
MerQuaCo: a computational tool for quality control in 1 

image-based spatial transcriptomics 2 

 3 

 4 

Naomi Martin1, Paul Olsen1, Jacob Quon, Jazmin Campos, Nasmil Valera Cuevas, Josh Nagra, Marshall VanNess, Zoe 5 

Maltzer, Emily C Gelfand, Alana Oyama, Amanda Gary, Yimin Wang, Angela Alaya, Augustin Ruiz, Cade Reynoldson, 6 

Cameron Bielstein, Christina Alice Pom, Cindy Huang, Cliff Slaughterbeck, Elizabeth Liang, Jason Alexander, Jeanelle 7 

Ariza, Jocelin Malone, Jose Melchor, Kaity Colbert, Krissy Brouner, Lyudmila Shulga, Melissa Reding, Patrick 8 

Latimer, Raymond Sanchez, Stuard Barta, Tom Egdorf, Zachary Madigan, Chelsea M Pagan, Jennie L Close, Brian 9 

Long, Michael Kunst, Ed S Lein, Hongkui Zeng, Delissa McMillen, Jack Waters2. 10 

 11 

 12 

Allen Institute for Brain Science, 615 Westlake Ave N, Seattle WA. 13 

 14 

 15 
1Equal contributions. 16 
2Author for correspondence. jackw@alleninstitute.org. 17 

 18 

 19 

Acknowledgements 20 

This research was funded by grants from National Institute of Mental Health, U19MH114830 to H.Z. and 21 

U19AG060909 to E.L. This work was also supported by the Allen Institute for Brain Science. The authors thank the 22 

Allen Institute founder, Paul G. Allen, for his vision, encouragement, and support. We thank Vizgen for their 23 

assistance maintaining MERSCOPE hardware throughout the study and for their feedback on this manuscript.  24 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.12.04.626766doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.04.626766
http://creativecommons.org/licenses/by/4.0/


ABSTRACT 25 

Image-based spatial transcriptomics platforms are powerful tools often used to identify cell populations and 26 

describe gene expression in intact tissue. Spatial experiments return large, high-dimension datasets and several 27 

open-source software packages are available to facilitate analysis and visualization. Spatial results are typically 28 

imperfect. For example, local variations in transcript detection probability are common. Software tools to 29 

characterize imperfections and their impact on downstream analyses are lacking so the data quality is assessed 30 

manually, a laborious and often a subjective process. Here we describe imperfections in a dataset of 641 fresh-31 

frozen adult mouse brain sections collected using the Vizgen MERSCOPE. Common imperfections included the local 32 

loss of tissue from the section, tissue outside the imaging volume due to detachment from the coverslip, 33 

transcripts missing due to dropped images, varying detection probability through space, and differences in 34 

transcript detection probability between experiments. We describe the incidence of each imperfection and the 35 

likely impact on the accuracy of cell type labels. We develop MerQuaCo, open-source code that detects and 36 

quantifies imperfections without user input, facilitating the selection of sections for further analysis with existing 37 

packages. Together, our results and MerQuaCo facilitate rigorous, objective assessment of the quality of spatial 38 

transcriptomics results. 39 

 40 

 41 

INTRODUCTION 42 

The recent advent of spatially resolved molecular imaging methods has enabled the investigation of gene 43 

expression patterns within cells in their native tissue context, revealing the organization of transcriptomically-44 

defined cell types (Close et al., 2021). Researchers have leveraged emerging spatial technologies to create 45 

comprehensive cell-type atlases of a variety of tissue types, including human heart (Asp et al., 2019), breast cancer 46 

(Wu et al., 2021), and lung (Madissoon et al., 2023). In brain, in particular, molecular imaging methods have been 47 

deployed to unravel the complex spatial relationships of thousands of cell types, resulting in atlases of cell types in 48 

adult mouse brain (Zhang et al., 2021; Langlieb et al., 2023; Shi et al., 2023; Yao et al.,2023; Zhang et al., 2023); cell 49 

types in adult human brain (Jorstad et al, 2023a) and in developing human brain (Braun et al., 2023; Velmeshev et 50 

al., 2023; Kim et al., 2023); non-neuronal cells in the mouse nervous system (Zeisel et al., 2018); interneurons in 51 

mouse, human and non-human primates (Bugeon et al., 2022; Chartrand et al., 2023; Jorstad et al., 2023b; Lee et 52 

al., 2023); DNA methylation and epigenomics in mouse brain (Liu et al., 2023; Zhou et al., 2023); and brain cell 53 

populations in Alzheimer’s Disease (Gabitto et al., 2023). 54 

Already spatial technologies have enabled many discoveries in biology, but the field of spatial transcriptomics 55 

remains immature. Errors may arise during tissue preparation, chemistry, and imaging, resulting in erroneous 56 

detection and identification of transcripts. In principle, the sources of these many errors are known. In practice, 57 

often it’s unclear how often errors occur, how to best detect and describe the resulting imperfections in the 58 

results, and how these imperfections impact downstream analyses such as cell type identification. 59 
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For more mature technologies, often the main sources of error are known, there’s consensus on correction 60 

strategies, and these corrections are implemented in widely used analysis software suites. In high-throughput RNA 61 

sequencing, for example, RNA is fragmented, reverse transcribed to cDNA, and mapped to a known genome, and 62 

the number of raw counts per transcript varies with transcript length, GC content, and sequencing depth. No single 63 

procedure corrects for all possible errors but various normalization strategies are widely used to minimize within-64 

sample and between-sample effects (Leek et al., 2010; Oshlack et al., 2010; Conesa et al., 2016; Evans et al., 2018) 65 

and there’s awareness that misinterpretation of results may occur where biological and technical effects are 66 

correlated and normalization is inadequate (Conrads et al., 2004; Baggerly et al., 2004; Liotta et al., 2004; Spielman 67 

et al., 2007; Akey et al., 2007, Spielman & Cheung, 2007). Ideally, there would be a consensus around common 68 

errors and corrections for spatial transcriptomics, where there is not yet the same emphasis on quality control of 69 

results before downstream analyses. 70 

Here we characterize imperfections on MERSCOPE, a commercial platform using Multiplexed Error-Robust single 71 

molecule Fluorescence In Situ Hybridization (MERFISH) chemistry (Chen et al., 2015; Moffitt & Zhuang, 2016; 72 

Moffitt et al., 2016). We collected results from 641 adult mouse sections over ~2 years, developed code to detect 73 

and characterize the most common imperfections, and describe the frequency with which each imperfection 74 

occurred and its likely impact on cell type identification. Our results indicate that imperfections are common and 75 

reduce the accuracy of cell type labels but are rarely severe enough to prevent investigation of the spatial 76 

organization of cell populations in adult mouse brain. 77 

Our code, called MerQuaCo, complements existing packages that facilitate the analysis of spatial transcriptomics 78 

datasets, including packages focused on data storage and access, e.g. Pysodb, SpatialData (Lin et al., 2024; 79 

Marconato et al., 2024); cell segmentation, e.g. cellpose, Baysor (Stringer et al., 2021; Petukhov et al., 2022); and 80 

analysis of high-dimensionality spatial data, e.g. Seurat, scanpy, Giotto, squidpy (Sajita et al., 2015; Wolf, Angerer 81 

& Theis, 2018; Dries et al., 2021; Palla et al., 2022; Hao et al., 2024). Adding MerQuaCo, or comparable procedures, 82 

to existing workflows offers an alternative to time-consuming and subjective manual assessment of data quality, 83 

streamlining the analysis of large spatial datasets and supporting rigorous, objective assessment of results 84 

generated with spatial molecular imaging technologies. 85 

 86 

 87 

METHODS 88 

We collected MERFISH results using the Vizgen MERSCOPE platform (https://vizgen.com/products/). Procedures 89 

for sample preparation were as described by the Vizgen User Guide (https://vizgen.com/resources/fresh-and-90 

fixed-frozen-tissue-sample-preparation) with modifications in Yao et al. (2023). Experiments were conducted on 91 

fresh frozen P14-56 mouse brain tissue sectioned at 10 µm onto MERSCOPE coverslips, fixed and permeabilized, 92 

hybridized with encoding probes, gel embedded and cleared, and stained with DAPI and polyT to facilitate the 93 
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identification of somata. Samples were then loaded into the MERSCOPE, which manages sequential fluid exchange 94 

and imaging. We excluded 11 experiments with transcripts per µm2 per gene <0.0002, yielding 641 sections. 95 

 96 

Pixel Classification 97 

Sample preparation-related errors can arise during MERFISH experiments. Common problems include damage to 98 

the section, resulting in the loss of a region of tissue, and detachment from the coverslip, resulting in a localized 99 

region of tissue being too far from the coverslip surface to be within the imaging volume. 100 

We built a pixel classifier to quantify the area of each section affected by common prep-related problems. The 101 

classifier generates a series of binary masks then combines these masks in a final step, resulting in the 102 

classification of each location in the section into one of 5 categories: tissue (tissue within the imaging volume), 103 

detachment (tissue present but outside the imaging volume), ventricle (no tissue in the imaging volume but no loss 104 

of tissue), damage (no tissue in the imaging volume due to loss of tissue), off-tissue (outside the section). 105 

The intermediate transcript, DAPI, detachment, ventricle, and damage masks were created via mostly binary 106 

image operations based on two outputs of the MERSCOPE: the transcript table (which provides the location and 107 

gene identity for each transcript) and the DAPI image. To generate these masks we used Random Forest models 108 

implemented in ilastik, an interactive image classification, segmentation, and analysis tool 109 

(https://www.ilastik.org/). 110 

From the transcript table, we plot an image of transcript counts with 10 x 10 µm pixels, including all transcripts 111 

except blanks. The transcript image was converted into a binary mask, the transcript mask, by application of a 112 

random forest model trained on binary images from 7 sections, manually annotated to distinguish tissue from all 113 

other pixel classes. 114 

From the high resolution DAPI image, we selected plane 0, downsampled in x and y by a factor of 100, and 115 

thresholded to remove off-tissue pixels. The resulting modified DAPI image was converted into a binary mask, the 116 

DAPI mask, by application of a random forest model trained on modified DAPI images from 6 sections, manually 117 

annotated to distinguish DAPI-positive and -negative regions. 118 

The detachment mask was created by subtracting the transcript mask from the DAPI mask. Detached tissue 119 

manifests as regions with completely missing transcripts and blurry DAPI signal so the transcript mask excludes 120 

detached regions and the DAPI mask includes them. 121 

Our probe panels generally include a few genes expressed preferentially around the boundary of ventricles. We 122 

leveraged these genes to distinguish ventricles from regions of tissue damage. We made a list of 11 ventricle-123 

associated genes: Crb2, Glis3, Inhbb, Naaa, Cd24a, Dsg2, Hdc, Shroom3, Vit, Rgs12, Trp73. For each section, we 124 

plot transcript density images for all ventricle-associated genes in the probe panel, thresholded each image, and 125 

combined all images via an AND operation to create a ventricle outline image (figure 1D). The ventricle outline was 126 

summed with the DAPI mask (creating an image with pixel values of 0, 1 and 2) to which we applied a random 127 

forest model trained on images from 7 mouse brain sections with annotated ventricles, resulting in the ventricle 128 
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mask. Of our 641 sections, 20 were imaged with panels lacking any of the 11 ventricle-associated genes. The 129 

results in figure 2 were therefore generated from 621 sections. 130 

We investigated two strategies for generating the damage mask. The first began with the modified DAPI image, 131 

which was binarized, dilated and eroded, and subtracted from the DAPI mask. This intermediate image often 132 

created a mask in which regions of damage were detected but incomplete and with a thin, erroneous strip of 133 

damage around the section boundary. The second strategy involved inversion of the DAPI mask followed by 134 

elimination of pixels outside the tissue boundary (via a flood fill operation seeded at the origin). This intermediate 135 

image often captured ventricles and damage within the section but excluded regions of damage along the section 136 

boundary. We summed the two intermediate images, capturing damage within the section and along its boundary. 137 

The resulting binary image commonly included ventricles, removed by subtraction of the ventricle mask. 138 

The transcript, detachment, ventricle, and damage masks can contain conflicting pixel labels. To obtain the final 139 

pixel classification the 4 masks were combined, with unassigned pixels being off-tissue.  140 

 141 

Perfusion Rate 142 

MERSCOPE outputs a log file that includes the perfusion flow rate (in unspecified units, likely milliliters per minute) 143 

at one second intervals during solution exchange. Post-hoc examination of the log file can reveal possible 144 

inconsistencies of the flow rate during the experiment, due to blockage of the tubing for example. During a typical 145 

MERSCOPE run, median flow was consistently > 1.5 ml/min. Occasionally, solution failed to flow throughout an 146 

experiment. We identified experiments with ≥1 solution exchange with a median flow rate <0.5 ml/min. In the 303 147 

experiments for which perfusion log files were available, 30 (10%) had ≥1 compromised reagent solution exchange. 148 

 149 

Data Loss 150 

Like other image-based spatial technologies, MERSCOPE acquires and stitches together many images to map 151 

transcript density across a section of tens of millimeters. The absence of an image is readily visualized as a square 152 

hole in a plot of transcript locations. To capture this type of data loss, we developed an iterative algorithm that 153 

calculates the ratio of transcript counts between every on-tissue field of view (FOV) and its cardinal neighbor FOVs 154 

for every gene. In the first iteration, we preliminarily assigned a target FOV as experiencing data loss if the ratio of 155 

transcript counts is below 0.15 for any 3 of its 4 cardinal neighbors. We did this to allow the possibility of two 156 

neighboring FOVs experiencing data loss; requiring a difference below 0.15 for all 4 cardinal neighbors would result 157 

in a high false negative rate in the case of adjacent FOVs with data loss. In a second iteration, we began by 158 

removing target FOVs from consideration if the mean transcript counts of their 4 cardinal neighbors is below 100, 159 

effectively filtering regions of overall low transcript detection. We then assigned a target FOV as experiencing data 160 

loss if the ratio of transcript counts is below 0.15 for all 4 cardinal neighbors, unless one of its neighbors was 161 

preliminarily determined to be experiencing data loss in the first iteration, at which point we considered that 162 

target FOV to be experiencing data loss in comparison to 3 neighbors. 163 
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The third and final iteration aimed to eliminate false positives: FOVs marked as a potential site of data loss after 164 

the second iteration where data was not lost. In the third iteration, codebook information was used to determine 165 

whether genes in each FOV identified in iteration 2 were in the same round. For each FOV, data loss was excluded 166 

where the lost genes were not compatible with the codebook. 167 

 168 

Detection efficiency across the section: periodicity metric 169 

In MERSCOPE images, the transcript count often varies along the x and y axes with a periodicity of ~200 µm, the 170 

size of a field-of-view (FOV). We developed a periodicity metric to describe the uniformity of detection efficiency in 171 

the two cardinal (x- and y-) axes across the section. We began by computing a histogram of transcript density in 172 

one dimension for one imaging plane (transcripts per µm, either the x- or y-dimension). We divided the histogram 173 

into 202 µm segments, approximating the dimensions of a FOV, normalized each segment to its mean transcript 174 

density, and calculated the mean of all segments, finally calculating the minimum/maximum density ratio. We 175 

repeated this procedure for each of the 7 z-planes and for x- and y-axes, resulting in 14 minimum/maximum ratios. 176 

The periodicity metric was the least of these 14 ratios. 177 

 178 

Detection efficiency through the section: p6/p0 ratio 179 

Sections were 10 µm thick. The MERSCOPE images z-planes at 1.5 µm intervals, starting 1.5 µm from the coverslip 180 

surface (plane 0). For a 10 µm section, MERSCOPE acquires a stack of seven image planes extending to 10.5 µm 181 

(plane 6). Transcript counts often differed across z-planes, generally declining with distance from the coverslip 182 

surface. We quantified the gradient by taking the ratio of transcript counts in planes 6 and 0, the p6/p0 ratio. A 183 

p6/p0 ratio of 1 corresponds to uniform transcript detection along the z-axis, while a p6/p0 ratio of 0 indicates a 184 

failure to detect transcripts in the plane furthest from the coverslip. 185 

 186 

Transcript Density 187 

Transcript density should vary across a tissue section due to differences in gene expression but the mean density 188 

per gene should vary little between sections, for sections with comparable RNA quality. The mean transcript 189 

density therefore provides an overview of the quality, particularly when benchmarked against a dataset of similar 190 

experiments. We calculated transcript density as the mean counts for all on-tissue transcript species (excluding 191 

blanks) divided by the area of the on-tissue regions of the sections. Units of transcript density are counts per 192 

transcript species per µm2. 193 

 194 

Public datasets 195 

We downloaded and analyzed publicly available datasets from four commercial platforms: Vizgen MERSCOPE, 10x 196 

Genomics Xenium, NanoString CosMx, and Resolve Molecular Cartography. All datasets include transcript tables, 197 

which form the basis for our analyses. All datasets were accessed in July 2024. 198 
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The MERSCOPE datasets were animal 1 replicate 2 from the Vizgen MERFISH Mouse Liver Map, a 10 µm thick 199 

section imaged with a 347 gene panel (https://info.vizgen.com/mouse-liver-access) and three 10 µm thick coronal 200 

sections from three mouse brains in the Vizgen Data Release V1.0 May 2021, imaged with a 483-gene panel 201 

(https://info.vizgen.com/mouse-brain-data). 202 

The Xenium datasets were a 5 µm thick formalin-fixed paraffin-embedded (FFPE) coronal mouse brain 203 

hemisection from the TgCRND8 mouse model of amyloid precursor protein overexpression, 17.9 months of age, 204 

imaged with a 347 gene panel (https://www.10xgenomics.com/datasets/xenium-in-situ-analysis-of-alzheimers-205 

disease-mouse-model-brain-coronal-sections-from-one-hemisphere-over-a-time-course-1-standard) and three 10 206 

µm thick fresh frozen coronal mouse brain sections, imaged with a 248 gene panel 207 

(https://www.10xgenomics.com/datasets/fresh-frozen-mouse-brain-replicates-1-standard). 208 

The CosMx dataset is a 10 µm thick FFPE human frontal cortex section imaged with a 6078 gene panel 209 

(https://nanostring.com/products/cosmx-spatial-molecular-imager/ffpe-dataset/human-frontal-cortex-ffpe-210 

dataset/). 211 

The Molecular Cartography dataset is a coronal mouse brain hemisection imaged with a 100 gene panel 212 

(thickness not stated, https://resolvebiosciences.com/open-dataset/?dataset=mouse-brain-2021) 213 

 214 

Variability of transcript density across sections 215 

In figure 8D, we estimated the variability in transcript counts or density across experiments for MERSCOPE, Xenium 216 

and CosMx. Molecular Cartography was excluded since results were available for only one tissue section. Datasets 217 

varied in size (2 experiments each in Xenium and CosMx from figure 2A of Cook et al. (2023); 3 experiments in 218 

Xenium fresh-frozen-mouse-brain-replicates-1-standard dataset; 59 experiments in Yao et al. (2023) MERSCOPE 219 

dataset) and metric measured (median transcript count per cell in Cook et al. (2023); transcript density per gene in 220 

Xenium fresh-frozen-mouse-brain-replicates-1-standard dataset; transcript density per gene in Yao et al. (2023) 221 

MERSCOPE dataset). To enable comparison across metrics and datasets, we calculated the mean coefficient of 222 

variation (CV) of all pairwise combinations of experiments. Importantly, the mean CV is independent of sample size 223 

and is identical when calculated from transcript density or counts per cell. Equal transcript counts between 224 

experiments would result in a CV of 0. CV increases linearly with differences in transcript counts. 225 

 226 

Availability of MerQuaCo 227 

MerQuaCo (for MERSCOPE Quality Control) is a Python package available on Github: 228 

https://github.com/AllenInstitute/merquaco. 229 

Documentation: https://merquaco.readthedocs.io/en/latest.   230 
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RESULTS 231 

Our aim was to develop code and characterize data quality for each tissue section processed on our MERSCOPE 232 

platforms. We developed code to quantify commonplace imperfections and assess quality by comparing each 233 

section to the distribution across 641 mouse brain sections. Our dataset, collected over 2 years on 8 MERSCOPE 234 

systems, includes the 59 adult mouse brain coronal sections published in Yao et al. (2023) and freely available 235 

through the Allen Brain Cell Atlas (https://portal.brain-map.org/atlases-and-data/bkp/abc-atlas). Below, for each 236 

imperfection we provide an example, describe our code, and consider the likely effects of each imperfection on 237 

cell type identification. 238 

 239 

Tissue preparation 240 

A MERSCOPE experiment starts with sectioning, each tissue section being placed onto a coverslip. After several 241 

benchtop chemistry steps, the coverslip is assembled into a flow chamber and then loaded into a MERSCOPE for 242 

automated imaging. Common failures during tissue preparation include localized damage resulting in the loss of 243 

part of the tissue section, and localized detachment of part of the section from the coverslip. Both result in data 244 

loss, the former because tissue is lost and the latter because tissue is present but outside the volume imaged by 245 

the MERSCOPE, which extends 10.5 µm from the coverslip surface. 246 

Even in the absence of damage and detachment, some regions of the coverslip lack tissue. These include regions 247 

outside the section boundary and tissue-free regions within the section. In brain sections, the latter includes 248 

ventricles. Some of the quality metrics we measure in our MERSCOPE experiments, such as transcript density, 249 

require that we distinguish regions of the coverslip with and without tissue and we therefore begin our analysis 250 

with code that locates tissue. 251 

Ideally, the transcript table would include transcripts only where there’s tissue; there would be no transcripts in 252 

regions of the coverslip without tissue. In practice, every experiment includes transcripts where there’s no tissue. 253 

Often, the transcript density in some off-tissue regions exceeds that in some on-tissue regions, preventing the use 254 

of a simple threshold to identify regions of the coverslip containing tissue. We therefore developed a pixel 255 

classifier, which converts the transcript table into a transcript density image and applies a random forest classifier, 256 

trained using 10 manually annotated images. The result is the transcript mask, a binary mask which initially 257 

classifies each pixel as on- or off-tissue (figure 1A). 258 

We developed our classifier to further categorize off-tissue pixels, resulting in a classification of each pixel into 259 

one of five categories: tissue, detached, ventricle, damage, and off-tissue. As inputs, our pixel classifier takes two 260 

outputs of the MERSCOPE experiment: the DAPI image and the transcript table. Our strategy was to generate four 261 

image masks, each a binary map of one class of pixel (transcript mask, damage mask, detachment mask, ventricle 262 

mask) and combine the masks into a single image with our five pixel classes. 263 

Where tissue becomes detached from the coverslip, and is outside the imaging planes of the MERSCOPE, the 264 

transcript count is low. Although slightly out of focus, DAPI fluorescence is usually present in regions of 265 
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detachment (figure 1B, DAPI image). By subtracting the transcript mask from a DAPI mask (generated from the 266 

DAPI image with the use of a random forest classifier) we created a detachment mask (figure 1C). For the ventricle 267 

mask, we mapped transcripts associated with endothelial cells, which line the ventricle, again using a random 268 

forest classifier to convert transcript density to a mask (figure 1D). The damage mask was generated from the DAPI 269 

image via a series of binary operations (figure 1E). The final classification was created by summing damage, 270 

transcript, detachment, and ventricle masks in sequence (figure 1F). 271 

 272 

Figure 1. A classifier to assess section integrity. (A) Generation of the transcript mask. The transcript density image 273 

was converted to a binary mask using a random forest classifier. (B) Generation of the DAPI mask. The modified 274 

DAPI image was converted to a binary mask using a random forest classifier. (C) Generation of the detachment 275 

mask. The detachment mask was the difference between DAPI and transcript masks. (D) Generation of the ventricle 276 

mask. A binary image 277 

summarizing the locations 278 

of 11 ventricle boundary 279 

genes was summed with 280 

the DAPI mask and 281 

converted to a binary mask 282 

with a random forest 283 

classifier. (E) Generation of 284 

the damage mask. Two 285 

intermediate masks were 286 

created via a series of 287 

binary operations on the 288 

modified DAPI image and 289 

DAPI mask, then summed. 290 

The ventricle mask was 291 

subtracted to remove 292 

ventricles. (F) Sequential 293 

combination of ventricle, 294 

detachment, transcript, 295 

and damage masks 296 

resulted in the final 5-297 

category image. 298 

 299 
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To assess the accuracy of the pixel classifier, a test dataset of a 1 x 1 mm subregion from each of 621 sections 300 

was manually annotated for damage, tissue, detachment, ventricles, and off-tissue, to which the pixel classification 301 

results were compared. (The remaining 20 sections were imaged without probes for endothelial cell marker 302 

genes.) Pixel classification was >90% accurate for 567 (91%) of 621 subregions (Figure 2A). Typically, the tissue 303 

classifier reported <10% detachment, <5% ventricles, and <10% damage (figure 2B, 12 sections with detachment 304 

>10%, 4 sections with ventricles >5%, 11 sections with damage >10%). The classifier was prone to detect minor 305 

detachment, ventricles and damage in their absence. To quantify the false positive rate for detachment, ventricles 306 

and damage, we ran the classifier on 20 sections with no detachment, 20 without ventricles, and 20 undamaged 307 

sections. False positive rates were <2% detachment, <1% ventricles, and <4% damage (figure 2B, insets). Only 78 308 

(12.6%) of 621 sections had >2% detachment and likely were partially detached from the coverslip during imaging. 309 

117 (18.8%) of 621 sections had >4% damage and likely suffered some tissue loss due to damage during 310 

preparation. There was no significant change in detachment, tissue area or damage over ~2 years of MERSCOPE 311 

experiments so a few percent detachment and damage is routine in our MERSCOPE experiments (figure 2C; 312 

Pearson correlation coefficients and p-values: detachment -0.043, 0.28; tissue 0.031, 0.45; damage 0.072, 0.073). 313 

In summary, the classifier estimated tissue area, detachment and damage with reasonable accuracy. We used 314 

tissue area in the calculation of subsequent metrics, such as transcript density, and the incidence of common 315 

problems in tissue preparation to monitor our tissue preparation and handling procedures. 316 

 317 

Figure 2. Tissue area, 318 

detachment and damage. 319 

(A) Accuracy of the pixel 320 

classifier, evaluated on a 321 

test dataset consisting of a 322 

1 mm2 subregion from each 323 

of 621 tissue sections. (B) 324 

Probability distributions 325 

describing the percentage 326 

detachment, ventricle, and 327 

damage for each of 621 328 

sections. Insets: false 329 

positive distributions 330 

calculated for 20 sections 331 

without detachment, 332 

ventricles, or damage. (C) 333 

Percentage of the section 334 
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identified as on-tissue, detachment, and damage, plot over time (grey), and for the 59 sections in the Yao et al. 335 

(2023) Allen Brain Cell Atlas dataset (black). 336 

Transcript density 337 

Once imaging is complete the MERSCOPE runs automated image analysis procedures, returning a transcript table, 338 

with the locations and gene identity for each transcript, and a cell-by-gene table, with cell locations and a list of 339 

transcripts within each soma. Our analyses of data quality focus on the transcript table. Ideally, the probability of 340 

detection of an RNA molecule would be invariant: detection probability would be identical in every experiment, 341 

through space within each section, and for different genes. Gene-specific differences in detection probability are 342 

almost inevitable with probe-based methods in which the number of target sequences and probe binding differs 343 

between genes, but we find that detection probability also varies from experiment to experiment, and often 344 

through space within each experiment. 345 

Transcript counts often varied substantially between sections, even for two neighboring sections from the same 346 

mouse (figure 3A). For closely spaced sections of similar area, probed with the same gene panel, we expect modest  347 

 348 

Figure 3. Transcript density. (A) Transcript locations for two neighboring sections from the same mouse brain, 349 

separated along the A-P axis by 200 µm. (B) 350 

Transcript density across A-P locations for a 351 

single mouse. 59 sections in the Yao et al. 352 

(2023) Allen Brain Cell Atlas dataset. (C) 353 

Histograms of transcript density per transcript 354 

species per square micrometer for 641 355 

sections. Summed results from 4 gene panels 356 

(VA142, VA373, BP0770, VZG147). Black: 59 357 

sections in the Yao et al. (2023) Allen Brain 358 

Cell Atlas dataset (using VA142). Arrowheads: 359 

transcript densities for the two sections in A 360 

(panel VA142). (D) Transcript density over 361 

time. Symbols indicate gene panels. (E) 362 

Comparison of transcript densities in plane 0 363 

and summed across all planes. Each data 364 

point represents one section from the Yao et 365 

al. (2023) dataset. Pearson correlation 366 

coefficient 0.86, p = 3.1 x 10
-18

. (F) Mean 367 

transcripts per soma vs transcript density. One 368 

data point per section, Yao et al. (2023) dataset. 369 
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Pearson correlation coefficient 0.69, p = 1.07 x 10
-9

. (G) Distribution of transcripts per soma. Yao et al. (2023) dataset. 370 

 371 

inter-section differences in transcript density due to differing expression patterns through the brain. In practice, 372 

inter-section differences in transcript density were approximately 2-fold for a series of sections from a single 373 

mouse (collected in a single sectioning session and processed over several weeks; figure 3B). Across 641 sections, 374 

transcript density was distributed approximately normally with a mean of 0.0056 and standard deviation of 0.0023 375 

transcripts per gene per square micrometer of tissue (figure 3C). Transcript density differed across probe panels 376 

but the variability in transcript density changed little through time (figure 3D). 377 

Why does transcript density vary across sections? Variability was substantial across sections from a single mouse, 378 

where tissue quality would have been comparable for all sections, so differences in preparation are unlikely to be 379 

responsible. Transcript count in plane 0, just 1.5 µm from the coverslip surface, correlated tightly with total 380 

transcript count (figure 3E) and mean transcripts per soma correlated with transcript density (figure 3F) so varying 381 

thickness across sections and variable loss of transcripts from the tissue surface during MERSCOPE chemistry are 382 

unlikely mechanisms. We conclude that transcript detection efficiency varies across sections, resulting in a broad 383 

range of 200-1000 transcripts per soma in a single adult mouse (figure 3G). The mechanism underlying these batch 384 

effects remains unclear, but variability in MERSCOPE chemistry, imaging and image analysis all remain candidates. 385 

Transcript density should vary across each section due to differences in gene expression through the tissue. 386 

Additionally, artifactual gradients and abrupt changes in transcript density can be introduced by the MERSCOPE. 387 

The most abrupt changes in transcript density result from simple data loss. The field of view (FOV) of the 388 

MERSCOPE is ~200 µm x ~200 µm so to image a tissue section the MERSCOPE tiles many images. If an image is lost, 389 

the likely result is the loss of transcripts, readily visualized as a square hole in a plot of transcript locations (figure 390 

4A). The MERSCOPE images three spectrally distinct readout bits in each imaging round. Loss of one of the three 391 

images would result in the loss of information on one readout probe. Each readout probe binds to transcripts from 392 

tens to hundreds of genes (for panels used here, 60-104 genes). The loss of one bit from the barcode may 393 

complicate decoding and decrease the accuracy of detection for many transcript species, but the effect will likely 394 

be greatest for transcript species to which the missing readout probe binds. Hence data loss tends to occur for 395 

groups of genes, linked by a shared readout probe. Whether the data loss is visible for each of the genes depends 396 

on the density of transcripts for each gene in the surrounding regions. In short, data loss typically occurs for 397 

multiple but rarely all transcript species and the number of species may not be readily apparent from the 398 

transcript table. 399 

For each transcript species, we quantified data loss by comparing transcript counts in each field of view to its 400 

four cardinal neighbors. A transcript species was considered lost from a field of view if the counts were less than 401 

15% of its cardinal neighbors, with a subsequent false positive correction step. Where a gene was lost its transcript 402 

count was 5.1 ± 3.9% of the mean of its cardinal neighbors. As expected, where data was lost from a field of view, 403 

often tens of transcript species were missing (figure 4B). Data loss occurred in 201 (31%) of 641 sections and was 404 
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mostly limited to a few isolated locations with <3 missing fields of view in 133 (66%) of 201 sections (figure 4C). 405 

Occasionally more substantial data loss was observed, including loss from up to 51 fields of view for a single 406 

section, and 120 transcript species in a single field of view. For sections in the Yao et al. (2023) Allen Brain Cell 407 

Atlas dataset, 16 of 59 (27%) sections suffered data loss but for no section was there loss from >8 fields of view, 408 

with ≤32 transcript species lost from each field of view. 409 

The loss of transcript species reduces the accuracy of cell type labels. For the Yao et al. (2023) Allen Brain Cell 410 

Atlas dataset with a 500-probe panel (VA142) we calculated the effect of omitting 40-200 transcript species (figure 411 

4D). The loss of 40 transcript species changed the cluster labels of ~10% of cells so we expect label transfer to be 412 

less accurate in fields of view where even one readout bit is lost from the barcode through the loss of an image. 413 

The prevalence of data loss changed substantially over ~2 years on our MERSCOPEs, as acquisition firmware was 414 

updated (figure 4E). Data loss was relatively common with versions 232b and 233 of the acquisition firmware, 415 

available in mid-to-late 2023. Data loss has been less common with more recent firmware, such as version 233b, 416 

but occurs with all versions of the acquisition firmware. 417 

 418 

Figure 4. Dropped images cause local data loss. (A) Transcript locations for one transcript species: Gja1. Each point 419 

represents one Gja1 transcript. Inset: transcripts around one region of data loss. (B) Output of the data loss 420 

detection routine, showing the number of transcript species missing from each FOV. Not all FOVs with dropped 421 

genes are missing Gja1. White: off-tissue, as determined by the classifier. (C) Histogram of missing fields of view 422 

across 641 mouse sections (grey) and for the 59 sections in the Yao et al. (2023) Allen Brain Cell Atlas dataset 423 

(blue). Arrowhead: results for the 424 

section in panels A and B. Inset: 425 

Number of transcript species 426 

missing per affected field of view. 427 

(D) Effect of missing transcript 428 

species on label transfer. Change 429 

in class, subclass, supertype and 430 

cluster labels calculated for 10,000 431 

cells from the Yao et al. (2023) 432 

Allen Brain Cell Atlas dataset. 433 

Median, minimum and maximum 434 

% change from 100 trials. Genes to 435 

be removed were selected at 436 

random. (E) Number of missing 437 

fields of view over time and with 438 

different acquisition software 439 
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versions. Each point represents a tissue section. 440 

Ideally, detection efficiency would be uniform throughout the tissue. In practice, detection efficiency is not 441 

spatially uniform and there are inter-experiment differences in the non-uniformity. We characterized transcript 442 

density in all three cardinal optical axes of the MERSCOPE. 443 

Across the tissue section (in the x and y axes) we expect transcript counts to vary due to differences in gene 444 

expression. We observed an additional source of variation: transcript counts varied along x and y axes with a 445 

periodicity of ~200 µm, indicating that detection efficiency varied systematically across each field of view (figure 446 

5A). We characterized the uniformity of detection efficiency with a periodicity metric. We calculated the variation 447 

in transcript density across the mean field of view, in x- and y-axes independently, and calculated the 448 

 449 

Figure 5. Uneven detection efficiency across each field of view. (A) Transcript locations for two coronal sections 450 

from the same brain, separated by 100 µm. To the left and below, transcript densities summed along x and y axes. 451 

For the section on the left, changes in transcript density occur at anatomical boundaries with little indication of 452 

variations in detection efficiency along x or y axes. For the section on the right, superimposed on differences in 453 

genes expression are variations in detection efficiency with a periodicity of 200 µm. (B) Periodicity metric, 454 

calculated for each z-plane along x and y axes, for the two sections in A. Filled symbols, left example in A. Open 455 

symbols, right example in A. Black and grey, metric along x and y axes, respectively. (C) Histogram of minimum 456 

periodicity metrics for 641 457 

sections (grey) and for the 458 

59 sections in the Yao et al. 459 

(2023) Allen Brain Cell Atlas 460 

dataset (black). Arrowheads, 461 

the two sections in A. (D) 462 

Effect of reduced detection 463 

efficiency on label transfer. 464 

Change in class, subclass, 465 

supertype and cluster labels 466 

for 10,000 cells from the Yao 467 

et al. (2023) Allen Brain Cell 468 

Atlas dataset (VA142 500 469 

probe panel). Median, 470 

minimum and maximum % 471 

change from 100 trials. (E) 472 

Periodicity metric over time. 473 

Black: periodicity metric for 474 
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the 59 sections in the Yao et al. (2023) Allen Brain Cell Atlas dataset. 475 

minimum/maximum density ratio for x- and y-dimensions for each of the seven z-planes (figure 5B), using the 476 

minimum of these 14 values to describe non-uniformity of detection efficiency for each section. A periodicity 477 

metric of 1 indicates that detection efficiency was uniform; a value of 0 indicates that no transcripts are detected 478 

in part of the field of view. 479 

Detection efficiency varied across the field of view for all sections, with the variation differing substantially 480 

across sections. The median periodicity metric for all 641 sections was 0.80, with a long tail extending towards zero 481 

(figure 5C). 40 exhibited a periodicity metric of <0.6. For the 59 sections in the Yao et al. (2023) Allen Brain Cell 482 

Atlas dataset, the median periodicity metric was 0.84 and the range 0.66-0.93. Based on simulations with the Yao 483 

et al. (2023) Allen Brain Cell Atlas dataset, we expect reduced detection efficiency, effectively the loss of 484 

transcripts, to reduce the accuracy of label transfer. The loss of 20% of transcripts changes the cluster labels of 10-485 

15% of cells, and the loss of 40% of transcripts changes the cluster labels of 15-20% of cells (figure 5D). The 486 

differences in detection efficiency across the field of view have changed little over ~2 years (figure 5E). 487 

Along the optical axis (z axis, perpendicular to the plane of the tissue section), the MERSCOPE acquires images in 488 

7 locations separated by 1.5 µm. Ideally, transcript detection efficiency would be equal in all 7 images, but we 489 

routinely observed more transcripts in imaging planes closer to the coverslip than in planes near the tissue-490 

solution interface. Figure 6A shows transcripts from two neighboring sections from the same mouse brain 491 

(collected from A-P locations 200 µm apart). In the first section, the transcript count is uniform along the optical 492 

axis (figure 6A, B). In the second section, the transcript count is comparable to that in the first section near the 493 

coverslip, consistent with similar gene expression in two closely spaced sections, but transcript count declines with 494 

distance from the coverslip, to ~10% 10.5 µm from the coverslip (Figure 6A, B). We quantify homogeneity of 495 

detection efficiency along the optical axis with the ratio of transcript counts in planes 6 and 0 (10.5 and 1.5 µm 496 

from the coverslip, p6/p0 ratio). Uniform detection efficiency along the optical axis corresponds to a p6/p0 ratio of 497 

1. A p6/p0 ratio of 0 indicates a steep decline in transcript detection with distance from the coverslip, such that no 498 

transcripts are detected 10.5 µm from the coverslip. 499 

The p6/p0 ratio was skewed towards 0 with a median of 0.34 (mean of 0.39, figure 6C). The p6/p0 ratio 500 

distribution was shifted towards 1 for sections in the Yao et al. (2023) Allen Brain Cell Atlas dataset, with a median 501 

of 0.74. p6/p0 ratio changed little over time (figure 6D). To improve homogeneity in detection efficiency in the 502 

imaged volume, we cut thicker tissue sections while maintaining the number and separation of imaging planes (7 503 

planes at 1.5 µm intervals, figure 6E). The p6/p0 ratio was ~1 for 20 µm sections, but at a cost of fewer transcripts 504 

close to the coverslip and fewer total transcripts (mean ± SEM transcript count per µm2, summed along the z-axis: 505 

2.31 ± 0.20 for six 10 µm sections, 2.53 ± 0.28 for three 14 µm sections, 2.20 ± 0.33 for three 20 µm sections). 14 506 

µm thick sections proved a good compromise, with transcript numbers near the coverslip comparable to 10 µm 507 

sections (0.38 ± 0.04, 3 sections vs 0.39 ± 0.04, 6 sections) and a p6/p0 ratio of 0.79 ± 0.04 (three sections, vs 0.42 508 

± 0.11 for six 10 µm sections). 509 
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The decline in transcripts with distance from the coverslip differed between sections from a brain so tissue 510 

quality is unlikely to be a major factor. Our results provide little further insight into possible mechanisms, but the 511 

access of solutions to the deep (near the coverslip) and superficial faces of the section differ during benchtop 512 

chemistry and on the MERSCOPE, with the deep face being less accessible than the superficial face. Loss of RNA 513 

from the section, preferentially from the superficial face, might cause the gradient in transcript detection. 514 

Similarly, unbinding and loss of readout probes into wash solution during imaging would have a similar effect. 515 

Although the mechanism is unclear, detection of transcripts is rarely uniform through the depth of a MERSCOPE 516 

section. 517 

In summary, the detection of transcripts in MERSCOPE experiments is rarely homogenous, varying in all 3 spatial 518 

dimensions and between sections. Our simulations provide some sense of the magnitude of the resulting effects 519 

on cell labels, but the variation in detection efficiency is complex enough that it’s likely not possible to map the 520 

accuracy of cell type labels throughout a section. More homogenous detection efficiency would facilitate the 521 

interpretation of spatial results. 522 

Across our fleet of 8 MERSCOPEs, we observed significant differences in the magnitudes of all imperfections 523 

(ANOVA, p<0.05), but differences were slight. Overall, performance was similar across MERSCOPEs. 524 

 525 

Figure 6. Uneven detection 526 

efficiency along the optical 527 

axis. (A) Transcript locations in 528 

three z planes for each of two 529 

neighboring sections from the 530 

same mouse brain, separated 531 

along the A-P axis by 200 µm. 532 

Distances are from the 533 

coverslip surface. (B) 534 

Transcript counts along the z-535 

axis for the section in panel A. 536 

(C) Distribution of p6/p0 ratio 537 

for 641 sections (grey) and the 538 

59 sections in the Yao et al. 539 

(2023) Allen Brain Cell Atlas 540 

dataset (black). Arrowheads, 541 

sections in A. (D) p6/p0 ratio 542 

over time. (E) Mean ± SEM 543 

transcript counts along the z-544 
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axis for 10, 14 and 20 µm thick sections. 3 sections each at 14 and 20 um, 6 at 10 um. 545 

 546 

Visual inspection 547 

MerQuaCo characterizes the most common imperfections in each section, based on the transcript table. There are 548 

imperfections that are not detected by MerQuaCo, most often imperfections that are not evident in the transcript 549 

table or imperfections that become apparent when comparing nearby sections. For every experiment, we view 550 

results in the MERSCOPE Vizualizer, manually searching for imperfections. Figure 7 provides two examples of 551 

imperfections that were rare, not detected by MerQuaCo, but were observed multiple times by manual inspection. 552 

Figure 7A-C illustrate data loss in the DAPI image, visible as horizontal stripes through the left half of the section 553 

(figure 7A, B) and resulting in the local loss of somata within the image, and transcripts that cannot be assigned to 554 

a soma. Although DAPI information is lost, transcripts are observed throughout the section (figure 7C), preventing 555 

this imperfection from being detected by inspection of the transcript table or a transcript image. 556 

Occasionally we observed imperfections that are evident only when comparing sections. For example, in figure 557 

7D-F a region of thalamus is missing transcripts in one section (figure 7D). An abrupt change in transcript density 558 

running along an anatomical boundary might result from localized expression, but in this instance the neighboring 559 

section displays no comparable change in transcript density (figure 7E). Moreover, transcripts are lost from 560 

thalamus in 4 of 6 neighboring sections (figure 7F). Clearly these differences are not biological: detection is 561 

reduced >50% in thalamus in 2 of 6 sections, likely resulting in a marked decline in accuracy with which cell 562 

populations in thalamus can be identified in these sections. MerQuaCo operates on individual sections so will not 563 

detect imperfections that are evident only when comparing sections. We search for intra-section changes in 564 

detection probability manually, by comparing results from nearby sections.  565 

 566 

Figure 7. Imperfections identified by manual inspection. (A) DAPI image. Data loss results in horizontal stripes in the 567 

left half of the image. (B) DAPI in the sub-region in the box in panel A. (C) Transcripts in the corresponding region. 568 

(D) Transcripts in a 569 

section 6.2 mm 570 

posterior to 571 

bregma. (D) 572 

Transcripts from a 573 

neighboring 574 

section. (E) 575 

Transcript density 576 

in cortex and 577 

thalamus (boxes in 578 

panels D and E) for 579 
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6 neighboring sections. 580 

Variations in transcript density on commercial spatial transcriptomics platforms 581 

Many of the imperfections described above occur in datasets collected with multiple spatial transcriptomics 582 

platforms. We examined publicly accessible datasets from four commercial spatial transcriptomics platforms: 583 

Vizgen MERSCOPE, 10x Genomics Xenium, NanoString CosMx, and Resolve Molecular Cartography. For some 584 

sections, uneven detection across the field of view was visible by eye and was captured by our periodicity metric 585 

(figure 8A, B). For all sections, transcript density varied along the z axis (figure 8C). For platforms where results 586 

from multiple sections were available, we estimated differences in transcript count between sections, a proxy for 587 

inter-experiment differences in detection efficiency (figure 8D). With only small numbers of sections available, the 588 

results of this comparison should be considered preliminary but our results indicate that the imperfections we 589 

have described, and that we detect and quantify with MerQuaCo, occur on spatial platforms other than 590 

MERSCOPE. In some instances, imperfections are pronounced, underlining the potential value of applying 591 

MerQuaCo to other platforms. 592 

 593 

 594 

Figure 8. Transcript density across spatial transcriptomics platforms. (A) Example sections from four commercial 595 

platforms. MERSCOPE, mouse liver section. CosMx, human brain. Xenium and Molecular Cartography, mouse brain. 596 

Scale bars, 1 mm. Histograms indicate transcript density in (cardinal axes, normalized to peak). (B) Periodicity 597 

metric for public datasets (4 sections in A and 3 Vizgen mouse brain datasets). Grey: mean ± stdev periodicity 598 

metric for the Yao et al. (2023) Allen Brain Cell Atlas dataset. (C) Transcript count along the z axis for sections in A. 599 
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(D) Pairwise CV of transcripts across experiments. MERSCOPE, 3 Vizgen mouse brain datasets and Yao et al. (2023) 600 

Allen Brain Cell Atlas dataset (open symbol). Xenium, fresh-frozen-mouse-brain-replicates-1-standard dataset from 601 

10x. Grey datapoints (Xenium and CosMx) from Cook et al. (2023).  602 
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DISCUSSION 603 

Here we have documented the incidence and magnitude of imperfections in image-based spatial transcriptomics 604 

datasets, focusing on the most common imperfections in a dataset of hundreds of sections collected over ~2 years 605 

on the MERSCOPE platform. In time, these imperfections may be eliminated by equipment manufacturers, but not 606 

all the technical challenges have been solved in this new and rapidly evolving field and there is a need to 607 

characterize imperfections that persist in spatial datasets. Unfortunately, residual imperfections are often not 608 

obvious upon inspection of transcript or cell images. Our code, MerQuaCo, allows the user to detect and visualize 609 

imperfections, assisting in the process of quality control. 610 

Like many other groups, we use gene expression profiles from spatial datasets as the basis for cell type labels 611 

(e.g. Yao et al., 2023). Most imperfections do not prevent the identification of cell types but impact the accuracy of 612 

labels, reducing confidence in labels and perhaps limiting the granularity with which cell populations can be 613 

characterized. Which imperfections have the greatest impact on the accuracy of cell type labels? 614 

Tissue damage and detachment from the coverslip, both of which result in local data loss, prevent all 615 

downstream analyses for the affected regions of the section. These two imperfections affect all transcripts and are 616 

therefore obvious on visual inspection of the dataset and are unlikely to lead to hidden errors in interpretation. 617 

Like tissue damage and detachment, dropped images result in local data loss. In contrast with tissue damage and 618 

detachment, typically dropped images result in loss of only a subset of transcript species. This is a critical 619 

difference since many probe panels designed to identify cell types include some redundancy. In our experiments, 620 

dropped images eliminated tens of genes from a panel of 500. Often, the effect on the accuracy of cell type labels 621 

is modest, particularly for class and subclass labels. Dropped images may be more problematic where the aim of 622 

the experiment is other than cell typing. Where the aim is to measure the expression of one or a small number of 623 

genes, for example, dropped images may simply eliminate information on the genes of interest in affected regions. 624 

When using spatial transcriptomics to locate genetically defined cell populations, the most impactful 625 

imperfections are differences in transcript density between sections and through space within a section. Our 626 

results indicate that transcript densities differ ~2-fold between sections, ~30% along the x and y axes, and ~5-fold 627 

in z, and these effects are presumably multiplicative. The consequences can be substantial. Perhaps only ~50-60% 628 

of cluster labels are accurate near the surface of a typical section. Furthermore, the effects of local changes in 629 

transcript density are difficult to assess. One solution might be to discard results from sections or from regions of a 630 

section where transcript density drops below a critical threshold. This threshold will depend on the aims of the 631 

experiment, but MerQuaCo could facilitate such a solution by quantifying transcript density.  632 

Our analyses of publicly accessible datasets indicate that some of the most common imperfections in our 633 

MERSCOPE dataset also occur on other platforms. The accessible datasets are relatively small, often a few sections, 634 

sometimes just part of a section, preventing a thorough comparison of imperfections across platforms. As a result, 635 

our analyses only hint at the some of the relative strengths and weaknesses of different platforms. We expect that, 636 

as with MERSCOPE, imperfections will differ across experiments on each platform, necessitating quality control to 637 
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identify experiments that meet the needs of the study. MerQuaCo could form the basis of such a quality control 638 

process, with only minor changes to the code needed to enable the analysis of results from other platforms. 639 

Previous authors have compared results across spatial transcriptomics platforms, focusing on high-dimensional 640 

analysis of transcripts and cell expression profiles (Cook et al., 2023; Wang et al., 2023; Hartman & Satija, 2024). 641 

Cook et al. (2023) compared Xenium and CosMx results from prostate adenocarcinoma samples; Wang et al. 642 

(2024) compared MERSCOPE, Xenium, and CosMx results with FFPE tissue from multiple organs; and Hartman & 643 

Satija (2024) compared results from fresh-frozen mouse brain slices across 6 spatial transcriptomics platforms. 644 

These authors focused primarily on platform-specific differences in transcript specificity and sensitivity, cell 645 

boundary identification, and the resulting differences in cell RNA content and classification. A consistent 646 

conclusion was that results were generally reproducible, across samples processed on each platform, and across 647 

platforms. These authors discussed the criteria by which they might select datasets for further analysis, and 648 

discard others, implying that there is enough variability between experiments that not all datasets are equally 649 

informative. For example, Wang et al. (2024) compared transcript counts per gene and pairwise correlation 650 

coefficients and suggested that these measures might form the basis for decisions on which datasets to include or 651 

discard. However, it remained unclear which parameters might best differentiate higher and lower quality 652 

datasets, and how to use these parameters to select the highest quality datasets. 653 

Our results indicate that variability across experiments is substantial and the consequences for downstream 654 

interpretation can be significant, making it difficult to compare platforms. Firstly, one needs a large enough dataset 655 

from each platform to differentiate between results of differing quality since collecting a small number of samples 656 

from each platform leaves open the possibility that experiments were unusually successful on one platform and 657 

unusually unsuccessful on another and that the resulting comparison misleads. Secondly, one needs to develop 658 

and apply inclusion criteria for each platform that support a fair comparison. To better understand how spatial 659 

transcriptomics platforms compare, we need additional studies based on large datasets with intentional filtering of 660 

datasets before comparison. In short, our analyses complement previous studies, quantifying imperfections in 661 

spatial results rather than comparing platforms. Combining our approach and those described by previous authors 662 

would likely bring further insight into the relative performance of different platforms. 663 

Despite the imperfections we’ve documented, numerous groups have published reliable results with spatial 664 

methods. An example is our recent atlas of cell types in the adult mouse brain (Yao et al., 2023). Many 665 

imperfections exist in our published dataset, documented here. In our experience, the presence of imperfections 666 

rarely prevents the collection of valuable results with spatial platforms. Rather, we regard the characterization of 667 

imperfections as a quality control step that allows the identification and perhaps elimination of the weakest 668 

datasets and the accurate interpretation of results, aware of the remaining imperfections and their possible 669 

consequences. Ideally our study of imperfections combined with future studies will build a consensus and more 670 

software tools for quality control, standardizing and streamlining data processing and further enhancing the 671 

reliability of results, thereby facilitating more discoveries with spatially resolved molecular imaging methods.  672 
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