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Abstract: A nondestructive evaluation of the hydrogen damage of materials in a hydrogen environ-
ment is important for monitoring the running conditions of various pieces of equipment. In this
work, a new thermostatic electrolytic hydrogenation in situ ultrasonic test system (In Situ TEH-UT)
was developed. The system operates by combining cross-correlation delay estimation and frequency
domain amplitude estimation and hence improves measurement accuracy with respect to ultrasonic
propagation time and amplitude, allowing in situ ultrasonic evaluation of the hydrogen-charging pro-
cess in X80 pipeline steel. The experimental results show that under a 30 mA/cm2 hydrogen-charging
current, the hydrogen saturation time of X80 pipeline steel is 800 min. Between 0 and 800 min, the
attenuation coefficient and amplitude attenuation both demonstrate a strong linear relationship with
the hydrogen-charging time. After 800 min, the attenuation coefficient and amplitude attenuation
do not change further, while the attenuation coefficient fluctuates greatly. Through the characteri-
zation of the microstructures of the materials analyzed, it was found that hydrogen-induced cracks
(HICs) constituted the main reason for the change in the ultrasonic parameters, and the mechanism
behind the hydrogen-induced damage layer (HIDL) was determined. This study provides reference
significance for clarifying the change mechanism of ultrasonic parameters under hydrogen damage
conditions and determining the extent of hydrogen damage using an ultrasonic technique.

Keywords: in situ ultrasonic characterization; hydrogen damage evolution; hydrogen-induced crack;
X80 pipeline steel

1. Introduction

With the increasing demand for oil and gas, pipeline transportation has become the
first choice for oil and gas delivery due to its low cost, high efficiency, safety, and minimal
environmental impact [1,2]. However, among these multiple aspects, the safety of pipeline
transportation is affected by many factors; specifically, damage and failure caused by the
introduction of hydrogen atoms in pipeline steels are found more and more frequently [3,4].
Currently, X80 pipeline steel is widely used in pipeline transportation because of its high
strength, good ductility, and, in particular, its satisfactory walkability [5]. However, it
has also been realized that in a hydrogen atmosphere (petroleum, natural gas, coal gas,
cathodic protection, etc.), X80 steel is prone to interacting with hydrogen atoms, resulting
in corresponding hydrogen damage and failure [6,7]. This makes it essential to be able to
carry out non-destructive testing and monitoring of the degree of hydrogen damage in this
type of steel since the extraction and transportation of oil and gas generally occur in remote
regions far from human society.

As is well known, destructive testing methods were often used to evaluate hydrogen
damage in materials in the early days, including methods like metallographic analysis [8],
the slow strain rate tension test (SSRT) [9], toughness tests [10], fracture surface analysis [11],
etc. Zhou et al. studied the effect of internal hydrogen and surface hydrogen absorption on
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the hydrogen embrittlement of X80 pipeline steel via a tensile test before and after annealing
and a hydrogen permeation test with different strain rates [12]. However, these destructive
tests are not convenient for online hydrogen damage detection for in-service equipment.
Non-destructive testing (NDT) has thus become an important research topic with regard to
evaluating the hydrogen damage inflicted on materials [13]. The NDT approaches generally
include eddy current [14], acoustic emission [15], ultrasonic and neutron diffraction [16], etc.
Kruger applied non-destructive testing technology and ultrasonic spectrum analysis to steel
samples to detect micro-cracks caused by hydrogen in an H2S environment and discovered
that the second-order moments showed greater variability for hydrogen-attacked materials
than for non-attacked ones [17].

As a mainstream nondestructive testing technology, ultrasonic methods can indirectly
reflect the microstructural characteristics of different materials and are widely used in the
fields of material damage detection and material structure integrity assessment [18–20]. In
the field of hydrogen damage detection, researchers usually combine acoustic parameters
such as ultrasonic speed, attenuation, and various anisotropic coefficients to construct
hydrogen damage evaluation models and evaluate the degrees of hydrogen damage in
materials. For example, Ye et al. employed surface waves to characterize early hydrogen
damage in AISI 304 austenitic stainless steel. Their results showed the high-frequency
surface wave velocity would change with hydrogen-induced martensitic transformation
when increasing the hydrogen-charging time [21]. Frolova et al. detected the local hydrogen
damage zone of rolled steel, along with the acoustic anisotropy magnitude, based on the
polarization S-wave probe. They found that the acoustic anisotropy magnitude had a good
correlation with the concentration of hydrogen dissolved, and the correlation coefficients
of several samples amounted to 0.95 [22]. However, these studies used parallel samples for
offline detection. The number of samples that can be obtained using this method is limited,
and real-time ultrasonic information during the infliction of hydrogen damage cannot be
obtained. For example, monitoring hydrogen damage in hydrogen transport pipelines is
an important means of ensuring the safe operation of these pipelines. However, in this type
of detection, the pipeline itself cannot be damaged, so damaged offline samples are not
applicable, and only non-destructive testing can be used.

In this work, we report a new type of thermostatic electrolytic hydrogenation in situ ul-
trasonic test system (In Situ TEH-UT). This system was developed to realize the acquisition
of ultrasonic signals in the process of continuous hydrogen charging in X80 pipeline steel.
The ultrasonic characteristic parameters under different hydrogen-charging times were
obtained by using the cross-correlation delay estimation algorithm and frequency domain
amplitude estimation algorithm. By means of the multi-sample method and microscopic
characterization, the mechanism behind the ultrasonic detection of hydrogen damage in
X80 pipeline steel was elucidated, and with the use of this new system, a hydrogen damage
detection and prediction model was established.

2. Experimental Section
2.1. Materials

The X80 pipeline steel employed was supplied by Pipe-China, and its nominal com-
position is shown in Table 1. The X80 pipeline steel was cut into rectangular samples
measuring 30 mm × 20 mm × 8 mm via the wire-cutting method, polished with sandpaper
to 800# in a step-by-step fashion, and then fully polished.

Table 1. Chemical composition of X80 pipeline steel (wt.%).

C Si Mn P S Al V

0.0699 0.177 1.642 ≤0.085 ≤0.0018 0.268 0.0254

Nb Ti Cr Mo Ni Cu H

0.0495 0.0124 0.085 0.195 0.255 0.14 ≤2.5 ppm
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2.2. Equipment

In Situ TEH-UT consists of a thermostatic electrolytic hydrogenation device and an in
situ ultrasonic test system, as shown in Figure 1.
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2.2.1. Electrochemical Hydrogen Charging

The thermostatic electrolytic hydrogenation device uses a linear DC steady electric
source (IT6834, Itech, China), and 0.5 mol/L of H2SO4 is used as the electrolyte solution for
electrochemical hydrogen pre-charging, in which 0.2 g/L of thioureas was added as catalyst.
Pt electrode was used as the anode of the hydrogen-charging system, and the specimen was
connected to the cathode; the current density for hydrogen pre-charging was 30 mA/cm2.
A liquid thermostatic bath (HLC-2005E, Huxi, China) was used to circulate cooling water
in the outer layer of the double-layered electrolytic cell to ensure the temperature during
the hydrogen-charging process remained 25 ◦C.

2.2.2. Ultrasonic Measurements and Signal Processing

The in situ ultrasonic test system consists of the following parts: a signal generator
(AFG3252, Tektronix, America), a power amplifier (AG1016, T&C, America), an oscilloscope
(SDS2074X Plus, Siglent, China) to demonstrate the needed signals on a real-time basis,
a low-pass filter, a duplexer (for isolating the transmitting and receiving signals in the
system), an ultrasonic transducer, and a computer for processing the data collected. The
process of hydrogen charging is briefly described as follows. The signal generator generates
a burst signal with a center frequency of 2.5 MHz, which is amplified by the power amplifier
and filtered by the low-pass filter. An ultrasonic transducer with a fixed center frequency is
selected as the transmitting and receiving sensor. The sensor uses lithium grease coupled
with the sample and keeps the sensor and the hydrogen-charging surface on the same
central axis. After the received signal is recorded and averaged via the oscilloscope, it is
transmitted to and processed by the computer, and the ultrasonic parameters of the signal
can then be obtained.

Figure 2 shows an example of echo time domain signal. In order to ensure that
the echo signals do not overlap, the exact number of cycles of the signal burst is set as
the maximum number of cycles that can fit within the thickness of the specimen. This
eliminates any possible spurious higher harmonics generated by the interference of the
incident and reflected wavefronts, as well as the effects of boundary conditions. In this
work, the number of cycles was determined to be 7.
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Figure 2. Example of transmitted and received time domain signals.

Ultrasonic velocity V can be expressed as V = 2d/∆t, where d is the sample thickness
and ∆t is the time difference between adjacent echoes. The peak time difference between
two echo signals (Find–Peak) is often used to calculate ∆t, but the echo signal is weak in
the later stage of damage, and hence environmental noise has a great influence on time
estimation in this stage. In order to minimize the effect of noise, we employed the average
noise reduction to suppress noise energy, and cross-correlation time delay estimation
(NCC-TDE) was used to estimate ∆t. NCC-TDE is a method in which the cross-correlation
function R(x,y) is used to judge the similarity of two waveforms and the position of the
R(x,y) peak is determined to estimate the time delay. R(x,y) can be expressed as

R(x, y) = IDFT{DFT{x}∗ ◦ DFT{y}}

where x and y are two sets of signals to be estimated, DFT is a discrete Fourier transform,
IDFT is a discrete Fourier inverse transform, the symbol “◦” denotes the multiplication
of corresponding terms of a vector in the same dimension, and the symbol “*” denotes
conjugation of complex signals. The implementation process for NCC-TDE is as follows:
1⃝ Via Fourier transform, the primary echo signal x(n), the secondary echo signal y(n),

and the spectrum signals Zx(n) and Zy(n) are obtained;
2⃝ The conjugate of Zx(n) is determined, yielding Zx(n)*;
3⃝ The spectrum of the cross-correlation function Z(R(x,y)) is obtained by multiplying

Zx(n)* and Zy(n) elements;
4⃝ The inverse Fourier transform of Z(R(x,y)) is the cross-correlation function R(x,y);
5⃝ The peak position of R(x,y) is the time difference between adjacent echoes ∆t.

A flowchart of NCC-TDE is shown in Figure 3.
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Figure 4 shows the delay estimation accuracy of NCC-TDE with a fixed delay of 50 ns
and different signal-to-noise ratios (SNRs). Under the condition of a high SNR, Find–Peak
and NCC-TDE have the same effect. However, with the decrease in SNR, the waveform
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signal deteriorates, and Find–Peak calculation results become unstable. However, under the
condition of a low SNR, the cross-correlation delay algorithm can reduce noise to a certain
extent; thus, the calculation results are stable. Based on the above discussion, all subsequent
delay estimation algorithms adopted in this work correspond to cross-correlation delay
estimation.
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The attenuation coefficient can be calculated using the difference in the ultrasonic echo
amplitude. The calculation formula is given below:

α= 20
log10(Bn/Bm)

2(m − n)d

where Bn and Bm are the amplitudes of the echoes n and m times, respectively. In this
work, the first and second echoes were selected. Similarly, amplitude attenuation can be
expressed as

β= 20 log10(B1
n/Bj

n),

where B1
n and Bj

n represent the amplitude of the 1st and jth measured echo signal. Due to
the presence of noise and high-order harmonic signals generated by nonlinear ultrasonic
effects in ultrasonic time-domain signals, there is a certain error if the maximum echo
value is utilized to directly calculate the attenuation coefficient. Therefore, the frequency
domain analysis method was adopted in this work. The ultrasonic echo time-domain
signals were obtained using Fourier transform, and the fundamental frequency amplitude
was used as the echo amplitude to calculate the attenuation coefficient and amplitude
attenuation degree. Figure 5 shows the time delay signal of a group of echo signals with
a base frequency of 2.5 MHz and the signal in the frequency domain of a primary echo.
It can be seen that the amplitude of the time delay signal of the primary echo fluctuates
in different positions due to the influence of high-order harmonics and noise, while the
amplitude of the fundamental frequency in the frequency domain is relatively stable.
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3. Results and Discussion
3.1. Ultrasonic Behavior as Damage Is Inflicted

A rectangular sample measuring 30 mm × 20 mm × 8 mm was charged with hydrogen
at a hydrogen-charging current density of 30 mA/cm2, and ultrasonic signals were collected
continuously at an interval of 1 min. The cross-correlation delay estimation algorithm and
frequency domain amplitude estimation algorithm were used to calculate the echo sound
velocity V, attenuation coefficient α, and amplitude attenuation degree β.

The attenuation coefficient and amplitude attenuation of an ultrasonic echo can be
used to measure the degree of hydrogen damage inflicted on X80 pipeline steel, as shown
in Figure 6. The results show that as the cumulative attenuation coefficient of hydrogen
damage increases, the amplitude attenuation decreases in the late stage of hydrogen
damage (after 800 min). The variation rate for the attenuation coefficient and amplitude
attenuation weakens and gradually tends to a constant value, at which time the attenuation
coefficient exhibits increased fluctuation. The ultrasonic sound velocity does not appear
to be sensitive to the degree of hydrogen damage in X80 pipeline steel. The maximum
propagation velocity difference is less than 45 m/s, while the linearity between the velocity
and charging time is poor, so the velocity response should not be selected for hydrogen
damage detection.
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Figure 6. Attenuation coefficient, amplitude attenuation, and sound velocity of echo signal:
(a) attenuation coefficient α; (b) velocity; and (c) amplitude attenuation β.

Figure 7 depicts the ultrasonic waveform under different hydrogen-charging times. It
can be seen that after 800 min of hydrogen charging, the amplitude of the secondary loop
attenuation is almost consistent with the noise level, resulting in an inaccurate calculation
of the attenuation coefficient as well as fluctuation in the attenuation coefficient. In contrast,
the amplitude attenuation fluctuates less in both the early and late stages of hydrogen
damage. Based on these observations, it can be concluded that amplitude attenuation is
more suitable for hydrogen damage detection than the attenuation coefficient.
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3.2. Microstructural Changes as Damage Is Inflicted

According to Figure 7c, the amplitude of the ultrasonic signal was consistent with the
noise level after 800 min, so the change in ultrasonic parameters caused by hydrogen was
mainly concentrated below 800 min. In order to explore the mechanism of the ultrasonic
detection of hydrogen damage, the characteristic time period (60 min, 210 min, 420 min,
720 min, 1080 min, and 1440 min) was selected, and the hydrogen-charging current was
set to 30 mA/cm2 for the hydrogen charging of several samples. After hydrogen charging
for each time period, the surfaces of the samples were immediately washed with acetone
solution to prevent corrosion and lightly polished with a polishing cloth. Then, the surface
states of the samples were observed with a microscope (JYWD-SZ61, Olympus, America).

The surface topography of hydrogen bubbles in X80 steel is shown in Figure 8, where
(a) and (b) show the surface morphologies of hydrogen bubbles after 60 min and 210 min
of hydrogen charging, respectively. At this time, the number of hydrogen bubbles kept
increasing and no apparent cracks could be seen. When the hydrogen-charging time was
greater than 420 min, the amount of hydrogen blistering continues to increase, and some of
the bubbles burst and form cracks, as shown in (c)–(f).

The hydrogen-blistering density of X80 at different charging times is shown in Figure 9.
With the extension of the hydrogen-charging time, the density of hydrogen bubbles gradu-
ally increased. For the charging period from 0 to of 720 min, the growth rate for hydrogen
blistering density was found to be 0.0127 min−1; between 720 and 1080 min, the growth
rate of hydrogen blistering density slowed down significantly and was found to have only
decreased to 0.0059 min−1. After 1080 min, the hydrogen blistering density was almost
unchanged, a phenomenon caused by the saturation of the hydrogen concentration. This
trend is consistent with the conclusions given in Figure 6.
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Figure 9. Hydrogen blistering density vs. hydrogen-charging time on the surface of X80 steel.

The samples with bubbles on the surface that were electrochemically hydrogen-
charged were cut along the cross section of the bubbles so as to detect and observe HICs
using a scanning electron microscope (Gemini 300, Zeiss, Germany). Indeed, stepped cracks
with similar surface blistering sizes were found beneath the surfaces on which hydrogen
blistering took place. The majority of these cracks were all parallel to the surface, but
some were perpendicular to the surface, as shown in Figure 10. Furthermore, crack size
was found to increase with the increase in the hydrogen-charging time. It was also found
that the maximum depth of the cracks detected is less than 700 µm, a result that generally
conforms to the results in Ref. [23].

After hydrogen atoms penetrated the metal, they concentrated mainly on its hydrogen-
pre-charged surface. These broad-sense defects at or near the sample surface are hence
the initiation sites of hydrogen cracks. With the increase in hydrogen-charging time, the
hydrogen content in the sample also increased. When the hydrogen pressure inside the
hydrogen bubbles increased and exceeded the material’s yield strength, blistering occurred,
leading to HIC formation.
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Based on the above interpretation of the hydrogen damage behavior and the change
pattern of the ultrasonic parameters, the mechanism of the hydrogen damage in X80
pipeline steel detected via ultrasound can be explained as follows. At the beginning of
hydrogen pre-charging, hydrogen atoms enter the metal. They concentrate mainly in
the hydrogen-pre-charged surface of the metal and induce hydrogen blistering, causing
changes in the surface morphology of the hydrogen-charged steel, resulting in a gradual
changes in ultrasonic reflection from total reflection to diffused reflection, leading to the
weakening of the intensity of the as-received echo signal. With the increase in hydrogen-
charging time, the hydrogen pressure will exceed the yield strength of the base metal, and
cracks will form on the surface of the material. The size of the HICs keeps increasing as the
charging time elapses, so the ultrasonic wave is unable to penetrate the cracks. Thus, the
echo intensity is gradually weakened. When the hydrogen-charging time exceeds 800 min,
the hydrogen concentration of the sample reaches saturation. This will slow down and
eventually stop the growth of the HICs, leading to the stabilization of the echo intensity.
In this work, such a mechanism is designated as the formation of a hydrogen-induced
damage layer (HIDL).

The phenomenon of HIDL formation indicates that HICs constitute the main factor
altering the ultrasonic parameters, and the mechanism tended to appear on the shallow
surface of the hydrogen-charged sample. Therefore, if the hydrogen-charged sample
surface, even if charged for a long time (after 800 min), is polished layer by layer, eventually,
the ultrasonic parameters of this sample should return to their initial state without hydrogen
charging when the hydrogen-induced crack layer has been completely polished.

Figure 11 shows the attenuation coefficient and amplitude corresponding to different
grinding depths of the sample following hydrogen charging for 1500 min. It can be seen
that with the increase in grinding depth, the amplitude of the return wave gradually
increases and the attenuation coefficient gradually decreases; when the grinding depth
exceeds 700 µm, the attenuation coefficient and amplitude tend to be stable and close to
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the level of the sample that was not subjected to hydrogen charging. This also verifies the
formation mechanism of the HIDLs.
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It should be noted that the hydrogen atoms entering the metal exist in the interstitial
space of the lattice. Under stress, the hydrogen atoms will spread to the stress concentration
area at the front of the defect or crack, hindering the dislocation movement in the area,
resulting in local work hardening and improving the resistance of the metal to plastic
deformation. The effect of stress will further aggravate the hydrogen damage degree of the
material. Therefore, it is necessary to further study hydrogen damage behavior under stress
and understand the relationship between hydrogen damage under stress and ultrasonic
characteristics. In Situ TEH-UT uses water as a constant-temperature medium, so the
monitoring temperature is near room temperature; it is not suitable for pipelines with
higher service temperatures (100 ◦C and above). At the same time, In Situ TEH-UT can only
be used to evaluate hydrogen damage, and pipeline life is affected by stress, corrosion, and
other aspects. In Situ TEH-UT is not yet suitable for practical multifactorial environments.

4. Conclusions

In summary, we developed a new system, In Situ TEH-UT, in this work for in situ
ultrasonic testing in the process of the hydrogen charging of X80 pipeline steel, and the
microscopic principles of the mechanism of the hydrogen damage in X80 pipeline steel
detected via ultrasound were analyzed based on SEM data. This study provides reference
significance for clarifying the change mechanism of ultrasonic parameters under hydrogen
damage and the determination of hydrogen damage using the ultrasonic technique. Several
main conclusions have been drawn:

(1) The attenuation coefficient and amplitude attenuation of the ultrasonic echo signal
were highly sensitive to the hydrogen damage behavior of the X80 pipeline steel,
especially when the amplitude attenuation reached 800 min, at which point its value
fluctuated less and it was more suitable for hydrogen damage detection. And these
parameters have a good linear correlation with hydrogen-charging time.

(2) With the increase in hydrogen-charging time, the hydrogen-blistering density and
HIC size increased. After 800 min, both of them reached a stable state. HICs mainly
appeared within 700 µm of the hydrogen-charging surface.

(3) We first reported the mechanism of HIDL formation: we consider the change in
ultrasonic parameters to be mainly related to the hydrogen cracks on the hydrogen-
filled surface. The results of the layer-by-layer grinding test show that the attenuation
coefficient and amplitude do not change when the grinding depth exceeds 700 µm,
which is close to the original sample level. This work makes it possible to apply
ultrasonic test technology to identify and predict the hydrogen damage of X80 pipeline
steel and ensure the structural integrity of steel.
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