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Abstract: Advances in nanotechnology have made it possible to observe and evaluate structures
down to the atomic and molecular level. The next step in the development of functional materials is to
apply the knowledge of nanotechnology to materials sciences. This is the role of nanoarchitectonics,
which is a concept of post-nanotechnology. Nanoarchitectonics is defined as a methodology to
create functional materials using nanounits such as atoms, molecules, and nanomaterials as building
blocks. Nanoarchitectonics is very general and is not limited to materials or applications, and thus
nanoarchitecture is applied in many fields. In particular, in the evolution from nanotechnology to
nanoarchitecture, it is useful to consider the contribution of nanoarchitecture in device applications.
There may be a solution to the widely recognized problem of integrating top-down and bottom-up
approaches in the design of functional systems. With this in mind, this review discusses examples
of nanoarchitectonics in developments of advanced devices. Some recent examples are introduced
through broadly dividing them into organic molecular nanoarchitectonics and inorganic materials
nanoarchitectonics. Examples of organic molecular nanoarchitecture include a variety of control
structural elements, such as π-conjugated structures, chemical structures of complex ligands, steric
hindrance effects, molecular stacking, isomerization and color changes due to external stimuli,
selective control of redox reactions, and doping control of organic semiconductors by electron
transfer reactions. Supramolecular chemical processes such as association and intercalation of organic
molecules are also important in controlling device properties. The nanoarchitectonics of inorganic
materials often allows for control of size, dimension, and shape, and their associated physical
properties can also be controlled. In addition, there are specific groups of materials that are suitable
for practical use, such as nanoparticles and graphene. Therefore, nanoarchitecture of inorganic
materials also has a more practical aspect. Based on these aspects, this review finally considers the
future of materials nanoarchitectonics for further advanced devices.

Keywords: nanoarchitectonics; advanced device; doping control of organic semiconductor; inorganic
materials nanoarchitectonics; organic molecular nanoarchitectonics; structural control

1. Introduction

The global community is confronted with a multitude of challenges, including those
related to energy [1–7], the environment [8–14], medicine [15–21], and information [22–28].
The development of functional materials represents a crucial step in addressing these
challenges and paving the way for a more sustainable future. It is imperative that materials
be developed which are capable of meeting a multitude of demands through the utilization
of a diverse array of material chemistries. In this context, it is crucial to regulate the
nanostructure of functional materials. The internal nanostructure of a given material
can vary significantly, resulting in notable differences in the material’s properties and
functions [29–33]. An increase in the interfacial area and optimization of the relative
arrangement of each component can result in a significant improvement in functional
efficiency [34–38]. The advent of nanotechnology has served to reinforce the importance
of these nanostructures. Advances in nanotechnology have enabled the observation of
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structures at the atomic and molecular levels [39–43]. Furthermore, the physical properties
of such nanostructures and nanospaces have been elucidated [44–48]. The subsequent
phase in the advancement of functional materials is to integrate the insights derived from
nanotechnology into the material development process. In other words, it is to reconsider
functional materials using nanounits, including atoms, molecules, and nanoparticles. This
is the responsibility of nanoarchitectonics, which is a concept of post-nanotechnology [49].
Similarly, the concept of nanotechnology was first proposed by Richard Feynman in the mid-
20th century [50,51], and nanoarchitectonics was subsequently introduced by Masakazu
Aono in the early 21st century [52,53].

Nanoarchitectonics is the concept of constructing functional material systems from
the fundamental building blocks of atoms, molecules, and nanomaterials (Figure 1). In
this process, a combination of atom and molecule manipulation, chemical transforma-
tion (such as organic synthesis), physical material transformation, self-assembly and self-
organization, arrangement and orientation by external fields and forces, nano- and micro-
fabrication technology, and biochemical processes are employed [54,55]. The creation of
functional structures and the conversion of molecules into materials have also been subjects
of extensive studies in past histories. The processes of self-assembly in supramolecular
chemistry [56–60], metal–organic frameworks (MOFs) by coordination chemistry [61–65],
covalent organic frameworks (COFs) by polymer chemistry [66–70], and template synthe-
sis in materials science [71–75] all serve functions similar in parts to nanoarchitectonics.
Furthermore, self-assembled monolayers (SAMs) [76–80], the Langmuir–Blodgett (LB)
method [81–85], and layer-by-layer (LbL) assembly [86–90], which combine molecular
assemblies and interface science technology, have also been often employed. In fact, they
exhibit a pronounced nanoarchitectonics character. Therefore, nanoarchitectonics does not
represent an entirely novel field of inquiry; rather, it offers an integrated conceptual frame-
work that encompasses nanotechnology and a wide range of materials sciences [91,92].

As evidenced by the preceding background description, nanoarchitectonics is a highly
general concept that can be applied without being limited to specific materials or appli-
cations. All materials are composed of atoms and molecules. Consequently, the concept
of nanoarchitectonics, which constructs functional materials from units such as atoms
and molecules, may be regarded as the ultimate methodology that can be applied to all
materials. In analogy with the theory of everything [93], which represents the ultimate goal
of physics, nanoarchitectonics may be considered a method for everything in materials
science [94,95].

The increasing prevalence of nanoarchitectonics in a diverse array of fields is also
evidenced by the growing number of publications that utilize the term “nanoarchitec-
tonics” in their paper titles. The aforementioned papers span a diverse range of disci-
plines, encompassing material synthesis [96–102], structural control [103–109], the investi-
gation of physical phenomena [110–116], fundamental biochemistry [117–123], chemical
catalysis [124–130], photocatalysis [131–137], solar cells [138–144], fuel cells [145–151],
various batteries [152–158], supercapacitors [159–165], and other energy-related applica-
tions [166–172]. The concept of nanoarchitectonics is also being employed in a number of
practical fields, including environmental purification [173–179], biosensors [180–186], drug
delivery [187–193], tissue engineering [194–200], and biomedicine [201–207]. Furthermore,
the concept of nanoarchitectonics is being employed in the integration of artificial structures
with organic, bio, and nanomaterials, as evidenced by its use in the sensor [208–214] and
device fields [215–221].

Indeed, it can be argued that device technology has been a significant beneficiary of the
advancements in nanotechnology. Significant progress has been made in the precise struc-
tural aspects of device development due to the advancement of various microfabrication
technologies and the evaluation of nanostructures. In the context of nanoarchitectonics, it is
valuable to consider the role of nanotechnology in the development of device applications.
This may provide a solution to the widely recognized problem of integrating top-down
and bottom-up approaches in functional system development [222–224]. This is because
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microfabrication technology, which has been a highly influential force in nanotechnology,
is a representative example of a top-down approach. In contrast, nanoarchitectonics, which
involves the construction of functional materials from the atomic and molecular levels, is a
powerful bottom-up approach. Device nanoarchitectonics will represent the convergence
of the top-down and bottom-up approaches that have been identified as being essential. It
will serve as an exemplar of the convergence of nanotechnology and materials science.
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fundamental building blocks of atoms, molecules, and nanomaterials (from the top) and device
nanoarchitectonics as the convergence of the top-down and bottom-up approaches (bottom) [54,95].

In light of the aforementioned context, this review will examine a number of examples
pertaining to nanoarchitectonics as it relates to devices. This review presents a selection of
recent publications on devices with the term “nanoarchitectonics” in their title, in order
to figure out the realistic effects of nanoarchitectonics. Therefore, the described topics do
not cover all the existing science and technology. Furthermore, this review also introduces
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other device papers that incorporate aspects of nanoarchitectonics. The following section
presents the aforementioned papers, which have been roughly categorized into two distinct
groups: organic molecular nanoarchitectonics and inorganic materials nanoarchitectonics.
It should be noted that this selection does not represent a comprehensive overview of all
relevant examples. However, it is believed to reflect trends and characteristics. Based on
these considerations, this review also contemplates the prospective evolution of materials
nanoarchitectonics in the context of advanced devices.

2. Organic Molecular Nanoarchitectonics

The construction of these devices is based on microfabrication technology. However,
the characteristics of the devices are contingent upon the materials from which they are
constructed in nanoscale. The functionality of devices that exhibit optical or electronic
characteristics is contingent upon the properties of the molecules that perform those
functions. In other words, the development of functional molecules represents a significant
challenge and potential breakthrough. If we consider the development of functional
molecules as an effort to create and assemble basic molecules, it can be said that this is the
result of molecular nanoarchitectonics. In particular, organic molecular nanoarchitectonics,
which encompasses the design and synthesis of organic molecules, represents a significant
factor in the development of devices. The following section will present a number of
examples that align with this concept and will examine the key elements involved.

Rigid, planar carbon nanostructures with extended π-conjugation represent an attrac-
tive option for the development of nanoarchitectonics-based devices. They are notable for
their distinctive properties, including high carrier mobility, robust absorption and emission
in the long wavelength region, and the material properties of molecular assemblies, which
are influenced by the control of intermolecular interactions in the condensed state. One of
the factors that determines these functional properties is the mode and extent of π-extension.
The development of functional molecules exhibiting unique photophysical and electronic
properties can be achieved through the appropriate chemical and structural modifications
of molecular nanoarchitectonics. Acenes have been the subject of considerable attention
as a class of linearly π-extended polycyclic aromatic hydrocarbons that exhibit promising
thin-film organic field-effect transistor performance. Murai, Takai, and colleagues have
reported the nanoarchitectonics of introducing azulene into linear π-extended polycyclic
aromatic hydrocarbons (Figure 2) [225]. Azulenes are a class of polycyclic aromatic hydro-
carbons that have the potential to be utilized as linear π-extended structural isomers of
pentacene and picene. New derivatives with two symmetrically fused azulene rings were
synthesized in order to further elucidate the effect of incorporating the azulene ring. It
was discovered that the gap between the highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbital (LUMO) (HOMO–LUMO gap) can be reduced
to a level comparable to that of [n]acene. Additionally, the researchers observed that the
compounds exhibited high stability against air under visible light, with a narrow HOMO–
LUMO gap comparable to that of pentacene. In accordance with this HOMO–LUMO
gap, the absorption band exhibited a red shift. An X-ray single-crystal structure analysis
revealed that the five fused azulene rings adopted a herringbone-packing structure, which
is the result of a balance of CH–π and π–π interactions. Organic field-effect transistors were
fabricated in a bottom-gate/bottom-contact configuration, utilizing a 400 nm thick SiO2
layer as the gate dielectric. This novel derivative comprising azulene rings was synthesized
via thermal deposition under high vacuum conditions. The transfer and output curves of
the thin-film organic field-effect transistors exhibited the expected behavior for a normally
off field-effect transistor. The fabrication of organic field-effect transistor devices with this
derivative resulted in the observation of typical p-type behavior. The results indicate that
the molecular nanoarchitectonics of fusing azulene to carbon and heterocycles may be a
valuable approach for designing devices with specific electronic and photophysical proper-
ties. In particular, the potential of this derivative as a new class of p-type semiconductor
was clearly demonstrated.
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Stable deep-red organic light-emitting devices (OLEDs) have the potential to serve
as a distinctive source of illumination for plant growth and health monitoring systems.
Nevertheless, the electron-to-photon conversion efficiency, expressed as external quantum
efficiency, is markedly inferior to that of other primary colors. One promising strategy
to enhance the external quantum efficiency of stable deep-red OLEDs is the utilization of
exciplex host systems. Sasabe, Kido, and colleagues developed n-type exciplex host partners
based on quinoline-modified phenanthroline derivatives [226]. The HOMO, LUMO, and
triplet energy of the relevant molecules were estimated (Figure 3). The calculated triplet
energy values were markedly larger, indicating the effective confinement of triplet excitons
in the emitter. The developed derivatives formed exciplexes in combination with the p-type
host material N,N′-di-1-naphthyl-N,N′-diphenylbenzidine, which was employed as the
host material for deep-red phosphorescent OLEDs. The devices exhibited low turn-on
voltages and high current density and brightness. This can be attributed to the excellent
electron injection properties of these derivatives, which are caused by their higher electron
affinity value. Furthermore, it demonstrates the most optimal performance among deep-red
phosphorescent OLEDs. With regard to thermal stability, the material demonstrated high
thermal stability with a glass transition temperature of up to 148 ◦C. This evidence supports
the assertion that phenanthroline derivatives are promising n-type host materials. It is
anticipated that this will facilitate the expeditious development and commercialization
of n-type semiconductors and promote their utilization as distinctive lighting sources for
plant growth and health monitoring systems.

Thermally activated delayed fluorescence emitters based on widely available metal
elements will emerge as the most promising contenders for the next generation of or-
ganic light-emitting diodes (OLEDs). Sasabe and colleagues developed a mononuclear
Al complex with a β-diketone ligand that exhibited excellent thermally activated delayed
fluorescence properties (Figure 4) [227]. In order to enhance the optical functions of the
previously used molecules, molecular nanoarchitectonics was employed to modify the
chemical structure of the β-diketone ligand by the addition of a donor unit. The utilization
of this β-diketone derivative resulted in a notable enhancement of the photoluminescence
quantum yield of the emitter, while the metal complexation led to a considerable improve-
ment in the optical functions of the original diketone ligand in the solid state. The optical
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functional advantages of this complex include a very high photoluminescence quantum
yield, a rapid radiative decay rate, and a short delayed fluorescence lifetime in the solid
state. DFT calculations demonstrated that metal complexation could generate a distinctive
electronic structure, which could markedly enhance the optical functions of the original
diketone ligand. The application of nanoarchitectonics to organic light-emitting devices
results in the attainment of high external quantum efficiency and low turn-on voltage,
which are advantageous for the realization of low-power-consumption devices.
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Ultrathin two-dimensional organic nanosheets exhibiting high mobility at a thickness
of a few molecular layers will demonstrate enhanced device performance. In particular, the
development of ultrathin 2D organic nanosheets that simultaneously exhibit high lumines-
cence efficiency and flexibility is a highly desirable objective. In a study titled “Hierarchical
nanoarchitectonics of ultrathin 2D organic nanosheets,” Zhang, Xie, and colleagues have
achieved the nanoarchitectonics of ultrathin 2D organic nanosheets (thickness: 19 nm) with
denser molecular packing [228]. In this component molecule, the orthogonal spirofluorene
exanthene scaffold exerts an efficient steric hindrance effect on intermolecular repulsion
(Figure 5). Concurrently, the methoxyl and diphenylamine groups facilitate intermolecular
attraction as supramolecular segments. π-π stacking and CH···π interactions reinforce
antiparallel and interpenetrating molecular packing in dimeric aggregates with proximate
intermolecular distances. These molecular nanoarchitectonics are conducive to the forma-
tion of ultrathin 2D organic nanosheets. The restriction of conformational vibrations and
rotations may serve to minimize non-radiative deactivation in the solid state. By employing
a self-assembly method, Zhang et al. [228] have successfully fabricated ultrathin 2D organic
nanosheets with a thickness of approximately 19 nm in aqueous media, despite the tight
molecular packing. The ultrathin organic nanosheets can be molded into large, continuous
macroscale films via a one-step drop-coating method. The organic nanosheets display
sufficient flexibility. Even when the molecular stacking was denser, the ultrathin organic



Materials 2024, 17, 5918 7 of 27

nanosheets prevented aggregation quenching and exhibited higher blue emission quantum
yields than the amorphous films. These ultrathin 2D organic nanosheets may prove to be
valuable tools for the development of flexible electrically pumped lasers and intelligent
quantum tunneling systems.
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Organic/polymer resistive random-access memory (RRAM) will constitute a pivotal
component in the field of bio-inspired electronics. It is anticipated that this technology
will find applications in advanced information storage, intelligent perception, brain-like
systems, and logic computing. Conversely, the capacity to expeditiously erase sensitive
data serves to bolster both information security and intellectual property protection. He,
Wang, Chen, and colleagues synthesized polyvinyl spiropyran-grafted polydopamine-
encapsulated structures for transient digital memristors (Figure 6) [229]. Indeed, black
phosphorus quantum dots functionalized with photochromic polyvinyl spiropyran-grafted
polydopamine are employed in the construction of transient digital memristors. The film,
situated between ITO electrodes, was erased rapidly by UV irradiation within six seconds.
Furthermore, the film exhibited typical nonvolatile digital memristor performance when
subjected to visible light irradiation. Upon UV irradiation, the closed-ring spiropyran form
of the active layer is rapidly converted to the open-ring merocyanine form by “closed-to-
open” isomerization, thereby enabling the information stored in the device to be rapidly
and completely erased. Furthermore, the potential of this memristor for handwritten digit
recognition was explored. A basic convolutional neural network comprising a convolu-
tional layer and a pooling layer for filtering, and a fully connected layer for classification,
was constructed. Following 10 epochs of training, the accuracy of digit recognition reached
96.21%.

In recent years, electrochromic devices have been employed in a multitude of applica-
tions, including those pertaining to energy conservation and display technology. Never-
theless, the advancement of lightweight, low-power, cost-effective, and environmentally
benign electrochromic devices remains a pivotal objective. In their study, entitled “A facile
nanoarchitectonics of electrochromic devices”, Kim, You, and colleagues developed a novel
electrochromic device through the use of simple solution-cast polymerization [230]. In this
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instance, the researchers employed a poly(3,4-ethylenedioxythiophene) (PEDOT)/2,2,6,6-
tetramethylpiperidine-1-oxy-oxidized cellulose nanofiber epoxy composite. The fabricated
electrochromic device exhibited a reversible color transition between light blue (translucent
state) and dark blue (colored state), dependent on the redox potential. This device is
anticipated to provide a straightforward fabrication method for a range of energy-saving
smart windows and high-contrast displays.
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The efficient storage and transport of electrical energy is a fundamental requirement
for the promotion of renewable energy-based electricity. Yamauchi and colleagues have
demonstrated an energy cycle based on a highly selective redox reaction between lactate and
pyruvate, which are liquid at room temperature and obtained from biomass resources [231].
The objective of their system is to achieve a completely low-emission outcome. An energy
storage device, namely a lactic acid electrosynthesis cell (LAEC), was constructed for the
production of lactate from pyruvate. This was achieved using a membrane electrode assem-
bly (MEA), comprising a TiO2 cathode catalyst for the electroreduction of pyruvate and
an IrOx anode catalyst for the oxidation of water (Figure 7A). The LAEC was constructed
using iridium oxide nanoparticles as the anode catalyst. The LAEC exhibits complete
suppression of the hydrogen evolution reaction even in highly acidic aqueous solutions.
Additionally, a direct lactic acid fuel cell (DLAFC) was constructed (Figure 7B). The direct
lactic acid fuel cell (DLAFC) employed platinum/cobalt and platinum–ruthenium/cobalt
catalysts as the cathode and anode catalysts, respectively. The DLAFC, utilizing 1 M lac-
tate, demonstrated a selective oxidation of lactate to pyruvate. The combination of highly
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selective electrochemical reactions in the LAEC and DLAFC allows for the direct storage of
electrical energy in a biological liquid carrier. It is possible to complete a carbon-neutral
energy cycle using the resulting energy. The LAEC/DLAFC system has the advantage
of being compact with low energy consumption, as it does not require high-temperature
conversion above 100 ◦C or the treatment of gaseous carriers.
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It has been proposed that ultrathin polymer organic semiconductor films have a mul-
titude of potential applications, including the development of flexible electronic devices.
Nevertheless, in comparison to single crystals of low-molecular-weight organic semicon-
ductors, there is considerable scope for further research in the areas of fabrication and
property control. One illustrative example is the control of the electronic properties of
polymer organic semiconductor films by doping. Ishii, Yamashita, and colleagues have
recently published a new study which demonstrates a novel coupling between proton-
coupled electron transfer reactions, which are widely employed in biochemical processes
and polymer organic semiconductors (Figure 8) [232]. A p-type organic semiconductor
film was immersed in an aqueous solution containing a proton-coupled electron transfer
reaction redox couple (benzoquinone/hydroquinone) and a hydrophobic molecular ion.
The redox potential of the former can be controlled by the proton activity (pH), which is an
easily manipulable parameter. The presence of p-type doping was confirmed by measuring
the absorption spectrum and conductivity. The efficient doping of polymer organic semi-
conductor films is achieved through a synergistic reaction between proton-coupled electron
transfer reactions and the insertion of hydrophobic ions. The doping level was meticulously
regulated within a pH-controlled aqueous solution. In other words, the Nernst equation
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was employed to regulate the Fermi level of the polymeric organic semiconductor thin
film through the manipulation of proton activity. This doping method is also innovative in
that it can be performed in an aqueous solution at room temperature and pressure, which
renders it a method that will also be useful for industrial applications. This could prove
beneficial in the creation of a platform for room-temperature semiconductor processes and
biomolecular electronics. It will be feasible to establish a correlation between semiconductor
doping and any chemical or biochemical process that can be linked with proton activity.
This method is also regarded as a promising platform for biomolecular electronics.
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The diverse properties of organic molecules render them an attractive option for the
creation of devices. A plethora of organic molecular structures can be synthesized through
organic synthesis (molecular nanoarchitectonics). It is similarly important to consider
supramolecular chemical processes, such as molecular association and intercalation, in or-
der to control the characteristics of the devices in question. These sciences and technologies
have been the subject of study in the context of coupling fields such as organic synthetic
chemistry, polymer chemistry, coordination chemistry, and supramolecular chemistry with
device engineering. These approaches can also be unified and interpreted as molecular
nanoarchitectonics. It is anticipated that this integrated approach, which transcends the
boundaries of previous fields, will further advance the field of device engineering based on
organic molecules.

3. Inorganic Materials Nanoarchitectonics

In addition to the organic molecules previously discussed, structurally controlled inor-
ganic materials are also useful elements for device development. The nanoarchitectonics
of inorganic materials frequently permits the regulation of size, dimensions, and shape,
thereby enabling the control of physical properties. This may be referred to as inorganic
materials nanoarchitectonics in the context of device development. The following section
will present a number of illustrative examples.

Nanoscale solid-state devices are composed of thin sheets, typically comprising only a
few atomic layers, and display remarkable electronic behavior. The electronic properties
of nano solid-state devices are markedly distinct from those of conventional solid-state
devices. In particular, the control of thickness is a crucial factor. Zhao, Fu, and colleagues
employed an approach termed ‘thickness nanoarchitectonics’ to investigate the correlation
between thickness and the Raman scattering and polarization characteristics of few-layer
GaS nanosheets [233]. By means of a chemical vapor deposition method, three types of
GaS nanosheets with approximate thicknesses of 10, 40, and 170 nm were produced. As
the thickness of the nanosheets increased, the intensity of the Raman scattering increased
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at the edges of the nanosheets. Furthermore, the energy and polarization of the excitation
photon had a significant impact on the edge-enhanced Raman properties. Three distinct GaS
nanosheet devices, comprising varying thicknesses, were fabricated and their photocurrents
were subsequently measured (Figure 9). The GaS nanosheet devices with thicknesses of 40
and 170 nm exhibited positive photoresponses, despite the photocurrents being relatively
low. In contrast, the thinnest 10 nm GaS nanosheet device exhibited a substantial current
even in the absence of light, despite its relatively weak response to light. Further studies
demonstrated that there were differences in the spatial patterns of Raman imaging in
relation to GaS thickness, excitation light wavelength, and polarization. These findings
have implications for the potential applications of GaS and other transition metal sulfides
in fields such as photocatalysis, electrochemical hydrogen production from water splitting,
energy storage, nonlinear optics, gas sensing, photodetectors, and so forth.
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Colloidal quantum dots have garnered interest due to their distinctive optoelectronic
characteristics, which hold promise for advancement in device engineering. Furthermore,
the quantum confinement effect can be enhanced by nanoarchitectonics of the core/shell
structures, thereby enabling quantum dots to be applied in light-emitting devices. Uematsu,
Kuwabata, and colleagues developed a cadmium-free red-emitting quantum dot by incor-
porating copper into a silver indium gallium sulfide/gallium sulfide (Ag-In-Ga-S/Ga-S)
core/shell quantum dot [234]. Following the application of a Ga-S shell, the quantum
dots displayed a narrow red photoluminescence spectrum. The results of experiments
conducted with varying Cu/Ag ratios indicate that the emission observed in these samples
arises from localized carriers rather than band-edge transitions. Furthermore, the research
team investigated quantum dot-LED devices (Figure 10). In this structure, the light-emitting
layer is composed exclusively of Ag-Cu-In-Ga-S/Ga-S core/shell quantum dots, without
the inclusion of any additional materials to facilitate charge transport. The device displayed
an electroluminescence spectrum that was almost identical to the photoluminescence ob-
served in the quantum dot solution. The core/shell quantum dot LED device exhibited
high color purity red electroluminescence that met the BT2020 standard. The enhanced
luminous efficiency and durability facilitate the practical utilization of the technology.

Nanoarchitectonics studies have been conducted in which unanticipated additives
have been observed to exert control over devices. Dey and colleagues employed a caffeine
additive-based nanoarchitectonics strategy, whereby caffeine (in the form of coffee powder)
was introduced as a light absorber to methylammonium lead iodide, resulting in the
development of a stable and efficient caffeine–methylammonium lead iodide perovskite
solar cell device (Figure 11) [235]. The introduction of caffeine into methylammonium lead
iodide results in the production of a highly efficient and stable caffeine-based additive
methylammonium lead iodide perovskite solar cell device. The addition of caffeine to
the perovskite solar cell resulted in enhanced power conversion efficiency, short-circuit
current density, open-circuit voltage, fill factor, and stability when compared with the pure
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methylammonium lead iodide. The enhanced photovoltaic performance and stability of
caffeine-added methylammonium lead iodide perovskite solar cells can be attributed to
the reduction in electrical resistance and the minimization of non-radiative recombination
pathways within the perovskite. The incorporation of caffeine has been demonstrated
to diminish the non-radiative recombination pathways within the perovskite layer. The
incorporation of caffeine into the methylammonium lead iodide light-absorbing layer has
been observed to markedly enhance the electron-hole charge carriers, thereby improving the
photovoltaic performance. It is anticipated that the findings will facilitate the development
of large-scale industrial caffeine- or similar additive-based perovskite solar cell devices.
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While not truly inorganic, materials such as wood are also applicable to the field
of device nanoarchitectonics. The use of wood-based materials in solar steam genera-
tors has gained attention in the fields of desalination and water purification due to the
cost-effectiveness and potential for renewable energy sources that these generators offer.
However, it should be noted that conventional solar steam generators are not always suit-
able for long-term use. To this end, Li, Xu, and colleagues fabricated a bilayer composite
comprising uniformly incorporated polyaniline nanorods within a 3D mesoporous matrix
of natural wood, employing a one-step in situ polymerization strategy (Figure 12) [236].
The solar absorptance of polyaniline-decorated wood is exceptionally high over a broad
wavelength range, due to the conjugation of coral-like polyaniline nanorods with the wood
substrate. Furthermore, the intrinsic physical characteristics of wood impart to polyaniline
wood a hydrophilic nature and the capacity to facilitate the transport of water. Further-
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more, it displays excellent environmental and chemical resistance. The numerous aligned
wood microchannels facilitate constant and rapid water transport at the air–water interface,
driven by capillary forces. The polyaniline–wood composite material displays high stability
and a high evaporation rate, indicating its potential as an optimal solar steam generator.
The polyaniline–wood composite exhibits long-term buoyancy, which suggests that it has
the potential for long-term practical application. The imminent threat of a global freshwater
shortage is a direct consequence of the deterioration of global ecosystems. The generation
of interfacial steam by solar means, as exemplified by this nanoarchitectonics approach to
material design, has the potential to provide a solution to the global water crisis.
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In light of the emergence of a number of novel infectious diseases, the necessity for
remote monitoring of infected individuals has become paramount. This is particularly
important in hospitals, where infected patients must be isolated to prevent the transmission
of pathogens to medical personnel. It would be advantageous to develop wearable health
sensor devices that are capable of monitoring patients remotely. A number of infectious
diseases can be monitored for infection status through the use of various physiological
indicators, including abnormal body temperature, respiratory rate, and diastolic blood
pressure. As reported by Pumera and colleagues, a remote health monitoring system has
been developed which employs a telemedicine platform for health assessment remotely by
an integrated nanoarchitectonics approach [237]. This system incorporates a stretchable
asymmetric supercapacitor as a portable power source and a sensor capable of monitoring
the physical health status of humans remotely in real time (Figure 13). The system is textile-
based and comprises a high-performance stretchable asymmetric supercapacitor and a
strain sensor. The electrodes of the stretchable asymmetric supercapacitor and strain sensor
were composed of a composite of FePS3 and reduced graphene oxide (rGO), which were
coated on a stretchable fabric. Upon stretching the FePS3@rGO composite, a notable decline
in the brightness of the red LED was observed, accompanied by a discernible alteration in its
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electrical conductivity. Strain sensing is a process whereby mechanical strain is converted
into a detectable electrical signal. Furthermore, the stretchable asymmetric supercapacitor
can be employed to power a temperature sensor positioned beneath the armpit, thereby
facilitating the monitoring of body temperature. The transmission of data from real-time
monitoring of respiration and body temperature via wireless communication to a hospital
cloud system for clinical evaluation is a viable option. The system permits patients to
monitor these health indicators without direct contact with medical personnel. The wireless
device developed in this study would be beneficial in situations where infected patients
require isolation to prevent the transmission of pathogens. Moreover, this research provides
a foundation for the advancement of innovative wearable e-health monitoring systems
based on flexible and stretchable energy storage devices.
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Inorganic materials and their hybrid counterparts exhibit a range of distinctive prop-
erties. In comparison to organic materials, inorganic materials possess a structure that is
less flexible, yet it is relatively straightforward to precisely control the structure. The field
of nanoarchitectonics, which encompasses techniques such as precise thickness control and
core/shell structural design, is employed in the development of devices. In comparison to
organic molecular nanoarchitectonics, which is somewhat more development-oriented, in-
organic materials nanoarchitectonics demonstrates greater strengths in practical application.
This is presumably due to the fact that research into inorganic materials in nanostructure
control has made significant advancements, resulting in the identification of specific groups
of materials that are well-suited for practical applications. This characteristic will be a
crucial factor in advancing device nanoarchitectonics from the research stage to practical
application.
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Copyright 2022 Springer-Nature.

4. Conclusions and Future Perspectives

As previously stated in the introduction, it is crucial to consider the role of nanotech-
nology in the evolution towards nanoarchitectonics, particularly in relation to its impact
on device hardware applications. This represents a solution to the well-known problem of
combining top-down and bottom-up approaches in the development of functional systems.
The microfabrication techniques that are prominent in nanotechnology are an example of
a top-down approach, whereas device nanoarchitectonics, which involves the assembly
of functional materials from atoms and molecules, is a powerful bottom-up approach.
Device nanoarchitectonics will represent the convergence of top-down and bottom-up
approaches. It will serve as an illustrative example of the convergence of nanotechnology
and materials science.

In this review, components are roughly divided into organic compounds and inorganic
materials. Although the fundamental parts of device functional architecture are almost the
same, each has its own characteristics. For example, many devices that exhibit optical and
electronic functions are heavily dependent on the properties of the molecules that perform
their functions. In other words, the development of functional molecules is a major key.
Organic molecules have diverse properties, and their characteristics are attractive for device
creation. The structures of organic molecules are diverse, and there are various control
elements such as π-conjugated structures, chemical structures of complex ligands, steric
hindrance effects, molecular stacking, isomerization and color changes due to external
stimuli, control of selective redox reactions, and doping control of organic semiconductors
by electron transfer reactions, to name just a few. The structures of organic molecules can be
created in a variety of ways through organic synthesis (molecular architectonics). In addi-
tion, supramolecular chemical processes such as molecular association and intercalation are
also important for controlling device characteristics. On the other hand, nanoarchitectonics
of inorganic materials often allows control of size, dimension, and shape, and the associated
physical properties can also be controlled. Among the examples of structural elements
given here, precise thickness control, core/shell structure, additive control, environmental
and chemical resistance, and composite materials for multifunctional devices are recog-
nized. Generally speaking, nano-inorganic materials are characterized by the ease of precise
structural control. In addition, there are specific material groups suitable for practical use,
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such as nanoparticles and graphene. Therefore, inorganic materials nanoarchitectonics is
also closer to the practical stage. Of course, detailed examinations and confirmations of
actual performances and functions of the materials and devices prepared with nanoarchitec-
tonics concepts are important. In particular, attention must be given to concrete parameters,
temperature conditions, pressure conditions, and the selection of materials to ensure the
reproducibility, durability, stability, effectiveness, environmental impacts, sustainability,
chemical availability, and cost-benefits upon comparisons with the control matters of ex-
isting technologies, materials, and real devices with detailed statistical analyses. These
investigations will practically prove true the meanings of the nanoarchitectonics approach.

In the field of device nanoarchitectonics, there are notable distinctions between or-
ganic molecules and inorganic materials. However, the fundamental methodology of
constructing functional devices using nanounits is largely similar. Rather than developing
these large component elements independently, it would be more beneficial to hybridize
and integrate them in order to construct more functional devices. The properties of the
functional materials that are to be incorporated as components are diverse and somewhat
idiosyncratic. Furthermore, the anticipated functional outcome is also highly variable.
Therefore, it is anticipated that a multitude of functions will be expressed within the same
device. It may prove challenging for humans to process this diversity-based approach,
given past experience and existing achievements. In order to develop functional devices
in an efficient and innovative manner, it will be necessary to utilize the capabilities of
artificial intelligence. It is evident that machine learning [238–240] and materials informat-
ics [241–243] have made significant contributions to materials sciences and other related
fields. Additionally, there are publications that address the integration of nanoarchitec-
tonics and artificial intelligence [244,245]. In the context of device development, there is
a substantial accumulation of data that can be utilized as a basis for artificial intelligence,
given that the materials employed, the structure, the function, and the output are all subject
to rigorous examination. The further development of device nanoarchitectonics will be
contingent upon the introduction of artificial intelligence. Furthermore, there is a pressing
need for the advancement of device nanoarchitectonics into the realm of practical devices.
At that juncture, it will be increasingly advantageous to integrate it with microfabrication
technology oriented towards mass production. This indicates that the integration of bottom-
up science and top-down technology will be a highly beneficial approach. The advent
of artificial intelligence will facilitate this process. Nanoarchitectonics approaches with
artificial intelligence may even provide the potential for long-term practical applications
without providing sufficient empirical data or tests that could substantiate durability and
resilience over extended periods. In particular, such considerations have to be taken with
the viewpoint that the materials used are environmentally friendly even though it lacks a
life-cycle analysis or comparative assessment against conventional materials. The nanoar-
chitectonics approach effectively integrates devices across various applications as seen in
possible examples of remote health monitoring (for the practical clinical effects see the
corresponding original papers). Many other systems such as organic photoelectronic and
organic photovoltaic devices are good candidates for integrated nanoarchitectonics devices
that are also designed with artificial intelligences developed upon previously accumulated
knowledges through detailed comparisons of performance metrics with similar materials
from previous studies.
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