelty-induced locomotion in
335 ΔCTD GluA1 mice com locomotion in the open field (OF) such the and 2012 Declementation of novelty-induced locomotion
335 ΔCTD GluA1 mice compared to WTs (Fig. 2A). The center/total distance ratio was similar in WT and
336 ΔCTD GluA1 mice (S 335 ΔCTD GluA1 mice compared to WTs (Fig. 2A). The center/total distance ratio was similar in WT and
336 ΔCTD GluA1 mice (Suppl. Fig. 2A). ΔCTD GluA1 mice made significantly fewer fine movements (Suppl.
337 Fig. 2B) and a ΔCTD GluA1 mice (Suppl. Fig. 2A). ΔCTD GluA1 mice made significantly fewer fine movements (Sup
337 Fig. 2B) and a similar number of rearings (Suppl. Fig. 2C) compared to their WT counterparts. In a
338 different cohort, Δ 337 ∂Fig. 2B) and a similar number of rearings (Suppl. Fig. 2C) compared to their WT counterparts. In a
338 ∂different cohort, ΔCTD GluA1 male and female mice showed indistinguishable exacerbated novelty-
339 induced hype Fig. 2B) and a similar number of rearings (Suppl. Fig. 2C) compared to their WT counterparts. In a
338 different cohort, ΔCTD GluA1 male and female mice showed indistinguishable exacerbated novelty-
339 induced hyperlocom

340
3

338 different cohort, ∆CTD GluA1 male and female mice showed indistinguishable exacerbated novelty-340
341 Mext, we assessed the role of the GluA1 CTD in cognitive function. We prevident
342 Interval absent in the forced alternation of the fig. 2D), which is used to assess spatial words
343 2020). In the forced alternat 342 that GluA1 CTD truncation does not affect spatial reference memory (Diaz-Alonso, Morishita et al.
343 zo20). In the forced alternation Y-maze (Fig. 2B), which is used to assess spatial working memory in
344 mice, WT a 343 sozo). In the forced alternation Y-maze (Fig. 2B), which is used to assess spatial working memory in mice, WT and ΔCTD GluA1 male and female mice performed comparably (Fig. 2C). Then, we tested
345 long-term spatial m 344 mice, WT and ΔCTD GluA1 male and female mice performed comparably (Fig. 2C). Then, we tested
345 long-term spatial memory in the object location memory task (OLM, Fig. 2F). As expected from the
346 results, we observe 345 Iong-term spatial memory in the object location memory task (OLM, Fig. 2F). As expected from the
346 Iong-term spatial memory in the object location memory task (OLM, Fig. 2F). As expected from the
347 to the OLM aren 1999 Long-term spatial memory in the organization memory introduced in the organization memory results, we observed enhanced locomotion in ΔCTD GluA1 male and female mice in their first exposure
347 to the OLM arena. To a 347 to the OLM arena. To avoid its potential confounding effect, we habituated mice to the OLM arena.
348 After 4 days, hyperlocomotion was no longer observed, indicating that ΔCTD GluA1 mice were
349 habituated (Fig. 2D 348 After 4 days, hyperlocomotion was no longer observed, indicating that $\triangle CTD$ GluA1 mice were
349 habituated (Fig. 2D, E). Still, total locomotion during OLM training and test were significantly differe 349 habituated (Fig. 2D, E). Still, total locomotion during OLM training and test were significantly d
349 habituated (Fig. 2D, E). Still, total locomotion during OLM training and test were significantly d

and the still, the still, total locomotion during OLM training old training and test were significantly different
In the still different control to the significant local local local local local local local local local loca

351 Consistent with this possibility, object exploration was also significantly greater in ΔCTD GluA1 mice
352 during training and test (Suppl. Fig. 2G, H). Interestingly, ΔCTD GluA1 male and female mice showed
353 superi 352 during training and test (Suppl. Fig. 2G, H). Interestingly, ΔCTD GluA1 male and female mice showed
353 superior discrimination of the displaced object compared to WT mice (Fig. 2G). We explored whether
354 increased 353 superior discrimination of the displaced object compared to WT mice (Fig. 2G). We explored whether
354 increased object exploration in ΔCTD GluA1 mice underlies their superior performance, but we found
355 o correlat 354 increased object exploration in $\triangle CTD$ GluA1 mice underlies their superior performance, but we found
355 o correlation between distance travelled or object exploration time and performance in the OLM tes
356 (Suppl. Fi 355 increased of the distance travelled or object exploration time and performance in the OLM tes
356 (Suppl. Fig. 2M, N). In the novel objection recognition task (NOR, Fig. 2H), novel object discriminatior
357 was compar 356 (Suppl. Fig. 2M, N). In the novel objection recognition task (NOR, Fig. 2H), novel object discrimination
357 was comparable between male and female ΔCTD GluA1 and WT counterparts (Fig. 2I). Neither total
358 locomotio 357 (Supplemage and provide on the novel of guide and female $\triangle CTD$ GluA1 and WT counterparts (Fig. 2I). Neither total
358 locomotion nor total object exploration during NOR training and test were significantly different
3 937 was comparable between male and female ∆CTD GluA1 and WT counterparts (Fig. 2I). Neither to
358 locomotion nor total object exploration during NOR training and test were significantly different
359 between genotypes

361

362 Contextual fear conditioning and memory are impaired in GluA1 KO mice (Humeau, Reisel et al. 359 between genotypes (Suppl. Fig. 2J-L). 362 Contextual fear conditioning and mem
363 2007). Similarly, ΔCTD GluA1 mice did not exhi
364 2K, L). Decreased freezing was unlikely due to
365 showed enhanced responsiveness in the hot pl 2007). Similarly, ΔCTD GluA1 mice did not exhibit freezing behavior during the conditioning phase (Fig.
364 zK, L). Decreased freezing was unlikely due to impaired sensory processing in ΔCTD GluA1 mice, which
365 showed e 364 2K, L). Decreased freezing was unlikely due to impaired sensory processing in ΔCTD GluA1 mice, which
365 showed enhanced responsiveness in the hot plate test (Suppl. Fig. 2O) and higher motion indices in
366 response 365 showed enhanced responsiveness in the hot plate test (Suppl. Fig. 2O) and higher motion indices in
366 response to the two initial foot shocks (0.45 mA) delivered during conditioning (Suppl. Fig. 2P).
367 Unexpectedl 1366 response to the two initial foot shocks (0.45 mA) delivered during conditioning (Suppl. Fig. 2P).
367 Unexpectedly, ΔCTD GluA1 mice showed freezing comparable to WTs in the 24 h recall test (Fig. 2N)
368 in stark con 367 Unexpectedly, ΔCTD GluA1 mice showed freezing comparable to WTs in the 24 h recall test (Fig. in stark contrast to GluA1 KOs, which show impaired fear expression and memory (Humeau, Re
369 zoo7). In both WT and ΔCTD G 368 in stark contrast to GluA1 KOs, which show impaired fear expression and memory (Humeau, Reisel et al.
369 2007). In both WT and ΔCTD GluA1 animals, the % freezing during conditioning was not predictive of
370 freezing 369 in stand contrast to GluA1 Animals, the % freezing during conditioning was not predictive of
370 freezing during the 24 h recall test (Suppl. Fig. 2Q). These findings support that GluA1-dependent
371 contextual memory 370 freezing during the 24 h recall test (Suppl. Fig. 2Q). These findings support that GluA1 dependent
371 contextual memory formation does not require the CTD. Fear generalization was not affected either,
372 supporting 371 contextual memory formation does not require the CTD. Fear generalization was not affected eith
372 supporting that context discrimination and memory function is intact in ΔCTD GluA1 mice (Suppl.
373 2R, S).
374 372 supporting that context discrimination and memory function is intact in ΔCTD GluA1 mice (Suppl. Fig
373 2R, S).
374 Next, we sought to identify the mechanism underlying the apparent discrepancy between

supporting that context discrimination and memory function is intact in ∆CTD GluA1 mice (Suppl.
373 zR, S).
374 Next, we sought to identify the mechanism underlying the apparent discrepancy between
376 impaired contextua --- ---₋₋₋--,
374
375 impaire
377 hypoth 374 376 Impaired contextual fear expression (Fig. 2K, L) and intact contextual memory (Fig. 2M, N). We
377 Impothesized that the exacerbated context novelty-driven hyperlocomotion in ΔCTD GluA1 mice
378 Imasks freezing during 377 hypothesized that the exacerbated context novelty-driven hyperlocomotion in ΔCTD GluA1 middle masks freezing during conditioning, although it does not affect contextual memory formation.
379 prediction were true, we w 378 masks freezing during conditioning, although it does not affect contextual memory formation. If t
379 prediction were true, we would expect that reducing context novelty (hence decreasing
380 hyperlocomotion) would un 379 prediction were true, we would expect that reducing context novelty (hence decreasing
380 hyperlocomotion) would unmask freezing during fear conditioning. We tested this by assessing
381 contextual fear expression afte 380 hyperlocomotion) would unmask freezing during fear conditioning. We tested this by as
381 contextual fear expression after a 30-min. context pre-exposure session 24 h prior to context
381 contextual fear expression aft 381 contextual fear expression after a 30-min. context pre-exposure session 24 h prior to conditioning.
381 contextual fear expression after a 30-min. context pre-exposure session 24 h prior to conditioning. 381 contextual fear expression after a 30-min. context pre-exposure session 24 h prior to conditioning (Fig.

382 3A). Context pre-exposure did not affect freezing during conditioning or contextual memory in WT mice
383 (Fig. 3B, E) but, as predicted, partially normalized freezing in $\triangle CTD$ GluA1 mice (Fig. 3B, C). As expected
38 384 from previous findings (Fig. 2M, N), performance at the 24-hour recall test was indistinguishable from
385 that of WT mice (Fig. 3D, E). Shock response was indistinguishable between ΔCTD GluA1 and WT mice
386 in this 385 that of WT mice (Fig. 3D, E). Shock response was indistinguishable between ΔCTD GluA1 and WT mice
386 in this cohort (Suppl. Fig. 3). These findings support the notion that the GluA1 CTD plays a critical
387 regulator 386 in this cohort (Suppl. Fig. 3). These findings support the notion that the GluA1 CTD plays a critical
387 that of WT microscopy of WT microscopy was indicated between $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ 1987 in this control (Supple 1936). These finally support the notion that the GluA₁ conduction that the plays a
388 in the notion of the notion of the set of GluA1 CHD plays a critical schizoaffective disorder-related be

388
389

388
389 Additional schizoaffective disorder-related behavioral alterations evoked by GluA1 CTD
390 Next, we studied whether GluA1 CTD truncation alone is sufficient to elicit other
391 alterations relevant to schizoaffecti 390 Next, we studied whether GluA1 CTD truncation alone is sufficient to elicit other behavioral
391 alterations relevant to schizoaffective disorders. In the elevated plus maze (EPM, Fig. 4A), ΔCTD Glu
392 male mice spen 391 alterations relevant to schizoaffective disorders. In the elevated plus maze (EPM, Fig. 4A), ΔCTD Glu
392 male mice spent a greater proportion of the time exploring the open arms (Fig. 4B) throughout the
393 session (392 alterations relevant to sumstain the explorement to schick processes (Fig. 4B) throughout the
393 alternations relevant of the time exploring the open arms (Fig. 4B) throughout the
394 alternations relevant of the tim 393 session (Suppl. Fig. 4A). Consistently, the number of open arm entries (Fig. 4C) and distance (Suppl
394 4B), but not closed arm entries (Fig. 4D) and distance (Suppl. Fig. 4C) were increased in male ΔCTD
395 GluA1 mi 393 session (Suppl. Fig. 4A). Consistently, the number of open arm entries (Fig. 4C) and distance (Suppl. Fig. 395 GluA1 mice. Consistent with previous results (Fig. 2A, Suppl. Fig. 2D), ΔCTD GluA1 mice displayed a
396 overall increase in total distance traveled in the EPM relative to their WT counterparts (Suppl. Fig. 4
397 The GluA1 mice. Consistent with previous results (Fig. 2A, Suppl. Fig. 2D), ΔCTD GluA1 mice displayed an
396 overall increase in total distance traveled in the EPM relative to their WT counterparts (Suppl. Fig. 4D).
397 The 399 explore the apparently reduced anxiety in Δ CTD GluA1 mice, we applied the light/dark transition test,
400 which can also reveal changes in anxiety-like behavior (Fig. 4E). Latency to enter the dark (safe) zone 398 the GluA1 KO mice phenotype (Fitzgerald, Barkus et al. 2010), albeit perhaps exacerbated. To further explore the apparently reduced anxiety in ΔCTD GluA1 mice, we applied the light/dark transition test, which can als 399 explore the apparently reduced anxiety in ΔCTD GluA1 mice, we applied the light/dark transition test,
300 which can also reveal changes in anxiety-like behavior (Fig. 4E). Latency to enter the dark (safe) zone
301 was 399 explore the appearancy reduced annually reduced and set in 2000 (Fig. 4E). Latency to enter the dark (safe) zone
399 which can also reveal changes in anxiety-like behavior (Fig. 4E). Latency to enter the dark (safe) z which carrelate reveal changes in annually line behavior (Fig. 4F). The total time spent in each zone was n
402 altered (Suppl. Fig. 4E). Additionally, in the forced swim test (FST, Fig. 4G), used to measure despair-
403 was increased in ∆CTD GluA1 male and female mice (Fig. 4F). The total time spent in each zone was r
402 altered (Suppl. Fig. 4E). Additionally, in the forced swim test (FST, Fig. 4G), used to measure despair-
403 like be like behavior in rodents, we found that Δ CTD GluA1 male and female mice spent less time immobile
404 compared to their WT counterparts (Fig. 4H). Latency to immobility was not significantly affected
405 (Suppl. Fig. 4F compared to their WT counterparts (Fig. 4H). Latency to immobility was not significantly affected
405 (Suppl. Fig. 4F). These findings indicate that the CTD is required for GluA1-dependent novelty
406 processing and regul 405 (Suppl. Fig. 4F). These findings indicate that the CTD is required for GluA1-dependent novelty
406 processing and regulates risk assessment, approach behavior and/or anxiety. Conversely, our c
407 indicates that the CT Fig. 19 processing and regulates risk assessment, approach behavior and/or anxiety. Conversely, our c
105 indicates that the CTD is not required for GluA1-dependent memory processes.
108 Exacerbated neuronal activity in th 407 indicates that the CTD is not required for GluA1-dependent memory processes.
408 Exacerbated neuronal activity in the DG in \triangle CTD GluA1 mice following exposure to a novel
410 Environment. 408
409 Exacerbated neuronal activity in the DG in ACTD GluA1 mice following exposure
410 environment.
411 To identify the neurobiological mechanism underlying the regulation of 408

environment.
410 Environment.
411 To identify the neurobiological mechanism underlying the regulation of novelty pro
412 the GluA1 CTD, we sought to identify neuronal populations which respond to novelty in a G
413 depende 411 To ide
412 the GluA1 CTD
413 dependent fas 112 the GluA1 CTD, we sought to identify neuronal populations which respond to novelty in a GluA1 CTD-
413 dependent fashion. To this end, we quantified c-Fos expression, a proxy for neuronal activation, two
413 dependent 413 dependent fashion. To this end, we quantified c-Fos expression, a proxy for neuronal activation, two
413 dependent fashion. To this end, we quantified c-Fos expression, a proxy for neuronal activation, two
413 dependen

 \mathcal{A}_1 dependent fashion. To this end, we quantified co-Fos expression, a proxy for neuronal activation, two \mathcal{A}_2

414 hours after exposure to a novel environment (Fig. 5A). Increased c-Fos-labelled cells were observed in
415 various brain regions in WT male and female mice upon exposure to a novel context (Fig. 5, Suppl. Fig.
416 5). 416 5). In dorsal hippocampus, c-Fos induction was exacerbated in putative DG GCs and field CA₃ PNs in
417 ΔCTD GluA1 male and female mice compared to WTs after OF exposure (Fig. 5B-D). c-Fos expression
418 increased to 417 ΔCTD GluA1 male and female mice compared to WTs after OF exposure (Fig. 5B-D). c-Fos expression
418 Increased to a similar degree in WT and ΔCTD GluA1 mice in field CA1 (Fig. 5E). The similarity of thes
419 Increased 418 increased to a similar degree in WT and ΔCTD GluA1 mice in field CA1 (Fig. 5E). The similarity of these
419 results with those previously reported in GluA1 KO mice (Procaccini, Aitta-aho et al. 2011), suggests
420 tha 119 increased to a similar degree in the similar decreasing to a similar degree in GluA1 (Procaccini, Aitta-aho et al. 2011), suggests
420 that the CTD is critically required for GluA1-dependent regulation of hippocampal 420 that the CTD is critically required for GluA1-dependent regulation of hippocampal activity upon
421 exposure to a novel context.
422 The GluA1 CTD regulates excitatory synapses onto dentate gyrus GABAergic interneurons that the CTD is critically required for GluA1-dependent regulation of hippocampal activity upon

421 exposure to a novel context.

422 The GluA1 CTD regulates excitatory synapses onto dentate gyrus GABAergic interneurons.

422

122

423 The GluA1 CTD regulates exc

424 Excessive c-Fos expre

425 synaptic transmission onto the 425 synaptic transmission onto these cells. To test this possibility, we obtained whole-cell patch-clamp
426 recordings from DG GCs using acute brain slices form \triangle CTD GluA1 and WT mice (Fig. 6A) and exam
427 excitatory Expressive complements in the suppression of the set of alternative consequence of alternative
425 Synaptic transmission onto these cells. To test this possibility, we obtained whole-cell patch-clamp
427 excitatory synap erative cordings from DG GCs using acute brain slices form ΔCTD GluA1 and WT mice (Fig. 6A) and examence cells
427 excitatory synaptic transmission at perforant path (PP) \rightarrow GC synapses. We observed no significant
428 c excitatory synaptic transmission at perforant path (PP)→GC synapses. We observed no significant
428 changes in AMPAR/NMDAR ratios (Fig. 6B), indicating that AMPAR-mediated transmission is not
429 severely affected in ΔCT charactery sympths in manufacture performance path (PP) (CD) (Mp) CDC) material in any simulated transmission is not
429 exercely affected in ΔCTD GluA1 DG GCs. Consistently, input/output AMPAR EPSC analysis showed
430 s examples in AMPAR ratios (Fig. 6C), consistently, input/output AMPAR EPSC analysis showe
430 significant differences either (Fig. 6C), confirming that AMPAR-mediated synaptic transmission is
431 argely intact in these cel 430 significant differences either (Fig. 6C), confirming that AMPAR-mediated synaptic transmission is
431 largely intact in these cells. Then, we assessed whether the loss of the GluA1 CTD affects LTP at
432 PP→DG GC syn 1431 Iargely intact in these cells. Then, we assessed whether the loss of the GluA1 CTD affects LTP at
1432 PP→DG GC synapses. We found a small, non-statistically significant reduction in GCs LTP in ΔCTD
1433 GluA1 mice (F 432 PP→DG GC synapses. We found a small, non-statistically significant reduction in GCs LTP in ΔC
433 GluA1 mice (Fig. 6D). Altogether, these results suggest that alterations in synaptic transmission
434 LTP in DG GCs are 433 GluA1 mice (Fig. 6D). Altogether, these results suggest that alterations in synaptic transmission and
434 LTP in DG GCs are unlikely to underlie the exacerbated neuronal activation observed following nove
435 context GluA1 mice (Fig. 6D). Altogether, these results suggest that alterations in synaptic transmission and
134 LTP in DG GCs are unlikely to underlie the exacerbated neuronal activation observed following novel
135 context expo

 $\frac{1}{\sqrt{2}}$

1946 LTP in the DD Case are unlikely to underlie the underlient statement activation of the exaction of 435
136
137 Local INs provide inhibitory inputs to DG GCs, thus regulating their excitability, spike timing,
138 and l 1986
136 Local INs p
137 Local INs p
138 and lateral inhibitie
139 2016, Pelkey, Chitt and lateral inhibition, and ultimately contributing to the sparse activity of DG GCs (Akgul and McBain
139 and lateral inhibition, and ultimately contributing to the sparse activity of DG GCs (Akgul and McBain
140 truncati 2016, Pelkey, Chittajallu et al. 2017, Espinoza, Guzman et al. 2018). We hypothesized that GluA1 CTD
440 truncation might affect AMPAR-mediated excitatory synaptic transmission onto GABAergic INs in DG
441 thereby compromi 440 truncation might affect AMPAR-mediated excitatory synaptic transmission onto GABAergic INs in DG
441 thereby compromising circuit inhibition and potentially leading to the observed GCs 'priming'. To
442 identify inhib 441 thereby compromising circuit inhibition and potentially leading to the observed GCs 'priming'. To
442 identify inhibitory cells, we bilaterally injected an AAV-mDLX-GFP, which labels forebrain GABAergic
443 INs, into 1994) identify inhibitory cells, we bilaterally injected an AAV-mDLX-GFP, which labels forebrain GABAe
1943 INS, into the DG of WT and ACTD GluA1 littermates. After ~4 weeks of expression, GABAergic cell
1944 Were labelled 443 INs, into the DG of WT and ΔCTD GluA1 littermates. After ~4 weeks of expression, GABAergic cells
444 were labelled throughout the hippocampus in acute slices (Fig. 6E). We obtained whole-cell recording
445 from putati 144 Institute the DDM of WATERO of WATEROM (Fig. 66). We obtained whole-cell recordinate to the proportion of W
445 Internative DG parvalbumin (PV)+ basket cells, identified by their morphology and localization of
445 Int 444 were labelled throughout the hippocampus in acute slices (Fig. 6E). We obtained whole-cell recordings
445 from putative DG parvalbumin (PV)+ basket cells, identified by their morphology and localization of the 445 from putative DG particle DG particle $\binom{1}{k}$ and localization of the interpretation of the their morphology and localization of the interpretation of the interpretation of the interpretation of the interpretatio

446 soma within SG. We found a significant reduction in AMPAR/NMDAR ratios in these cells (Fig. 6F),
447 indicating that the loss of the GluA1 CTD affects synaptic transmission in DG GABAergic INs, in contrast
448 to the 148 to the intact synaptic transmission observed onto GCs. The specific reduction of excitatory synaptic
449 drive onto DG GABAergic cells explains, at least in part, the exacerbated DG responsiveness to novelty
450 and su 449 drive onto DG GABAergic cells explains, at least in part, the exacerbated DG responsiveness to nove
450 and subsequent behavioral alterations observed in $\triangle CTD$ GluA1 mice.
451 Discussion

-
- 451
452

452 Discussion
453 Glu.

and subsequent behavioral alterations observed in \triangle CTD GluA1 mice.
451 Discussion
452 Discussion GluA1-deficient mice exhibit deficits in synaptic plasticity and behavioral alterations, such as 451 and subsequent behavior of the hard subsequent behavior of the lines.
452 Discussion
453 GluA1-deficient mice exhibit deficits in synaptic plasticity and
454 selective deficits in short-term habituation and exacerbate selective deficits in short-term habituation and exacerbated novelty-induced locomotor hyperactivity,
455 reminiscent of some of the features of schizoaffective disorders and neurodevelopmental conditions
456 including att 457 zo12, Barkus, Sanderson et al. 2014). Consistently, mutations in the *GRIA1* gene, which encodes GLUA1, 458
458 may increase risk of schizophrenia in humans (Coyle 2006, Ripke, O'Dushlaine et al. 2013, 1986 including attention-deficit/hyperactivity disorder (Fitzgerald, Barkus et al. 2010, Barkus, Feyder et al.
1957 2012, Barkus, Sanderson et al. 2014). Consistently, mutations in the *GRIA1* gene, which encodes GLU
1988 2012, Barkus, Sanderson et al. 2014). Consistently, mutations in the *GRIA1* gene, which encodes GLU
458 may increase risk of schizophrenia in humans (Coyle 2006, Ripke, O'Dushlaine et al. 2013,
5Chizophrenia Working Group 457 2012, Barkus, Sanderson et al. 2014). Consistently, motations in the OMA1 gene, which encodes GLOA1,
458 may increase risk of schizophrenia in humans (Coyle 2006, Ripke, O'Dushlaine et al. 2013,
5 Schizophrenia Working 458 may increase risk of schizophrenia in humans (Coyle 2006, Ripke, O'Dushlaine et al. 2013,
459 Schizophrenia Working Group of the Psychiatric Genomics 2014, Ismail, Zachariassen et a
460 Yonezawa, Tani et al. 2022).
462

461

Schizophrenia Working Group of the Psychiatric Genomics 2014, Ismail, Zachariassen et al. 2022,
160 Yonezawa, Tani et al. 2022).
161 What makes GluA1 unique among AMPAR subunits? The GluA1 CTD is the most sequence-
163 div 461
462 What makes GluA1 u
463 diverse area of the receptor a
464 interest, its role, especially at diverse area of the receptor and has therefore drawn considerable attention for decades. Despite the interest, its role, especially at synapses outside of hippocampal field CA1, is largely unexplored. In the study, we used 1444 interest, its role, especially at synapses outside of hippocampal field CA1, is largely unexplored. In this
1465 study, we used constitutive GluA1 CTD-truncated mice to explore crucial aspects of how the CTD
1466 affe 1644 interest, its role, especially at synapses outside of impposant particles of layer rangely ontifipersed.
1644 interest GluA1's localization and function at the biochemical, cellular and behavioral level. We found this affects GluA1's localization and function at the biochemical, cellular and behavioral level. We four
467 the GluA1 CTD regulates AMPAR subunit protein levels, intracellular trafficking and synaptic
468 transmission onto in the GluA1 CTD regulates AMPAR subunit protein levels, intracellular trafficking and synaptic
468 transmission onto inhibitory, but not excitatory neurons in the DG, ultimately affecting GC excitability
469 and spatial nove 1468 transmission onto inhibitory, but not excitatory neurons in the DG, ultimately affecting GC ex
1469 and spatial novelty processing. We found no evidence of memory impairments upon loss of t
1470 CTD, and in fact we ob and spatial novelty processing. We found no evidence of memory impairments upon loss of the GluA1
470 transmission of the Australian CTD, and in fact we observed enhanced performance in OLM. Altered performance in the FST, 470 CTD, and in fact we observed enhanced performance in OLM. Altered performance in the FST, EPM
471 and light/dark alternation tests suggest additional regulation of affective processes by the GluA1 CTD.
472 In a previou and light/dark alternation tests suggest additional regulation of affective processes by the GluA1 CTI
472 In a previous study we did not observe qualitative changes in AMPAR subunit expression in
474 ACTD GluA1 mice (Diaz

472 and light, and light alternative tests suggest and light alternative processes procession in
474 and a previous study we did not observe qualitative changes in AMPAR subunit expression in
474 and CTD GluA1 mice (Diaz-472
473 ACTD GluA1 mice (Diaz-Alonso, Morishita et al. 2020). However, more detailed analysis in this studer revealed that GluA1 subunit levels and subcellular distribution are, in fact, affected by the loss of the GluA1 CTD. We 475 revealed that GluA1 subunit levels and subcellular distribution are, in fact, affected by the loss of the
476 GluA1 CTD. We also found that the CTD influences intracellular GluA1 trafficking, consistent with
477 previ 476 GluA1 CTD. We also found that the CTD influences intracellular GluA1 trafficking, consistent with
477 previous reports highlighting the importance of GluA1 CTD interactions with 4.1N and SAP97 in 176 GluAn Chern From the Construction that the Construction of GluA1 CTD interactions with 4.1N and SAP97 in
477 previous reports highlighting the importance of GluA1 CTD interactions with 4.1N and SAP97 in $\frac{1}{2}$ previous reports highlighting the importance of GluAn C α 1 β

478 intracellular AMPAR trafficking (Shen, Liang et al. 2000, Sans, Racca et al. 2001, Bonnet, Charpentier et
479 al. 2023). Interestingly, despite reduced GluA1 levels and altered intracellular trafficking, we found that
 480 both GluA1's abundance at synaptosomes and its colocalization with PSD-95 were not significantly
481 affected by truncation of the CTD. These findings suggest that, despite reduced soma →dendrite
482 trafficking, syna 481 affected by truncation of the CTD. These findings suggest that, despite reduced soma→dendrite
482 trafficking, synaptic AMPAR docking is not significantly affected by the truncation of the GluA1 CTI
483 This is consis 482 trafficking, synaptic AMPAR docking is not significantly affected by the truncation of the GluA1 C
483 This is consistent with the normal AMPAergic transmission in ΔCTD GluA1-expressing CA1 PNs
484 (Granger, Shi et al 483 This is consistent with the normal AMPAergic transmission in ΔCTD GluA1-expressing CA1 PNs
484 (Granger, Shi et al. 2013, Diaz-Alonso, Morishita et al. 2020, Watson, Pinggera et al. 2021) and DG GC
485 (present study) 484 This is consistent with the normal and norge transmission in 2012 This inpressing in ∆CTD
485 (present study).
486 GluA2 protein levels were dramatically increased in ∆CTD GluA1 mice, in stark contrast

Granger, Shi et al. 2013, Diaz-Alonso, Morishita et al. 2020, Watson, Pinggera et al. 2021) and DG GCs

485 (present study).

486 GluA2 protein levels were dramatically increased in ΔCTD GluA1 mice, in stark contrast with 485 (present study). For the protein and a manufacture of the statements of the statements, increased to the some included GluA2 levels reported in GluA1 KO mice (Zamanillo, Sprengel et al. 1999,
488 Jensen, Kaiser et al. 2003). Furthermore, Jensen, Kaiser et al. 2003). Furthermore, GluA2, but not GluA3 subunits, also appeared enriched in the soma in ACTD GluA1 mice, suggesting that GluA2 can form stable heteromeric receptors with ACTD GluA1 and that the GluA1 489 soma in ΔCTD GluA1 mice, suggesting that GluA2 can form stable heteromeric receptors with ΔCTD
490 GluA1 and that the GluA1 CTD exerts a significant influence in intracellular trafficking of GluA1/A2
491 AMPARs. Altog 490 GluA1 and that the GluA1 CTD exerts a significant influence in intracellular trafficking of GluA1/A2
491 AMPARs. Altogether, these findings support the notion that the GluA1 subunit, both via its ATD (Dia:
492 Alonso, 491 AMPARs. Altogether, these findings support the notion that the GluA1 subunit, both via its ATD (D
492 Alonso, Sun et al. 2017) and its CTD (present study), dominate heteromeric AMPAR trafficking.
493 Together with the 492 Alonso, Sun et al. 2017) and its CTD (present study), dominate heteromeric AMPAR trafficking.
493 Together with the normal levels and localization observed for GluA3, and the unaltered GluA2/A3
494 colocalization in Δ 493 Together with the normal levels and localization observed for GluA₃, and the unaltered GluA₂/
494 colocalization in ΔCTD GluA1 hippocampi, these findings suggest that CTD-lacking GluA1 parta
495 synaptic transmiss 493 Together with the normal levels and localization observed for GluA₃, and the unaltered GluA₂/A₃
494 colocalization in $\triangle CTD$ GluA₁ hippocampi, these findings suggest that CTD-lacking GluA₁ partakes in
495 sy 195 synaptic transmission similarly to WT GluA1, and that the normal synaptic transmission and plasticity
196 observed at CA1 PNs and DG GCs are not a result of a replacement of GluA1-containing AMPARs by
198 The mechanis observed at CA1 PNs and DG GCs are not a result of a replacement of GluA1-containing AMPARs by
497 GluA2/A3 heteromers.
The mechanisms regulating AMPAR trafficking and synaptic complement are poorly
499 understood outside

499 onderstood outside of hippocampal field CA1, despite the prevalence of AMPAR-mediated synaptic
1900 transmission throughout the CNS. Here we found that DG GCs are "primed" in ACTD GluA1 mice, an 498 The mechanism
499 understood outside of l
500 transmission througho 499 understood outside of hippocampal field CA1, despite the prevalence of AMPAR-mediated synaptians regulated by
500 transmission throughout the CNS. Here we found that DG GCs are "primed" in ΔCTD GluA1 n
501 become exce 499 transmission throughout the CNS. Here we found that DG GCs are "primed" in ΔCTD GluA1 mice, an
501 become excessively active following spatial novelty exposure, presumably contributing to
502 hyperlocomotion. A recent 501 become excessively active following spatial novelty exposure, presumably contributing to
502 hyperlocomotion. A recent study offered a plausible explanation for GC overactivity in ΔCTD GluA1
503 mice, showing that AM become excessively active transming spatial novelty exposes; presumate, strateging or
502 by hyperlocomotion. A recent study offered a plausible explanation for GC overactivity in ΔCT
504 escapes SAP97-mediated retention 503 mice, showing that AMPAR EPSCs are enhanced in GCs overexpressing CTD-lacking GluA1, which
504 escapes SAP97-mediated retention at perisynaptic sites (Kay, Tsan et al. 2022). In this study, we did
505 find increased 504 escapes SAP97-mediated retention at perisynaptic sites (Kay, Tsan et al. 2022). In this study, we di
505 find increased AMPAR EPSCs in ACTD GluA1 mice, possibly because of the different approach
506 (constitutive GluA1 505 find increased AMPAR EPSCs in ΔCTD GluA1 mice, possibly because of the different approach
506 (constitutive GluA1 CTD truncation *vs* acute overexpression of CTD-truncated GluA1) or species (mouse
507 vs rat) employed 506 finance and the Dampart of the Diverent Ample Press, a series of the amplitude (Constitutive GluA1 CTD truncation vs acute overexpression of CTD-truncated GluA1) or specie
507 strat) employed in the two studies. Inst 507 vs rat) employed in the two studies. Instead, we found an alternative possibility: AMPAR EPSCs on DG
508 inhibitory INs are significantly smaller in ACTD GluA1 mice, which conceivably leads to decreased
508 inhibitory 507 strat) employed in the two studies. Instead, we found an alternative possibility. AMPAR EPSCs on DG
508 inhibitory INs are significantly smaller in Δ CTD GluA1 mice, which conceivably leads to decreased $\frac{1}{\sqrt{2}}$ inhibitory INS are significantly smaller in $\frac{1}{\sqrt{2}}$ conceivably leads to decrease

509 inhibition onto DG GCs and may thereby render DG GCs prone to overactivation by excitatory inputs,
510 especially those conveying novelty. These findings are consistent with a previous report showing that
511 chemogen 511 chemogenetic hippocampal inhibition normalized novelty-induced locomotion in GluA1 KO mice
512 (Aitta-Aho, Maksimovic et al. 2019). Our results suggest that, while altered AMPAR subunit levels and
513 intracellular tra 512 (Aitta-Aho, Maksimovic et al. 2019). Our results suggest that, while altered AMPAR subunit levels
513 intracellular trafficking affect various neuron types in ΔCTD GluA1 mice, certain AMPAR subunit
514 compositions, s Fig. 2012 (Materian, Maksimovic et al. 2019). Our results engages that, while altered AMPAR subunit
513 Intracellular trafficking affect various neuron types in ΔCTD GluA1 mice, certain AMPAR subunit
515 Intractularly sen 514 compositions, such as the GluA1/GluA4 heteromers that dominate in fast-spiking PV+ INs, are
515 particularly sensitive to the truncation of the GluA1 CTD. Meanwhile, excitatory neurons may mo
516 easily compensate the 515 particularly sensitive to the truncation of the GluA1 CTD. Meanwhile, excitatory neurons may r
516 easily compensate the truncation of the GluA1 CTD. The increased levels of GluA₄, whose expr
517 essentially restric Faraction, Tenderston, Tenderston in the truncation of the GluA1 CTD. The increased levels of GluA₄, whose expressio
517 essentially restricted in the forebrain to PV+INs, is additional support for their specific vulner easily compensate the truncation of the GluA1 CTD. The increased levels of GluA4, whose expression i
517 essentially restricted in the forebrain to PV+INs, is additional support for their specific vulnerability in
518 the

PV+ INs dysfunction can contribute to the pathophysiology of schizophrenia (Lisman, Coyle et 519 the ⊿CTD GluAnd GluAnnian Dypensatory Mechanism involving the 2nd
520 the DV+ INs dysfunction can contribute to the pathophysiology of schizophrenia (Lisman,
522 al. 2008, Curley and Lewis 2012, Marin 2012, Ruden, Dug 520
521 pv+
522 al. 2008, Cul
523 INs can sign 521 522 al. 2008, Curley and Lewis 2012, Marin 2012, Ruden, Dugan et al. 2021). Altered AMPAR function in PV
523 INs can significantly affect their output and function, as exemplified in PV+ IN-specific GluA1 KO mice,
524 whic 523 INs can significantly affect their output and function, as exemplified in PV+ IN-specific GluA1 KO mice,
524 which show impaired short-term habituation (Fuchs, Zivkovic et al. 2007), and excitation/inhibition
525 imbal 524 INSEE INSTRIMENT TREFERTMENT AND THE INTERPTION INTERPTION INTERPTION (STATE THEOD)
525 Inbalance reminiscent of that found in patients with schizophrenia (Chen-Engerer, Jaeger et al. 2022).
526 Other manipulations suc 525 imbalance reminiscent of that found in patients with schizophrenia (Chen-Engerer, Jaeger et al. 2023).
526 Other manipulations such as the deletion of Erbb4 in PV+INs, which lead to a reduction in AMPAR
527 content in 526 Other manipulations such as the deletion of Erbb4 in PV+ INs, which lead to a reduction in AMPAR
527 content in excitatory synapses onto PV+INs, also result in schizophrenia-related phenotypes (Del Pino,
528 Garcia-Fri 527 Content in excitatory synapses onto PV+INs, also result in schizophrenia-related phenotypes (Del P
528 Garcia-Frigola et al. 2013). The important role of the GluA1 CTD supporting excitatory synapses on
529 putative PV+ 528 Garcia-Frigola et al. 2013). The important role of the GluA1 CTD supporting excitatory synapses onto
529 putative PV+INs unveiled in this study expands our understanding of the mechanisms underlying cell
530 type-speci 529 putative PV + INs unveiled in this study expands our understanding of the mechanisms underlying cell
530 type-specific AMPAR transmission, disruptions of which potentially contribute to altered synaptic
531 transmissio 129 putative Protection in the mechanism and the mechanism of which potentially contribute to altered synaptic
132 transmission in schizoaffective disorders.
133 Our study discriminates between CTD-dependent and independen

532
533

531 transmission in schizoaffective disorders.
532 Our study discriminates between CTD-dependent and independent GluA1 cognitive proce
534 on one hand, we demonstrate that spatial working memory, object recognition memory 532 transmission in suitable transmission
533 tour study discriminates between
534 on one hand, we demonstrate that spatial
535 contextual fear memory – all of which are on one hand, we demonstrate that spatial working memory, object recognition memory and long-term
535 contextual fear memory – all of which are impaired in GluA1 KO mice (Reisel, Bannerman et al. 2002,
536 Humeau, Reisel et 535 contextual fear memory – all of which are impaired in GluA1 KO mice (Reisel, Bannerman et al. 2002,
536 Humeau, Reisel et al. 2007, Sanderson, Good et al. 2009), are not affected by the loss of the GluA1 CTD.
537 Remar 536 Humeau, Reisel et al. 2007, Sanderson, Good et al. 2009), are not affected by the loss of the GluA1 CT
537 Remarkably, OLM is enabled after subthreshold training. On the other hand, we find that GluA1 CTD
538 truncatio For a constraint served by the loss of the loss of the other hand, we find that GluA1 CTD
538 Funcation alone is sufficient to reproduce aberrant salience, short-term habituation and general
539 Funcation alone is suffici For a contention of the subtracture of the other handing. On the other hand, ho that GluAn training to the other
538 truncation alone is sufficient to reproduce aberrant salience, short-term habituation and general
539 co The context of the interaction alone is sufficient to represent the context of term habituation and general res
539 tresponse to novelty. The normalization of fear expression during contextual fear conditioning by
540 cont 540 context pre-exposure suggests that disrupted fear response in \triangle CTD GluA1 mice is secondary to a context pre-exposure suggests that disrupted fear response in \triangle CTD GluA1 mice is secondary to a context pre-exposure

 540 context pre-exposure suggests that disputed fear response in α response in α microscopic in α

542 novelty processing necessitates the CTD.
543 GluA1 KO mice are considered a valuable tool to study altered synaptic function in
545 Schizophrenia (Fitzgerald, Barkus et al. 2010, Barkus, Feyder et al. 2012, Bygrave, Ja 543
544 GluA1 KO mice are considered a v
545 schizophrenia (Fitzgerald, Barkus et al. 20
546 2019). Here we found that GluA1 CTD trur 543 545 schizophrenia (Fitzgerald, Barkus et al. 2010, Barkus, Feyder et al. 2012, Bygrave, Jahans-P
546 zo19). Here we found that GluA1 CTD truncation alone recapitulated the schizoaffective-re
547 behaviors present in GluA1 546 schipped and (Fitzgerald, Barkus et al. 2019). Here we found that GluA1 CTD truncation alone recapitulated the schizoaffective-relevant
547 behaviors present in GluA1 KO mice. Specifically, the increase in approach beh 547 behaviors present in GluA1 KO mice. Specifically, the increase in approach behavior in the elevate
548 maze, light/dark transition and forced swim tests can be interpreted as reduced anxiety / depressi
549 but may also maze, light/dark transition and forced swim tests can be interpreted as reduced anxiety / depression,
549 but may also reflect increased novelty-seeking or risk-taking, recapitulating and even exacerbating
550 some of the 549 but may also reflect increased novelty-seeking or risk-taking, recapitulating and even exacerbating
550 some of the symptoms of schizophrenia and ADHD previously observed in constitutive GluA1 KOs.
551 Similar to genet 550 some of the symptoms of schizophrenia and ADHD previously observed in constitutive GluA1 KOs.
551 Similar to genetic deletion of GluA1, the behavioral consequences of GluA1 CTD truncation are com
552 and a complete, ac 551 Similar to genetic deletion of GluA1, the behavioral consequences of GluA1 CTD truncation are com
552 and a complete, accurate interpretation will require additional studies.
553 In summary, this study provides a compr Similar to genetic deletion of GluA1, the behavioral consequences of GluA1 CTD truncation are comp
352 and a complete, accurate interpretation will require additional studies.
353 In summary, this study provides a comprehe

556 dependent affective and memory processes. Our study identifies the GluA1 CTD as a crucial element in 553 AMPAR subunit levels, intracellular trafficking, cell type-specific synaptic transmission and GluA1-
556 AMPAR subunit levels, intracellular trafficking, cell type-specific synaptic transmission and GluA1-
557 the AMPAR c dependent affective and memory processes. Our study identifies the GluA1 CTD as a crucial eleme
557 the AMPAR complex that regulates the strength of excitatory synapses onto inhibitory INs, and
558 suggests that ΔCTD GluA 557 the AMPAR complex that regulates the strength of excitatory synapses onto inhibitory INs, and
558 suggests that $\triangle CTD$ GluA1 mice may be valuable to study features of schizoaffective and other
559 psychiatric disorders 558 suggests that ACTD GluA1 mice may be valuable to study features of schizoaffective and other
559 sychiatric disorders.
560 Acknowledgments 559 sychiatric disorders.
560 supplements
561 Acknowledgments We would like to thank Dr. Roger Nicoll for supporting initial experiments in his laborate

560
561

550 psychologie also
560 Acknowledgments
562 We would like
563 Mulatwa T. Haile and 561 Acknowledgments
1962 We would like to thank Dr. Roger Nicoll for supporting initial experiments in his laboratory. Dr. Mulatwa T. Haile and Dr. Lulu Y. Chen for guidance and equipment used in behavior assessments, and
1964 the Diaz-Alonso lab members for fruitful discussions. This work is supported by grants K99/Roo
1965 MH118425, Whitehal 1564 The Diaz-Alonso lab members for fruitful discussions. This work is supported by grants K99/Roo
1563 MH118425, Whitehall Foundation, Brain and Behavior Research Foundation and UCI start-up funds to
1566 J.D.-A. and AG0 565 MH118425, Whitehall Foundation, Brain and Behavior Research Foundation and UCI start-up full
566 J.D.-A. and AGo76835 to M.A.W. G.S. is supported a the T32 Training Program in Epilepsy Resea
567 (T32NS045540). C.A.C. i 566 J.D.-A. and AGo76835 to M.A.W. G.S. is supported a the T32 Training Program in Epilepsy Research
567 (T32NS045540). C.A.C. is supported by an HHMI Gilliam's Fellowship. A.M. is supported by the NIH-
568 NIGMS Maximizin 567 (T32NS045540). C.A.C. is supported by an HHMI Gilliam's Fellowship. A.M. is supported by the NIH-
568 MIGMS Maximizing Access to Research Careers T34 (#GM136489). M.A.S. is supported by a Eugene
569 Cota-Robles fellows 1986 NIGMS Maximizing Access to Research Careers T34 (#GM136489). M.A.S. is supported by a Eugene
569 Cota-Robles fellowship and the Howard Schneiderman T32 Training Program in Learning and Meme
570 (#T32MH119049). V.A.V. 569 Cota-Robles fellowship and the Howard Schneiderman T32 Training Program in Learning and Memo
570 (#T32MH119049). V.A.V. is supported by the NRSA DA059982 fellowship. The Optical Biology Core
571 Facility of the Develop 569 Cota-Robles fellowship and the Howard Schneiderman T32 Training Program in Learning and Memo
570 (#T32MH119049). V.A.V. is supported by the NRSA DA059982 fellowship. The Optical Biology Core
571 Facility of the Develop Facility of the Developmental Biology Center is supported by grants CA-62203 and GM-076516. 572

- 573 Author contributions 575 biochemistry experiments; G.S., A.V.K and M.A.S. performed and analyzed histology experiments; G.
576 A.V.K., C.A.C., A.M., V.A.V., I.L., J.S. and M.A.W. performed and analyzed behavior experiments; G.S
577 and J.D.-A. 576 A.V.K., C.A.C., A.M., V.A.V., I.L., J.S. and M.A.W. performed and analyzed behavior experiments; G.S.
577 and J.D.-A. drafted, and all authors edited the manuscript. J.D.-A. coordinated the study.
578 **Conflict of Inte** 576 A.V.K., C.A.C., A.M., V.A.V., I.L., J.S. and M.A.W. performed and analyzed behavior exper
577 and J.D.-A. drafted, and all authors edited the manuscript. J.D.-A. coordinated the study.
578 **Conflict of Interest**
580 Th
-
-

578

- 578
579 Conflict of Interest
580 The authors declare no competing interests.
581
- 581

582 Figure legends
583 Figure 1. AMPA

579 Commet of interest
580 The authors declare
581 Figure legends
583 Figure 1. AMPAR su 581
582 Figure legends
583 Figure 1. AMPAR subunit levels and subcell
584 CTD. 583 Figure 1. AMPAR subunit levels and subcellular distribution are affected by the loss of the GluA1 304 CTD.

-
-
-
-
- 586 fractionation (left) and immunoblot from whole-brain lysate (WBL) and synaptosomal fractionation (left) and immunoblot from whole-brain lysate (WBL) and synaptosomal fractionation in 3587 and ΔCTD GluA1 (right). C-F: 587 and ΔCTD GluA1 (right). C-F: GluA1 (C), GluA2 (D), GluA3 (E), and GluA4 (F) levels normalized to α-
588 tubulin from WT WBL. G: GluA1 ATD staining (red) in WT and ΔCTD GluA1 hippocampus. H-I: Average
589 soma / dendri 587 and ∆CTD GluA1 (right). C-F: GluA1 (C), GluA2 (D), GluA3 (E), and GluA4 (F) levels normalized to α-
588 tubulin from WT WBL. G: GluA1 ATD staining (red) in WT and ∆CTD GluA1 hippocampus. H-I: Avera
590 soma / dendrit 589 soma / dendrite ratio of GluA1 signal in CA1 and DG, respectively. J: GluA2 staining (green) in WT and ∆CTD GluA1 hippocampus. K-L: Average soma/dendritic ratio of GluA2 in WT and ∆CTD GluA1 mice fo
591 hippocampal fi
- 589 soma / dendrite ratio of GluA1 signal in CA1 and DG, respectively. J: GluA2 staining (green) in WT and
590 ΔCTD GluA1 hippocampus. K-L: Average soma/dendritic ratio of GluA2 in WT and ΔCTD GluA1 mice for
591 hippocamp
-
-
- 591 ∴ Fight community present in this system with the some in the some for the lender of GluA1 (red) and
592 ∂FSD-95 (cyan) in CA1 and DG in WT and ∆CTD GluA1 samples (top) and colocalization quantification
593 (bottom). 592 BSD-95 (cyan) in CA1 and DG in WT and ΔCTD GluA1 samples (top) and colocalization quantification
593 (bottom). O, P: Representative immunostaining of GluA2 (red) and GluA3 (cyan), in CA1 and DG in WT
594 and ΔCTD GluA 593 (bottom). O, P: Representative immunostaining of GluA2 (red) and GluA3 (cyan), in CA1 and DG in W
594 and ΔCTD GluA1 samples (top) and colocalization quantification (bottom). Q: Schematic of subcellular
595 distribut
-
-
-
- 393 and ΔCTD GluA1 samples (top) and colocalization quantification (bottom). Q: Schematic of subcellular distribution of GluA1 and GluA2 in CA1 and DG in WT and ΔCTD GluA1 PNs. S.P., Stratum pyramidale;
596 S.R., Stratum 595 distribution of GluA1 and GluA2 in CA1 and DG in WT and ΔCTD GluA1 PNs. S.P., Stratum pyramidale;
596 S.R., Stratum radiatum; S.M., Stratum moleculare; S.G., Stratum granulare. Scale bar: G, J, 200 μm; M·
597 P, 10 μ 596 S.R., Stratum radiatum; S.M., Stratum moleculare; S.G., Stratum granulare. Scale bar: G, J, 200 μm; M.
597 P, 10 μm. Error bars represent SEM. n.s., not statistically different; *, p≤0.05; **, p≤0.01; ***, p≤0.001;
* 596 S.R., Stratum radiatum; S.M., Stratum moleculare; S.G., Stratum granulare. Scale bar: G, J, 200 μm; M-
597 P, 10 μm. Error bars represent SEM. n.s., not statistically different; *, p≤0.05; **, p≤0.01; ***, p≤0.001;
*
-
-

597 P, 10 pm. Error bars represent SEM. n.s., not statistically different; γ, p⊆0.0₅; γ, p⊆0.02, γ, p⊆0.02, p
598 P, +***, p<0.0001. C-F: one-way ANOVA. H-P: unpaired t-test.
599 Figure 2. ΔCTD GluA1 mice exhibit novel 598 ****, p<0.0001. C-F: one-way ANOVA. H-P: unpaired t-test. 600 600 Figure 2. ∆CTD GluA1 mice exhibit novelty-induced hyperlocomotion and impaired fear expression,

602 But intact memory.
602 A: Mean distance tra
603 forced alternation Y-
604 WT and ΔCTD GluA1

603 forced alternation Y-maze task. C: Time in novel arm relative to total time n novel and familiar arms
604 WT and ∆CTD GluA1 mice. D: Representative track plots overlayed atop heat maps of WT (left) and
604 WT and ∆CT

604 Forced alternation Y-maze task. C: Time in novel arm relative to total time n novel and hand arms for WT
604 Forced alternation Y-maze task. D: Representative track plots overlayed atop heat maps of WT (left) and
604 $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A})$ microscopic track plots overlayed atop heat maps of $\mathcal{L}(\mathcal{A})$ and

<u>COC An abituation for WT and ΔCTD GluA1 mice. F: Schematic of object location memory (OLM) task (left)</u>

and representative heat maps (right) of WT and ΔCTD GluA1 mice during training and test day. G:

Discrimination in 607 and representative heat maps (right) of WT and ∆CTD GluA1 mice during training and test day. G:
608 Discrimination index during training and test sessions for WT and ∆CTD GluA1 mice in the OLM task.
609 Schematic of For a mandepertent of the theorem, engines the term is the form of MT and ∆CTD GluA1 mice in the OLM target Schematic of novel object recognition (NOR) task (left) and representative heat maps (right) of WT ∆CTD GluA1 mi Schematic of novel object recognition (NOR) task (left) and representative heat maps (right) of WT and ∆CTD GluA1 mice during training and test day. I: Discrimination index during training and test sessions for WT and ∆C 609 Schematic of novel object recognition (NOR) task (left) and representative heat maps (right) of WT and
610 $\,\Delta$ CTD GluA1 mice during training and test day. I: Discrimination index during training and test sessions
61 614 N: Freezing % across time (M) and average freezing % (N) during context recall test for WT and $\triangle CTD$ Freezing during training (K) and during the 24-hour contextual recall (L) during contextual fear
613 conditioning for WT and ∆CTD GluA1 mice. Foot shocks are indicated with vertical red dashed lines. M,
614 N: Freezing % 613 conditioning for WT and ΔCTD GluA1 mice. Foot shocks are indicated with vertical red dashed
614 N: Freezing % across time (M) and average freezing % (N) during context recall test for WT and
615 GluA1 mice. Error bars 614 N: Freezing % across time (M) and average freezing % (N) during context recall test for WT and ΔCTD GluA1 mice. Error bars represent SEM. Empty dots represent females, filled dots represent males. n.s., not statistic 615 GluA1 mice. Error bars represent SEM. Empty dots represent females, filled dots represent males. n.s.
616 not statistically different; *, p≤0.05; ***, p≤0.001; ****, p≤0.0001. A, E, K, M: two-way ANOVA. C:
617 unpaire not statistically different; *, p≤0.05; ***, p≤0.001; ****, p≤0.0001. A, E, K, M: two-way ANOVA. C:
617 Gunpaired t-test. G, I: paired t-test. L: Mann-Whitney test. N: Welch's t test.
618 Figure 3. Pre-exposure to the cont 617 unpaired t-test. G, I: paired t-test. L: Mann-Whitney test. N: Welch's t test.
618 Figure 3. Pre-exposure to the context prior to fear conditioning partially rescues freezing behav
620 Figure 3. Pre-exposure to the co onpaired t-test. G, I: paired t-test. L: Mann-Whitney test. N: Welch's t test.
618 Figure 3. Pre-exposure to the context prior to fear conditioning partially rescues freezing behavior
620 in ΔCTD GluA1 mice.
621 A: Schema 618 619 Figure 3. Pre-exposure to the context prior to fear conditioning partially rescues freezing behavior 620 in ∆CTD GluA1 mice. A: Schematic of pre-exposure contextual fear conditioning for WT and ΔCTD GluA1 mice. Foot shocks are
623 indicated with vertical red dashed lines. Horizontal dashed line indicates baseline freezing (percentage
624 of tim or a strange freezing (C) during context free transformation in the indicates baseline freezing (percentage
624 of time spent freezing during the 5 min. prior to the first shock). D, E: Freezing % across time (D) and
625 624 of time spent freezing during the 5 min. prior to the first shock). D, E: Freezing % across time (D) and
625 average freezing % (E) during context recall test for WT and $\triangle CTD$ GluA1 mice. Error bars represent
626 SEM. 624 of time spent freezing during the 5 min. prior to the first shock). D, E: Freezing % across time (D) and
625 average freezing % (E) during context recall test for WT and $\triangle CTD$ GluA1 mice. Error bars represent
626 SEM 626 SEM. Empty dots represent females, filled dots represent males. n.s., not statistically different; **,
627 p≤0.01. B, D: two-way ANOVA. C: Mann-Whitney test. E: Welch's t-test.
628 Figure 4. ΔCTD GluA1 mice recapitul

627 SEM. Empty dots represent females, must be represent male male, must film, since they are proton, procedure
628 Sigure 4. ACTD GluA1 mice recapitulate additional behavioral features of germline GluA1 knock
630 Sigure 4 628 p=0.01. B, D: two-way ANOVA. Statem Whitney test. E: Welch's tiest.
629 prigure 4. ACTD GluA1 mice recapitulate additional behavioral feature.
631 A: Schematic of elevated plus maze. B-D: Mean percentage of time spen 628
629 629 Figure 4. ∆CTD GluA1 mice recapitulate additional behavioral features of germline GluA1 knockout

- 630 mice.
631 A: Schematic of elevated plus maze. B-D: Mean percentage of time spent in open arms (B), total
-
- Fig. 2018. The substitute plus masses is a comparison of entries into the closed arms (D) for
632 A: Momber of entries into the open arms (C) and total number of entries into the closed arms (D) for
634 Compartment for WT and ΔCTD GluA1 mice. E: Schematic of light/dark box paradigm. F: Mean latency to enter the dark
634 compartment for WT and ΔCTD GluA1. G: Schematic of forced swim test. H: Mean time spent immot
635 for WT and ΔCTD GluA1 m
- o and ∆CTD GluA1 mice. E: Schematic of light/dark box paradigm. F: Mean latency to enter the dark
1934 compartment for WT and ∆CTD GluA1. G: Schematic of forced swim test. H: Mean time spent immobile
1935 for WT and ∆CTD
- for WT and ∆CTD GluA1 mice. Error bars represent SEM. Empty dots represent females, filled dots $\mathcal{L}(\mathcal{$

637 Figure Males. N.s., Notificially different; *, p≤0.05; *, p≤0.000; *, p≤0.0001; *, p≤0.0001; *, p≤0.0001;
638 Figure 5. Exacerbated DG GC activation in ΔCTD GluA1 mice following open field exposure.
640 A: Schematic o

638
639

639 Figure 5. Exacerbated DG GC activation in ∆CTD GluA1 mice following open field exposure.

- 638
639 Figure 5. Exacerbated DG GC acti
640 A: Schematic of open field experin
641 hours in the open field arena in WT For a maximizer of parameter of parameters of operational and parameters and parameters in the open field arena in WT and $\triangle CTD$ GluA1 mice. B: representative c-Fos staining (red) in WT
and $\triangle CTD$ GluA1 hippocampus. C-E:
-
- 642 and ∆CTD GluA1 hippocampus. C-E: Average number of c-Fos-positive cells in the dentate gyrus
643 granule layer, CA₃, and CA1, respectively. Error bars represent SEM. Empty dots represent females,
644 filled dots re G43 granule layer, CA3, and CA1, respectively. Error bars represent SEM. Empty dots represent femal
644 filled dots represent males. Scale bar: 200 μm. **, p≤0.01; ***, p≤0.001; ****, p≤0.0001, one-wa
645 ANOVA.
646 granule layer, CA₃, and CA1, respectively. Error bars represent SEM. Empty dots represent females
644 filled dots represent males. Scale bar: 200 µm. **, p≤0.01; ***, p≤0.001; ****, p≤0.0001, one-way
645 ANOVA.
647 **Figu**
-
-
-

645 filled and dots represent males. Scale bar: 200 pc. 11, p=0.01, p=0.011; p≤0.011; p≤0.011; ANOVA.
646 figure 6. Intact excitatory synaptic transmission and LTP in DG granule cells but altered excitations of the synapt ---
646
647 Figure 6.
648 synaptic
649 A: Whole 647 Figure 6. Intact excitatory synaptic transmission and LTP in DG granule cells but altered excitatory 648 synaptic transmission in DG inhibitory INs in ∆CTD GluA1 mice.
649 A: Whole-cell patch-clamp recording set-up for slice electrophysiology experiments in DG granule cells

650 (GCs). B: Average paired-pulse ratio (PPR) values for evoked AMPAR EPSCs in WT and Δ CTD GluA1 GCs.
651 Representative WT (blue) and Δ CTD GluA1 (yellow) traces are shown to the right of the plot. C: Average
652 A 651 Representative WT (blue) and ∆CTD GluA1 (yellow) traces are shown to the right of the plot. C: Average
652 AMPAR/NMDAR ratios in WT and ∆CTD GluA1 GCs. D: Input-output relationship plot of AMPAR EPSCs
653 in WT and ∆ 652 AMPAR/NMDAR ratios in WT and ∆CTD GluA1 GCs. D: Input-output relationship plot of AMPAR EPSCs
653 in WT and ∆CTD GluA1 DG GCs. Representative WT (blue) and ∆CTD GluA1 (yellow) traces are shown
654 to the right of the 653 AMPAR REPSC amplitude before the source of AMPAR CTD GluA1 (yellow) traces are shown
654 to the right of the plot. E: AMPAR EPSC amplitude of WT and ∆CTD GluA1 DG GCs normalized to the
655 mean AMPAR EPSC amplitude b to the right of the plot. E: AMPAR EPSC amplitude of WT and ∆CTD GluA1 DG GCs normalized to the
655 mean AMPAR EPSC amplitude before theta-burst LTP induction (arrow). Representative WT (blue) an
656 ∆CTD GluA1 (yellow) for the right of the plot. E: All plots of the right of the plot. In the 2002 Depresentative WT (blue) are discussed.
656 ΔCTD GluA1 (yellow) traces are shown to the right of the plot. n indicates number of cells induced 656 ΔCTD GluA1 (yellow) traces are shown to the right of the plot. n indicates number of cells induced /
657 mumber of cells at the end of the experiment (min. 40). F: Whole-cell patch-clamp recording set-up for
658 slice Note that the end of the experiment (min. 40). F: Whole-cell patch-clamp recording set-up
658 Sice electrophysiology experiments in DG INs. WT and ΔCTD GluA1 mice were stereotaxically inject
659 (AAV-mDLX-GFP) to label I 658 slice electrophysiology experiments in DG INs. WT and ΔCTD GluA1 mice were stereotaxically injected
659 (AAV-mDLX-GFP) to label INs in DG. G: Mean values of AMPAR/NMDAR ratios in WT and ΔCTD GluA1
660 mDLX-GFP(+)-labe 658 slice electrophysiology experiments in DG INs. WT and ∆CTD GluA1 mice were stereotaxically injected
659 (AAV-mDLX-GFP) to label INs in DG. G: Mean values of AMPAR/NMDAR ratios in WT and ∆CTD GluA1
660 mDLX-GFP(+)-lab 661 right of the plot. Error bars represent SEM. Scale bars: 5opA, 2oms. n.s., not statistically different; *,
662 p≤o.o5. B-C, E, G: unpaired t-test. D: two-way ANOVA.
663 for the string of the plot. Error bars represent SEM. Scale bars: 50pA, 20ms. n.s., not statistically different; *,
662 p≤0.05. B-C, E, G: unpaired t-test. D: two-way ANOVA.
663 Suppl. Figure 1. Analysis of excitatory sy right of the plot. Error bars represent Sem. Superint Sem. 3. pp. 4. Entertain, and statistically p
662 p≤0.05. B-C, E, G: unpaired t-test. D: two-way ANOVA.
664 Suppl. Figure 1. Analysis of excitatory synapse density in 663
664 Suppl. Figure 1. Analysis of excitatory synapse densit
665 A-B: Average density of GluA1 and PSD-95 positive pun
666 and PSD-95 positive puncta in DG ML. E-F: Average der

663 664 Suppl. Figure 1. Analysis of excitatory synapse density in CA1 and DG in WT and ∆CTD GluA1 mice.

665 A-B: Average density of GluA1 and PSD-95 positive puncta in CA1 SR. C-D: Average density of GluA1
666 and PSD-95 positive puncta in DG ML. E-F: Average density of GluA2 and GluA3 positive puncta in CA1

effects in DSD-95 positive puncta in DG ML. E-F: Average density of GluA2 and GluA3 positive puncta in Ca1
Average density of GluA2 and GluA3 positive puncta in CA1 positive puncta in CA1 positive puncta in CA1 positi
Aver

668 non-statistically significant; *, p≤0.05, unpaired t-test.
669 Suppl. Figure 2. Control behavioral assessments in WT and ΔCTD GluA1 mice (related to Fig. 2).
671 A-C: Average thigmotaxis (A), fine movements (B), and r 669 non-statistically significant; *, p⊆0.0₅, onpaired t-test.
669 **Suppl. Figure 2. Control behavioral assessments in W**
671 A-C: Average thigmotaxis (A), fine movements (B), and
672 during an open field test. D: Total 669
670 670 Suppl. Figure 2. Control behavioral assessments in WT and ∆CTD GluA1 mice (related to Fig. 2).
671 A-C: Average thigmotaxis (A), fine movements (B), and rearings (C) of WT and ∆CTD GluA1 male mi 672 during an open field test. D: Total distance travelled of WT, heterozygous, and homozygous ΔCTD
673 GluA1 female and male mice in the open field test. E-F: Mean distance traveled during training (E) and
674 test (F) 673 GluA1 female and male mice in the open field test. E-F: Mean distance traveled during training (E) a
674 test (F) for WT and CTD GluA1 mice in the OLM task. G-H: Mean object exploration time during training
675 (G) an test (F) for WT and CTD GluA1 mice in the OLM task. G-H: Mean object exploration time during training
675 (G) and test (H) for WT and CTD GluA1mice in the OLM task. I-J: Mean distance traveled during training
676 (I) and t 675 (G) and test (H) for WT and CTD GluA1 mice in the OLM task. I-J: Mean distance traveled during training
676 (I) and test (J) for WT and CTD GluA1 mice in NOR task. K-L: Mean object exploration time during
677 training (I) and test (J) for WT and CTD GluA1 mice in NOR task. K-L: Mean object exploration time during
676 (I) and test (J) for WT and CTD GluA1 mice in NOR task. M: Linear regression of total distance
678 traveled (meters) and 677 (Interactive) and test (L) for WT and CTD GluA1 mice in NOR task. M: Linear regression of total dist
678 (Interaction of total discrimination index during OLM test day. N: Linear regression of total object exploration traveled (meters) and discrimination index during OLM test day. N: Linear regression of total object
exploration (seconds) and discrimination index during OLM test day. O: Average hind paw withdrawal
680 latency of WT and exploration (seconds) and discrimination index during OLM test day. O: Average hind paw withdraw
680 latency of WT and CTD GluA1 mice in the hot plate test. P: Average motion index of WT and ΔCTD
681 GluA1 mice during con 680 latency of WT and CTD GluA1 mice in the hot plate test. P: Average motion index of WT and ΔCTD
681 GluA1 mice during contextual fear conditioning (arbitrary units). Q: Linear regression of percentage of
682 freezing d 681 GluA1 mice during contextual fear conditioning (arbitrary units). Q: Linear regression of percentage freezing during conditioning (10 min) and recall (8 min). R: Average percentage of freezing measure across time (mi Freezing during conditioning (10 min) and recall (8 min). R: Average percentage of freezing measured
683 across time (minutes) during the fear generalization test for WT and ΔCTD GluA1 mice. S: Average
684 percentage of f across time (minutes) during the fear generalization test for WT and ΔCTD GluA1 mice. S: Average
684 percentage of freezing during the fear generalization test for WT and ΔCTD GluA1 mice. Error bars
685 represent SEM. Em of the factor and spiritually during the fear generalization test for WT and ∆CTD GluA1 mice. Error bars
685 represent SEM. Empty dots represent females, filled dots represent males. n.s. not statistically diffe
686 *p≤0 For a percentage of freezing arrangemental generalization test for formulation tends for the formulation of the fe
686 percentage of freezing during the fear generalization test for Multiple s. n.s. not statistically diff the statistic set of the set of the statistic set of the statistic matter in the statistic statistic set of the
686 ^{*} p≤0.05, ***p≤0.001. A, B, H, O, S: Welch's t test. C, I, J, K: Mann-Whitney test. D: one-way ANOVA.

687 G, L: unpaired t-test. M, N, Q: Linear regression. P: multiple t design. R: two-way ANOVA.
688 Suppl. Figure 3. Shock reactivity of WT and ΔCTD GluA1 mice in contextual fear conditioning
690 Paradigm. 688 G, L: External strain, M, C. Linear regression. P: Maring traing in the Viet, P: M;
689 G, Suppl. Figure 3. Shock reactivity of WT and ΔCTD GluA1 mice in contextual fear condition
691 Average motion index of WT and ΔC 688 689 Suppl. Figure 3. Shock reactivity of WT and ∆CTD GluA1 mice in contextual fear conditioning

690 paradigm.
691 Average motion index of WT and ACTD GluA1 mice during contextual fear conditioning (arbitrary units). 692 From bars represent SEM. Empty dots represent females, filled dots represent males. Non-statistically
693 Significant differences, two-way ANOVA.
694 Suppl. Figure 4. Control behavioral assessments in WT and ∆CTD Glu

694
695

693 Significant differences, two-way ANOVA.
693 Significant differences, two-way ANOVA.
695 Suppl. Figure 4. Control behavioral assessments in WT and ΔCTD GluA1 mice (related to Fig. 4).
696 A: Average time spent in the o 1986
694 Suppl. Figure 4. Control behavioral asses
696 A: Average time spent in the open arms as
697 GluA1 mice. B: Ratio of distance traveled i Supple 4. Control behavioral assessments in WT and ∆CTD GluA1 mice (related to Fig. 4).
696 A: Average time spent in the open arms across time during the elevated plus maze for WT and ∆CTD
697 GluA1 mice. B: Ratio of dis 697 GluA1 mice. B: Ratio of distance traveled in open arms relative to total distance traveled during the elevated plus maze for WT and ∆CTD GluA1 mice. C: Average distance traveled in the closed arms
698 elevated plus m 698 elevated plus maze for WT and ΔCTD GluA1 mice. C: Average distance traveled in the closed arms elevated plus maze for WT and ΔCTD GluA1 mice. C: Average distance traveled in the closed arms elevated plus maze for WT and ∆CTD GluAn mice. C: Average distance traveled in the closed arms of WT and ∆CTD G
The closed arms of WT and ∆CTD GluAn microsed arms of the closed arms of the closed arms of the closed arms o

-
-
- 6999 to all marge the elevated plus maze for WT and ∆CTD GluA1 mice. E: Average time spent in the light zone of the
1999 during the light/dark alternation test for WT and ∆CTD GluA1 mice. F: Average latency to immobility 1.1 light/dark alternation test for WT and ∆CTD GluA1 mice. F: Average latency to immobility during the
1702 forced swim test for WT and ∆CTD GluA1 mice. Error bars represent SEM. Empty dots represent
1703 females, fille 702 forced swim test for WT and ∆CTD GluA1 mice. Error bars represent SEM. Empty dots represent
703 females, filled dots represent males. n.s., non-statistically significant; **, p≤0.01, ****, p≤0.0001, A:
704 two-way AN
-
- 705
706

703 females, filled dots represent males. n.s., non-statistically significant; **, p≤0.01, ****, p≤0.000
704 two-way ANOVA. B-D: Welch's t-test. E: Mann-Whitney test. F: unpaired t-test.
705 Suppl Figure 5. c-Fos analysi 704 females, filled dots represent males. n.e., non-statistically significally filled dots represent the two-way ANOVA. B-D: Welch's t-test. E: Mann-Whitney test. F: unpaired t-test.
705
706 Suppl Figure 5. c-Fos analysis 705
706 Suppl Figure 5. c-Fos analysis in various brain regions of WT and ΔCTD GluA1
707 field exposure.
708 A: Schematic of experimental timeline. B: c-Fos staining (red) of representative \ 706 Suppl Figure 5. c-Fos analysis in various brain regions of WT and ∆CTD GluA1 mice following open

- 707 field exposure.
708 A: Schematic of experimental timeline. B: c-Fos staining (red) of representative WT and ΔCTD GluA1
-
- 909 mouse brains showing habenula, somatosensory cortex, subthalamic nucleus, and amygdala. C: c-Fos
100 staining (red) of representative WT and ∆CTD GluA1 mouse brains showing prefrontal cortex. D: c-Fos
111 staining (r 1099 staining (red) of representative WT and ΔCTD GluA1 mouse brains showing prefrontal cortex. D: c-Fos
111 staining (red) of representative WT and ΔCTD GluA1 mouse brains showing motor cortex, striatum, and
121 nucleus
-
- 11 staining (red) of representative WT and ∆CTD GluA1 mouse brains showing motor cortex, striatum, and
12 nucleus accumbens. Error bars represent SEM. Error bars represent SEM. Empty dots represent female
13 filled dots
- 112 nucleus accumbens. Error bars represent SEM. Error bars represent SEM. Empty dots represent females,

713 filled dots represent males. n.s., not statistically different; *, p≤0.05; **, p≤0.01; ***, p≤0.001; ****,

714 filled dots represent males. n.s., not statistically different; *, $p \le 0.05$; **, $p \le 0.01$; ***, $p \le 0.001$; ****,
- 714 filmed dots represent males. n.s., not statistically different; *, p⊆0.05; *, p⊆0.0001; *, p≤0.0001; *
715
716
717
-
- 715
- 717

715
715
716
717
718 <u>References</u> 718

719 Aitta-Aho, T
719 Aitta-Aho, T
720 Induced Hyp
721 <u>Front Pharm</u>
723 Akgul, G. an
724 interneuron Aitta-Aho, T., M. Maksimovic, K. Dahl, R. Sprengel and E. R. Korpi (2019). "Attenuation of Novelty-

720 Induced Hyperactivity of Gria1-/- Mice by Cannabidiol and Hippocampal Inhibitory Chemogenetics."

721 <u>Front Pharmaco</u>

-
- 120 Induced Hyperactivity of Critics (Micela) Chemokratic Histophysical Hyperactivity of Grian-1722
122 Akgul, G. and C. J. McBain (2016). "Diverse roles for ionotropic glutamate receptors on inhibitory
124 Interneurons in 121 Front Pharmacol 10: 309.
122 Akgul, G. and C. J. McBair
124 Fritherneurons in developin
125 Ancona Esselmann, S. G., 127 homeostasis requires the 722
-
- 724 Aktor and Muslem Muslem (2017). The United States of the United States interneurons in developing and adult brain." <u>J Physiol 594(19): 5471-5490.</u>
725 Ancona Esselmann, S. G., J. Diaz-Alonso, J. M. Levy, M. A. Bemben 724 Interneurons in developing and adult brain. <u>31 hysiol 594(19): 5471-5490.</u>
725 Ancona Esselmann, S. G., J. Diaz-Alonso, J. M. Levy, M. A. Bemben and R.
727 Interneuralis requires the membrane-proximal carboxy tail of 725
- - 729
	-
- 727 homeostasis requires the membrane-proximal carboxy tail of GluA2." <u>Proc Natl Acad Sci U S A</u> 114(5
728 13266-13271.
729 Bannerman, D. M., T. Borchardt, V. Jensen, A. Rozov, N. N. Haj-Yasein, N. Burnashev, D. Zamanillo
- 727 Franciscass requires the membrane-proximal carboxy tail of GloA2. <u>Froc Natl Acad Sci U S A</u> 114(50).
729 Bannerman, D. M., T. Borchardt, V. Jensen, A. Rozov, N. N. Haj-Yasein, N. Burnashev, D. Zamanillo, T.
731 Bus, I 729
729 Bannerman, I
731 Bus, I. Grube,
732 AMPA Recept
733 Bannerman, I 805, 1. Grube, G. Adelmann, J. N. P. Rawlins and R. Sprengel (2018). "Somatic Accumulation of GluA1-

732 AMPA Receptors Leads to Selective Cognitive Impairments in Mice." <u>Front Mol Neurosci</u> 11: 199.

733 Bannerman, D. M 2007). The Every Prince and Structure in the University of Content of Content of Content of Content of Content
231 Bannerman, D. M., R. M. Deacon, S. Brady, A. Bruce, R. Sprengel, P. H. Seeburg and J. N. Rawlins
235 (2004)
	- 732 AMPA Receptors Leads to Selective Cognitive Impairments in Mice. <u>Front Mol Neorosci</u> 11: 199.
733 Bannerman, D. M., R. M. Deacon, S. Brady, A. Bruce, R. Sprengel, P. H. Seeburg and J. N. Rawlins
735 (2004). "A compari 733
	- (2004). "A comparison of GluR-A-deficient and wild-type mice on a test battery assessing sensorimotor,
	- 736 affective, and cognitive behaviors." <u>Behav Neurosci</u> 118(3): 643-647. 736 affective, and cognitive behaviors." $\frac{\text{Bernav Neoroscr}}{\text{BernavNeoroscr}}$ 118(3): 043-047.

879 Andersen, O. Hvalby, B. Sakmann, P. H. Seeburg and R. Sprengel (2003). "A juvenile form of
879 Andersen, O. Hvalby, B. Sakmann, P. H. Seeburg and R. Sprengel (2003). "A juvenile form of \mathcal{S}_1 . And the proof of the set \mathcal{S}_2 and R. Seeburg and R. Sprengel (2003). "A just and R. Sprengel (2003). "A juvenile form of the set of the se

881 GluR-A." <u>J Physiol 553</u>(Pt 3): 843-856.
882 Kauer, J. A., R. C. Malenka and R. A. Nicoll (1988). "A persistent postsynaptic modification mediates
884 Iong-term potentiation in the hippocampus." <u>Neuron</u> 1(10): 911-917 882
883 Kauer, J. A., R. C. Malenka and R. A. N
884 Iong-term potentiation in the hippoca
885 Kay, Y., L. Tsan, E. A. Davis, C. Tian, L
887 Kanoski and B. E. Herring (2022). "Sch 882
883 884 Francon, J. A., R. A. Davis, C. Tian, L. Decarie-Spain, A. Sadybekov, A. N. Pushkin, V. Katritch, S. E.
885 Kay, Y., L. Tsan, E. A. Davis, C. Tian, L. Decarie-Spain, A. Sadybekov, A. N. Pushkin, V. Katritch, S. E.
887 885
885 Kay, Y., L. Tsan, E. A. Davis, C. Tian, L. Decarie-Spain, A. Sadybekov, Kanoski and B. E. Herring (2022). "Schizophrenia-associated SAP97 r
888 Synapse strength in the dentate gyrus and impair contextual episodic
8 885 887 Kanoski and B. E. Herring (2022). "Schizophrenia-associated SAP97 mutations increase glutamatergi
888 Synapse strength in the dentate gyrus and impair contextual episodic memory in rats." <u>Nat Commun</u>
890 Kerr, J. M. a 888 Synapse strength in the dentate gyrus and impair contextual episodic memory in rats." <u>Nat Commun</u>
889 13(1): 798.
890 Kerr, J. M. and T. A. Blanpied (2012). "Subsynaptic AMPA receptor distribution is acutely regulated 888 synapse strength in the dentate gyrus and impair contextual episodic memory in rats." <u>Nat Commun</u>
889 **1** 13(1): 798.
890 Kerr, J. M. and T. A. Blanpied (2012). "Subsynaptic AMPA receptor distribution is acutely regul 889
890 Kerr, J. M.
892 actin-drive
893 Kim, C. H.,
895 (2005). "Pe 891 892 Actin-driven reorganization of the postsynaptic density." <u>J Neurosci</u> 32(2): 658-673.
893
894 Kim, C. H., K. Takamiya, R. S. Petralia, R. Sattler, S. Yu, W. Zhou, R. Kalb, R. Wenthold and R. Huganir
895 (2005). "Persi 892 actin-driven reorganization of the postsynaptic density." J Neurosci 32(2): 658-673. 893 1995 (2005). "Persistent hippocampal CA1 LTP in mice lacking the C-terminal PDZ ligand of GluR1." <u>Nat</u>
896 (2005). "Persistent hippocampal CA1 LTP in mice lacking the C-terminal PDZ ligand of GluR1." <u>Nat</u>
897 Lee, H. K., 896 Neurosci 8(8): 985-987.
897 Lee, H. K., K. Takamiya, J. S. Han, H. Man, C. H. Kim, G. Rumbaugh, S. Yu, L. Ding, C. He, R. S. Petralia,
899 R. J. Wenthold, M. Gallagher and R. L. Huganir (2003). "Phosphorylation of the 897
898 Lee, H. K., K. Takamiya,
898 Lee, H. K., K. Takamiya,
899 R. J. Wenthold, M. Galla
900 subunit is required for sy
901 Lisman, J. E., J. T. Coyle 898 899 R. J. Wenthold, M. Gallagher and R. L. Huganir (2003). "Phosphorylation of the AMPA receptor GluR1
800 subunit is required for synaptic plasticity and retention of spatial memory." <u>Cell</u> 112(5): 631-643.
901 Lisman, J 880 Subunit is required for synaptic plasticity and retention of spatial memory." <u>Cell</u> 112(5): 631-643.
8901
8902 Lisman, J. E., J. T. Coyle, R. W. Green, D. C. Javitt, F. M. Benes, S. Heckers and A. A. Grace (2008).
803 900 subonit is required for synaptic plasticity and retention or spatial memory. <u>Cell</u> 112(5): 031-043.
901 Lisman, J. E., J. T. Coyle, R. W. Green, D. C. Javitt, F. M. Benes, S. Heckers and A. A. Grace (2008)
903 "Circui 902 903 Figure 1. Exception of synaptic AMPA receptors revealed by a single-cell genetic approach." Next USDS Contained Schizophrenia." <u>Trends Neurosci</u> 31(5): 234-242.
905 Lu, W., Y. Shi, A. C. Jackson, K. Bjorgan, M. J. Dur 904 Schizophrenia." <u>Trends Neurosci</u> 31(5): 234-242.
905 Lu, W., Y. Shi, A. C. Jackson, K. Bjorgan, M. J. During, R. Sprengel, P. H. Seeburg and R. A. N.
907 "Subunit composition of synaptic AMPA receptors revealed by a s 905
906 Lu, W., Y. Shi, A. C. Jackson, K. Bjorgan, M. J. Du
907 "Subunit composition of synaptic AMPA recepto
908 62(2): 254-268.
909 Luchkina, N. V., S. K. Coleman, J. Huupponen, C. 905
906 907 Fisibunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach." <u>Neuron</u>
908 62(2): 254-268.
909 Luchkina, N. V., S. K. Coleman, J. Huupponen, C. Cai, A. Kivisto, T. Taira, K. Keinanen and 908 62(2): 254-268.
909 Luchkina, N. V., S. K. Coleman, J. Huupponen, C. Cai, A. Kivisto, T. Taira, K. Keinanen and S. E. Lauri
910 Luchkina, N. V., S. K. Coleman, J. Huupponen, C. Cai, A. Kivisto, T. Taira, K. Keinanen an 909
909
910 Luchkina, N. V.,
911 (2017). "Molecul
912 receptors critica
913 **112**(Pt A): 46-56
914 909
910 911 (2017). "Molecular mechanisms controlling synaptic recruitment of GluA4 subunit-containing AMPA-
912 (2017). "Molecular mechanisms controlling synaptic recruitment of GluA4 subunit-containing AMPA-
913 112(Pt A): 46-56 911 (2017). "Molecular mechanisms controlling synaptic recruitment of GluA4 subunit-containing AMPA-
912 receptors critical for functional maturation of CA1 glutamatergic synapses." <u>Neuropharmacology</u>
913 **112**(Pt A): 46-913 receptors critical for functional material for the grotamatergics, nepsetim<u>ics in prespiramator of</u>
914 Malinow, R. and R. C. Malenka (2002). "AMPA receptor trafficking and synaptic plasticity." <u>Annu F</u>
916 Meurosci 913 112(PCA): 40-50.
914 Malinow, R. and F
916 <u>Neurosci</u> 25: 103-1
917 Marin, O. (2012).
919 915 916 Meurosci 25: 103-126.
917 Marin, O. (2012). "Interneuron dysfunction in psychiatric disorders." <u>Nat Rev Neurosci</u> 13(2): 107-120.
919 Martin, S. J., P. D. Grimwood and R. G. Morris (2000). "Synaptic plasticity and mem 917
918 Marin, O. (2012). "Inte
919 Martin, S. J., P. D. Grir
921 the hypothesis." <u>Annu</u>
922 918 919
920 Martin, S. J., P. D. Grimwood and R. G. Morris (2000). "Synaptic plasticity and memory: an evaluation of
921 the hypothesis." <u>Annu Rev Neurosci</u> 23: 649-711.
923 Muller, D., M. Joly and G. Lynch (1988). "Contribut 920 921 Martin, Star Johnn Review Neurosci 23: 649-711.
922 Muller, D., M. Joly and G. Lynch (1988). "Contributions of quisqualate and NMDA receptors to the
924 Muller, D., M. Joly and G. Lynch (1988). "Contributions of quisqu 922
923 Muller, D., M. Joly and G. Lynch (1988). "Contributed
924 induction and expression of LTP." <u>Science</u> 242(48
925 Nicoll, R. A. (2017). "A Brief History of Long-Term
927 922 924 Muller, D., M. Joseph Christopher Christopher Christopher Christopher Christopher Christopher Christopher
925
926 Micoll, R. A. (2017). "A Brief History of Long-Term Potentiation." <u>Neuron 93(2): 281-290.</u>
927 924 induction and expression of LTP." Science 242(4886): 1694-1697. 925 927 Nicoll, R. A. (2017). "A Brief History of Long-Term Potentiation." <u>Neuron 93(</u>2): 201-290."
927

-
-
-
- 929 Harrison, M. E. Walton and D. M. Bannerman (2023). "Glutamatergic dysfunction leads to a hyper-
930 Harrison, M. E. Walton and D. M. Bannerman (2023). "Glutamatergic dysfunction leads to a hyper-
931 Salience." <u>Mol Ps</u> 930 Harrison, Maria Britannia, M. E. M. E. Marrison, M. Banner and Salience." <u>Mol Psychiatry</u> 28(2): 579-587.
931 Salience." <u>Mol Psychiatry</u> 28(2): 579-587.
932 Pelkey, K. A., R. Chittajallu, M. T. Craig, L. Tricoire, J. 931 salience." <u>Mol Psychiatry</u> 28(2): 579-587.
932 Pelkey, K. A., R. Chittajallu, M. T. Craig, L. Tricoire, J. C. Wester and C. J. McBain (2017). "Hippoc
934 GABAergic Inhibitory Interneurons." <u>Physiol Rev</u> 97(4): 1619-1 932
-
- salience." <u>Mol Psychiatry</u> 28(2): 579-587.

932 Pelkey, K. A., R. Chittajallu, M. T. Craig, L. Tricoire, J. C. Wester and C

934 GABAergic Inhibitory Interneurons." <u>Physiol Rev</u> 97(4): 1619-1747.

935 Procaccini, C., T. 934 GABAergic Inhibitory Interneurons." <u>Physiol Rev</u> 97(4): 1619-1747.
935
936 Procaccini, C., T. Aitta-aho, K. Jaako-Movits, A. Zharkovsky, A. Panhelainen, R. Sprengel, A. M. Linden
937 and E. R. Korpi (2011). "Excessive 935
936 Procaccini, C., T. Aitta-aho, K. Jaako-Movits, A. Zharkovsky, A. Par
937 and E. R. Korpi (2011). "Excessive novelty-induced c-Fos expressior
938 hippocampus of GluA1 knockout mice." <u>Eur J Neurosci</u> 33(1): 161-11
9 935
-
- and E. R. Korpi (2011). "Excessive novelty-induced c-Fos expression and altered neurogenesis in the

938 hippocampus of GluA1 knockout mice." <u>Eur J Neurosci</u> 33(1): 161-174.

940 Reisel, D., D. M. Bannerman, W. B. Schmitt 938 bippocampus of GluA1 knockout mice." <u>Eur J Neurosci</u> 33(1): 161-174.
939 Reisel, D., D. M. Bannerman, W. B. Schmitt, R. M. Deacon, J. Flint, T. Borchardt, P. H. Seeburg and J
941 Rawlins (2002). "Spatial memory dissoc 939
939 Reisel, D., D. M. Bannerman, W. B. Schmitt, R. M. Deacon, J. Flint, T. F
941 Rawlins (2002). "Spatial memory dissociations in mice lacking GluR1."
942 Ripke, S., C. O'Dushlaine, K. Chambert, J. L. Moran, A. K. Kahl 940 941 Rawlins (2002). "Spatial memory dissociations in mice lacking GluR1." <u>Nat Neurosci</u> 5(9): 868-873.
942 Ripke, S., C. O'Dushlaine, K. Chambert, J. L. Moran, A. K. Kahler, S. Akterin, S. E. Bergen, A. L. Collins, J
944
- 942
- 942
942 Ripke, S., C. O'Dushlaine, K. Chambert, J. L. Moran, A. K. Kahler, S. Akterin, S. E. Bergen, A. L. Co
944 J. Crowley, M. Fromer, Y. Kim, S. H. Lee, P. K. Magnusson, N. Sanchez, E. A. Stahl, S. Williams, N.
945 Wray
-
-
-
- 943 Ripke, S., C. O'Dushlaine, K. Chambert, J. L. Moran, A. K. Kahler, S. Akterin, S. E. Bergen, A. L. Collins, J.
944 J. Crowley, M. Fromer, Y. Kim, S. H. Lee, P. K. Magnusson, N. Sanchez, E. A. Stahl, S. Williams, N. R.
 Wray, K. Xia, F. Bettella, A. D. Borglum, B. K. Bulik-Sullivan, P. Cormican, N. Craddock, C. de Leeuw,
946 Durmishi, M. Gill, V. Golimbet, M. L. Hamshere, P. Holmans, D. M. Hougaard, K. S. Kendler, K. Lin, D
947 Morris, O. 946 Durmishi, M. Gill, V. Golimbet, M. L. Hamshere, P. Holmans, D. M. Hougaard, K. S. Kendler, K. Lin, D. W.
947 Morris, O. Mors, P. B. Mortensen, B. M. Neale, F. A. O'Neill, M. J. Owen, M. P. Milovancevic, D.
948 Posthuma Morris, O. Mors, P. B. Mortensen, B. M. Neale, F. A. O'Neill, M. J. Owen, M. P. Milovancevic, D.
948 Dosthuma, J. Powell, A. L. Richards, B. P. Riley, D. Ruderfer, D. Rujescu, E. Sigurdsson, T. Silagadze, A.
949 B. Smit, H 947 Morris, O. Mors, P. B. Mortensen, B. M. Neale, F. A. O'Neill, M. J. Owen, M. P. Milovancevic, D.
948 Posthuma, J. Powell, A. L. Richards, B. P. Riley, D. Ruderfer, D. Rujescu, E. Sigurdsson, T. Silaga
950 B. Smit, H. S
- 949 B. Smit, H. Stefansson, S. Steinberg, J. Suvisaari, S. Tosato, M. Verhage, J. T. Walters, C. Multicenter
950 Genetic Studies of Schizophrenia, D. F. Levinson, P. V. Gejman, K. S. Kendler, C. Laurent, B. J. Mowry,
951 M 949 Genetic Studies of Schizophrenia, D. F. Levinson, P. V. Gejman, K. S. Kendler, C. Laurent, B. J. Mowry
951 M. C. O'Donovan, M. J. Owen, A. E. Pulver, B. P. Riley, S. G. Schwab, D. B. Wildenauer, F. Dudbridge,
952 Holma
-
-
- M. C. O'Donovan, M. J. Owen, A. E. Pulver, B. P. Riley, S. G. Schwab, D. B. Wildenauer, F. Dudbridge, P.
952 Holmans, J. Shi, M. Albus, M. Alexander, D. Campion, D. Cohen, D. Dikeos, J. Duan, P. Eichhammer, S.
953 Godard,
-
-
- 1952 Holmans, J. Shi, M. Albus, M. Alexander, D. Campion, D. Cohen, D. Dikeos, J. Duan, P. Eichhammer, S.

1953 Godard, M. Hansen, F. B. Lerer, K. Y. Liang, W. Maier, J. Mallet, D. A. Nertney, G. Nestadt, N. Norton, F.

19 Wormley, C. Psychosis Endophenotypes International, M. J. Arranz, S. Bakker, S. Bender, E. Bramon, D.
956 Collier, B. Crespo-Facorro, J. Hall, C. Iyegbe, A. Jablensky, R. S. Kahn, L. Kalaydjieva, S. Lawrie, C. M.
957 Lewis 954 — A. O'Neill, G. N. Papadimitriou, R. Ribble, A. R. Sanders, J. M. Silverman, D. Walsh, N. M. Williams, B.
955 — Wormley, C. Psychosis Endophenotypes International, M. J. Arranz, S. Bakker, S. Bender, E. Bramon,
956 — Collier, B. Crespo-Facorro, J. Hall, C. Iyegbe, A. Jablensky, R. S. Kahn, L. Kalaydjieva, S. Lawrie, C. M.
957 Lewis, K. Lin, D. H. Linszen, I. Mata, A. McIntosh, R. M. Murray, R. A. Ophoff, J. Powell, D. Rujescu, J.
958 V 1995 Collier, B. Crespo, M. Crespo, M. Crespo, M. Crespo, A. Golnoff, J. Powell, D. Rujescu, J.
1958 Collier, B. M. Walshe, M. Weisbrod, D. Wiersma, C. Wellcome Trust Case Control, P. Donnelly, I. Barros
1958 J. M. Blackwe
-
- 958 Van Os, M. Walshe, M. Weisbrod, D. Wiersma, C. Wellcome Trust Case Control, P. Donnelly, I. Barrosis, J. M. Blackwell, E. Bramon, M. A. Brown, J. P. Casas, A. P. Corvin, P. Deloukas, A. Duncanson, J. Jankowski, H. S. M 959 J. M. Blackwell, E. Bramon, M. A. Brown, J. P. Casas, A. P. Corvin, P. Deloukas, A. Duncanson, J. Jankowski, H. S. Markus, C. G. Mathew, C. N. Palmer, R. Plomin, A. Rautanen, S. J. Sawcer, R. C. Trembath, A. C. Viswana Jankowski, H. S. Markus, C. G. Mathew, C. N. Palmer, R. Plomin, A. Rautanen, S. J. Sawcer, R. C.
961 Trembath, A. C. Viswanathan, N. W. Wood, C. C. Spencer, G. Band, C. Bellenguez, C. Freeman, (
962 Hellenthal, E. Giannoul
- Frembath, A. C. Viswanathan, N. W. Wood, C. C. Spencer, G. Band, C. Bellenguez, C. Freeman, G. Hellenthal, E. Giannoulatou, M. Pirinen, R. D. Pearson, A. Strange, Z. Su, D. Vukcevic, P. Donnell
1962 Langford, S. E. Hunt, S
-
-
-
-
- 1962 Hellenthal, E. Giannoulatou, M. Pirinen, R. D. Pearson, A. Strange, Z. Su, D. Vukcevic, P. Donnelly, Langford, S. E. Hunt, S. Edkins, R. Gwilliam, H. Blackburn, S. J. Bumpstead, S. Dronov, M. Gillman, Gray, N. Hammond 1962 Hellenthal, E. Giannoulatou, M. Pirinen, R. D. Pearson, A. Strange, Z. Su, D. Vukcevic, P. Donnelly, C.

1963 Langford, S. E. Hunt, S. Edkins, R. Gwilliam, H. Blackburn, S. J. Bumpstead, S. Dronov, M. Gillman, E.

196 964 Gray, N. Hammond, A. Jayakumar, O. T. McCann, J. Liddle, S. C. Potter, R. Ravindrarajah, M. Ricketts
965 A. Tashakkori-Ghanbaria, M. J. Waller, P. Weston, S. Widaa, P. Whittaker, I. Barroso, P. Deloukas, C. (
966 Mathe 965 A. Tashakkori-Ghanbaria, M. J. Waller, P. Weston, S. Widaa, P. Whittaker, I. Barroso, P. Deloukas, C. G
966 Mathew, J. M. Blackwell, M. A. Brown, A. P. Corvin, M. I. McCarthy, C. C. Spencer, E. Bramon, A. P.
967 Corvin 966 Mathew, J. M. Blackwell, M. A. Brown, A. P. Corvin, M. I. McCarthy, C. C. Spencer, E. Bramon, A. P. Corvin, M. C. O'Donovan, K. Stefansson, E. Scolnick, S. Purcell, S. A. McCarroll, P. Sklar, C. M. Hultman and P. F. Su
-
-
- 967 Corvin, M. C. O'Donovan, K. Stefansson, E. Scolnick, S. Purcell, S. A. McCarroll, P. Sklar, C. M. Hultman
968 and P. F. Sullivan (2013). "Genome-wide association analysis identifies 13 new risk loci for
969 schizophren 967 Corvin, M. C. O'Donovan, K. Stefansson, E. Scolnick, S. Purcell, S. A. McCarroll, P. Sklar, C. M. Hultman
968 and P. F. Sullivan (2013). "Genome-wide association analysis identifies 13 new risk loci for
969 schizophren 971 Ruden, J. B., L. L. Dugan and C. Konradi (2021). "Parvalbumin interneuron vulnerability and brain
1972 disorders." <u>Neuropsychopharmacology</u> 46(2): 279-287.
1974 Sanderson, D. J., M. A. Good, K. Skelton, R. Sprengel, P 970
971 Ruden, J. B., L. L. Dugan and C. Konradi (2021
972 disorders." <u>Neuropsychopharmacology</u> 46(2):
973 Sanderson, D. J., M. A. Good, K. Skelton, R. S_l
975 Bannerman (2009). "Enhanced long-term and 970 972 Ruden, J. B., L. Dugan and Enterneur (2012). Perical entertainment entertainty and brain
1973 Sanderson, D. J., M. A. Good, K. Skelton, R. Sprengel, P. H. Seeburg, J. N. Rawlins and D. M.
1974 Sanderson, D. J., M. A. G
-
- 973
- 972 disorders. <u>Neuropsychopharmacology</u> 40(2): 279-287.
973 Sanderson, D. J., M. A. Good, K. Skelton, R. Sprengel, P
975 Bannerman (2009). "Enhanced long-term and impaired 975 Bannerman (2009). "Enhanced long-term and impaired short-term spatial memory in GluA1
975 Bannerman (2009). "Enhanced long-term and impaired short-term spatial memory in GluA1 $\langle 200\rangle$ Banderman (2009). "Enhanced long-term and impaired short-term spatial memory in GluAn American

970 Feceptor subunit knockout mice: evidence for a dual-process memory model." <u>Learn went</u> 10(0): 3/9-
978 Sanderson, D. J., R. Sprengel, P. H. Seeburg and D. M. Bannerman (2011). "Deletion of the GluA1 AMI
980 Feceptor s 977 386. 978
979 980 receptor subunit alters the expression of short-term memory." <u>Learn Mem</u> 18(3): 128-131.
981
982 Sans, N., C. Racca, R. S. Petralia, Y. X. Wang, J. McCallum and R. J. Wenthold (2001). "Synapse-
983 associated protein 981
981 Sans, N., C. Racca, R. S. Petralia, Y. X. Wang, J. McCallum and R. J. Wenthold (2001). "Syna
983 associated protein 97 selectively associates with a subset of AMPA receptors early in their
984 pathway." <u>J Neurosci</u> 981
982 983
983 associated protein 97 selectively associates with a subset of AMPA receptors early in their biosy
984 pathway." <u>J Neurosci</u> 21(19): 7506-7516.
985 Schizophrenia Working Group of the Psychiatric Genomics, C. (2014) 984 both protein 97 selectively associated protein 1992.
1985 Schizophrenia Working Group of the Psychiatric Genomics, C. (2014). "Biological insights from 108
1987 Schizophrenia-associated genetic loci." <u>Nature</u> 511(7510 984 pathway." <u>J Neurosci</u> 21(19): 7506-7516.
985 Schizophrenia Working Group of the Psychiatric Genomics, C. (2014). "Biological insights from 108
987 schizophrenia-associated genetic loci." <u>Nature</u> 511(7510): 421-427.
9 985 987 Schizophrenia Arching Order Inc." <u>Nature</u> 511(7510): 421-427.
988 Schwenk, J., D. Baehrens, A. Haupt, W. Bildl, S. Boudkkazi, J. Roeper, B. Fakler and U. Schulte (2011).
990 "Regional diversity and developmental dynam 988
988 Schwenk, J., D. Baehrens, A. Haupt, W. Bildl, S. Boudkkazi, J. Roep
990 "Regional diversity and developmental dynamics of the AMPA-rece
991 brain." <u>Neuron</u> 84(1): 41-54.
992 Shen, L., F. Liang, L. D. Walensky and 988 990 Fregional diversity and developmental dynamics of the AMPA-receptor proteome in the mammalian
991 Fregional diversity and developmental dynamics of the AMPA-receptor proteome in the mammalian
992 Shen, L., F. Liang, L. 991 Marin Martin 2018, 2018 of the Amples of the AMPA-receptor and the Mammalian
992 Shen, L., F. Liang, L. D. Walensky and R. L. Huganir (2000). "Regulation of AMPA receptor GluR1
994 Shen, L., F. Liang, L. D. Walensky an 991 brain." Neuron 84(1): 41-54. 992 994
994 subunit surface expression by a 4. 1N-linked actin cytoskeletal association." <u>J Neurosci</u> 20(21): 79:
995 7940.
997 Shi, S., Y. Hayashi, J. A. Esteban and R. Malinow (2001). "Subunit-specific rules governing AMPA
 995 7940.
995 7940.
996 Shi, S., Y. Hayashi, J. A. Esteban and R. Malinow (2001). "Subunit-specific rules governing AMPA
998 receptor trafficking to synapses in hippocampal pyramidal neurons." <u>Cell</u> 105(3): 331-343.
999 S 995 7940. 996
997 998 Feceptor trafficking to synapses in hippocampal pyramidal neurons." <u>Cell</u> 105(3): 331-343.
999
000 Stockwell, I., J. F. Watson and I. H. Greger (2024). "Tuning synaptic strength by regulation of AMI
001 glutamate rece 999
999 Stockwell, I., J. F. Watson and I. H. Greger (2024). "Tuning synaptic strength by regulation
001 glutamate receptor localization." <u>Bioessays</u>: e2400006.
002 Tamminga, C. A., S. Southcott, C. Sacco, A. D. Wagner an 999
1000 1001 glutamate receptor localization." <u>Bioessays</u>: e2400006.
1002
1003 Tamminga, C. A., S. Southcott, C. Sacco, A. D. Wagner and S. Ghose (2012). "Glutamate dysfunction in
1004 hippocampus: relevance of dentate gyrus and 1002

1002 Tamminga, C. A., S. Southcott, C. Sacco, A. D. Wagner

1004 hippocampus: relevance of dentate gyrus and CA3 signa

1005

1006 Traunmuller, L., A. M. Gomez, T. M. Nguyen and P. Sch

1007 specification by a highly 1002 1004 hippocampus: relevance of dentate gyrus and CA3 signaling." <u>Schizophr Bull</u> 38(5): 927-935.
1005 Traunmuller, L., A. M. Gomez, T. M. Nguyen and P. Scheiffele (2016). "Control of neuronal synapse
1007 specification by 1004
1005
1006 Traunmuller, L., A. M. Gomez, T. M. Nguyen and P. Scheiffele (2016). "Control of neuronal sy
1007 specification by a highly dedicated alternative splicing program." <u>Science</u> 352(6288): 982-98
1008 Vogel-Cie 1005 1007 specification by a highly dedicated alternative splicing program." <u>Science</u> 352(6288): 982-986.
1008 Vogel-Ciernia, A. and M. A. Wood (2014). "Examining object location and object recognition memo
1010 mice." <u>Curr P</u> 1007 specification by a highly dedicated alternative splicing program. <u>Science</u> 352(6288): 982-988.
1008 Vogel-Ciernia, A. and M. A. Wood (2014). "Examining object location and object recognition m
1010 mice." <u>Curr Proto</u> 1008
1009 1010 mice." <u>Curr Protoc Neurosci</u> 69: 8 31 31-17.
1011 Voltson, J. F., A. Pinggera, H. Ho and I. H. Greger (2021). "AMPA receptor anchoring at CA1 synapses is
1013 determined by N-terminal domain and TARP gamma8 interacti 1010 mice. <u>Curr Futude Neurosci</u> 69: 8 31 31-17.
1011 Watson, J. F., A. Pinggera, H. Ho and I. H. G
1013 determined by N-terminal domain and TAF
1014 Yonezawa, K., H. Tani, S. Nakajima, N. Nag
1016 Uchida (2022). "AMPA re 1012 1013 determined by N-terminal domain and TARP gamma8 interactions." Nat Commun 12(1): 5083.
1014 Yonezawa, K., H. Tani, S. Nakajima, N. Nagai, T. Koizumi, T. Miyazaki, M. Mimura, T. Takahashi and H.
1016 Uchida (2022). "AM 1013 determined by N-terminal domain and TART gamma8 interactions. <u>Nat Commun 12(1): 5</u>003.
1014 Yonezawa, K., H. Tani, S. Nakajima, N. Nagai, T. Koizumi, T. Miyazaki, M. Mimura, T. Takahash
1016 Uchida (2022). "AMPA rece 1015 1016 Uchida (2022). "AMPA receptors in schizophrenia: A systematic review of postmortem studies on
1017 receptor subunit expression and binding." <u>Schizophr Res</u> 243: 98-109.
1018 Zamanillo, D., R. Sprengel, O. Hvalby, V. 1017 receptor subunit expression and binding." <u>Schizophr Res</u> 243: 98-109.
1018 Zamanillo, D., R. Sprengel, O. Hvalby, V. Jensen, N. Burnashev, A. Rozov, K. M. Kaiser, H. J. Koste
1020 Borchardt, P. Worley, J. Lubke, M. F 1017 receptor subunit expression and binding. <u>Schizophi Kes</u> 243: 90-109.
1018 Zamanillo, D., R. Sprengel, O. Hvalby, V. Jensen, N. Burnashev, A. Roz
1020 Borchardt, P. Worley, J. Lubke, M. Frotscher, P. H. Kelly, B. Somm 1018
1019 1020 Borchardt, P. Worley, J. Lubke, M. Frotscher, P. H. Kelly, B. Sommer, P. Andersen, P. H. Seeburg and B.
1021 Sakmann (1999). "Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial
1022 l Sakmann (1999). "Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial 1022 Iearning." <u>Science</u> 284(5421): 1805-1811.
1023
1023 1022 learning. <u>Science</u> 204(5421): 1805-1811.
1023

-
- 2014 Zamanillo D.; Sprengel, R. H., Ø.; Jensen, V.; Burnashev, N.; Rozov, A.; and K. M. M. K. Kaiser, H. J.;
1025 Borchardt,T.; Worley, P.; Lubke, J.; Frotscher, M.; Kelly, P. H.; Sommer, B.; Andersen,P.; Seeburg. P. H.;
1
- Sakmann, B. (1999). "Importance of AMPA Receptors for Hippocampal Synaptic Plasticity But Not for 1027 Spatial
1026 Spatial
1028 Learning." <u>Science</u> 284.
-
- 1028 Learnin
1028 Learnin
1029 1028 Learning. <u>Science</u> 204.
1029
-

C

$\mathsf F$ $_{\sf Training}$ $_{\sf WT}$ $_{\sf ACTD\,GluA1}$ $\mathsf G$ $_{\sf c.}$ $_{\sf n.S.}$ $_{\sf ***}$ $\mathsf H$ $_{\sf Training}$ $_{\sf wr}$ $_{\sf ACTD\,GluA1}$ $\mathsf I$ *Training* WT **ACTD GluA1** Training wT ∆CTD GluA1 ● n.s. ***** ロ** Training wT ∆CTD GluA1 **Ⅰ 。 *** ***** *** n.s. ******* 80 $60 -$ Training Training Discrimination index Discrimination index 40 20 24 h 24 h $\mathbf{0}$ novel novel -20 *Test Test*

-80 -60 $-40 -$

0s 5s

familiar

 \mathbf{r}

Test

famili

novel familiar

novel familiar

Test

0s 5s

Contextual fear conditioning test

WT **ACTD GluA1**

