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Jui-Shan T. Lin2, Tatsuhiko Naito2,4, Towfique Raj4,5

David A. Knowles1,2,5,6*6

1Computer Science, Columbia University, New York, NY, USA.7

2New York Genome Center, New York,NY, USA.8

3Francis Crick Institute, London, United Kingdom.9

4Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY,10

USA.11

5Systems Biology, Columbia University, New York, NY, USA.12

6Data Science Institute, Columbia University, New York, NY, USA.13

*Corresponding author(s). E-mail(s): dak2173@columbia.edu;14

Contributing authors: anjali.das@columbia.edu;15

clakhani@nygenome.org; chloe.terwagne@crick.ac.uk;16

tlin@nygenome.org; tatsuhiko.naito@mssm.edu; towfique.raj@mssm.edu;17

Abstract18

The increasing availability of whole-genome sequencing (WGS) has begun to elu-19

cidate the contribution of rare variants (RVs), both coding and non-coding, to20

complex disease. Multiple RV association tests are available to study the relation-21

ship between genotype and phenotype, but most are restricted to per-gene models22

and do not fully leverage the availability of variant-level functional annotations.23

We propose Genome-wide Rare Variant EnRichment Evaluation (gruyere), a24

Bayesian probabilistic model that complements existing methods by learning25

global, trait-specific weights for functional annotations to improve variant prior-26

itization. We apply gruyere to WGS data from the Alzheimer’s Disease (AD)27

Sequencing Project, consisting of 7,966 cases and 13,412 controls, to identify28

AD-associated genes and annotations. Growing evidence suggests that disruption29

of microglial regulation is a key contributor to AD risk, yet existing methods30
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have not had sufficient power to examine rare non-coding effects that incorpo-31

rate such cell-type specific information. To address this gap, we 1) use predicted32

enhancer and promoter regions in microglia and other potentially relevant cell33

types (oligodendrocytes, astrocytes, and neurons) to define per-gene non-coding34

RV test sets and 2) include cell-type specific variant effect predictions (VEPs)35

as functional annotations. gruyere identifies 15 significant genetic associations36

not detected by other RV methods and finds deep learning-based VEPs for splic-37

ing, transcription factor binding, and chromatin state are highly predictive of38

functional non-coding RVs. Our study establishes a novel and robust framework39

incorporating functional annotations, coding RVs, and cell-type associated non-40

coding RVs, to perform genome-wide association tests, uncovering AD-relevant41

genes and annotations.42

Keywords: Rare variants, Alzheimer’s Disease, Bayesian probabilistic model,43

whole-genome sequencing44

1 Main45

The recent increase in available whole-genome sequencing (WGS) data has facilitated46

the study of rare variants (RVs), particularly in understanding their effects on complex47

diseases like late-onset Alzheimer’s disease (AD). AD is a neurodegenerative disorder48

with an estimated heritability between 59% and 74% [1]. While genome-wide associ-49

ation studies (GWAS) have identified over 100 loci linked to AD, with the APOE-e450

allele as the strongest genetic risk factor, they are restricted to common variant asso-51

ciations [2, 3]. Despite considerable efforts to quantify the polygenic nature of AD, a52

significant portion of genetic heritability remains unaccounted for. Some of this miss-53

ing heritability may be recovered with RVs [4]. RVs generally exhibit larger effect sizes54

than common variants, but their role is not yet well understood [5]. Studies have shown55

that integrating RVs into cumulative polygenic risk scores (PRS) can enhance predic-56

tive performance [6], but existing methods have identified fewer gene associations and57

have lower predictive power compared to common variant approaches. While a num-58

ber of genes, including TREM2, ABCA7 and SORL1 [7], have known RV associations59

in AD, the majority of these findings are restricted to coding variants. As most GWAS60

signals lie in the non-coding genome, expanding RV association studies beyond coding61

variants is critical. However, the study of non-coding RVs poses challenges due to the62

vast number of these variants, most of which likely have no functional impact [8]. It is63

therefore of substantial interest to use functional annotations for variant filtering and64

prioritization. To develop a more robust understanding of the contributions of both65

coding and non-coding RVs to AD, we propose a novel method that not only weights66

variants according to annotations but also prioritizes functional annotations that are67

most trait-relevant.68

Applying traditional variant-level approaches like GWAS to RVs has low statistical69

power due to sparsity and a high multiple testing burden due to the large number of70

RVs compared to common variants. To address these limitations, RV methods aggre-71

gate variants in biologically related regions, typically by gene, to increase power [9].72
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More recent RV methods additionally account for functional annotations to prioritize73

relevant variants and filter out those predicted to have no function, which otherwise74

reduce power [10, 11]. Despite growing efforts to accurately predict which variants will75

affect particular molecular phenotypes (e.g., enhancer activation, RNA splicing) [12–76

16], there is a limited understanding of which functions are the most disease-relevant.77

Using functional annotations that have no phenotypic associations to weight RVs can78

add noise to models and decrease their power. This motivated us to develop a method79

that learns a genome-wide mapping from functional annotations to variant importance.80

Growing evidence suggests that disrupted gene regulation in central nervous sys-81

tem (CNS) cell types, particularly microglia, is associated with the development and82

progression of AD [1, 17]. The majority of RV tests are developed for coding variant83

associations because 1) predicting functional coding variants is comparatively straight-84

forward (at least for loss-of-function), 2) population-scale whole-exome sequencing85

predates WGS, and 3) defining non-coding regions for testing is challenging in itself.86

Some methods use sliding windows, but testing overlapping windows of varying sizes87

can result in loss of power due to multiple testing [18]. Other methods use predicted88

cis-regulatory elements (CREs), in particular enhancers and promoters, to construct89

testing regions [19–21]. Given their modest size (typically less than 2kb), testing indi-90

vidual CREs still has limited statistical power. Combining multiple CREs that regulate91

a gene could help address this limitation but relies on accurate predictions of enhancer-92

gene links. We leverage the Activity-by-Contact (ABC) model, which predicts cell-type93

specific enhancer-gene connectivity using chromatin state and conformation data [22].94

We aggregate ABC-predicted enhancer-gene pairs to determine non-coding, cell-type95

and gene specific RV testing regions.96

Due to the large number of genes and several million RVs found in population-scale97

WGS, existing methods are primarily restricted to per-gene models. This limits our98

understanding of disease-associated functional annotations. Most existing RV meth-99

ods are explicitly, or can be viewed as, generalized linear mixed models (GLMM). We100

instead develop a Bayesian generalized linear model (GLM) Genome-wide Rare Vari-101

ant EnRichment Evaluation, or gruyere, to model cell-type specific, non-coding RV102

associations on a genome-wide scale. In gruyere, a variant’s effect is a deterministic103

function of its annotations and the estimated AD-relevance of the gene it is linked104

to (if any). Our Bayesian model iteratively learns AD-relevant gene effects, covariate105

weights, and functional annotation importance while quantifying uncertainty, provid-106

ing increased flexibility to capture the complex, hierarchical structure of genetic data.107

We test our model using simulation analyses and compare results to several existing RV108

methods. We apply gruyere to WGS data from the Alzheimer’s Disease Sequencing109

Project (ADSP), consisting of 7,966 cases and 13,412 controls. Our model determines110

splicing, transcription factor (TF) binding, and chromatin state annotations most111

enriched for AD-associated non-coding RVs and identifies 16 significant genes, 15 of112

which are uniquely identified by gruyere. Of these, four – C9orf78, MAF1, NUP93,113

and GALNT9 – remain significant in omnibus tests.114
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2 Results115

Fig. 1 Overview of the application of gruyere to AD. Input data includes A) WGS and clinical
information for AD cases and controls, B) Enhancer-gene interactions predicted by the ABC model
for microglia, oligodendrocytes, astrocytes, and neurons, and C) variant functional annotations. D)
Example analysis for the TREM2 gene and microglia cell-type on existing methods. Columns rep-
resent RVs; light grey rectangles represent individual-level genotypes from WGS data for cases and
controls; functional annotations for each RV are shown below genotypes; Burden, SKAT, SKAT-O,
and ACAT-O are existing tests that use genotype, covariate, and AD status; FST and STAAR-O
additionally use functional annotations. E) Workflow for gruyere. Per-gene RVs are aggregated and
used for fitting the hierarchical Bayesian GLM. gruyere learns weights for covariates, genes, and func-
tional annotations. We use simulations to assess gruyere at different heritabilities. Likelihood ratio
tests are used to calculate gene-level p-values. Optionally, the gruyere p-values can be integrated
with existing methods through omnibus testing.

2.1 Genome-wide Rare Variant EnRichment Evaluation116

(gruyere) overview117

Table 1 Summary of gruyere Variables

Variable Shape Description
Y n x 1 Phenotypes for n samples
X n x c c Covariates for n samples
Gg n x pg Genotypes for p variants in gene g for n samples
Zg pg x q q Functional annotations for p variants in gene g
αg c x 1 c Covariate coefficients
βgj pg x 1 Variant effect sizes for p variants in gene g
wj pg x 1 Variant weight Beta(MAFj |1, 25)
wg 1 x 1 Gene importance weights
τ q x 1 Functional annotation weight
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Current RV methods rely on independent per-gene models and, therefore, cannot
capture genome-wide functional annotation importance. gruyere serves as a comple-
mentary method to existing RV tests by learning trait-specific functional annotation
weights, covariate coefficients, and gene effects under a Bayesian framework (Supple-
mental Figure 1, Table 1). Rather than modeling each gene separately, we jointly fit
gruyere as a hierarchy of per-gene GLMs using stochastic variational inference (SVI)
[23]. We model AD risk for each gene g,

logit(µig) = Xiαg +Gigβgj

where µig is the probability of AD for individual i given the genotypes for RVs associ-
ated with gene g, Xi is a vector of covariates (e.g. sex, age, APOE-e4 genotype), and
Gig is a genotype vector. We learn covariate weights αg and variant effects βgj . We
set βgj to be a deterministic function of a learned gene effect wg, transformed minor
allele frequencies (MAFs) wj , functional annotations Z (detailed in Methods 3.4 and
Figure 1C), and learned annotation importance weights τ ,

βgj = wgwj(τ0 +

q∑
k=1

Zgjkτk).

In our analyses, gruyere learns annotation weights τ for a range of annotations Z,118

including in silico mutagenesis deep learning model predictions of splicing disruption119

(derived as the maximum of four individual SpliceAI scores [24]) and cell-type specific120

TF binding and chromatin state (derived from the Enformer model [14]). A larger121

magnitude of wg indicates that disruption of gene g is associated with a higher pre-122

dicted risk of AD. Similar to a burden test, gruyere assumes all variants within a gene123

have the same direction of effect [25, 26]. However, because our functional annotations124

include both loss- and gain-of-function predictions, we are able to capture additional125

dispersion-based signal. To ensure robust generalization of learned parameters, we126

split data into training (80%) and test (20%) sets, where model weights are optimized127

using the training set and assessed on the unseen test set. We apply gruyere to both128

coding and non-coding RVs for AD, defining four cell-type specific non-coding groups129

for AD-relevant cell types (microglia, oligodendrocytes, astrocytes, and neurons [17])130

and testing each group individually.131

Step 1. Estimating global annotation weights τ .132

Fitting τ jointly across the entire genome would be 1) computationally challenging133

due to the large number of RVs and 2) statistically inefficient, as only AD-associated134

genes will contribute relevant signal. We therefore estimate τ under the gruyeremodel135

from a subset of potentially AD-relevant genes identified using a lenient significance136

threshold (nominal p < 0.01) for the Functional Score Test (FST)[27]. We assess137

the robustness of gruyere estimates when selecting genes with varied significance138

thresholds and for a number of existing RV tests and find annotation weights τ are139

broadly consistent (+/− 0.02).140
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Step 2. Per-gene analysis.141

Once genome-wide estimates for τ are obtained, gruyere simplifies to a logistic142

regression that learns covariate αg and gene wg weights. We efficiently fit gruyere143

separately and in parallel for all genes, holding τ fixed. We perform likelihood ratio144

tests (LRT) to compare a covariate-only regression against combined covariate and145

genotype regression models to determine gene-level significance for wg.146

2.2 Constructing cell-type & gene specific variant sets using147

predicted CREs148

A) B)

Fig. 2 Predicted regulatory element and variant counts across cell types. A) Bar plot
of predicted CRE counts by cell type (ABC > 0.02). B) Upset plot of variant overlap across 4 cell
types in ADSP data; Light grey bars on left indicate total RV counts for each cell type; Vertically
connected dots represents groups and corresponding bars indicate variant overlap for that group.

We grouped non-coding RVs by gene and CNS cell type using the Activity-by-149

Contact (ABC) model (Figure 1B) [22]. The ABC model uses epigenomic profiles and150

chromatin conformation to determine cell-type specific enhancer-gene interactions,151

filtering out genes that are not expressed. We use publicly available ATAC-seq and152

H3K27ac ChIP-seq signals for microglia, oligodendrocytes, astrocytes, and neurons153

[28], as well as Hi-C averaged across ten CNS cell types to account for 3-dimensional154

chromatin interactions. For each gene, we analyze RVs aggregated across all CREs155

interacting with that gene (ABC > 0.02). We test each cell type separately and also156

analyze rare coding variants for comparison. In total, ABC defines 70,300 CREs across157

all four cell types and 17,929 genes, with higher relative counts of microglia-predicted158

enhancers (Figure 2A). Predicted CREs frequently co-occur across cell types, with159

39.4% of CREs found in more than one cell type. Promoter regions tend to have higher160

ABC scores than enhancers (mean ABC = 0.07 vs. mean ABC = 0.04), but their161

genomic lengths are similar, with an average length of 632bp and standard deviation162

of 132bp. ABC accounts for interactions of a single enhancer with multiple genes so163

one RV can be linked to multiple genes. In our analysis, an ABC enhancer maps to164

an average of 3.8 genes in microglia and between 5.4 and 5.9 genes in the other three165

cell types. Our non-coding variant sets contain an average of 376 RVs per gene. There166

are a total of 2,092,931 RVs in CREs across the four cell types, 901,570 of which are167
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included for more than one cell type, and 550,001 that are in all four cell types (Figure168

2B).169

2.3 Simulation studies confirm accurate estimation of model170

parameters171

We generate synthetic phenotypes (see Methods 3.5) and fit gruyere on 100 sets of172

simulated data with estimated heritability between 5% and 30% (detailed in Supple-173

mental Methods [29]) using 500 randomly selected genes. We find that all variables174

are well recovered, with average Pearson correlations R = 0.81, 0.95, 0.98, 0.97 for175

αg, βgj , wg and τ respectively (Figure 3). Covariates αg have the lowest R, possibly176

due to correlated covariates. Average recovery across all variables remains high when177

varying the prior distributions (Pearson R > 0.78) as well as when simulated distri-178

butions differ from the priors used during inference (Pearson R > 0.66). Results are179

robust to the number of covariates, genes, and annotations modeled.180

Fig. 3 Learned versus true gruyere parameters across 100 simulations. Points are colored
by the Pearson correlation coefficient of a parameter for a given simulation. A) Covariate regression
coefficients α (c = 30 covariates). B) Variant effect β. C) Gene effect wg (M = 500 randomly selected
genes). D) Annotation weight τ (q = 13 annotations).

We analyze how simulation performance correlates with overall and genetic her-181

itability for each simulation. This allows us to more meaningfully evaluate model182

performance for complex diseases like AD where estimated heritability is low. As183

expected, we find that gruyere is better able to recover βgj and wg with increased184

genetic heritability (Supplemental Figure 2). However, even when total heritability185
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is as low as 5%, the minimum correlation between true and estimated parameters186

remains quite high (Pearson R = 0.68).187

2.4 Applying gruyere to AD WGS data reveals novel disease188

associations189

A) B)

C) D)

Cell Type Cell Type

Cell TypeCell Type

Fig. 4 Performance of gruyere. A) Boxplots of per-gene AUROCs for train and test sets across
cell types. B) Boxplots of per-gene accuracies for train and test sets across cell types. C) Trace ELBO
loss over 300 epochs across cell types. D) Average training time per epoch (seconds) versus number
of genes used in joint model for each cell type.

Performance on ADSP WGS data. After validating model performance through190

simulations, we fit gruyere to the ADSP WGS data. We analyze coding and non-191

coding (microglia, oligodendrocyte, neuron, astrocyte) groups separately, and refer to192

each set as a cell type. For each cell type, we use a subset of genes for joint fitting193

(FST p-value < 0.01), leading to between 267 and 333 genes per cell-type. AD predic-194

tion performance is fairly consistent across non-coding variants (average test set Area195

Under the Receiver Operating Characteristic, or AUROC, of 0.69) and slightly higher196

for coding variants (average AUROCtest = 0.70) (Figure 4A-B). When averaging pre-197

dicted probabilities across genes, performance further improves (AUROCtest = 0.72)198

for all cell types. These metrics are in line with current AD literature and outperform199

a covariate-only regression model (AUROCtest = 0.65) [30]. There is a substantial200

range in prediction performance for each cell type (e.g. minimum AUROCtest = 0.62,201

maximum AUROCtest = 0.71 for microglia), highlighting the varying degrees of asso-202

ciation with AD across genes. We find that gene-level performance is consistent across203

model refitting and that the loss converges reliably (4C) [31]. Fitting time increases204
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approximately logarithmically with the total number of genes (Figure 4D). On aver-205

age, it takes 37 seconds per epoch and three hours total to jointly fit gruyere across206

300 epochs. Per-gene estimation is much faster, taking an average of 4.3 seconds per207

gene to complete.208

Fig. 5 gruyere parameters learned from ADSP WGS. A) Bar plot of genome-wide annotation
weights τ learned in jointly fit model across cell types. We denote crosses (X) to the left of bars where
an annotation is not included for a cell type. B) Bar plot of per-gene covariate weights (αg) learned
in jointly fit model across cell types. Error bars illustrate the minimum and maximum values learned
across genes.

Learned annotation and covariate weights. We find that the top gruyere209

functional annotation weights come from splicing across all non-coding RV groups and210

loss-of-function (LoF) for coding variants (Figure 5A). LoF variants can be highly211

disruptive to gene function and are often used as a variant filtering method in gene-212

based tests. Therefore, it is predictable that we find gruyere places a large weight213

on LoF coding RVs. It is perhaps not surprising that gruyere also prioritizes RVs214

predicted to disrupt normal splicing, as they can substantially change the protein215

product or have large effects on gene dosage via nonsense mediated decay. For all216

non-coding regions, cell-type specific TF binding predictions from Enformer contain217

the next largest annotation weights. This suggests RVs associated with an increase218

(Max TF Delta) or decrease (Min TF Delta) in binding are predicted to have larger219

effects on AD, at least in AD-relevant genes. For microglia RV sets, we additionally220

find increased AD association for variants related to histone modification (H3K4me3,221

H3K27me3, H3K27ac) and DNASE in monocytes (often used as a proxy for microglia222

[32]). We restrict Enformer annotations to non-coding variants as they are specific223

to cell-types. The enhancer category has very small weights across cell-types. Since224

all variants included in the non-coding analyses are in putative CREs, it is perhaps225

not too surprising that cell-type specific enhancer annotations are lowly prioritized by226

gruyere.227

Covariate effects are learned consistently across genes and cell types, with sequenc-228

ing center, common variant polygenic risk score, and Illumina HiSeq 2000 sequencing229

platform as the top three covariates (Figure 5B). As expected, APOE-e4 is learned to230

have a large positive risk effect while the APOE-e2 allele has a negative (protective)231

effect [2]. These effects agree well with those of a simple logistic regression predicting232

AD status from covariates.233
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Fig. 6 Top gruyere genes. A) Manhattan plot across cell types. The Y -axis shows − log10(p-value)
for each gene and X-axis shows gene position. Each color is a cell type. gruyere-significant genes are
labeled.B) Stacked upset plot of significant gene overlap across all tests after pruning for coregulation.
Dark grey bars on left indicate total number of significant genes for each test. Vertically connected
dots represent groups and corresponding bars indicate the number of overlapping significant genes
identified for that group. Each bar is colored by cell type.

Learned gene effects and associations: Estimated gene effects wg are fit from234

a per-gene logistic regression, where we use LRTs to determine gene-level gruyere p-235

values (Methods 3.2). Significant genes after Bonferroni correction for each cell type236

are shown in Figure 6A, where a total of 16 genes reach genome-wide significance.237

The well-established TREM2 RV association [33], as well as MAF1, C9orf78, and238

GRIK3 are found significant for coding variants. Although not as widely recognized as239

TREM2,MAF1 has been previously reported in association with AD [34], and C9orf78240

has been identified in an AD dementia meta-analysis [35]. GRIK3 has emerged as a241

gene of interest due to the role of kainate receptors in neuroinflamation, a key feature242

of AD. Inflammatory responses can amplify glutamate release and disrupt receptor243

functioning, which may further accelerate neurodegeneration. This makes GRIK3,244

and glutamate signaling more broadly, potential targets for therapies [36, 37]. The245

identification of these genes by gruyere highlights their potential as candidate genes246

for further study in AD.247

gruyere identified 12 non-coding RV associations across cell types with 2 in248

microglia, 6 in astrocytes, 1 in neurons, and 3 in oligodendrocytes. The most significant249

of these is NUP93 (microglia), which, although not specifically linked to AD, is part of250

a group of nucleoporin (Nup) mutations associated with neurodegenerative disorders251

like AD [38]. Three significant genes, GALNT9, FBRSL1, and LOC101928416, are252

closely located on chromosome 12q24.33 and share over 80% of their ABC-predicted253

CREs, indicating that their associations are driven by the same set of RVs. Although254
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variants can map to multiple genes in our model framework, making our analysis sus-255

ceptible to coregulation, we are able to investigate and identify the specific CREs256

driving these associations. Of the overlapping promoters for these three genes, regions257

have higher ABC scores for FBRSL1 (ABC = 0.20) compared to GALNT9 (ABC =258

0.04) and LOC101928416 (ABC = 0.06), suggesting a stronger regulatory impact on259

FBRSL1 and further isolating overlapping signal. FBRSL1 (neuron), has not been260

linked to AD, but it presents a strong candidate gene for its distinctive neuronal expres-261

sion profile and involvement in neurogenesis and transcriptional regulatory networks262

[39]. Multiple associations (GALNT18, CTR9, EIF4G2, ZBED5-AS1, LOC101928053,263

and MRVI1 ) specific to astrocyte and oligodendrocyte cell-types are coregulated in264

chromosome 11p15.4, and the strongest signal, GALNT18, has been connected to AD265

in more than one study [40, 41]. After pruning coregulated signals, gruyere identifies266

8 significant genes.267

We identify both known and novel AD-associated risk genes with gruyere. Sig-268

nificant gruyere genes are associated with increased gene expression across thirteen269

brain tissues found in GTEx (2-sample t-test p = 9.2 × 10−31, Supplemental Figure270

3A) [42]. 5 of our 16 significant genes have expression QTLs in our microglia genomic271

atlas (isoMiGA) that colocalize with AD or Parkinson’s disease (PD) GWAS (Sup-272

plemental Figure 3B) [43–46]. Specifically, TREM2 and MAF1 have significant SNPs273

in a recent AD GWAS [44] while FBRSL1, EIF4G2, and ZBED5-AS1 are signifi-274

cant in a large PD GWAS [45]. AD and PD have known genetic overlap, motivating275

QTL colocalization of both traits [47]. Finally, we compare gruyere p-values with the276

Alzheimer’s Disease Variant Portal (ADVP) catalog of 956 reported AD genes, find-277

ing that gruyere yields more significant p-values for ADVP versus non-ADVP genes278

(2-sample t-test p = 7.1× 10−9, Supplemental Figure 3C) [48].279

Comparing gruyere to existing methods.280

We compare pruned gruyere results with AD associations identified by a number of281

existing RV methods: burden test, sequence kernel association test (SKAT), optimal282

unified test (SKAT-O), functional score test (FST), aggregated Cauchy association test283

(ACAT), and variant-set test for association using annotation information (STAAR)284

[10, 25, 27, 49–51]. Burden, SKAT, SKAT-O, and ACAT-O tests do not include285

functional annotations, while FST and STAAR incorporate them (description in Sup-286

plemental Table 1 and detailed in Figure 1D for TREM2 and microglia). We use the287

same set of functional annotations for FST and STAAR as for gruyere. We find that288

gruyere −log10(p-values) have the highest correlation with Burden tests (Pearson289

R = 0.86) and show moderate to high correlation with combination methods STAAR-290

O, SKAT-O, FST, and ACAT-O (Pearson R = 0.45 − 0.58) (Supplemental Figure291

4A). The higher observed correlation with burden tests is expected, as gruyere also292

assumes unidirectional variant effects within a gene. We examine overlap of significant293

genes across all tests and find that there is minimal overlapping signal across meth-294

ods (Figure 6B). Of the 16 (8 pruned) AD associations identified by gruyere, 15 (7295

pruned) are unique to gruyere, while TREM2 (coding) is detected across all tests but296

SKAT where it narrowly misses significance. In total, burden, SKAT, SKAT-O, and297
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ACAT-O tests identify only two significant associations, highlighting the importance298

of including functional annotations, particularly for non-coding RV associations.299

Integrating gruyere into omnibus tests. We combine gruyere p-values with300

existing methods using ACAT (Supplemental Figure 4B). Comparing ACAT (burden,301

SKAT, SKAT-O, FST, ACAT, STAAR) to ACAT (gruyere, burden, SKAT, SKAT-302

O, FST, ACAT, STAAR), we find that the inclusion of gruyere in omnibus tests303

boosts the number of significant associations from 12 to 16, adding C9orf78, MAF1,304

NUP93 and GALNT9. There is no loss of power with this method, as all existing305

signals remain after including gruyere; we simply increase the total number of AD306

associations identified.307

3 Methods308

3.1 Data Overview309

Whole-Genome Sequencing Data: We analyze the latest release of WGS data310

from the Alzheimer’s disease sequencing project (ADSP) consisting of 21,378 unre-311

lated individuals over the age of 65 (7,966 cases, 13,412 controls) after QC [52, 53]. We312

follow a standard pipeline to QC WGS data. First, we combine phenotype information313

across multiple cohorts and remove genetically identical duplicates (IBD π̂ > 0.95) and314

technical replicate samples, selecting samples with the highest call rates. We priori-315

tize phenotype information for individuals in family studies over case-control studies.316

Related individuals are removed using Kinship-based INference for Gwas (KING) [54],317

keeping AD cases where possible. In PLINK [55], we remove individuals with more318

than 10% genotype missingness, variants with less than 90% genotyping rate, and319

keep only biallelic variants with an observed MAF ≤ 0.05. Missing genotypes are320

imputed as the average observed MAF. For analysis, we randomly split samples into321

80% train and 20% unseen test sets, stratifying by ancestry. ADSP samples are pri-322

marily of European (N = 9,133), African (N = 5,173) and Hispanic (5,059) ancestry,323

with smaller South Asian (N = 1,951) and East Asian (N = 62) groups.324

Clinical Information: We use 30 available covariates in our model: sex, age,325

age2, age × sex, age × sex2, APOE-e4 genotype, APOE-e2 genotype, 10 ancestry326

principal components calculated from the 1000 Genomes Project [56], a common vari-327

ant PRS [57], one-hot encoded sequencing platform (Illumina HiSeq 2000, HiSeqX,328

Nova Seq), one-hot encoded sequencing center (Illumina, USUHS, USUHS/Miami,329

NYGC, MEDGENOME, Baylor, Broad, WashU), and an intercept term (Figure 1A).330

Covariates are min-max scaled to a range of 0 to 1.331

3.2 Proposed Bayesian rare variant model: gruyere332

We develop gruyere, a hierarchy of per-gene GLMs (Supplemental Figure 1). We
define our model jointly as

logit(µig) = Xiαg +Gigβgj
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where µig is the probability of AD for individual i associated with gene g, Xi is a
vector of covariates, and Gig is a vector of genotype dosages for each RV. Covariate
coefficients αg are modeled from prior,

αg ∼ Normal(0, 1).

The key innovation in the gruyere model is the construction of per-variant genetic
effects for gene g, or βgj = (βgj1, ..., βgjp)

T , which is defined as the product of gene
effects, transformed MAF, and weighted functional annotations. Of note, if a variant
j is included in the RV set for both genes g1 and g2, the variant effect can differ for
βg1j and βg2j . We define βgj as

βgj = wgwj(τ0 +

q∑
k=1

Zgjkτk)

where wg are gene importance weights, wj are variant weights based on observed
MAF as suggested by Wu et al.[49], τ are genome-wide annotation importance scores,
and Zgjk is a scaled functional annotation k for RV j and gene g. The variables are
modeled as,

wj = Beta(MAFj |1, 25)
wg ∼ Normal(0, 1)

τ ∼ Dirichlet(1q)

For each gene, we use a Bernoulli likelihood to sample σ(Xiαg + Gigβgj), and333

aggregate loss across each g ∈ M . Learned parameters are αg, wg, and τ . We select334

a Dirichlet prior for annotation weights τ to ensure identifiability between τ and wg.335

Without constraining τ to a fixed sum, wg can be swapped for wg/c and τ for cτ for336

any positive constant c without changing the likelihood, leading to non-identifiability337

between gene and annotation weights.338

We approximate the true posterior distribution for gruyere by minimizing the339

Kullback-Leibler (KL) divergence, which is equivalent to maximizing the Evidence340

Lower Bound (ELBO) [31]. To maximize the ELBO, we use SVI, implemented in the341

pyro probabilistic programming language [58]. We approximate the posterior distribu-342

tion of latent variables αg and wg with mean field normal distributions (AutoNormal343

guide), while optimizing annotation weights τ as point estimates with a Delta distri-344

bution (AutoDelta guide). We apply the Adam optimizer, a learning rate of 0.1, train345

for 300 epochs, and draw 50 samples from the posterior to estimate standard devi-346

ations of the learned parameters. We explore different prior distributions for all key347

parameters.348

Once global τ is learned, we streamline gruyere with a per-gene analysis. Holding τ349

fixed, our model simplifies to a logistic regression where only αg and wg are estimated.350

gruyere efficiently computes gene-level p-values using LRTs comparing a covariate-351

only regression to a combined covariate and genotype regression model:352

LRg = −2× (LLcombinedg
− LLcovariate only), df = 1

13
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gruyere p-value(g) = P (χ2 > LRg)

where LL are the log-likelihoods for each logistic regression. For each cell type, we use
Bonferroni correction to define the p-value significance threshold:

p <
0.05

# genes per cell type
⇒ 2.88× 10−6 < p < 3.64× 10−6

3.3 Cell-type specific RV gene set prediction using the ABC353

model354

We calculate enhancer-gene connectivity using publicly available ATAC-seq and355

H3K27ac ChIP-seq data for human microglia, oligodendrocytes, astrocytes, and356

neurons [28]. We apply ABC to this data following the guidelines and default parame-357

ters provided at https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction.358

This involves first calling candidate peak regions for the ATAC-seq DNase hypersen-359

sitive sites (DHS) using MACS2 (peakExtendFromSummit = 250, nStrongestPeaks =360

150000). Then we quantify enhancer activity as the geometric mean of the read counts361

of DHS and H3K27ac ChIP-seq in candidate enhancer regions. Lastly, we compute362

the ABC score using averaged Hi-C data (hic resolution = 5000) fit to the power-law363

model. The omics data is aligned to hg19, so we converted the ABC-predicted start364

and end positions of enhancers to hg38 for analysis. For each gene and separately365

each cell type, we aggregate all elements E for gene G that have an ABC ≥ 0.02 and366

extract RVs from within these regions to determine our cell-type specific non-coding367

RV gene sets.368

3.4 Calculating functional annotation groups369

We use a range of variant-level functional annotations primarily from the Whole370

Genome Sequencing Annotation database [59]. Annotations with greater than 5%371

missingness in our RVs are removed, resulting in 50 coding variant and 52 non-coding372

variant functional annotations listed in Supplemental Table 2. To reduce dimensional-373

ity of related annotations while accounting for their diverse biological effects, we apply374

non-negative matrix factorization (NMF) to summarize groups of related annotations,375

inspired by STAAR [10]. We use NMF to retain interpretable directional scaling of376

annotations. Based on correlation structure and a priori knowledge, we define six377

major functional categories – splicing, conservation, integrative deleterious predictions,378

brain-related Roadmap epigenetics, population-specific MAF, and enhancer activity379

[15, 60, 61]. Because the splicing annotation group is derived from four SpliceAI pre-380

dictions that are not highly correlated and sparsely distributed, we instead use the381

maximum score for this category. We also include a binary LoF prediction calculated382

with Loss-Of-Function Transcript Effect Estimator (LOFTEE) [62] for coding vari-383

ants along with an intercept term. All annotations are scaled between 0 and 1, where384

a larger value represents increased predicted variant function.385

Deep Learning Delta Scores: For all four cell types, we include additional cell-386

type specific functional annotations: absolute maximum and absolute minimum TF387

delta scores derived from Enformer [14], a deep learning genomics model. We calculate388
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variant delta scores for 5,318 functional genomics assays. The Enformer model predicts389

read counts (in 128 BP bins) of these assays as a function of 196,608 BP input DNA390

sequence. For a particular variant, we compare the model output of the reference391

sequence, centered around the variant position, with the output of the alternative392

sequence which replaces the reference allele with the alternative allele. For a particular393

genomics assay, the delta score is the difference between the sum of reference sequence394

predictions for the middle 32 bins and the sum of the alternate sequence predictions395

for the same bins. We normalize these scores by first calculating the delta scores for396

the approximately 18 million variants from the UK Biobank cohort used in PolyFun397

[63, 64], and then Z-score normalize each assay according based on this collection of398

variants. We apply this normalization to the delta scores used in our analysis. We399

aggregate delta scores to determine composite maximum and minimum predictions400

for each variant, highlighting the delta scores of only the enriched TFs within each of401

the four cell types ([28]). For microglia non-coding variant sets, we additionally use402

delta scores for 4 epigenetic marks (H3K4me3, H3K27ac, H3K27me3, and DNASE)403

for monocytes, a proxy for microglia.404

3.5 Data Simulation405

We use simulations to evaluate gruyere performance. We randomly sample val-
ues for each parameter and use these simulated variables in the GLM framework,
logit(µig) = Xiαg + Gigβg. The real ADSP genotypes Gig, covariates Xi, and func-
tional annotations Zgjk along with simulated parameters αS

g , w
S
g , and τS , generate

simulated phenotypes Y S
ig . Simulations are restricted to a maximum estimated heri-

tability of 30% to realistically evaluate complex diseases. For each simulation, we draw
gruyere parameters from the following distributions:

αS
g ∼ Normal(0, 1), wS

g ∼ Normal(0, 1), τS ∼ Dirichlet(1q)

We define βgj in the same way, simply using simulated variables:

βS
gj = wS

g wj

q∑
k=1

Zgjkτ
S
k

Using this combination of true data and simulated parameters, we sample synthetic406

phenotypes ySg from a Bernoulli distribution. We perform 100 simulations on M =407

500 randomly selected genes. In general, we sample gruyere parameters from the408

same distribution that they are learned. We have also tested model performance when409

simulated data comes from a different distribution than its learned counterpart (e.g.410

sampling wg from a Normal distribution in simulations but fitting from a Gamma411

prior).412

4 Discussion413

We develop gruyere, a functionally-informed RV association test that fits a hierar-414

chy of Bayesian GLMs to estimate genome-wide functional annotation importance,415
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gene effects, and covariate coefficients. gruyere builds upon existing RV methods with416

two key advancements: 1) a genome-wide approach that enables trait-specific weight-417

ing of functional annotations, and 2) a flexible, powerful and calibrated probabilistic418

framework that estimates uncertainty. We incorporate an innovative methodology for419

analyzing RVs in the non-coding genome. Using the Activity-by-Contact model, we420

predict cell-type-specific enhancer-gene connectivity from chromatin state and con-421

formation data, aggregating predictions by gene to define interpretable non-coding422

RV testing regions. We use in silico mutagenesis under state-of-the-art deep learning423

models of pre (SpliceAI) and post (Enformer) transcription gene regulation to pre-424

dict RV effects. Simulation analyses validate gruyere and show it is able to recover425

ground truth parameters across diverse model specifications and even for realistically426

low heritability.427

We apply gruyere, along with a number of established RV association tools, to428

the most recent WGS release from ADSP. Our analysis identifies both known (e.g.,429

TREM2 ) and novel (e.g., NUP93 ) candidate AD genes. Specifically, gruyere uniquely430

identifies 15 genes, of which C9orf78, MAF1, NUP93 and GALNT9 remain signif-431

icant in aggregated Cauchy tests. Our analysis additionally provides an improved432

understanding of AD-relevant functional annotations. gruyere confirms the expecta-433

tion that LoF is the most informative annotation for coding variants, but additionally434

finds deep learning-based predictions for splicing, TF binding and chromatin state are435

highly predictive of functional non-coding RVs.436

We use ancestry principal components as covariates to account for population437

diversity, but one area for future work would be integrating a random effect term to438

better account for relatedness and population structure [65]. Another possible exten-439

sion to gruyere would be incorporating gene-level features as priors [66]. While we440

focus our analysis on AD, gruyere can be applied to any complex disease with suf-441

ficient WGS data. As the quality of functional annotations continues to improve,442

gruyere will become an increasingly valuable tool for identifying disease-associated443

genes and annotations.444
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Martin, E.R., Montes, A.M., Rodŕıguez, C.M., Masullo, C., Mayeux, R., Mead,696

S., Mecocci, P., Medina, M., Meggy, A., Mehrabian, S., Mendoza, S., Menéndez-697
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