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Abstract: The production of healthy agricultural products has increased the demand for innova-
tive and sustainable plant protection technologies. RNA interference (RNAi), described as post-
transcriptional gene silencing, offers great opportunities for developing RNA pesticides for sustain-
able disease and pest control. Compared with traditional synthesized pesticides, RNA pesticides
possess many advantages, such as strong targeting, good environmental compatibility, and an easy
development process. In this review, we systematically introduce the development of RNAi technol-
ogy, highlight the advantages of RNA pesticides, and illustrate the challenges faced in developing
high-efficiency RNA pesticides and the benefits of nanocarriers. Furthermore, we introduce the
process and mechanism of nanocarrier-mediated RNAi technology, summarize the applications of
RNA pesticides in controlling plant pathogens and pests, and finally outline the current challenges
and future prospects. The current review provides theoretical guidance for the in-depth research and
diversified development of RNA pesticides, which can promote the development and practice of
nanocarrier-mediated RNAi.

Keywords: dsRNA delivery system; nanoparticles; pathogens and pests management; sustainable
agriculture; RNA pesticide

1. Introduction

The production and safety of food have always been the primary problems for human
survival and social development. In recent years, crop diseases and pests have caused
substantial economic losses for agricultural production throughout the world. To address
the escalating demands of a continuously growing global population, traditional synthe-
sized pesticides have been extensively utilized to mitigate agricultural losses due to plant
diseases and pests, thereby enhancing the quality and quantity of agricultural production.
However, their unscientific application poses a grave threat to both environmental and hu-
man health [1,2]. Therefore, the development of efficient and eco-friendly plant protection
technology has become a major global strategic demand.

As a highly conserved, sequence-specific method for inhibiting gene expression, RNA
interference (RNAi) was first identified in the nematode Caenorhabditis elegans by An-
drew Z. Fire and Craig C. Mello, who received the 2006 Nobel Prize in Physiology or
Medicine [3]. Since its discovery, RNAi has swiftly emerged as a potent reverse genetic
tool for exploring gene function, regulation, and interaction at both the cellular and organ-
ismal levels, while also demonstrating immense potential in controlling plant pathogens
and pests [4–8]. RNA pesticides are mainly based on the RNAi principle of inhibiting
the expression of important functional genes in harmful organisms, resulting in their de-
velopmental retardation or death [9–11] and are regarded as “the third revolution in the
history of pesticides” due to their extensive advantages such as precision, high efficiency,
being pollution-free, etc. [12]. However, the RNAi effect is moderate or temporary in
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many recalcitrant pests and pathogenic microorganisms, and the major challenges include
double-stranded RNA (dsRNA) instability in the environment and organisms, dsRNA
accumulation in lysosomes, and low delivery efficiency of dsRNA across various biological
physical barriers (i.e., the insect body wall and microbial cell wall) [6,13–17]. Therefore, it
is necessary to develop an efficient dsRNA delivery system to increase the stability and
delivery efficiency of dsRNA.

In the past decade, nanotechnology has been widely used in various fields such as
medicine, electronics, aerospace, life sciences, and agriculture [18,19]. Nanomaterials
are regarded as the most promising materials in the 21st century due to their excellent
physical and chemical properties, and they have been extensively applied to construct
nano-delivery platforms, thus becoming a research hotspot in the fields of medicine and
modern agriculture [20,21]. Currently, nanocarrier-mediated RNAi has been reported as
a novel method for delivering dsRNA to improve RNAi efficiency [22–25]. Nanocarri-
ers can assemble with nucleic acids through electrostatic interaction, hydrogen bonding,
and Van der Waals forces. In the process of dsRNA delivery, nanocarriers can protect
dsRNA from degradation by nucleases in organisms, increase dsRNA uptake via activating
clathrin-mediated endocytosis, and aid dsRNA to achieve early endosomal escape, thereby
improving RNAi efficiency [26]. In this review, we systematically introduced the devel-
opment of RNAi technology, summarized the advantages of RNA pesticides, expounded
the advances, process, and mechanism of nanocarrier-mediated RNAi, discussed the ap-
plication of RNA pesticides in controlling pests and diseases, and finally put forward the
current challenges and future prospects.

2. RNAi Technology for Gene Function Analysis and Pesticide Development

RNAi is a widespread post-transcriptional gene silencing phenomenon in eukaryotes,
triggered by the efficient and specific degradation of homologous mRNA by double-
stranded RNA (dsRNA) [27]. To date, three major RNAi pathways have been identified
in organisms, such as the short/small interfering RNA (siRNA) pathway, microRNA
pathway, and Piwi-interacting RNA pathway [6]. Among them, siRNA is a kind of double-
stranded RNA with a length of 19–21 bp, and it is the most widely studied pathway. When
exogenous dsRNA enters the cell interior, it is cleaved by Dicer2 into siRNAs of 19–21 bp
in length [28,29]. Subsequently, siRNA binds to the RNA-induced silencing complex
(RISC) assembled by Ago2 and other RISC-associated proteins (RP) and unwinds into
single-stranded RNA. The sense strand is degraded, while the antisense strand guides the
cleavage of the complementary target mRNA, thereby achieving gene silencing [6,30].

For gene function analysis in insects, RNAi was initially applied in the model insect
Drosophila melanogaster. Kennerdell and Carthew [31] initially conducted RNAi research
in Drosophila, and successfully confirmed that two genes, frizzled and frizzled2, belong to
the wingless signaling pathway. So far, RNAi, as a powerful research tool, has helped
researchers perform large-scale identification of functional genes in many economically
important insects. RNAi technology is not only a powerful research tool but also a novel
and safe strategy for plant protection [4,32]. RNAi can be applied to inhibit the expression
of important genes for pest growth, causing developmental disorders or death [33,34]. Thus,
it is specific, safe, and easy to operate, making it suitable to be applied to the development
of RNA pesticides [6,35]. In 2007, Monsanto, a company in the United States, successfully
developed transgenic maize that expresses V-ATPase A dsRNA, which can be applied to
control the western corn rootworm (WCR) Diabrotica virgifera virgifera [4]. Subsequently,
this transgenic maize was approved by the Food and Drug Administration (FDA) for
commercial cultivation in 2017. For the development of a sprayable dsRNA product,
Greenlight Biosciences announced a dsRNA product named Ledprona for controlling the
Colorado potato beetle Leptinotarsa decemlineata [36], which was approved by the United
States Environmental Protection Agency (EPA) in December 2023, making it the world’s
first sprayable RNA biopesticide for commercial application.
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3. Advantages of RNA Pesticide Compared with Traditional Pesticides

At present, the long-term use of chemical pesticides results in pesticide resistance and
residues, leading to environmental pollution, higher control costs, and serious biosecurity
problems [2]. RNA pesticides, as a new pest control strategy, have many features and
advantages compared with traditional pesticides [7,37]. RNAi is highly specific, and its
sequence-dependent mode of action has also attracted great interest in crop protection [27,28].
RNAi triggers, such as artificial microRNAs, hairpin-structured RNAs, and dsRNAs, can
be specifically designed to selectively target the specific genes in harmful organisms [38].
Thus, it is possible to achieve specific control of a target species or group of species without
harming non-target species. Related studies have proved that the use of RNA pesticides
can effectively control tomato leaf miner (Tuta absoluta) and cotton bollworm (Helicoverpa
armigera) without affecting non-target organisms [39,40]. The RNAi strategy can also be
applied to reduce honeybee parasites such as Varroa mites and internal microsporidian
parasites without harmful effects on bees [41–43]. In addition, it has been demonstrated
that dsRNA has a short duration in the environment, with analyses of soil and plants
treated with dsRNA showing that dsRNA breaks down rapidly, within 2–3 d, which means
that there are fewer concerns about the unintended contamination of water supplies, soils,
and other environmental factors [44,45]. In addition, since all organisms have evolved
to break down dsRNA and apply the nucleic acids as cellular nutrients, this technology
would be safer than traditional pesticides [46–48].

The simple process and low costs for developing RNA drugs/pesticides are great
advantages compared to traditional drugs/pesticides. In the medical field, the development
time of novel coronavirus mRNA vaccines has been shortened to 11 months compared
to several years for traditional vaccines [49]. The same is true for RNA pesticides, which
have a much shorter development cycle compared to traditional pesticides. Statistically, the
successful marketing of a new pesticide species requires an average of 160,000 compounds
to be screened, at a cost of about 300 million dollars and a time frame of 12 years [50].
When the production technology and formulation technology for dsRNA are solved, it will
only be necessary to screen new targets to develop spray-type RNA pesticides. In addition,
RNA pesticides can also be designed and tested faster (in about 2–3 years) than transgenic
crops, which can take 10 to 20 years and cost hundreds of millions of dollars [51].

Transgenic technologies have been successfully applied to develop transgenic crops
with improved plant disease and pest resistance via RNAi strategies [10,47]. Recently,
several studies have highlighted the promising potential of this strategy in plant protec-
tion. Researchers have demonstrated that the expression of dsRNA targeting the effector
Avra10 of Blumeria graminis in both barley (Hordeum vulgare) and wheat (Triticum aestivum)
can inhibit Avra10 expression, affecting the growth of the powdery mildew fungus and con-
sequently diminishing its pathogenicity [52]. The first genetically modified (GM) maize crop
(MON87411), expressing dsRNA against the WCR, has received approval for cultivation
in more than 15 countries [10]. However, the transformative RNAi-based approach faces
expensive capital requirements and the public acceptance of GM crops. Non-transformative
RNA pesticides can be used in the same convenient and diversified ways as synthesized
pesticides, such as in sprays, root/seed soaking, trunk injection, and petiole absorption,
compared with GM crops [34,53,54]. For instance, researchers have reported that bacterially
expressed dsHvSnf7, applied to detached plant leaves, causes 98% mortality in Henosepi-
lachna vigintioctopunctata [55]. In crop disease control, spray-induced gene silencing (SIGS)
technology has been applied to a variety of crops, such as rice (Oryza sativa) and tomato
(Solanum lycopersicum) [16,56,57]. In summary, these studies have highlighted the potential
of utilizing non-transformative RNA pesticides to control plant pathogens and pests.
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4. Bottlenecks for Developing High-Efficiency RNA Pesticides
4.1. Instability of dsRNA

dsRNAs are environmentally unstable and are susceptible to degradation by UV light,
rain scouring, high temperature, and nucleases (Figure 1) [34,58]. The dsRNases inside
insects or pathogenic microorganisms can affect the stability of dsRNA, which seriously
affects the interference efficiency of RNA pesticides in harmful organisms [59]. For instance,
the expression suppression of dsRNase genes in L. decemlineata, Schistocerca gregaria, Manduca
sexta, and Apolygus lucorum by RNAi can significantly reduce the degradation of dsRNAs
and enhance the stability and persistence of dsRNAs in insects [60–63]. In addition, the
pH environments in insects can potentially affect RNAi efficiency. The physiological pH
values of insect hemolymph are generally between 6.4 and 7.5 but vary greatly in the
digestive guts [53]. On the one hand, RNA is highly prone to hydrolysis in environments of
pH > 6.0 or <3.0 [54]. On the other hand, dsRNases exert higher enzyme activity under
alkaline conditions to promote dsRNA degradation [55,56]. For instance, LmdsRNase2 is
highly expressed in the midgut of Locusta migratoria and rapidly degrades dsRNA under
alkaline extracellular conditions [15,64]. Many lepidopteran insects that are less sensitive
to RNAi also have strong nuclease activity in the alkaline gut environment [65,66].
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4.2. Obstacles for Delivering dsRNA

There are two obstacles for the delivery of dsRNA. One is the way to deliver dsRNA
in vitro. Various methods have been tested for dsRNA delivery in insect species, including
microinjection, oral feeding, and so on [67–70]. The advantage of microinjection is that
it can deliver a precise amount of dsRNA into target tissues, and it is suitable for the
functional identification of genes, not for field application [71]. Oral feeding is obviously
more convenient and suitable for application in the field, but dsRNA is affected by both
the external environment and the presence of dsRNases [14,72]. The other obstacle is the
absorption, transport, and escape of dsRNA in vivo. Studies have shown that exogenous
dsRNA enters cells mainly through systemic RNAi deficiency (Sid) protein-mediated
uptake and clathrin-dependent endocytosis. Winston et al. [73] first found that Sid-1 was
involved in the uptake of dsRNA in C. elegans. Subsequently, Sid-1 homologs have been
identified in insects, but the Sid-1-like genes in insects do not mediate the uptake of
dsRNA [74]. Since Ulvila et al. [75–77] first discovered that dsRNA enters D. melanogaster
S2 cells via the clathrin-dependent endocytosis pathway, most publications have supported
this mechanism. Bafilomycin-A (Baf A) can inhibit the efflux of protons across the plasma
membrane and has been widely applied to block clathrin-mediated endocytosis [78]. The
application of Baf A in S. frugiperda results in the failure of cellular uptake of dsRNA
and the loss of biological function of dsATP-d [26]. When exogenous dsRNAs enter the
cell, they rapidly enter the early endosomes, translocate into the late endosomes with the
participation of Rab and other proteins, and then fuse with lysosomes to be degraded [29,71].
Therefore, RNAi efficiency is also contingent upon dsRNA’s successful escape from both
early and late endosomes.

5. Process and Mechanism of Nanocarrier-Mediated RNAi

The low stability and delivery efficiency of dsRNA have been restricting the develop-
ment of high-efficiency RNA pesticides. Recently, studies have demonstrated that the stabil-
ity of dsRNA can be enhanced through the strategy of nanocarrier-loaded dsRNA [54,71].
The process and mechanism of nanocarrier-mediated dsRNA delivery can be summarized
into four main steps: nucleic acid binding or encapsulation, cellular uptake, endosomal
escape, and the release of nucleic acids or degradation of nanocomplexes (Figure 2).

In most cases, positively charged nanocarriers can self-assemble with negatively
charged dsRNA to form dsRNA/nanocarrier complexes via electrostatic interaction [79,80].
Additionally, hydrogen bonding and Van der Waals forces contribute significantly to the
self-assembly process of complexes [26]. For instance, chitosan possesses large numbers
of positively charged amino groups under slightly acidic conditions, which can interact
electrostatically with negatively charged dsRNA to form dsRNA/chitosan complexes [81,82].
Another nanocarrier that possesses tertiary amines, such as SPc, can also be loaded with
dsRNA by electrostatic interaction. Additionally, hydrogen bonding and Van der Waals
forces also play significant roles in the self-assembly of dsRNA/SPc complexes [26].

The dsRNA/nanocarrier complexes are typically positively charged, facilitating in-
teractions with the negatively charged cell membrane [83]. Upon interaction with the
cell membrane, dsRNA/nanocarrier complexes enter the cell mainly through receptor-
mediated endocytosis [84–86]. For instance, SPc can activate clathrin-mediated endocytosis
by up-regulating some key genes such as Chc, AP2S1, and Arf1. The suppression of endocy-
tosis can hinder the cellular uptake of SPc-delivered dsRNA in vitro, and the subsequent
RNAi effect also disappears in vivo [26]. Additionally, SPc can also activate the endocytosis
pathway of potato plants to amplify the defense responses induced by the chitosan elicitor
against potato late blight [87].
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After the cellular uptake, dsRNA/nanocarrier complexes are typically coated by
membrane-bound vesicles called endosomes. If complexes fail to escape from the endosome,
they will ultimately be degraded within the lysosome along with the endosome [88,89].
The mechanism of endosomal escape remains controversial, with the “proton sponge”
effect being one of its widely accepted hypotheses. For instance, many cationic polymers
exhibit a robust buffering capacity within a pH range of 5 to 7, and this acidic environment
can result in the protonation of their amine groups, thereby causing a water influx that
leads to endosome lysis [84,90]. Compared to naked dsRNA, the dsRNA/SPc complex
rapidly disperses from early nuclear endosomes into the cytoplasm, and there is nearly
no accumulation of SPc-delivered dsRNA in the late endosomes, suggesting that SPc pro-
motes the endosomal escape of dsRNA [26]. Furthermore, cationic lipid nanoparticles
have a unique endosomal escape mechanism that destabilizes endosomes by recogniz-
ing and binding to phospholipids on the endosomal membranes, thus accomplishing
endosomal escape [91,92].

After the endosomal escape, dsRNA/siRNA must be released from the nanocarrier to
activate the RNAi pathway and exert its biological effects. However, there are few studies
on the mechanism of dsRNA/siRNA release from nanocarriers, which primarily involves
two release mechanisms. One mechanism is a slow competitive displacement process,
which is the process of replacing and releasing dsRNA/siRNA by various highly charged
polyanions, such as heparin, chondroitin sulfate, and other analogues with high affinity
for nanocarriers [93–95]. Another mechanism is based on the response of nanocarriers to
intracellular stimuli. The physical or chemical properties of nanocarriers can be altered in
response to stimulation by intracellular stimuli such as acidic pH and cytosolic reducers.
For instance, poly (β-amino ester) nanocarriers respond to environmental pH changes,
while disulfide-containing (S-S) nanocarriers are stimulated by intracellular glutathione
redox reactions, and these changes aid the release of dsRNA/siRNA [86,96,97].
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6. Potential Application of Nanocarrier-Based RNA Pesticides
6.1. Successful Cases of Nanocarrier-Mediated RNAi

In recent years, various nanocarriers have been designed for the delivery of dsRNA to
overcome the delivery barriers of dsRNA, and they have been successfully applied in pest
control (Table 1). In insect RNAi, chitosan nanocarrier-loaded dsRNA was first used for
silencing chitin synthase genes in Anopheles gambiae, resulting in the AgCHS1 transcript level
and chitin content being reduced by 62.8% and 33.8%, respectively [81]. Furthermore, the
chitosan coupled with cross-linkers such as sodium tripolyphosphate, polyethylene glycol,
and polyethyleneimine can enhance the transfection efficiency of dsRNA/siRNA and pro-
tect dsRNA/siRNA from degradation [98,99]. Carbon quantum dots (CQD) and liposomal
lipofectamine 2000 nanocarriers can significantly improve RNAi efficiency and mortality
of Chilo suppressalis [100]. He et al. [101] and Zheng et al. [23] successfully constructed
a series of cationic core-shell fluorescent nanocarriers based on perylene diimide, which
can significantly down-regulate the expression of target genes in Agrotis ypsilon and Aphis
glycines, inhibiting their growth and development via various delivery methods such as
injection, feeding, and topical application. An SPc-based transdermal dsRNA delivery sys-
tem was successfully constructed and applied to a variety of lepidopteran and hemipteran
pests, such as A. ypsilon, S. frugiperda, A. glycines, Myzus persicae, etc. [24,102–104]. Addition-
ally, nanocarriers can also improve RNAi efficiency in plant pathogenic microorganisms
(Table 2). For instance, dsRNA-CDs display excellent control effects on Phytophthora in-
festans, P. sojae, and both the wild-type and fungicide-resistant P. capsici. [25]. Artificial
nanovesicles (AVs) have been synthesized by using three different cationic lipid formula-
tions, which can improve dsRNA stability, leading to prolonged RNAi-mediated protection
against the fungal pathogen (Botrytis cinerea) in both pre- and post-harvest plants [105].

Table 1. Applications of nanocarrier-mediated RNA pesticides for pest management.

Nanoparticle Insect Target Gene Delivery Method Reference

Chitosan

Chilo suppressalis CHSA, CHSB, G3PDH Oral feeding [100]

Spodoptera frugiperda IAP Oral feeding [106]

Apolygus lucorum GRK2 Oral feeding [82]

Bemisia tabaci ECR Oral feeding [107]

Tetranychus cinnabarinus TcCHIT10, Tcβ-COP, TcCHC Oral feeding [108]

Aedes aegypti

SNF7 Oral feeding [109]

Sema1a Oral feeding [110]

DOPAL synthase Oral feeding [111]

Vestigial gene Oral feeding [112]

Anopheles gambiae

Chitin synthase 1 Oral feeding [81]

Chitin synthase 2 Oral feeding [110]

Cadherin1, Cadherin2 Oral feeding [113]

PEG–Chitosan Nilaparvata lugens NlCHSA Topical application [114]

Chitosan–sodium
tripolyphosphate

Aedes aegypti IAP Oral feeding [98]

Helicoverpa armigera
JHAMT, ACHE Oral feeding [40]

Lipase, chitinase Oral feeding [115]

Liposom

Drosophila melanogaster V-ATPaseE Soaking and oral feeding [38]

Drosophila suzukii Vha26 Oral feeding [116]

Euschistus heros V-ATPaseA0, Muscle actin Oral feeding [117]

Chilo suppressalis CHSA, CHSB, G3PDH Oral feeding [100]

Spodoptera frugiperda IAP Oral feeding [118]
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Table 1. Cont.

Nanoparticle Insect Target Gene Delivery Method Reference

Perylenediimide-cored
cationic dendrimers

Ostrinia furnacalis

Serpin-3 Oral feeding [22]

Chitinase-like, CHT10 Microinjection and
oralfeeding [101]

Aphis glycines Hemocytin Topical application [23]

Star polycation

Agrotis ypsilon V-ATPase Microinjection and
oralfeeding [24]

Spodoptera frugiperda
V-ATPaseD, chitin synthase1 Soaking, topical application,

and oral feeding [102]

ECR Spraying [119]

Aphis glycines Treh, V-ATPaseD, V-ATPaseE, chitin synthase1 Topical application
and spraying [103]

Myzus persicae vestigial, ultrabithorax Topical application [120]

Aphis gossypii AgCHS2, AgHK2 Spraying [121]

Blattella germanica BgCHS1, BgCHS2 Oral feeding [122]

Block copolymer Locust migratoria LmCHS1, LmCHS2 Oral feeding [123]

Branched amphiphilic
Peptide capsules

Acyrthosiphon pisum Armet, BiP Oral feeding [124]

Tribolium castaneum Armet, BiP Oral feeding [124]

Carbon quantum dot Chilo suppressalis CHSA, CHSB, G3PDH Oral feeding [100]

Metal organic framework Nilaparvata lugens NlCYP303A1 Oral feeding [125]

Graphene oxide Drosophila suzukii vATPase Oral feeding [126]

Table 2. Applications of nanocarrier-mediated RNA pesticides for plant pathogen management.

Nanoparticle Host Pathogen Target Gene Reference

Star polycation rice Rhizoctonia solani RsAGO1, RsAGO2 [127]

Artificial nanovesicles tomato, grape Botrytis cinerea Dicer-like 1, Dicer-like 2 [105]

Layered double
hydroxide

cowpea
Common mosaic virus CMV2b [128]

Bean common Mosaic virus Coat protein [129]

grape, cherry Botrytis cinerea erg13, erg11, erg1 [130]

maize Rhizoctonia solani RsCRZ1 [131]

tomato Botrytis cinerea BcDCL1/2, BcVDS [132]

Carbon dot Nicotiana benthamiana, chili Phytophthora infestans, Phytophthora sojae, Phytophthora capsici CesA3, OSBP1 [25]

6.2. Application Method of Nanocarrier-Based RNA Pesticides

For nanoparticle-based RNA pesticide applications, foliar spray, irrigation, and trunk
injection would be good choices to improve bioactivity (Figure 1). Crops can be sprayed
directly with RNA pesticides that target plant pathogens or pests. GreenLight Biosciences
has developed sprayable RNA pesticides for controlling V. mites, L. decemlineata, powdery
mildew, gray mold, and so on [59]. Among them, Ledprona is a sprayed dsRNA product
for controlling L. decemlineata [36], which has been approved by the EPA for commercial-
ization. Nanocarriers can also promote the delivery of dsRNA through root application
in Arabidopsis and maize, which is conducive to the development of irrigation and trunk
injection [133]. For example, SPc can deliver nucleic acids into plants though root applica-
tion, which leads to the gene silencing and wing aberration of green peach aphids feeding
on plants [120]. In addition, food bait and seed coating are also potential application
methods for nanocarrier-based RNA pesticides.
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7. Current Challenges and Future Perspective
7.1. Control Efficacy of RNA Pesticides

RNAi efficiency varies greatly among different insect species, being high in some
coleopterans and orthopterans, such as Tribolium castaneum, L. decemlineata, L. migratoria,
and S. gregaria [134–136], but low in lepidopterans, hemipterans, and others [72,137]. Even
if different insect species have the same genes or transcripts, RNAi efficiency can vary
greatly among them [138]. Therefore, it is necessary to continuously screen for specific
RNAi target genes that have high lethal effects. In addition, the dsRNAs targeting multiple
genes have shown potential for synergistic effects. For instance, larvae fed with dsIAP and
dsCOP sequentially show a higher mortality (55%) than those fed with only dsIAP (33%) or
dsCOP (24%) in Agrilus planipennis [139]. The simultaneous ingestion of both dsRNAs at low
concentrations (1 µg/µL) results in up to 90% mortality, whereas a single dsRNA treatment
shows similar mortality but at much higher concentrations (10 µg/µL) [140]. Nanocarriers
can be also loaded with dsRNAs of multiple genes for further enhanced synergistic effects.
In T. castaneum, larvae fed with both dsRNAs complexed with BACPs have 20% and
30% higher mortality rates than those fed with dsBiP/BACPs or dsArmet/BACPs alone,
respectively [124]. Ma et al. [104] sprayed an SPc-loaded dsRNA formulation, co-targeting
V-type proton ATPase subunits d (ATP-d) and G (ATP-G) of M. persicae, with a high control
efficacy of 61% at 3 d, but its bioactivity and persistence were not as good as those of
synthetic/botanical pesticides.

To improve the control effect of RNA pesticides, our team has constructed a novel mul-
ticomponent nano-pesticide with co-delivery of dsRNA and pesticides. This co-delivery can
achieve high bioactivity and long persistence for sustainable disease and pest management.
For instance, Li et al. [141] constructed a novel multicomponent nano-pesticide by using
SPc for co-delivering hemocytin dsRNA and botanical pesticide matrine, which improves the
persistence of dsRNA and overcomes the slow action of matrine. Yan et al. [142] developed
a multicomponent nano-pesticide (pesticide/SPc/dsNrf2 complex) using a bacterial expres-
sion system and nano-delivery system. It had a good control effect on S. frugiperda, and its
control efficacy remained at 94.91% at 7 d after application, while it was only 62.69% for
pesticide alone. In addition, the development of multicomponent nano-bioprotectants is
also an eco-friendly strategy to manage plant pathogens. Herein, a self-assembled mul-
ticomponent nano-bioprotectant for potato late blight is designed based on dsRNA and
a plant elicitor, and it displays a good protective effect (68%) compared with the widely
used mancozeb fungicide (53%) [143]. Moreover, in addition to the management of agricul-
tural diseases and pests, RNA pesticides can be also used in combination with chemical
herbicides to control weeds, which is regarded as a new strategy for weed control in
the future.

7.2. Risk Assessment of RNA Pesticides

The long-term use of traditional chemical pesticides can lead to pest resistance, and
plant pathogens and pests can also develop resistance to RNA pesticides. Insects may
evolve resistance to RNA insecticides through mismatches between dsRNA and target
mRNA sequences caused by genetic mutations or polymorphisms [144]. Insects can also
become resistant to RNA pesticides by preventing cells from taking up dsRNA. For exam-
ple, a DvSnf7 dsRNA-resistant WCR population was screened and established by a field
experiment, and the Cy3-labeled DvSnf7 dsRNA was observed in midgut cells of the
dsRNA-sensitive population, but not in the resistant population, indicating that the dsRNA
uptake by midgut cells is impaired in resistant WCR [145]. Liao et al. [146] screened
resistant willow leaf beetle (Plagiodera versicolora) in the laboratory and found that the
development of resistance may be related to the impaired uptake of dsRNA by midgut cells.
In addition, the down-regulation or mutation of genes in RNAi machinery may also be
a potential mechanism for the development of dsRNA resistance. Yoon et al. [69] identified
the dsRNA binding protein StaufenC as a major player for processing dsRNA into siRNA,
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but the resistant cells show lower expression of StaufenC, which may be a potential target
for overcoming dsRNA resistance.

In addition to the resistance problem, another problem associated with the application
of RNA pesticides is the unintended effects on non-targets. RNA insecticides have a rela-
tively narrow insecticidal spectrum, and species taxonomically related to the target pest are
more likely to be susceptible [147]. Therefore, to avoid the potential risks of RNAi products,
researchers need to exclude the risks that dsRNAs may pose to non-target organisms in
a sequence-specific manner when designing RNA pesticides. In addition, although the
application of nanocarriers may improve the persistence of RNA pesticides, nanocarriers
may introduce new environmental and human health hazards, especially the biotoxicity of
nanocarriers. For example, SPc can damage the cell membrane and nucleus of intestinal tis-
sue at very high concentrations but does not show toxicity at working concentrations [148].
Consequently, strict application guidelines must be followed when it is used at a large
scale. Additionally, the concentration of dsRNA should be also noted. High applied con-
centrations of dsRNA may saturate the core mechanism of RNAi and activate the immune
system, which may have harmful effects on organisms [149].

7.3. Biosynthesis of dsRNA

To reduce the production cost of dsRNA for field applications, large-scale dsRNA
synthesis using microbial fermentation is considered one of the most promising meth-
ods. Recently, dsRNA has been expressed and synthesized in a variety of microorgan-
isms, including Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, etc. [150–152]. The
L4440-HT115 system is the most widely used dsRNA expression system and has been success-
fully applied in the RNAi of Mythimna separate, L. decemlineata, Bactrocera dorsalis, etc. [153–155].
However, its synthesis efficiency and yield are still not enough to satisfy large-scale field appli-
cation. Currently, researchers constructed an innovative pET28-BL21 (DE3) RNase III- system
for the efficient expression of large batches of dsRNA, boasting a dsRNA expression efficiency
that is three times higher than that of the widely utilized L4440-HT115 (DE3) system [156].
In addition, the cost of dsRNA production has been reduced from USD12,000/g in 2008 to
USD1/g in 2021 through the continuous endeavors of many biological companies [34,54,157].
Among them, GreenLight Biosciences has further reduced the production cost of dsRNA to
USD0.5/g for field applications [54,158]. Thus, it appears that the current cost of dsRNA
production is fully compatible with the commercialization of RNA pesticides.
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