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Abstract: Daphniphyllum alkaloids (DAs) are interesting molecules with rich molecular skeletons
and diverse biological activities. Since their discovery, phytochemists have isolated, purified, and
identified more than 350 DAs. Synthetic chemists, attracted by the structure and activity of DAs, have
accomplished many elegant synthetic jobs. Herein, we summarize work on the isolation, structural
identification, bioactivity testing, and synthesis of DAs from 2018 to 2023, with the aim of providing
a reference for future studies.
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1. Introduction

The family Daphniphyllaceae, represented solely by the genus Daphniphyllum, en-
compasses approximately 30 plant species primarily found in Southeast Asia. Scien-
tists have isolated various components from Daphniphyllum species, including flavonoid
glycosides [1,2], triterpene esters [3], phenolic glucosides [4], and alkaloids. The most
famous of these are the Daphniphyllum alkaloids (DAs). Since their discovery in 1909, over
350 DAs have been identified [5]. These molecules have rich structural diversity and a
range of biological functionalities, including cytotoxicity [6], inhibitory activity against
kinase enzymes [7], and pesticidal activity against brine shrimp [8,9], among others [10].
The biological properties and structural complexity of DAs have captured the interest of
many synthetic chemists. Following the initial report of total synthesis, numerous DAs have
been successfully synthesized [11–13]. Therefore, while previous reviews have explored
various aspects of DAs [5,14,15], in the last five years, a lot of work has been reported on
its research, especially synthetic studies, there is a need for an updated report on their
isolation, bioactivity, evaluation methods, and synthetic methodologies.

This article provides an updated review of recent advancements in the chemistry of
DAs. We begin by introducing new DAs discovered between 2018 and 2023. Following
this, we delve into synthetic studies toward DAs, with a particular focus on the synthesis
of calyciphylline A-type DAs, along with other significant DAs. Finally, we review the total
syntheses of various DAs, highlighting the intricate strategies that have been developed to
recreate these complex natural products. By providing a detailed overview of these topics,
this review offers valuable insight into the ongoing research and future directions in the
field of DAs.

2. New DAs and Bioactivity Assays

Several new DAs have been reported in recent years. In 2018, Xiaojiang Hao’s group
reported a new daphnezomine L-type DA, daphnezomine W (1; Figure 1), which was
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isolated from the slender leaves of D. angustifolium Hutch [16]. Notably, 1 demonstrates
moderate cytotoxicity against the HeLa cell line, with a half-maximal inhibitory concentra-
tion (IC50) of 16.0 µg/mL. Furthermore, the proposed biosynthetic pathway suggests that 1
could be derived from macrodaphniphyllidine via a series of transformations.
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Another DA named daphnicyclidin M (2; Figure 1) was isolated in 2018 by Li Zhang
et al. from the stems and leaves of D. paxianum K.Rosenthal [17]. The structure of 2 was
elucidated from its spectroscopic data, and its absolute configuration was determined
through single-crystal X-ray diffraction. Compound 2 has an interesting skeleton with
a rare cyclopentadienyl anion [18]. However, it exhibits no antibacterial activity against
various strains [17].

In the same year, Chih-Hua Chao’s group reported three new DAs, glaulactams A–C
(3–5; Figure 1), which were extracted from the leaves of D. glaucescens Blume [19]. Their
structures, including their absolute configurations, were determined using a combination
of spectroscopic analyses and time-dependent density-functional-theory-based electronic
circular dichroism spectra. The biosynthetic pathways of these DAs are thought to involve
transformations from yuzurimine E.

In 2019, Xiaojiang Hao’s group reported a new DA, 2-deoxymacropodumine A
(6; Figure 1), which was isolated from the stems of D. angustifolium [20]. The structure
of 6, including its 11-membered macrolactone ring, was elucidated using techniques such
as one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and chemi-
cal calculations. In addition, by comparing the experimental and calculated NMR data of 6
and macropodumine A (7; Figure 1), the structure of 7 was revised owing to its structural
similarity to 6 [21,22]. Specifically, both 6 and 7 possess unusual 11-membered macro-
lactone rings. The proposed biosynthetic pathway for 6 suggests that it originates from
22-norcalyciphylline A-type alkaloids. Furthermore, it demonstrates moderate cytotoxicity
against HeLa cells with an IC50 of approximately 3.89 µM.

In 2020, Yue’s group discovered and characterized two highly rearranged DAs, daph-
nillonins A and B (8 and 9; Figure 2), from D. longeracemosum K.Rosenthal [23]. Compound
8 exhibits a distinctive 8-methyl-6-azabicyclo[3.2.1]octane moiety, whereas 9 features an
unusual 7/6/5/7/5/5 fused ring structure. Their structures were determined by tech-
niques including electronic circular dichroism calculations. Compound 8 is hypothesized to
originate from the coexisting secodaphniphylline-type alkaloids, whereas 9 might originate
from the transformation of daphniyunnine A. However, 8 and 9 do not exhibit significant
HL60 or A549 cell line cytotoxicity, anti-Helicobacter pylori activity, immunosuppressive
effects, or protein tyrosine phosphatase non-receptor type 1 (PTPN1) inhibition.
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In the same year, Guo’s group isolated and characterized four novel DAs, daphnica-
lycines A–D (10–13; Figure 2), from the foliage and stems of D. calycinum Benth. [24]. Their
structures were determined through comprehensive spectral analyses and X-ray crystallog-
raphy. The researchers also clarified the structure of caldaphnidine E [25] and provided
complete 1H and 13C NMR assignments of daphniteijsmanine [25,26]. Unfortunately, none
of these compounds demonstrated significant inhibition of lipopolysaccharide-induced
macrophage inflammation at a concentration of 10 µM.

In 2021, Hao’s group isolated a new DA, daphnioldhanol A (14; Figure 3), from the
stems of D. angustifolium [27]. Compound 14, which is a secodaphnane-type alkaloid,
demonstrates weak cytotoxicity against the HeLa cell line with an IC50 of 31.9 µM. The
researchers hypothesized that 14 is biosynthetically derived from squalene in plants.
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In the same year, Zhu and colleagues isolated ten novel DAs, calycindaphines A–J
(15–24; Figure 3), from the roots of D. calycinum [28]. Their chemical structures were
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determined using advanced spectroscopic techniques and cross-referencing with published
data. Compound 15 has an unprecedented structure, whereby the C22 skeleton features
a unique 5/8/7/5/5 ring system. Compound 16 is the second reported instance of a
calyciphylline G-type alkaloid, whereas 24 is the first reported secodaphniphylline-type
alkaloid without an oxygen bridge between the C25 and C29 atoms. Furthermore, potential
biogenetic pathways for 15 and 16 have been proposed. Compounds 15–24 were assessed
for their bioactivities in three cellular models; however, no bioactivities were identified.

In 2022, Guo’s group isolated three previously unreported DAs, longshanoldhamines A–C
(25–27; Figure 3), and two undescribed triterpenoids from the fruits of Daphniphyllum oldhamii
(Hemsl.) K.Rosenthal [29]. Their structures were determined through comprehensive spectro-
scopic analyses and X-ray diffraction, as well as comparisons with reported data.

In 2023, five novel DAs, i.e., dcalycinumines A–E (28–31a; Figure 4), were isolated from
D. calycinum [30]. Compound 28 is the first DA with a 6/6/6/7/5/6 hexacyclic architecture [30],
whereas 29 is an uncommon diamino DA featuring a previously unseen carbon framework.
Compounds 31 and 31a are two novel examples of the C22-noryuzurimine-type alkaloids. No-
tably, 28 exhibited significant antitumor activities, including inhibition of the proliferation,
migration, and invasion of nasopharyngeal cancer cells, as well as the promotion of apoptosis.
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3. Synthetic Strategies Toward DAs

Owing to intense research on the active compounds in Daphniphyllum species, reports
on the isolation of DAs have gradually decreased in recent years. Current research in
this field is mainly focused on the synthesis of reported molecules. Indeed, many organic
chemists have been attracted to explore the synthesis of DAs because of their rich and
complex skeleton types and diverse biological activities. This section discusses synthetic
strategies for the synthesis of DAs.

3.1. Research on the Synthesis of Calyciphylline A-Type Alkaloids
3.1.1. Synthesis of 7/5/6/5 Tetracyclic Carbon Core of Logeracemin A

In 2014, Yue’s group isolated a dimeric calyciphylline A-type alkaloid, logeracemin A,
from D. longeracemosum [31]. Logeracemin A exhibits significant anti-HIV activity with a
half-maximal effective concentration (EC50) of 4.5 ± 0.1 µM. Its interesting structure and
bioactivity attracted the attention of Xu’s group, who reported a concise synthetic route for
the 7/5/6/5 all-carbon ring system at its core [32].

As depicted in Scheme 1, the synthesis commenced by functionalizing a commercially
available compound, methyl cyclohept-1-ene carboxylate (32), using lithium diisopropy-
lamide (LDA) and an iodide derivative to introduce an alkyl tether and thus form cyclohep-
tene derivative 33. Subsequent reduction of the methyl ester group, followed by protection
of the resulting alcohol with a benzyl group, led to the generation of 34. Regioselective
hydroboration–oxidation of 34 utilizing BH3 yielded a mixture of alcohol isomers [33].
This mixture was further subjected to Dess–Martin periodinane (DMP) oxidation to obtain
ketone 35. Deprotection of the tert-butyldimethylsilyl (TBS) group in 35 and oxidation of the
primary alcohol moiety resulted in aldehyde formation (36). Subsequently, regioselective
Grignard addition between the aldehyde group and another reagent at −78 ◦C, followed
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by Dess–Martin oxidation, transformed the resultant alcohol into an intermediate cyclohep-
tanone product (37). Intermediate 37 then underwent Michael addition with a ketone (38
or 39) to form 7/5/6/5 tetracyclic β-hydroxy ketones (42–45). The reaction proceeded via
an intermediate (40 or 41), with successive Michael addition and double aldol reactions
to generate the spiro-linked framework. The final step involved the elimination of H2O
from 42–45 to produce the 7/5/6/5 all-carbon structure (46–49). This biomimetic strategy
successfully constructed the complete tetracyclic carbon framework found in logeracemin
A, but there was a problem of poor stereoselectivity.
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tone 52 was oxidized to form α,β-unsaturated ketone 53 using 2-iodoxybenzoic acid 
(IBX)/p-toluenesulfonic acid (p-TsOH). Subsequently, allylic bromination with N-bromo-
succinimide (NBS)/azobisisobutyronitrile (AIBN) was conducted at 80 °C, followed by a 
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3.1.2. Synthesis of ABC Tricyclic Core of 21-Deoxymacropodumine D

The asymmetric synthesis of the ABC tricyclic core of 21-deoxymacropodumine D
was reported by Qin’s group in 2018 [34]. In this synthesis (Scheme 2), a benzoyl (Bz)-
protected α,β-unsaturated ketone (50) was converted to adduct 52 at −30 ◦C in the presence
of trimethylaluminum (Me3Al) and copper(I) thiophene-2-carboxylate (CuTC) in diethyl
ether (Et2O) by employing ligand 51 [35]. This reaction afforded a high yield of 87%
and excellent enantioselectivity (enantiomeric excess (ee): 93.5%). The enantioenriched
ketone 52 was oxidized to form α,β-unsaturated ketone 53 using 2-iodoxybenzoic acid
(IBX)/p-toluenesulfonic acid (p-TsOH). Subsequently, allylic bromination with
N-bromosuccinimide (NBS)/azobisisobutyronitrile (AIBN) was conducted at 80 ◦C, fol-
lowed by a reaction with CaCO3/NaI and then hydrolysis using dioxane/H2O to obtain
allyl alcohol derivative 54. The protection of 54 was achieved through treatment with
triethylsilyl chloride (TESCl)/imidazole/4-dimethylaminopyridine (DMAP), resulting in
the formation of a protected intermediate 55. Diene compound 56 was then obtained
using triisopropylsilyl chloride (TIPSCl)/sodium bis(trimethylsilyl)amide (NaHMDS) un-
der cryogenic conditions (−78 ◦C). Hydrolysis using K2CO3 in methanol (MeOH) led to
benzoate formation and subsequent conversion into an alcohol intermediate (57 or 58).
The intermediate 58 was oxidized and reduced to obtain 65, and the hydroxyl group of
65 was protected to obtain 56. Compound 57 was then treated with diphenyl phosphate
azide (DPPA) in tetrahydrofuran (THF), resulting in the formation of azide derivative 59 in
78% yield. Substrate 59 underwent treatment with 1 M HCl in dichloromethane (DCM),
leading to selective desiliconization to form azide 60 in 76% yield. The azide group of
substrate 60 was reduced to an amino group followed by cascade aza-Michael addition,
and then through alkylation, ultimately forming an alkyl azabicyclo[3.3.1] framework (61)
in 51% yield. Treatment of 61 with tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4)
and potassium tert-butoxide (t-BuOK) in THF at an elevated temperature [36] resulted
in Pd-catalyzed α-alkenylation, leading to the synthesis of a novel C2 stereocentric bowl-
shaped tricyclic product (62) in 75% yield. Compounds 63 and 64 were obtained through
the catalytic hydrogenation of 62.
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3.1.3. Synthesis of ACDE Ring System of Calyciphylline A-Type Alkaloids via [5+2] Cycloaddition

The ACDE ring framework found in calyciphylline A-type alkaloids was effectively
synthesized by Takemoto’s group in 2019 [37]. As depicted in Scheme 3, the synthesis in-
volved an intramolecular reaction using a tetrasubstituted olefin-containing oxidopyrylium
species, resulting in [5+2] cycloaddition. First, a cyclization precursor (70) was synthesized
from 2-methylcyclohexane-1,3-diketone (66) via the formation of a vinyl methyl ester with
K2CO3 and dimethyl sulfate (Me2SO4), followed by nucleophilic addition with a Grignard
reagent [38] and acidic treatment to obtain α,β-unsaturated ketone 67. After the removal of
the tetrahydropyranyl (THP) group of 67 and oxidization to form aldehyde 68, a reaction
with 2-furanyl magnesium bromide resulted in alcohol 69. NBS was employed to obtain
70 from 69 [39]. Finally, 70 underwent [5+2] cyclization to obtain tricyclic compound 71 in
70% yield.
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Subsequently, 71 was converted to 73 via 72 by hydrogenation and a reductive ring-
opening reaction using SmI2 [40], TBS protection of 73 giving 74, and then 75 was prepared
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in 60% yield via the Takai reaction [41] from 74 to introduce an exosubunit. The treatment of
75 with 9-borabicyclo[3.3.1]nonane (9-BBN) followed by NaOH/H2O2 produced alcohol 76,
which was converted to tetracyclic compound 77 by C–H oxidation using I2 and phenylio-
dine(III) diacetate (PIDA) under light irradiation [42]. Then, one of the protecting groups of
77 was removed and oxidized with DMP to obtain ketone 78. Ketone 78 was treated with
methyllithium (MeLi) and SOCl2 to deliver the external methylene compound 80. Next,
compound 80 underwent a process of borohydride oxidation, mesylate esterification, and
nucleophilic substitution to produce azide 81. The TBS group of 81 was removed using an
aqueous solution of HF and direct oxidation with IBX [43] to produce enone 82. Reduction
of the azide groups using triphenylphosphine (PPh3) at 100 ◦C produced amine 83, which
was then converted to 84 using benzyl chloroformate (CbzCl) and triethylamine (Et3N).
Under light irradiation and in the presence of catalytic tetraphenylporphyrin (TPP) [44], a
facile [4+2] cycloaddition reaction occurred between 84 and O2, resulting in an unstable
peroxide. Treatment of this peroxide with dimethyl sulfide (Me2S) afforded a mixture of
the desired product (85) and an undesired ring-opened product (86). Direct hydrogenation
using Pd/C resulted in the exclusive formation of pentacyclic compound 87 as a single
diastereomer. Thus, model compound 87 was produced through a 27-step reaction from
commercially available 66.

3.1.4. Synthesis of Tricyclic Spiro-Ring Structure of Calyciphylline A-Type Alkaloids

In 2019, Gao’s team investigated 1,3-dipolar cycloaddition reactions with the aim of
synthesizing the central tricyclic spiro-ring structure of calyciphylline A-type alkaloids [45].
As depicted in Scheme 4, they observed that substrate 88, which featured a 1,3-dithiane
group capable of interacting with various hydroxylamines, facilitated the formation of the
desired cycloadduct 90 via the 6-endo transition state 89 [46]. After reductive cleavage and
subsequent lactamization, 90 was converted to cis-hydroindole (91).
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Next, aldehyde 92 was converted to a methoxymethyl (MOM)-protected alcohol (93)
in three steps. Compound 93 was transformed into alkyne 94 with an 88% yield over
two steps. Subsequently, 94 was reacted with methyl chloroformate (ClCO2Me) under
the influence of n-butyllithium (n-BuLi), resulting in the formation of 95. The two-step
treatment of 95 afforded alcohol 96 in 77% yield. Next, 96 underwent oxidation and
subsequent condensation with N-methoxybenzylhydroxylamine or benzylhydroxylamine,
followed by heating to achieve 1,3-dipolar cycloaddition, resulting in 96a and then obtained
97a and 97b. The structure and stereochemistry of cycloadducts 97a and 97b were verified
via X-ray crystallography.

To further enhance the stereoselectivity, the researchers modified the structure of 96
by removing the 1,3-dioxolane-protecting group under acidic conditions. The resulting
product was directly oxidized to aldehyde 98 in 75% yield over two steps. Aldehyde 98
was then condensed with different hydroxylamines under identical conditions, resulting
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in the formation of the corresponding nitrones. These nitrones then underwent 6-endo
cycloaddition via 98a to afford 99a and 99b in moderate yield. The N–O bond of isoxazoli-
dine 99a was selectively cleaved through a reductive reaction using Raney Ni, followed by
spontaneous lactamization to produce tricyclic product 100 in 52% yield. The formation of
the 5/6/5 ACE tricyclic spiro-ring was confirmed via single-crystal X-ray diffraction.

3.1.5. Synthesis of 6/5/7/5 Tetracyclic Core of Calyciphylline A-Type Alkaloids

Tu’s team synthesized the 6/5/7/5 tetracyclic core of calyciphylline A-type alkaloids
via a sequential semipinacol rearrangement and Nicholas reaction [47]. As depicted in
Scheme 5, the synthesis of enone 105 was initiated from the well-established allyl alcohol
101. MOM ether was used to protect the secondary hydroxy group of 101, resulting in the
formation of 102 in high yield (90%). Compound 102 underwent Li–halogen exchange
with tert-butyllithium (t-BuLi), followed by the addition of cyclobutanone to produce the
desired product (103). Compound 103 underwent silylation using trimethylsilyl chloride
(TMSCl), and then Doyle’s conditions [48] were employed for allylic oxidation to generate
rearrangement precursor 105. Compound 105 underwent the crucial tandem semipinacol
rearrangement/Nicholas reaction yield 106a, 106b, and 106c. The structures of 106a, 106b,
and 106c were confirmed by X-ray crystallography. Importantly, the relative configurations
between C5 and C8 in 106a and 106b were both consistent with those of daphniyunnine B.

The researchers opted to elaborate further on the major isomer 106a. The alkynyl group
of 106a was partially reduced to yield alkene 107 in quantitative yield using Lindlar Pd and
H2. Subsequently, 107 underwent isomerization using bis(acetonitrile)palladium dichloride
(PdCl2(MeCN)2) to form internal olefin 108. The synthesis of α,β-unsaturated ester 110
was achieved in satisfactory yield (72%) through the ozonolysis of 108 followed by the
Horner–Wadsworth–Emmons (HWE) reaction with aldehyde 109. The distal ester group in
110 was subsequently reduced using L-selectride, resulting in allylic alcohol 111 with an
impressive yield (84%). Notably, when treated with trimethyl orthoacetate (CH3C(OMe)3)
and catalytic propanoic acid at 130 ◦C, 111 yielded C6-vinylated products 112a and 112b,
although their combined yield remained low at only 25%. An acetyl-protected allylic
alcohol (112c) emerged as a significant byproduct during this reaction; however, it was
effectively recycled by hydrolysis.

The reduction of methyl ester 112a and lactone 112b using L-selectride resulted in high
yields of 85% and 80%, respectively, for the formation of diol 113. TBS silyl ether 114 was
employed to selectively protect the primary hydroxyl group in 113, while the secondary
hydroxyl group underwent oxidation using DMP to produce diketone 115. By subjecting
115 to ozonolysis, aldehyde 116 was obtained in 52% overall yield. The reaction proceeded
favorably when aldehyde 116 was treated with benzylamine (BnNH2) in the presence of
cyanoborohydride (NaBH3CN) and acetic acid (HOAc), resulting in the formation of 117.
Subsequently, high-pressure hydrogenation replaced the N-benzyl protecting group in
117 with a 4-toluenesulfonyl (tosyl; Ts) group, producing sulfonamide 118 in 81% overall
yield over three steps. After the TBS protective group was removed, compound 119 was
obtained. Then, the resulting primary hydroxyl group was sulfonated, and finally, the
sulfonate 120 was obtained. The quantitative yield of sulfide 121 was achieved through the
nucleophilic substitution of 120 with thiophenol (PhSH), followed by oxidation to form
sulfoxide 122. Compound 122 underwent thermodynamic elimination in the presence of
N,N-diisopropylethylamine (DIPEA) [49], thus forming terminal olefin 123. By adding
allylmagnesium bromide (allylMgBr) to the C9 ketone group of olefin 123, diene 124 was
obtained via Grignard addition. Finally, the 6/5/7/5 tetracyclic framework, resembling
that of calyciphylline A, was formed through intramolecular ring-closing metathesis using
Grubbs second-generation (Grubbs II) catalyst, leading to the synthesis of 125.
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3.1.6. Synthesis of ACDE Ring System of Calyciphylline A-Type Alkaloids via
Intramolecular Diels–Alder Reaction

The ACDE ring system of calyciphylline A-type alkaloids was synthesized by Take-
moto’s group using an intramolecular Diels–Alder reaction involving a retrasubstituted
olefin [50]. They first acquired cyclization precursor 126 through a sequence of procedures
and then used it to synthesize the A and C rings of calyciphylline A-type alkaloids via an
intramolecular Diels–Alder reaction. By thoroughly investigating the effects of different
reaction parameters, they achieved the selective formation of diastereomers 127 and 127a
(Scheme 6). Notably, 127 exhibited the desired stereochemistry at position C6.

Next, the researchers focused on constructing the E ring of calyciphylline A-type
alkaloids. In the presence of the ketone group, the amide of 127 was selectively reduced
upon treatment with 1 equiv of lithium triethylborohydride (LiBHEt3), leading to the
formation of hemiaminal 130. Interestingly, when 130 was treated with triethylsilane
(Et3SiH) and InCl3 in acetonitrile (MeCN), 134 was obtained via the reduction of the
double bond. By contrast, treating 127 with 1.2 equiv of potassium bis(trimethylsilyl)amide
(KHMDS) and Comins’ reagent resulted in trifluoromethanesulfonate (triflate) 128 in 44%
yield, without epimerization. Triflate 128 could be converted to triene 129 using Pd(PPh3)4
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and HCOOH in moderate yield (50%). However, 129 displayed inherent instability and
decomposed within a short timeframe.
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Scheme 6. Development of the ACDE ring system of calyciphylline A-like structures via intramolecu-
lar Diels–Alder reaction.

Considering the challenging derivatization of 127, presumably because of skeletal
strain, the researchers investigated the formation of the E ring using thermodynamic
Diels–Alder product 127a, despite its undesired stereochemistry at C6. After the gen-
eration of enol triflate 135 from 127a, a reduction reaction employing Pd(PPh3)4 and
HCOOH was conducted to produce triene 136. Notably, 136 demonstrated sufficient
stability for storage and subsequent utilization. The terminal olefin of triene 136 under-
went anti-Markovnikov Wacker oxidation involving bis(benzonitrile)palladium dichloride
(PdCl2(PhCN)2), CuCl2·H2O, and KNO2, resulting in aldehyde 137 in 66% yield. Aldehyde
137 was then treated with NH2OH·HCl and sodium acetate (NaOAc), leading to the forma-
tion of oxime 138. A smooth [3+2] cycloaddition reaction occurred in situ upon oxidizing
compound 138 with NaOCl, thus affording the ACDE core structure (139) in 34% yield.
The double bond within the A ring of compound 139 was selectively reduced through
reduction, yielding model compound 140 with high efficiency (87% yield).

3.1.7. Construction of ABC Core of Calyciphylline A-Type Alkaloids

In 2018, Stockdill’s team devised an Sn-free approach to effectively cyclize different
N-chloroamine precursors with internal alkynes [51]. This method facilitated the formation
of the ABC core of calyciphylline A-type alkaloids by inducing the cyclization of neutral
aminyl radicals. Reactions A and B verified the feasibility of the cyclization reaction.
Starting from known compounds, the researchers first prepared cyclization precursors 141
and 143 (Scheme 7). They then treated 141 with AIBN and various silanes to obtain 142,
and 143 was converted to 144.

The focus of their attention then shifted toward the synthesis of cyclization precur-
sor 149 using the alkynyl azide 145a, which features a TBS ether. This modification was
expected to improve the solubility of the highly polar intermediates. The synthesis of
N-chloroamine 149 began with a reaction between hemiacetal 145 and azide 145a. Com-
pound 145 was reduced by DIBAL-H to form an aldehyde, which then reacted with the
amine produced by the reduction of compound 145a to form an imine, followed by the



Molecules 2024, 29, 5498 11 of 65

reduction of the resulting imine using LiAlH4 to produce amine 146 in impressive yield
(84%). Chlorination of 146 with N-chlorosuccinimide (NCS) at −78 ◦C and then further
treated with DMP under buffered conditions after gradually increasing the temperature to
0 ◦C led to the formation of N-chloroenone 147.
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N-chloroenone 147 underwent tin-free cyclization and then hydrogenated using
Adams’ catalyst (20 mol%) yield 148 in a combined isolated yield of 73% over two steps.
The Knoevenagel strategy was used to synthesize a β-ketoester from 148 through a three-
step procedure without intermediate purification. Desilylation was carried out using
concentrated HCl(aq) in Et2O. The resulting primary alcohol was then protonated in situ
to activate the tertiary amine, followed by oxidation using DMP. Roskamp coupling was
achieved by treating 148 with SnCl2 and ethyl diazoacetate, yielding 149 in 54% overall
yield over three steps. Finally, CsF in tert-butanol (t-BuOH) was used to convert 149 into
the desired 6/6/5/5 ring system (150) and trace 151.

3.1.8. Efficient Synthesis of Tricyclic Scaffold of Calyciphylline A-Type Alkaloids

Hudlicky and colleagues presented an effective and streamlined method for synthe-
sizing the aza-5/6/6 tricyclic structure of calyciphylline A-type alkaloids by using [1,3]-
Ichikawa transposition and intramolecular Heck cyclization [52]. Following strategic plan-
ning, the synthesis, as depicted in Scheme 8, was initiated by one-step allylic chlorination
followed by Luche reduction of (S)-carvone (152), resulting in the formation of chloro-
carveol 153. The carbamylation of 153 yielded primary carbamate 154. After confirming
the effectiveness of the Ichikawa transposition-based approach, the researchers effectively
captured isocyanate using an alkynyl lithium reagent derived from TBS-protected 3-butyne-
1-ol. This resulted in the creation of secondary amide 155. Heating a mixture of 155, KI,
K2CO3, and MeCN at 90 ◦C for two days produced the desired tertiary amide (156) in
excellent yield. A Pd-catalyzed chemo- and regioselective hydrostannation reaction was
then used to generate alkenylstannane 157, wherein the tributyltin moiety underwent
iodination without any complications, yielding vinyl iodide 158. By heating a mixture
of 158, Pd(PPh3)4, and Et3N in degassed dimethylformamide (DMF) at 100 ◦C for under
10 min, the desired aza-5/6/6 tricyclic core was formed in excellent yield. The addition of
a single drop of concentrated HCl(aq) to a stirred solution of 159 in MeOH, followed by
the introduction of Mg turnings in the same reaction vessel, resulted in the production of
primary alcohol 160 with saturation occurring specifically at C6–C12.
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3.1.9. Synthesis of ABCD Ring System of Calyciphylline A-Type Alkaloids 
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A-type alkaloids, which contains adjacent all-carbon quaternary stereocenters, was ac-
complished by Iwabuchi’s group in 2018 [53]. As depicted in Scheme 9, compound 163 
was obtained from compounds 161 and 162 via four steps [54], and then the synthesis of 
ketoaldehyde 164 from 163 was achieved through a two-step process, with a high yield of 
84%. First, the pivaloyl group was deprotected, and then the resulting alcohol was mildly 
oxidized using 9-azanoradamantane N-oxyl (nor-AZADO) and diisopropyl azodicarbox-
ylate(DIAD) [53]. 

Subsequently, 164 was used as a substrate for intramolecular pinacol coupling. When 
SmI2 was employed as the reagent, tetracyclic diol 165 was formed as a single diastereomer 
with an impressive yield (71%) [55]. The secondary alcohol in diol 165 was efficiently oxi-
dized through 5-fluoro-2-azaadamantane N-oxyl (5-F-AZADO)/NOx catalysis and aerobic 
oxidation [53], leading to α-hydroxyketone 166 in high yield (89%). Importantly, this oxi-
dation procedure effectively preserved the integrity of the vicinal diol moiety. By dehy-
drating 166 using Martin’s sulfurane reagent, enone 168 was produced along with cyclo-
propane 167 as an inseparable mixture. The overall yield for this step reached approxi-
mately 75%, with a ratio favoring 168 at approximately 4:1 168/167. Compound 168 was 
then reacted with allylMgBr in the presence of CeCl3 to introduce an allyl group, leading 
to the formation of allylic alcohol 169 as the sole diastereomer in a 69% yield. The stere-
ocontrolled oxidation of 169 using a V-based catalyst produced epoxy alcohol 170. Subse-
quently, 170 was subjected to Marson’s semipinacol rearrangement [56]. Finally, the use 
of Lipshutz’s conditions, involving LiBF4 in MeCN, formed compound 171 as a single ste-
reoisomer with high efficiency. 
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3.1.9. Synthesis of ABCD Ring System of Calyciphylline A-Type Alkaloids

The stereocontrolled synthesis of the ABCD tetracyclic ring system of calyciphylline
A-type alkaloids, which contains adjacent all-carbon quaternary stereocenters, was ac-
complished by Iwabuchi’s group in 2018 [53]. As depicted in Scheme 9, compound 163
was obtained from compounds 161 and 162 via four steps [54], and then the synthesis
of ketoaldehyde 164 from 163 was achieved through a two-step process, with a high
yield of 84%. First, the pivaloyl group was deprotected, and then the resulting alcohol
was mildly oxidized using 9-azanoradamantane N-oxyl (nor-AZADO) and diisopropyl
azodicarboxylate(DIAD) [53].
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Subsequently, 164 was used as a substrate for intramolecular pinacol coupling. When
SmI2 was employed as the reagent, tetracyclic diol 165 was formed as a single diastereomer
with an impressive yield (71%) [55]. The secondary alcohol in diol 165 was efficiently
oxidized through 5-fluoro-2-azaadamantane N-oxyl (5-F-AZADO)/NOx catalysis and
aerobic oxidation [53], leading to α-hydroxyketone 166 in high yield (89%). Importantly,
this oxidation procedure effectively preserved the integrity of the vicinal diol moiety.
By dehydrating 166 using Martin’s sulfurane reagent, enone 168 was produced along
with cyclopropane 167 as an inseparable mixture. The overall yield for this step reached
approximately 75%, with a ratio favoring 168 at approximately 4:1 168/167. Compound
168 was then reacted with allylMgBr in the presence of CeCl3 to introduce an allyl group,
leading to the formation of allylic alcohol 169 as the sole diastereomer in a 69% yield. The
stereocontrolled oxidation of 169 using a V-based catalyst produced epoxy alcohol 170.
Subsequently, 170 was subjected to Marson’s semipinacol rearrangement [56]. Finally, the
use of Lipshutz’s conditions, involving LiBF4 in MeCN, formed compound 171 as a single
stereoisomer with high efficiency.
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3.1.10. Production of ABCD Tetracyclic Ring Domain of Calyciphylline A-Type Alkaloids

The synthesis of the ABCD tetracyclic ring framework of calyciphylline A-type alka-
loids was also achieved by Bonjoch’s team using 5-endo radical cyclization starting from
cis-3a-methyloctahydroindole [57,58]. As depicted in Scheme 10, the reaction of ketone
172 with BnNH2 using the Dean-Stark apparatus led to the formation of imine 173, which
was subsequently treated with trichloroacetyl chloride (Cl3CCOCl) to produce enamide
174. Trichloroacetamide 174 was then refluxed in benzene and reacted with tributyltin
hydride (Bu3SnH) or AIBN, leading to the synthesis of hydroindole 175 through 5-endo-trig
cyclization [59]. Enamide 175 underwent allylation using lithium bis(trimethylsilyl)amide
(LiHMDS) and allyl bromide at −78 ◦C, resulting in the diastereoselective formation of 176
in almost complete yield. The acylithinium generated from 176 was selectively reduced
using NaBH3CN in an acidic medium, thus forming cis-octahydroindole 177 [60].
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Starting from 177, α,β-unsaturated aldehyde 178 was obtained through an efficient
cross-metathesis reaction using a low-catalyst-loading Grubbs II catalyst and CuI as an
additive in Et2O. Afterward, the acetal group in the aldehyde was removed using an
aqueous solution of HCl in THF, leading to the synthesis of ketoaldehyde 179. A seven-
membered ring was formed through aldol cyclization, employing p-TsOH in benzene under
reflux conditions. Consequently, the D ring closed to form enone 180 with the ACD tricyclic
ring system. Enone was protected using ethylene glycol to yield 181.

Lactam 181 underwent debenzylation using Na in NH3(liq) at −78 ◦C. This was
followed by the reduction of secondary lactam 182 using LiAlH4 to achieve a high overall
yield of secondary amine 183. Compound 183 was then trichloroacetylated to obtain 184,
which underwent acid-mediated treatment for the regeneration of moiety 185 containing an
α,β-unsaturated ketone. To obtain the required radical acceptor enol acetate 186, compound
185 was treated with p-TsOH and isopropenylacetate. The reaction between enol acetate
186 and Bu3SnH, along with AIBN, resulted in 187 with a morphan ring system in up to
82% yield.

In a significant advancement toward the synthesis of valuable intermediates for caly-
ciphylline A-type alkaloids, the diastereoselective alkylation of lactam 187 introduced a
methyl substituent with an identical configuration as that observed in the natural target
product. Surprisingly, upon the deprotection of enol acetate 188 using K2CO3 in MeOH,
α-hydroxylated ketone 189 was isolated instead of a simple ketone [61]. Finally, the Burgess
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reagent was employed to dehydrate the tertiary alcohol in 189, affording 190 in modest
yield (33% over three steps; 70% achieved for each individual chemical event from 188).

3.1.11. Synthesis of AC Bicyclic Framework of Daphniyunnine B

In 2019, Xie’s group constructed the AC ring system of daphniyunnine B [62]. As
depicted in Scheme 11, the synthesis began with the acid-promoted rearrangement, hy-
drolysis, and amidation of cyclohexenol 191 to obtain primary amide 192, with a single
purification step using column chromatography. Subsequently, bicyclic lactam 193 was
synthesized through intramolecular iodocyclization under Levorse’s conditions [63], fol-
lowed by 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-promoted elimination. Compound
194 was then protected to achieve a yield of 90%. Its cis configuration was confirmed
through nuclear Overhauser effect experiments on fused bicyclic lactam. Finally, high
yields of bicyclic lactam 195 were obtained through SeO2-assisted allylic oxidation and
Swern oxidation of the diastereomeric secondary alcohols.
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Following the synthesis of 195, the researchers turned their focus to the synthesis of
the C8 quaternary stereocenter of the AC ring system. To achieve this, they combined 195
with an aldehyde by aldol reaction, resulting in the formation of β-hydroxyl ketone 196.
Subsequently, 196 was converted to a more reactive form, 1,3-diketone 198, which coexisted
with its enolization isomer 197. Both compounds underwent allylation, leading to a mixture
of O-alkylation product 199 and C-alkylation product 200 in a ratio of approximately 2.7:1
(total yield of up to 95%). Finally, subjecting 199 to heat-promoted Claisen rearrangement
facilitated its transformation into 200 with approximately 70% yield.

3.1.12. Construction of ABC Ring System of 21-Deoxymacropodumine

In 2020, Tang’s group reported the synthesis of the ABC tricyclic ring system of 21-
deoxymacropodumine [64]. As depicted in Scheme 12, the reactive deprotonation of 201 using
LiHMDS, followed by quenching of the resulting anion with Mander’s reagent, resulted in
the formation of enol 202a as the major product. Next, 202a was treated with palladium(II)
acetate (Pd(OAc)2) and ytterbium(III) triflate (Yb(OTf)3) in THF under an O2 atmosphere for
Pd-catalyzed intramolecular oxidative alkylation. This led to the synthesis of C2–C18 ligated
compound 203. The double bond in 203 was hydrogenated catalytically using PtO2 in MeOH,
resulting in a mixture of two diastereomers (204a and 204b) at a ratio of 1.5:1. The relative
stereochemistry between 204a and 204b was determined by comparing their respective NMR
spectra with those of Krapcho decarboxylation products 205a and 205b.

3.2. Research on the Synthesis of Other Calyciphylline-Type Alkaloids
3.2.1. Synthesis of the ABE Tricyclic Core of Calyciphylline B-Type Alkaloids

Boissarie and Bélanger presented a concise method for synthesizing the enantiomer-
ically enriched ABE tricyclic scaffold found in calyciphylline B-type alkaloids [65]. As
depicted in Scheme 13, a reaction involving 206 and methyl acrylate resulted in the pro-
duction of unsaturated ester 207 via cross-metathesis [66]. Subsequently, 207 underwent a
Heathcock aldol reaction [67] with aldehyde 209, leading to the satisfactory formation of
anti-product 210. The direct reduction of 210 proved challenging. Thus, a trimethylsilyl
(TMS) group was introduced to protect the free alcohol, affording 211. The protecting group
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was removed during acid quenching in the following reduction reaction, resulting in diol
212 with a nearly complete yield for these two steps.
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To selectively oxidize the primary alcohol moiety, catalytic 2,2,6,6-tetramethylpiperidin-
1-yl)oxyl (TEMPO) and sodium hypochlorite (NaOCl) were employed as co-oxidants to
obtain compound 213 followed by enolization into cyclic silyl enol ether 214. The con-
version of 214 through deallyloxycarbonylation [68], followed by immediate formylation
using Katritzky salts [69], yielded polycyclization precursor 215. Compound 215 was ex-
posed to amide activation conditions (triflic anhydride (Tf2O) and 2,6-di-tert-butylpyridine
(DTBMP)), resulting in smooth and rapid Vilsmeier–Haack cyclization to form iminium ion
216. By transferring the reaction solution to a flask containing a refluxing solution of DIPEA
in DCM, efficient cycloaddition also ensued. Encouragingly, the excess DIPEA utilized
for azomethine ylide generation also facilitated cyanide elimination. Consequently, two
cycloadducts were obtained in equal proportions: the expected tricyclic aldehyde 221 and
a tetracyclic silylated cyanohydrin 222.

The researchers proposed that these products were formed by the partial conversion
of silyl triflate 219 into cyclic oxocarbenium ion 220. Ion 220 then reacted with the cyanide
that formed during the elimination process to afford cyanohydrin 222, whereas hydrolysis
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of the remaining 219 produced aldehyde 221 during the aqueous quench. Importantly,
both compounds can be desilylated independently using tetra-n-butylammonium fluoride
(TBAF) to obtain the desired tricyclic product (223) in satisfactory yield. By employing
a one-pot procedure involving sequential Vilsmeier–Haack and cycloaddition reactions
followed by TBAF treatment, 224 was obtained from substrate 223 in an impressive overall
yield of approximately 69%.

3.2.2. Synthesis of ABCE Tetracyclic Core of Calyciphylline B-Type Alkaloids

She’s group developed a novel approach involving two cyclization steps to ob-
tain the tetracyclic core found in calyciphylline B-type alkaloids [70]. By starting with
ε-caprolactone, they synthesized chiral oxazolidinone 225 using established methods [71].
They then proceeded with an asymmetric alkylation using tert-butyl bromoacetate at
low temperature, resulting in the formation of 226 with exceptional diastereoselectivity
(Scheme 14) [72]. Removal of the Evans auxiliary and desilylation with TBAF resulted in
diol 227. The subsequent oxidation of 227 afforded the corresponding dialdehyde with-
out purification. This dialdehyde underwent intramolecular condensation to generate
a chiral cyclicenal intermediate 228 [73,74]. Finally, fragment 229 was obtained in high
yield by reducing the aldehyde group to an alcohol and subsequently protecting it with an
acetyl group.
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After preparing fragment 229, the researchers then focused on synthesizing frag-
ment 235. To achieve this, diol 230 was synthesized from D-aspartic acid following an
established protocol. The remaining hydroxyl groups were selectively protected with tert-
butyldimethylsilyl chloride (TBSCl) and then oxidized to form aldehyde 231. Introducing
a terminal olefin through Wittig methylenation followed by acid-assisted deprotection
resulted in the release of free alcohol 232, which was readily converted to aldehyde 233
using DMP. Next, the nucleophilic addition of allylMgBr to the aldehyde group generated
a secondary alcohol that underwent acylation with acetic anhydride (Ac2O). This reaction
produced linear diene 234 as the final product. The ring-closing metathesis of alkene 234 in
the presence of Grubbs II catalyst resulted in the corresponding cyclohexene. Subsequently,
hydrogen saturation was used to form fragment 235.

With sufficient quantities of fragments 229 and 235 at hand, the subsequent step involved
their coupling to investigate cyclization reactions. The compounds 236 and 237 were obtained
by stirring 229 and 235 in DCM with excess trifluoroacetic acid (TFA) to liberate the carboxylic
acid and amine, respectively, for direct utilization in the subsequent step. After multiple
trials, it was found that a mixture of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI)
and hydroxybenzotriazole (HOBt) in N-methylmorpholine (NMM) facilitated intermolecular
amidation, leading to the formation of the coupling product 238 [75]. The base-promoted
hydrolysis and double oxidation of 238 converted its two acetoxyl groups into carbonyl ones
to form 239. Finally, 240 was formed through intramolecular aldol condensation to close the
central ring of tetrahydropyridine B [76]. The cyclization required a stoichiometric quantity of
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p-TsOH, as confirmed by control experiments. Notably, this synthesis of the ABCE ring system
in 240 is a promising step toward the complete synthesis of calyciphylline B-type alkaloids.

3.2.3. Synthesis of Aza-5/7/6/7 Tetracyclic Core of Calyciphylline D-Type Alkaloids

In 2021, Wang’s group documented the synthesis of a tetracyclic core structure featur-
ing an aza-5/7/6/7 configuration similar to that in calyciphylline D-type alkaloids [77]. As
depicted in Scheme 15, the synthesis was initiated using known compound 241 and epoxide
242. The reaction between a Grignard reagent (derived from 241) and 242, catalyzed by
CuI, furnished alcohol 243 with an impressive yield (91%). The subsequent oxidation of
243 resulted in ketone 244 in remarkable yield (92%). Finally, Wittig olefination of 244 led
to the formation of alkene 245 in outstanding yield (96%).
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The efficient cyclopropanation of 245 using dimethyl diazomalonate under the cataly-
sis of Rh2(esp)2 (esp = α,α,α′,α′-tetramethyl-1,3-benzenedipropanoate) resulted in the for-
mation of cyclopropane 1,1-diester 246 as a single diastereomer in remarkable yield (96%).
Subsequently, aldehyde 248, the precursor of [3+2] intramolecular cross-cycloaddition
(IMCC), was obtained by subjecting 246 to a Wohl–Ziegler reaction followed by oxidization
using N-methylmorpholine-N-oxide (NMO) [78]. After a comprehensive assessment, AIBN
was selected as the radical initiator for the bromination of the methyl group neighboring
the benzyl moiety. The yield of benzylbromide 247 was 78%.

Aldehyde 248 was obtained through the subsequent oxidation of 247 using NMO
without additional purification and then used directly in the subsequent [3+2] IMCC
reaction. Specifically, 248 was reacted with BnNH2 in a single-step synthesis to yield imine
249 in the same reaction mixture. Subsequently, under the catalytic action of scandium(III)
triflate (Sc(OTf)3), 249 underwent intramolecular cyclization ([3+2] cycloaddition) to form
tetracyclic compound 250 [79,80]. Thus, 250 was synthesized from benzylbromide 247
as the sole diastereomer with a satisfactory three-step conversion efficiency of 76%. The
structure of 250 was verified using X-ray crystallography. Its stereochemical configuration
was similar to that of calyciphyllines D and F and caldaphnidine M.

The Krapcho decarboxylation of compound 250 yielded monoester 251 in a diastere-
omeric mixture with an approximately equimolar ratio. Monoester 251 underwent hydrol-
ysis to yield acid 252. Following this, a modified procedure was employed for the Barton
decarboxylation of acid 252, utilizing 253 and tert-butylthiol (t-BuSH) as the hydrogen donor
to produce 254. After multiple attempts, Newman’s method (Na2S/N-methylpyrrolidone
(NMP)) [81] was ultimately found to achieve the synthesis of 255 in impressive yield (86%).
The oxidative dearomatization of 255 using PIDA [82–84] afforded 256 in 72% yield. The
structure of 256 was confirmed by X-ray crystallography. Finally, 257 was obtained with
high selectivity and a high yield of 96% by hydrogenating 256. Based on this successful
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synthesis, the researchers turned to the complete synthesis of calyciphyllines D and F and
caldaphnidine M by a dual Michael addition approach.

3.3. Research on the Synthesis of Yuzurimine-Type Alkaloids
3.3.1. Synthesis of Heterocyclic Segments of Deoxyyuzurimine and Macrodaphnine

In 2019, Sakakura’s group reported the synthesis of the heterocyclic components
found in the yuzurimine-type alkaloids deoxyyuzurimine and macrodaphnine [85]. As
depicted in Scheme 16, the synthesis involved a challenging multistep reaction from known
compound 258 to the intricate intermediate 259 [86]. The utilization of alcohol 259 in
the Mitsunobu reaction [87] resulted in the formation of nitrobenzenesulfonamide 260,
which was later transformed into 261 as a precursor for an intramolecular Mitsunobu
reaction. This effectively facilitated the synthesis of the E-ring segment, resulting in the
formation of bicyclic compound 262 with minimal impurities. After the removal of the
TBS group from 262 using TBAF, the impurities were isolated to acquire alcohol 263 as the
sole isomeric form. Subsequent tosylation of the hydroxy group of 263 was achieved using
Tanabe’s method, yielding tosylate 264. Finally, the tert-amine model compound, 265, was
synthesized through the sequential elimination of the nitrobenzenesulfonyl (Ns) group
and intramolecular SN2 reaction [88]. Additionally, N-oxide 266 was synthesized from 265
using H2O2.
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3.3.2. Synthesis of AE Bicyclic Structure of Yuzurine

Yang’s group developed a succinct method for synthesizing the AE bicyclic system of
the yuzurimine-type alkaloid yuzurine in 2017 [89]. As depicted in Scheme 17, the synthesis
employed commercially accessible starting materials, 4-(bromomethyl)-5-hydrofuran-2-one
(267) and sarcosine methyl ester hydrochloride (268), to produce γ-butyrolactone 269 in
impressive yield (80%) through N-allylation followed by hydrogenation to yield 270. Next,
Dieckmann condensation was achieved by treating 270 with LiHMDS in dry THF at −20 ◦C,
yielding β-keto ester 271. Enoltriflate 272 was then synthesized in significant yield (71%) by
reacting 271 with Tf2O in CH2Cl2 in the presence of DIPEA. Subsequently, 272 was subjected to
a Suzuki reaction with 4-methoxyphenyl boronic acid, leading to the formation of intermediate
273. The piperidine analog 274 was obtained through hydrogenation of the double bond
in 273. The reaction between lactone 274 and LiHMDS in THF at −78 ◦C generated alkyne
275 while effectively forming the quaternary carbon center C4. The lactone in 275 was then
reduced using LiAlH4 in dry THF at a temperature of −20 ◦C, resulting in the formation of
diol 276, which can be utilized for subsequent oxyfunctionalization reactions.

Despite attempts to transform 276 using De Brabander’s method [90] involving
[Cl2Pt(CH2CH2)]2, MeAuPPh3/AgPF6, PdCl2(PhCN)2, and PdCl2(MeCN)2, a complex
mixture was produced without the desired ketal product. Moreover, upon exposure to
HgCl2/Et3N in CH2Cl2, following a previously reported procedure [91], an assortment of
undisclosed compounds was detected. Thus, the researchers reacted 275 with mercury(II)
acetate (Hg(OAc)2) and p-TsOH in a mixture of MeOH and H2O at 54 ◦C, leading to the for-
mation of ketone 277 in 78% yield. Moreover, no undesired isomers formed. Subsequently,
277 was converted to dimethyl ketal 278. Compound 278 was further reduced with LiAlH4
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to obtain dihydroxyl compound 279. Notably, the reaction of 279 with HCl/dioxane in
THF at 0 ◦C ultimately formed the AE bicyclic intermediate 280 in 85% yield.
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3.4. Research on the Synthesis of Daphnicyclidin-like Alkaloids
3.4.1. Synthesis of ACE Tricyclic Structures Resembling Those of Daphnicyclidin A and
Dehydroxymacropodumine A

In 2020, Yang’s group reported a method for the production of ACE tricyclic systems
resembling those of daphnicyclidin-type alkaloids daphnicyclidin A and dehydroxymacrop-
odumine A [92]. As depicted in Scheme 18, the reaction of 281 with an MOM-protected
allyl alcohol in the presence of Grubbs II catalyst afforded 282 in impressive yield (80%).
Compound 282 was further processed using THF as the solvent along with LiHMDS and
methyl iodide (MeI) at temperatures ranging from −78 to −45 ◦C, followed by hydrolysis
with NaOH in a mixture of MeOH and H2O, removal of the MeOH/H2O solvent, addition
of THF to the residue, and addition of ethyl chloromethylate. This was followed by a
reduction in NaBH4 to afford alcohol 283. Alcohol 283 was protected using THP, followed
by a reduction of the double bond to obtain 284. The oxazolinone was hydrolyzed using
t-BuOK in an aqueous solution of t-BuOH at 100 ◦C, then the pH was adjusted to 8–9, and
p-toluenesulfonyl chloride (p-TsCl) was added to obtain 285. Subsequent DMP oxidation
of the primary alcohol afforded aldehyde 286. Aldehyde 286 was introduced during the
treatment of ester 286a with LiHMDS, which provided secondary alcohols 287a and 287b in
yields of 63% and 36%, respectively. The hydroxyl groups at positions 287a and 287b were
eliminated through Barton deoxygenation, resulting in the formation of 288a and 288b in
impressive yield (82%). Subsequently, the ester moieties in 288a and 288b were converted to
alcohols using LiAlH4 in THF at −20 ◦C. The resulting alcohols were then oxidized utilizing
NMO/tetrapropylammonium perruthenate (TPAP) to afford diastereomeric aldehydes
289a and 289b.
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with t-BuLi. An acetyl group was introduced to protect the new secondary alcohol, after 
which the ethylene glycol and THP protecting groups were removed to obtain primary 
alcohol 291 in high yield (82%). The hydroxyl group was rearranged using NMO/TPAP to 

Scheme 18. Synthesis of ACE tricyclic structures similar to those of daphnicyclidin A and
dehydroxymacropodumine A.

Product 290 was obtained by reacting 289b with 290a in THF at −78 ◦C after treatment
with t-BuLi. An acetyl group was introduced to protect the new secondary alcohol, after
which the ethylene glycol and THP protecting groups were removed to obtain primary
alcohol 291 in high yield (82%). The hydroxyl group was rearranged using NMO/TPAP to
produce an aldehyde, followed by oxidation with NaH2PO4/NaClO2 to yield 292. Subse-
quently, decarboxylation radical conjugate addition was performed on carboxylic acid 292
using MacMillan’s conditions [93]. The carboxyl group was then converted using Over-
man’s conditions [94] to produce 293. The synthesis of 294a and 294b was achieved under
blue light irradiation in the presence of tris(2,2′-bipyridyl)ruthenium tetrafluoroborate
([Ru(bpy)3](BF4)2), diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate, DIPEA,
and anaerobic DCM.

3.4.2. Formation of ABCE Ring Substructure of Daphnicyclidin A

Harmata and colleagues devised a method for intramolecular [4+3] cycloadditions
involving oxidopyridinium ions, leading to the formation of the ABCE ring substructure
of daphnicyclidin A [95,96]. As depicted in Scheme 19, the synthesis began by directly
converting propane-1,3-diol 295 into alcohol 296 with an impressive yield (90%) using a
monoTBS protection strategy. Subsequently, employing an established protocol [97,98], 296
was quantitatively converted to aldehyde 297 by Swern oxidation with high efficiency. Next,
aldol condensation between 297 and cyclopentanone followed by elimination produced
enone 298 in 62% total yield. Finally, diene 299 was obtained through Wittig olefination
in exceptional yield (95%). Diene 299 was protected by treatment with SO2(liq, neat) [99],
resulting in the formation of sulfone 300 in 70% yield. Subsequently, the TBS protecting unit
of 300 was eliminated to afford alcohol 302 and a small amount of byproduct 301. Triflate
derivative 303 was obtained from 302 with an impressive yield (97%). The interaction
between triflate 303 and ethyl 5-hydroxynicotinate led to the complete production of pyri-
dinium salt 304. Compound 305 was obtained via sulfonation deprotection/intramolecular
[4+3] cycloaddition of salt 304, and then cycloadduct 306, which possessed the ABCE
tetracyclic ring system of daphnicyclidin A, was obtained. Finally, cycloadduct 306, which
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possessed the ABCE tetracyclic ring system of daphnicyclidin A, was obtained through the
sulfation deprotection/intramolecular [4+3] cycloaddition of salt 304.
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The ABC tricyclic system of daphnicyclidin A was synthesized by Yang’s group in 

2017 using a substrate-stereocontrolled approach [100]. As depicted in Scheme 20, com-
pound 307 was converted to 308 and 309 via alkylation reactions, and 308 was reacted 
with LiHMDS and MeI in THF within the temperature range of −78 to −58 °C, followed by 
a reaction with 2 equiv of MeOH(aq)/NaOH. The solvent was then switched to DMF, fol-
lowed by the addition of MeI, thus forming oxazolinone 310 in 86% overall yield from 308. 
Compound 310 was then reduced, and a benzyl group was added to obtain 311. Com-
pound 311 was treated with t-BuOK at 100 °C overnight and then reacted with phosphate 
ester 312 to produce amine 313 in 78% yield. An aldehyde was used as a reactant for mo-
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3.4.3. Synthesis of ABC Tricyclic Structure of Daphnicyclidin A

The ABC tricyclic system of daphnicyclidin A was synthesized by Yang’s group in 2017
using a substrate-stereocontrolled approach [100]. As depicted in Scheme 20, compound 307
was converted to 308 and 309 via alkylation reactions, and 308 was reacted with LiHMDS
and MeI in THF within the temperature range of −78 to −58 ◦C, followed by a reaction
with 2 equiv of MeOH(aq)/NaOH. The solvent was then switched to DMF, followed by the
addition of MeI, thus forming oxazolinone 310 in 86% overall yield from 308. Compound
310 was then reduced, and a benzyl group was added to obtain 311. Compound 311
was treated with t-BuOK at 100 ◦C overnight and then reacted with phosphate ester 312
to produce amine 313 in 78% yield. An aldehyde was used as a reactant for molecular
HWE following the Dess–Martin oxidation of 313. The formation of the B ring under
Rathke’s conditions led to the synthesis of 314 in 77% yield. Following the hydrogenolysis
of 314 using 10% Pd/C in the presence of H2 gas (pressure: 1 atm), the obtained ester was
reacted with the lithium salt of dimethyl methylphosphonate in THF at −78 ◦C, affording
β-ketophosphonate 315 in 65% yield. The conversion of alcohol 315 to aldehyde 316 was
achieved by Dess–Martin oxidation. Subsequently, the resulting compound was handled
with K2CO3/18-crown-6 in toluene and stirred at 80 ◦C for an extended period. This
resulted in the formation of the A ring in 317. Notably, the arrangement of stereocenters in
317 was confirmed to align with that in (+)-daphnicyclidin A.
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3.4.4. Construction of 5/6/7 Tricyclic Core of Daphnicyclidin-Type Alkaloids

A rapid synthesis for the 5/6/7 tricyclic core found in daphnicyclidin-type alkaloids
was reported by She’s group [101]. As depicted in Scheme 21, they subjected tricyclic
ketone 318 to base-mediated ring dilation rearrangement in the presence of trimethylsilyl
diazomethane (TMSCHN2) to afford 5/6/7 tricyclic ketone 319. Notably, 319 was the
sole product resulting from this ring expansion and migration [102]. Reacting 319 in the
presence of KHMDS and Davis’s reagent led to the synthesis of α-hydroxy ketone 320 in
high yield (75%) with exclusive diastereoselectivity [103]. The treatment of 320 with excess
allylMgBr triggered a 1,2-addition reaction to form tertiary alcohol 321. Subsequently, the
vicinal diol 321 was cleaved using TPAP/NMO, IBX, and DMP as oxidizing agents to afford
a ring-opened product. After extensive experimentation, it was determined that Swern
oxidation provided optimal results for this transformation. When (COCl)2 was employed
as a reagent, the desired product (322) only obtained a modest yield (24%), whereas the
yield increased to an impressive 95% when using trifluoroacetic anhydride (TFAA) [102].
The α-hydroxyketone 322 was treated with the Burgess reagent, leading to the synthesis
of dehydrated product 323 in satisfactory yield. Diene 323 was subsequently reacted with
TBAF, resulting in product 324 after desilylation. Finally, an aldehyde compound was
synthesized using Swern oxidation conditions, followed by a Roskamp reaction to yield
β-ketoester 325 [102].
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3.5. Synthetic Studies Toward Other DAs 
3.5.1. Synthesis of ABC Tricyclic Moiety of Calyciphylline N 

Tang’s group recorded the production of a tricyclic compound with a 5/6/6 ABC ar-
rangement resembling that of daphmanidin A-type alkaloid calyciphylline N [64]. This 
approach, as depicted in Scheme 22, involved a seven-step sequence starting from the 
known unsaturated ketone 326. The asymmetric addition of 326 and trimethylaluminum 
was performed under the action of a copper catalyst with 51 as ligand [25], resulting in an 
enantioenriched ketone intermediate 326a in satisfactory yield (74%) with exceptional en-
antioselectivity of up to 95% ee. Intermediate 326b was subsequently treated with methyl 
2-bromoacetate in THF at −78 °C to afford 326c. The product contained two diastereomers 
in equal proportions. After removing the TBS group of 326c, it was converted into a bicy-
clo[2.2.2]octanone BC core in 326d by oxidizing the resulting alcohol with pyridinium 
chlorochromate (PCC) and inducing an intramolecular aldol reaction with acid mediation. 
This process achieved high stereoselectivity at C7 (diastereomeric ratio (dr) = 7:1) in just 
two steps with a 54% yield. To obtain the target bicyclic intermediate 326d, an intramo-
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sis (RCM) reaction [104] from the ABC three-ring system to get calyciphylline N. 

O

OTBS Me3AI, CuTC
O

OTBS
Br CO2Me

O

OTBS

MeO2C
HF(aq.)

MeCN, 0℃  83%

O

OH

MeO2C

O

HO

MeO2C

7:1 dr

Bz2O, DMAP

DCM, r.t, 82%

O

BzO

MeO2CNH2PMB, PPTS
NO
PMB

BzO
HO

H

N

MeO2C

O
P

O
N

Ph

Ph

B

C

A

326

326a

327
[5-6-6-7-5-5]
calyciohylline N

5
2

5

54% for two steps
dr=7:1

2

7
5

1,2,4-trichlorobenzene, 220℃
        sealed tube

90%

2 7 5

51

326a 326b 326c

326d326e

Et2O, - 30℃
74%, 95%ee

LED, THF, - 70℃,83%
dr=1:1

(1) PCC,SiIica gel, 0℃ to r.t;
(2) 2 M HCI, 0℃ to r.t

 
Scheme 22. Synthesis of the ABC tricyclic moiety found in calyciphylline N. 

3.5.2. Synthesis of ABCF Tetracyclic Structure of Calyciphylline N 
The ABCF tetracyclic framework of calyciphylline N was constructed by Qin’s group 

in 2018 [105]. As shown in Scheme 23, the triethylsilyl ether (TES)-protected substrate 328 

Scheme 21. Construction of the 5/6/7 tricyclic core of daphnicyclidin-type compounds.

3.5. Synthetic Studies Toward Other DAs
3.5.1. Synthesis of ABC Tricyclic Moiety of Calyciphylline N

Tang’s group recorded the production of a tricyclic compound with a 5/6/6 ABC
arrangement resembling that of daphmanidin A-type alkaloid calyciphylline N [64]. This
approach, as depicted in Scheme 22, involved a seven-step sequence starting from the
known unsaturated ketone 326. The asymmetric addition of 326 and trimethylaluminum
was performed under the action of a copper catalyst with 51 as ligand [25], resulting in
an enantioenriched ketone intermediate 326a in satisfactory yield (74%) with exceptional
enantioselectivity of up to 95% ee. Intermediate 326b was subsequently treated with methyl
2-bromoacetate in THF at −78 ◦C to afford 326c. The product contained two diastereomers
in equal proportions. After removing the TBS group of 326c, it was converted into a
bicyclo[2.2.2]octanone BC core in 326d by oxidizing the resulting alcohol with pyridinium
chlorochromate (PCC) and inducing an intramolecular aldol reaction with acid mediation.
This process achieved high stereoselectivity at C7 (diastereomeric ratio (dr) = 7:1) in just two
steps with a 54% yield. To obtain the target bicyclic intermediate 326d, an intramolecular
aldol-type cyclization with high endo selectivity was performed. The secondary alcohol
in 326d was protected to give 326e and subjected to thermal condensation in the presence
of 4-methoxyphenylmethanamine (PMBNH2) and pyridinium p-toluenesulfonate (PPTS),
resulting in ABC tricycle 327 in high yield. Notably, the ABC tricyclic framework of
327 comprised the bicyclo[2.2.2]octanone BC core and three quaternary stereocenters of
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calyciphylline N. It may go through processes such as ring-closing metathesis (RCM)
reaction [104] from the ABC three-ring system to get calyciphylline N.
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presence of 4-methoxyphenylmethanamine (PMBNH2) and pyridinium p-toluenesul-
fonate (PPTS), resulting in ABC tricycle 327 in high yield. Notably, the ABC tricyclic 
framework of 327 comprised the bicyclo[2.2.2]octanone BC core and three quaternary ste-
reocenters of calyciphylline N. It may go through processes such as ring-closing metathe-
sis (RCM) reaction [104] from the ABC three-ring system to get calyciphylline N. 
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3.5.2. Synthesis of ABCF Tetracyclic Structure of Calyciphylline N

The ABCF tetracyclic framework of calyciphylline N was constructed by Qin’s group
in 2018 [105]. As shown in Scheme 23, the triethylsilyl ether (TES)-protected substrate 328
was efficiently transformed to adduct 329. Subsequently, 329 underwent an intermolecular
aldol reaction using methyl pyruvate [106] and LiHMDS in THF at −45 ◦C, thus form-
ing 330. Bicyclic compound 331 was synthesized with DMP instead of PCC by utilizing
Na2CO3. The secondary alcohol in 331 was selectively protected through treatment with
TESCl/imidazole/DMAP. Silyl ether 332, obtained without prior purification, was sub-
jected to elimination conditions in heated pyridine using SOCl2. This led to the formation
of α,β-unsaturated ester 332. After subjecting 332 to catalytic hydrogenation using Pd/C
in the presence of Na2CO3, two distinct esters, 333 and 333a, formed in EtOAc in 92% total
yield (dr = 10:1). Compound 333 was treated with TIPSCl/NaHMDS to afford silyl enol
ether 334 in excellent yield (88%). The subsequent conversion of 334 to primary alcohol
335 was accomplished using diisobutylaluminium hydride (DIBAL-H) in high yield (92%).
Encouragingly, 335 was reacted with phthalimide under Mitsunobu conditions to obtain
product 336 [107]. Selective desilylation employing ZnBr2 [108] successfully released the
desired ketone 337.
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Then, the researchers synthesized the C8 center via aldol condensation between 337
and acrolein. Diketone 338 was obtained in satisfactory yield (72%) via DMP oxidation.
Next, Tsuji–Trost allylation [109] was employed to introduce an allyl group, resulting in
diene 339 as the predominant stereoisomer (dr = 6:1). In the subsequent steps, Grubbs
first-generation catalyst [110] was employed for the metathesis of 339, resulting in cyclopen-
tenone motif 340 with a high efficiency of 91%. Thereafter, Nagata conjugate cyanation [111]
was utilized to introduce a CN group onto enone 340 as a surrogate for the CO2Me group
in the target molecule. Fortunately, the 1,4-hydrocyanation of 340 using Nagata’s reagent
(Et2AlCN) [111] proceeded smoothly in heated toluene. This formed tricyclic compound
341, which featured the functionalized F ring, in high yield. Subsequently, heating 341 to
70 ◦C in methylamine (MeNH2) and ethanol (EtOH) [112] efficiently removed the phthal-
imide group and spontaneously formed an imine group, leading to ring closure and thus
the formation of the ABCF tetracyclic framework (342).

3.5.3. Construction of AC Ring Moiety of Daphnilactone B-Type Alkaloids

In 2019, J. Xu’s group synthesized the AC ring moiety of daphnilactone B-type al-
kaloids in 30% overall yield through a seven-step procedure involving an exceptionally
efficient Diels–Alder reaction and an Au-catalyzed Conia-ene reaction [113]. As shown in
Scheme 24, acetylenone (343) and acetylenamine (343a) underwent the Michael addition
to produce 344. Compound 344 was then reacted with NaH and p-TsCl to obtain 345 after
removing the H from the N atom in 344. Under the action of Et3N, the enol hydroxyl group
of 345 was protected using TBS to obtain enol silyl ether 346, which then underwent a
Diels–Alder reaction with aldehyde 347 to obtain compound 348 with a six-cell ring. Sub-
sequently, the aldehyde hydroxyl group of 348 was reduced, followed by intramolecular
cyclization to obtain 349.
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Next, the researchers attempted to use substance 349 to construct the A ring of the target
compound by an Au-catalyzed Conia-ene reaction [114]. After a series of screening experi-
ments, they used 10 mol% triphenylphosphonogold(I) bis(trifluoromethanesulfonyl)imide salt
(Au(PPh3)NTf2) in DCM and H2O (10:1 v/v). Under these conditions, cyclization occurred
quickly at room temperature; however, the cyclization product was not stable. The product
was then directly reduced to stable compound 350 using NaBH4. Finally, 350 was reacted in
DCM in the presence of Wilkinson’s catalyst (chlorido-tris(triphenylphosphine)rhodium(I)
(Rh(PPh3)3Cl)) under a H2 atmosphere to produce 351 [115].

3.5.4. Synthesis of ABCE Tetracyclic Framework of Daphenylline

Synthesis of the ABCE tetracyclic framework of daphenylline has also been achieved [116].
The synthesis, as shown in Scheme 25, began with a cascade N-alkylation/aza-Michael
addition reaction between chloride 353 and amine 352 to produce the bridged aza [3.3.1]bicycle
354 [102,117]. The reaction proceeded smoothly and generated 354 as well as retro aza-Michael
addition product 355 in a 7:1 ratio. Subsequent Pd-catalyzed enolate α-vinylation afforded
bowl-shaped tricyclic tertiary amine core 356. Introducing a THF/BH3 complex to 356 led to
the formation of the borane-complexed aza-tricyclicketone 357. Subsequently, 357 underwent



Molecules 2024, 29, 5498 25 of 65

triflation using NaHMDS and N-phenyl bis(trifluoromethanesulfonimide) (PhNTf2), affording
358 an almost complete yield [118]. Suzuki coupling between 358 and vinyl borate proceeded
smoothly, leading to the synthesis of amine-borane diene 359 in high yield (94%). Dimethyl
acetylenedicarboxylate was used as a diene body to react with 359 to produce the desired
cyclohexadiene intermediate 360. The subsequent aromatization step [119] involved the
isolation of aromatic tertiary amine 361 in ambient air. To simplify the purification process,
BH3·Me2S was introduced in situ to form amine-borane complex 362. Notably, 362 exhibits
structural similarity to the ABCE tetracyclic framework of (+)-daphenylline.
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3.5.5. Production of Central Framework of Daphnimacropodine 
In 2019, J. Xu’s team reported the synthesis of the central framework of daph-

nimacropodine [120]. The synthesis, as shown in Scheme 26, was initiated from the race-
mic form of Wieland–Miescher-type diketone 364, which was prepared from 1,3-cyclo-
heptanedione 363 through a two-step process involving reductive alkylation [121] and al-
dol condensation. The preparation of 365 was achieved by Oxone-mediated γ-oxidation 
[122] and protection of the secondary hydroxyl group with TBS to avoid steric hindrance. 
However, attempts to construct the adjacent quaternary centers through conjugate addi-
tion using Luche’s alkylzinc conditions [123] were unsuccessful. Instead, the neighboring 
quaternary centers were synthesized by selectively reducing the enone motif to obtain 366. 
Subsequently, 366 was subjected to OH-directed cyclopropanation and TEMPO-mediated 
oxidation to produce ketone 367. Enone 368 was then obtained through Saegusa–Ito oxi-
dation and carbamate derivative 369 was synthesized by sequential treatment with car-
bonyldiimidazole (CDI) and propynylamine. Carbamate 369 was transformed into the 
crucial intermediate 370 via NaH-promoted intramolecular Michael addition. Notably, 
the structure of 370 was unequivocally confirmed by single-crystal X-ray diffraction. In-
termediate 370 was then subjected to Au-catalyzed hydration, leading to the formation of 
intermediate 371. Finally, intermediate 371 underwent aldol condensation in the presence 
of sodium methoxide (NaOMe) to yield 372 with the intended hydropyrrole moiety. 
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3.5.5. Production of Central Framework of Daphnimacropodine

In 2019, J. Xu’s team reported the synthesis of the central framework of daphnimacropodine [120].
The synthesis, as shown in Scheme 26, was initiated from the racemic form of Wieland–Miescher-type
diketone 364, which was prepared from 1,3-cycloheptanedione 363 through a two-step process in-
volving reductive alkylation [121] and aldol condensation. The preparation of 365 was achieved by
Oxone-mediatedγ-oxidation [122] and protection of the secondary hydroxyl group with TBS to avoid
steric hindrance. However, attempts to construct the adjacent quaternary centers through conjugate
addition using Luche’s alkylzinc conditions [123] were unsuccessful. Instead, the neighboring quater-
nary centers were synthesized by selectively reducing the enone motif to obtain 366. Subsequently,
366 was subjected to OH-directed cyclopropanation and TEMPO-mediated oxidation to produce
ketone 367. Enone 368 was then obtained through Saegusa–Ito oxidation and carbamate derivative
369 was synthesized by sequential treatment with carbonyldiimidazole (CDI) and propynylamine.
Carbamate 369 was transformed into the crucial intermediate 370 via NaH-promoted intramolecular
Michael addition. Notably, the structure of 370 was unequivocally confirmed by single-crystal X-ray
diffraction. Intermediate 370 was then subjected to Au-catalyzed hydration, leading to the formation
of intermediate 371. Finally, intermediate 371 underwent aldol condensation in the presence of sodium
methoxide (NaOMe) to yield 372 with the intended hydropyrrole moiety.

3.5.6. Synthetic Studies Toward Longeracemine

In 2018, Cox and Wood reported a synthetic method for the azabicyclic core of
longeracemine [124]. As depicted in Scheme 27, the well-known diethylmalonate 373
underwent alkylation followed by reduction using LiAlH4 to produce diol 374. Upon
exposure to catalytic acid in n-hexanol, 374 reacted to form 375 with an equal mixture of
diastereomeric acetals. The incorporation of n-hexanol increased the molecular weight of
375 and the subsequent oxidation product (376). The exposure of neopentyl aldehyde 376
to the homoprenyl phosphonium ylide 377 resulted in the formation of cis olefin 378 as the
sole diastereomer. Subsequently, acetal 378 was converted to lactone 379 through a one-pot
Jones oxidation, followed by sequential methylation and reduction to yield diol 380 as the
sole diastereomer. Notably, diol 380 exhibited excellent substrate reactivity toward cascade
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cyclization and efficiently produced 2-azabicyclo[2.2.1]heptane 381 under conventional
reaction conditions.
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3.5.7. Development of ACE Tricyclic Structure of Dehydroxymacropodumine A

The ACE tricyclic structure of dehydroxymacropodumine A has also been synthesized [92].
As demonstrated in Scheme 28, 382 was reacted with t-BuLi in THF at −78 ◦C, followed
by the addition of 283b for the attachment of a cyclopentene moiety to afford secondary
alcohol 383. Sequential DMP oxidation of 383, removal of the THP protecting group, and
oxidation of the resulting primary alcohol produced aldehyde 384 in 73% yield. Compound
384 continued to oxidize into compound 385. Reactive compound 385 was further subjected
to light irradiation under MacMillan’s photocatalyst conditions (1 mol% Ir-based catalyst
(Ir[dF(CF3)ppy]2(dtbbpy)PF6) in deoxygenated DMF), resulting in the formation of 388 through
conjugate addition. Irradiation with a common household fluorescent bulb for approximately
16 h led to a satisfactory yield of 56%. The researchers further examined Overman’s state
by transforming carboxylic acid 385 into N-hydroxyphthalimide ester 386, using the same
condition as that of 293 to 294a, resulting in the production of 388 in 52% yield. To further
elucidate its structure, the MOM groups of 338 were removed, resulting in the conversion of
the hydroxyl groups to carbonyl ones and yielding compound 389, which resembled the ACE
tricyclic structure of dehydroxymacropodumine A.
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4. Total Syntheses of DAs 
In the last few years, several synthetic chemists have reported the total synthesis of 
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the intricate strategies that have been developed to recreate these complex natural prod-
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4.1. Total Synthesis of (−)-Daphenylline and (−)-Himalensine A by Qiu’s Group 
Daphenylline and Himalensine A were reported by Hao [125] and Yue group [126] 
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(−)-himalensine [127]. As depicted in Scheme 29, the synthesis commenced with (S)-car-
vone (152) to produce allyl azide 390 via a two-step procedure [128]. Primary amine 391 
was then obtained in 76% yield via 1,2-addition between cyclopenenyl lithium (derived 
from the lithiation of 1-iodocyclopent-1-ene using sec-butyllithium (s-BuLi)) and azide 
390. Subsequently, Staudinger reduction was conducted using PPh3, followed by acylation 
of the amino group with diketene and an Mg(ClO4)2 catalyst to synthesize amide atropiso-
mer 392 by intramolecular amidocyclization. By employing 4-acetamidobenzenesulfonyl 
azide (p-ABSA) and DBU, diazo acetoacetamide was gradually introduced into a toluene 
solution containing 10 mol% copper(II) tert-butylacetoacetate (Cu(tbs)2), resulting in the 
formation of cyclopropyllactone 393. The treatment of 393 with tri-tert-butylphosphine 
(P(t-Bu)3) in chlorobenzene [129] at 110 °C resulted in formal rearrangement to afford cy-
cloheptenone 394. After the reduction of 394 with NaBH4, dehydration using Martin’s sul-
furane resulted in α,β-unsaturated amide 395 in 81% yield. Simultaneous regio- and dia-
stereoselective hydrogenation of 395 employing Crabtree’s catalyst afforded diastereo-
merically pure 396. Using the Schenck ene reaction with TPP as a photosensitizer, the ad-
jacent position of 396 was oxidized by singlet oxygen, followed by the addition of trime-
thylphosphine (PMe3) and ethyl acetate to generate diene 397. Motivated by a valuable 
precedent [130], the researchers reacted 397 with trans-1,2-bis(phenylsulfonyl)ethylene in 
toluene at 150 °C to obtain 400. They then added DBU to obtain (−)-daphenylline in 74% 
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4. Total Syntheses of DAs

In the last few years, several synthetic chemists have reported the total synthesis of
various DAs, building on the work discussed in Section 3. This section highlights some of
the intricate strategies that have been developed to recreate these complex natural products.

4.1. Total Synthesis of (−)-Daphenylline and (−)-Himalensine A by Qiu’s Group

Daphenylline and Himalensine A were reported by Hao [125] and Yue group [126]
separately. In 2021, Qiu’s group reported the complete synthesis of (−)-daphenylline
and (−)-himalensine [127]. As depicted in Scheme 29, the synthesis commenced with
(S)-carvone (152) to produce allyl azide 390 via a two-step procedure [128]. Primary amine
391 was then obtained in 76% yield via 1,2-addition between cyclopenenyl lithium (derived
from the lithiation of 1-iodocyclopent-1-ene using sec-butyllithium (s-BuLi)) and azide 390.
Subsequently, Staudinger reduction was conducted using PPh3, followed by acylation of
the amino group with diketene and an Mg(ClO4)2 catalyst to synthesize amide atropisomer
392 by intramolecular amidocyclization. By employing 4-acetamidobenzenesulfonyl azide
(p-ABSA) and DBU, diazo acetoacetamide was gradually introduced into a toluene solution
containing 10 mol% copper(II) tert-butylacetoacetate (Cu(tbs)2), resulting in the formation
of cyclopropyllactone 393. The treatment of 393 with tri-tert-butylphosphine (P(t-Bu)3) in
chlorobenzene [129] at 110 ◦C resulted in formal rearrangement to afford cycloheptenone
394. After the reduction of 394 with NaBH4, dehydration using Martin’s sulfurane resulted
in α,β-unsaturated amide 395 in 81% yield. Simultaneous regio- and diastereoselective
hydrogenation of 395 employing Crabtree’s catalyst afforded diastereomerically pure 396.
Using the Schenck ene reaction with TPP as a photosensitizer, the adjacent position of 396
was oxidized by singlet oxygen, followed by the addition of trimethylphosphine (PMe3)
and ethyl acetate to generate diene 397. Motivated by a valuable precedent [130], the
researchers reacted 397 with trans-1,2-bis(phenylsulfonyl)ethylene in toluene at 150 ◦C to
obtain 400. They then added DBU to obtain (−)-daphenylline in 74% yield.

A subsequent investigation involved the direct conversion of diene 397 into
(−)-himalensine A via a hetero [4+2] reaction with singlet oxygen, followed by
Kornblum–DeLaMare rearrangement [131] of the resulting endoperoxide. Surprisingly,
the TPP-sensitized Schenck ene photooxygenation of 397 resulted in the formation of an
intriguing hydroperoxide. The hydroperoxide was then treated with Ac2O in situ to obtain
intermediate 398 in 63% yield. Notably, 398 was further transformed into (−)-himalensine
A through a two-step process.

An alternative method was also developed to obtain (−)-himalensine A. The selective
epoxidation of 397 with m-chloroperoxybenzoic acid (m-CPBA), followed by ring opening
using the m-chlorobenzoic acid that formed in situ and removal of the benzoyl group with
K2CO3 in MeOH, resulted in diol 399 in 72% yield. DMP oxidation of diol 399, followed by
C=C double bond isomerization using NaOMe, resulted in the synthesis of 401. Finally,
chemoselective reduction with an Ir-based catalyst reduced the lactam carbonyl group of
401 to afford (−)-himalensine A.
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Scheme 29. Total synthesis of (−)-Daphenylline and (−)-Himalensine A by Qiu’s group. 
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The total synthesis of (−)-daphnilongeranin B and (−)-daphenylline was achieved by 

Zhai’s group in 2018[132]. The developed cycloaddition was a modification of Lu’s proto-
col [133]. As shown in Scheme 30, 402 was treated with tert-butyl 2-butynoate under the 
catalysis of K2CO3/MeOH to afford 403. Subsequent hydrogenation employing Crabtree’s 
catalyst, followed by solvent evaporation and treatment with HCO2H, provided 404 in a 
one-pot fashion in high yield (91%). The required ketone derivative, 405, was synthesized 
by exposing 404 to Barton’s reagent, followed by oxidation [134]. Compound 404 was 
treated sequentially with m-CPBA and dicyclohexylcarbodiimide (DCC), followed by 
PCC oxidation, to yield 405 in good overall yield (79%) [135]. The methanolysis of 405 
utilizing catalytic K2CO3 in MeOH and subsequent DMP oxidation generated an unstable 
aldehyde product under p-TsOH-catalyzed conditions (substrate concentration: 0.005 M), 
resulting in enone 406 in 71% yield. Upon reacting 406 with nitroethane, crystalline prod-
uct, 407 was unexpectedly formed. Wacker oxidation of 407 yielded 408 [136] in high yield 
(87%) [137]. The aldol condensation and isomerization of 408 were accomplished by treat-
ing it with NaOH in MeOH/brine (1:1 v/v), resulting in tricarbonyl 430 [138,139]. Subse-
quent attempts to achieve a chemoselective reduction of the amide proved exceptionally 
challenging [140]. However, a sequential method that included overall reduction using 
LiAlH4 and subsequent oxidation with DMP was successful, resulting in the synthesis of 
(−)-daphnilongeranin B [141]. 

After successfully synthesizing (−)-daphnilongeranin B, the researchers employed in-
termediate 406 or its analogues to construct the benzene ring found in (−)-daphenylline 

Scheme 29. Total synthesis of (−)-Daphenylline and (−)-Himalensine A by Qiu’s group.

4.2. Synthesis of (−)-Daphnilongeranin B and (−)-Daphenylline by Zhai’s Group

The total synthesis of (−)-daphnilongeranin B and (−)-daphenylline was achieved
by Zhai’s group in 2018 [132]. The developed cycloaddition was a modification of Lu’s
protocol [133]. As shown in Scheme 30, 402 was treated with tert-butyl 2-butynoate un-
der the catalysis of K2CO3/MeOH to afford 403. Subsequent hydrogenation employing
Crabtree’s catalyst, followed by solvent evaporation and treatment with HCO2H, provided
404 in a one-pot fashion in high yield (91%). The required ketone derivative, 405, was
synthesized by exposing 404 to Barton’s reagent, followed by oxidation [134]. Compound
404 was treated sequentially with m-CPBA and dicyclohexylcarbodiimide (DCC), followed
by PCC oxidation, to yield 405 in good overall yield (79%) [135]. The methanolysis of 405
utilizing catalytic K2CO3 in MeOH and subsequent DMP oxidation generated an unsta-
ble aldehyde product under p-TsOH-catalyzed conditions (substrate concentration: 0.005
M), resulting in enone 406 in 71% yield. Upon reacting 406 with nitroethane, crystalline
product, 407 was unexpectedly formed. Wacker oxidation of 407 yielded 408 [136] in high
yield (87%) [137]. The aldol condensation and isomerization of 408 were accomplished by
treating it with NaOH in MeOH/brine (1:1 v/v), resulting in tricarbonyl 430 [138,139]. Sub-
sequent attempts to achieve a chemoselective reduction of the amide proved exceptionally
challenging [140]. However, a sequential method that included overall reduction using
LiAlH4 and subsequent oxidation with DMP was successful, resulting in the synthesis of
(−)-daphnilongeranin B [141].
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(99% ee) via a well-established three-step process involving alkyne cyclization with an Ag 
catalyst [145]. A highly selective hydrogenation occurred at the C18=C20 bond of 415 in 
the presence of a Rh complex (generated in situ from [Rh(cod)Cl]2, PPh3, and AgBF4), re-
sulting in 416 in almost complete yield (99%). Tricyclic enone 418 was then synthesized 
from 416 by reactions including the sequential removal of the nosyl protecting group, am-
ide formation, intramolecular Michael addition, and aldol condensation. The correspond-
ing carboxylic acid was obtained directly through the Jones oxidation of 418. Treatment 
with SOCl2 afforded an acyl chloride, which was reacted with benzeneselenol (PhSeH) 
and pyridine to yield 419. Subsequently, the UV irradiation of 419 using a Hg lamp pro-
vided 420 in 46% yield, presumably through atom-transfer radical cyclization [146] fol-
lowed by instantaneous β-elimination. 

Next, pentacyclic triketone 421 was prepared from 420 through Lu’s [3+2] cycloaddi-
tion. The addition of 1,1′-bis(diphenylphosphino)ferrocene (DPPF) and allenyl ketone 
420a likely resulted in the formation of a zwitterionic species; this species then reacted 
with electron-deficient alkene 420 to afford 421. The subsequent Krapcho demethoxycar-
bonylation using LiCl and wet MeCN at 175 °C, along with microwave irradiation, ran 
into problems but still yielded the desired product (422) in 25% yield, along with a small 
amount (<2% yield) of aromatic compounds. This provided support for the proposed ring 
expansion/aromatization cascade mechanism. By optimizing the reaction conditions (LiI 
and MeCN/dimethyl sulfoxide (DMSO) (4:1 v/v) at 140 °C), the yield of 422 increased sig-
nificantly to 72%, while a retro-Michael product was also produced at 15% yield. Exposing 
422 to triazabicyclodecene (TBD) in toluene at 90 °C provided the desired product in up 
to 43% yield. However, THF proved to be a better solvent, resulting in a 67% yield. The 
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After successfully synthesizing (−)-daphnilongeranin B, the researchers employed inter-
mediate 406 or its analogues to construct the benzene ring found in (−)-daphenylline [125].
There are only a few documented cases of five-membered rings within cyclopentanones being
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transformed into benzene rings [142]. Initially, the researchers attempted to use 407 as the
reactant, but 408 was found to be more effective. Indeed, by reacting 408 with p-TsOH in
benzene, benzofuran 409 was produced in 85% yield. Reactive oxidation of the furan ring
in 409 using PCC resulted in complete conversion to acetate 410 [143]. Through a three-step
sequence involving methanolysis/phenolsulfonation, Suzuki coupling, and Wacker oxidation,
ester 410 was converted to 411 in 80% overall yield. The daphenylline core was completed by
intramolecular aldol condensation to afford 412 in 76% yield, achieved by treating 411 with
NaOH(aq) in MeOH/brine (1:1 v/v) at 80 ◦C. (−)-Daphenylline was successfully obtained in
58% yield over two steps by subjecting 412 to catalytic hydrogenation using Pd/C, followed
by amide reduction with LiAlH4.

4.3. Total Synthesis of Daphenylline, Daphnipaxianine A, and Himalenine D by A. Li’s Group

In 2018, A. Li’s group achieved the total synthesis of calyciphylline A-type alkaloids
daphenylline, daphnipaxianine A, and himalenine D [144]. As shown in Scheme 31, the
synthesis of daphenylline was initiated by constructing enedione 419. A highly enantioen-
riched starting material, 414, was utilized to synthesize bridged bicyclic compound 415
(99% ee) via a well-established three-step process involving alkyne cyclization with an Ag
catalyst [145]. A highly selective hydrogenation occurred at the C18=C20 bond of 415 in the
presence of a Rh complex (generated in situ from [Rh(cod)Cl]2, PPh3, and AgBF4), resulting
in 416 in almost complete yield (99%). Tricyclic enone 418 was then synthesized from
416 by reactions including the sequential removal of the nosyl protecting group, amide
formation, intramolecular Michael addition, and aldol condensation. The corresponding
carboxylic acid was obtained directly through the Jones oxidation of 418. Treatment with
SOCl2 afforded an acyl chloride, which was reacted with benzeneselenol (PhSeH) and
pyridine to yield 419. Subsequently, the UV irradiation of 419 using a Hg lamp provided
420 in 46% yield, presumably through atom-transfer radical cyclization [146] followed by
instantaneous β-elimination.
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Next, pentacyclic triketone 421 was prepared from 420 through Lu’s [3+2] cycload-
dition. The addition of 1,1′-bis(diphenylphosphino)ferrocene (DPPF) and allenyl ketone
420a likely resulted in the formation of a zwitterionic species; this species then reacted
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with electron-deficient alkene 420 to afford 421. The subsequent Krapcho demethoxycar-
bonylation using LiCl and wet MeCN at 175 ◦C, along with microwave irradiation, ran
into problems but still yielded the desired product (422) in 25% yield, along with a small
amount (<2% yield) of aromatic compounds. This provided support for the proposed ring
expansion/aromatization cascade mechanism. By optimizing the reaction conditions (LiI
and MeCN/dimethyl sulfoxide (DMSO) (4:1 v/v) at 140 ◦C), the yield of 422 increased
significantly to 72%, while a retro-Michael product was also produced at 15% yield. Ex-
posing 422 to triazabicyclodecene (TBD) in toluene at 90 ◦C provided the desired product
in up to 43% yield. However, THF proved to be a better solvent, resulting in a 67% yield.
The benzylic carbonyl and hydroxy groups were efficiently reduced using Et3SiH/TFA,
resulting in the formation of indane 423. The treatment of 423 with Lawesson’s reagent
provided thioamide derivative 424 in high yield (91%). The reduction of 424 with Raney Ni
afforded daphenylline with excellent efficiency.

By utilizing modified Nagashima conditions, 422 was successfully transformed into
the corresponding enamine. Subsequently, a one-pot reduction with sodium triacetoxy-
borohydride (NaBH(OAc)3) yielded tertiary amine 425. The treatment of 425 with DBU
and LiCl in MeCN at 120 ◦C afforded daphnipaxianine A a 79% yield. Luche reduction of
daphnipaxianine A resulted in acceptable diastereoselectivity at C16 (dr = 3:1), yielding
himalenine D with an isolated yield of 72%. Meanwhile, a two-step treatment of 425 led to
the formation of daphenylline via intermediate 426.

4.4. Total Synthesis of (−)-Daphenylline by Qiu’s Group

Qiu’s group accomplished the complete synthesis of (−)-daphenylline in 2019 [147].
As shown in Scheme 32, they employed Robinson annulation combined with oxidative
aromatization to construct the challenging aromatic moiety. The 1,6-dicarbonyl structure
was obtained through the ozonolysis of 431, which was synthesized via consecutive amide
cyclization and Diels–Alder cycloaddition. Intermediate 428 was derived from (S)-carvone
(152) via allylic chlorination using SO2Cl2. The resulting allylic chloride was then directly
displaced with sodium azide to yield 394. A reactive vinyl Grignard reagent was introduced
to the ketone carbonyl group of 394, followed by Staudinger reduction of the azido moiety
to produce primary amine 427. The acylation of 427 with acryloyl chloride and Et3N yielded
acrylamide 428. When 428 was treated with a catalytic amount of Mg(ClO4)2 [147,148] in
CH3CN [149] under reflux conditions for three h, SN1′ amide cyclization occurred, resulting
in 429. Compound 429 was heated at 200 ◦C for three days in a sealed tube, generating
cycloaddition product 430.

Inspired by the recent work of Dixon’s groups [150], 431 was generated using Crab-
tree’s catalyst. Ozonolysis of the trisubstituted olefin in 431 afforded ketoaldehyde 432 in
high yield (92%). The aldehyde carbonyl group was selectively protected using Noyori’s
conditions [151], thus forming intermediate 433 in 98% yield. Notably, 433 was suitable
for the Robinson annulation. The Michael addition of 433 and the Stork–Ganem reagent
(methyl trimethylsilylvinyl ketone (434)) [152] in the presence of LDA afforded an α-silyl
ketone. The crude product was treated with KOH in MeOH without purification, leading
to cleavage of the TMS moiety and yielding 435. After numerous attempts [102], phenol
436 was generated by reacting 435 with freshly prepared 1 M NaOMe in MeOH under
reflux conditions.

With the aromatic core established, the researchers shifted their attention to construct-
ing the D and F rings through a Friedel–Crafts-type domino cyclization. Aldehyde 438
was obtained in high yield (90%) through a three-step process involving the triflation of
phenol 436, Suzuki coupling with potassium vinyltrifluoroborate (437), and subsequent
removal of the acetal protecting group. Despite multiple attempts with phenol 436, it was
eventually protected as a methyl ether using MeI/NaH. The resulting compound was
then subjected to aqueous acid hydrolysis to obtain aldehyde 439 in 88% yield, which
further underwent Pinnick oxidation [153] to yield carboxylic acid 440 in 93% yield. Ex-
panding on the research conducted by Cao’s group [154], the researchers accomplished
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intramolecular Friedel–Crafts acylation [155] while simultaneously removing the methyl
group. Compound 440 was then converted into its corresponding acid chloride and reacted
with AlCl3 under one-pot conditions to yield intermediate 441. Inspired by Nazarov’s
electrocyclization of divinyl alcohol and the Suzuki coupling conditions reported by Zhai
et al. [132], the researchers successfully obtained product 442. Notably, treating ketone 442
with NaBH4 followed by p-TsOH in toluene at 55 ◦C for 20 min resulted in the desired
electrocyclization product 443, similar to Nazarov’s work. Further hydrogenation of the
double bond using Pd/C and reduction of the lactam moiety [156] led to a combined yield
of 78% for (−)-daphenylline.
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4.5. Total Synthesis of Himalensine A by Gao’s Group

In 2019, Gao’s group elucidated a synthetic strategy for the central structure of ca-
lyciphylline A-type DAs and ultimately presented a comprehensive total synthesis for
himalensine A [157]. As shown in Scheme 33, the reaction between 444 and benzyl hy-
droxylamine (BnNHOH) led to the formation of intermediate nitrone 445. Intermediate
445 then underwent a thermodynamic 1,3-dipolar cycloaddition with an electron-deficient
alkene, resulting in the formation of cycloadduct 446 as a single diastereomer. The N–O
bond in isoxazolidine 446 was reduced and cleaved, leading to the spontaneous formation
of tricyclic product 447 through lactamization. The reaction of 448 with various hydroxy-
lamines produced the desired endo-cycloadducts 450, which efficiently transformed into
cis-hydroindoles 451 (A−C rings) with good overall yield. [158]. Compound 451 with TBS
ether, followed by the removal of the 1,3-dithiane group, produced ketone 452, which serves
as the precursor for constructing the B ring. Compound 452 was treated with catalytic
Pd(PPh3)4 in the presence of PhONa in THF, resulting in a cyclized product 453 obtained
with an impressive yield of 74%. The exocyclic olefin was selectively hydrogenated using
Crabtree’s catalyst, followed by one-pot protection of the carbonyl group and deprotection
of the TBS group yielded azatricyclic compound 454. Compound 454 was oxidized to
produce aldehyde, which was then reacted with phosphate esters to produce 455. The
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stereocontrolled hydrogenation, oxidation state adjustment, and olefination resulted in
the formation of 456 with the desired α-configuration, yielding 90% overall. The acetal
deprotection of 456 under acidic conditions produced the corresponding ketone, which
underwent an aldol reaction to yield the allylic alcohol. After extensive screening of reac-
tion conditions, the silyl enol ether exhibited higher reactivity compared to the active metal
enolate. A Yb(OTf)3-mediated Mukaiyama aldol reaction with formaldehyde resulted in
the formation of 457 containing a hydroxylmethane group, while acrylaldehyde showed no
reactivity. The oxidation of 457 with Dess-Martin periodinane, followed by ethenylmagne-
sium bromide addition and ring-closing metathesis, yielded 458 in an overall yield of 87%,
containing the seven-membered D ring. The compound 458 underwent hydrogenation
with Pd/C, followed by oxidation to form the corresponding ketone. The ketone was
then converted into vinyl triflate under basic conditions. The triflate was carbonylatively
coupled with tributylvinylstannane to yield dienone 459 in good yield. This dienone then
underwent selective Nazarov cyclization with copper triflate, resulting in the formation
of pentacyclic compound 460 in a 74% yield. Compound 460 is an advanced intermediate
in the first enantioselective total synthesis of himalensine A. The lactam carbonyl group
in 460 was selectively reduced using Vaska’s catalyst [IrCl(CO)(PPh3)2], enabling the total
synthesis of himalensine A.
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4.6. A Concise Total Synthesis of (−)-Himalensine A by Xu’s Group

A concise strategy was described to provide general and diversifiable access to various
DAs, which is utilized in the asymmetric synthesis of (−)-himalensine A accomplished
in 14 steps by Xu’s group [159]. This approach was initiated from the readily available
chiral diketone 462, which was optimized for enantioselectivity [160]. Importantly, the
absolute stereoconfiguration of 462 was corrected, as reported previously [161]. As shown
in Scheme 34, the enone motif in 462 was selectively converted into methyl enol ether
463. The treatment of 463 with toluenesulfonylmethyl isocyanide (TosMIC) resulted in
van Leusen homologation [162], yielding nitrile derivative 464 as a single diastereomer.
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The application of Oxone led to the targeted incorporation of a γ-hydroxyl group on 464,
resulting in the formation of enone 465. Sequential silylation and Saegusa–Ito oxidation
conveniently produced dienone intermediate 466.
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Attempts to achieve the nitrile hydration of 466 using alkali hydroxide, alkoxide, and Rh(I)-
mediated methods proved unsuccessful. Promisingly, employing N,N-diethylhydroxylamine
as a promoter for Cu(II)-catalyzed nitrile hydration generated the essential primary amide.
This primary amide then underwent intramolecular Michael addition in situ to yield tricyclic
γ-lactam 467. Subsequently, the conversion of enone 467 into alkene migration product 468
was achieved through a one-pot reaction involving hydrazone formation, reduction, and al-
lyldiazenere arrangement using Kabalka’s conditions [163]. Following this, amide nitrogen
alkylation led to the formation of Heck reaction precursor 469, which was treated to produce
470 in 55% yield. The diastereo- and regioselective reduction of the exo-alkene in 470 was accom-
plished using carbonyl group-directed catalytic hydrogenation employing A. Li’s conditions
(H2, [Rh(cod)Cl]2, and AgBF4) [164]. Other attempts at hydrogenation, such as by using Crab-
tree’s [165] or Wilkinson’s catalyst [115], resulted in either undesired diastereoselectivity or no
observable reaction.

Next, 2-hydroxy-2-azaadamantane (AZADOL) and PIDA were sequentially added
to the reaction mixture, resulting in a one-step oxidation to form enone 471. Taking
inspiration from Shvartsbart and Smith’s impressive synthesis of (−)-calyciphylline N [166],
a three-step process was employed to obtain pentacyclic compound 474 from 471 in 62%
yield, which involved sequential enol triflate generation, carbonylative Stille coupling,
and Nazarov cyclization [166,167]. After other attempts [166,168], 474 was reacted with
m-CPBA followed by Meinwald rearrangement [169] with BF3·Et2O in a one-pot reaction
to obtain the desired ketone intermediate 475. The synthesis was finalized by Ir-catalyzed
hydrosilylation followed by reduction [170], resulting in the production of (−)-himalensine
A. Alternative approaches were explored, including sequential reduction and targeted
oxidation of the two secondary hydroxyl groups; however, this resulted in decomposition.

4.7. Total Synthesis of Daphenylline by Lu’s Group

To improve the efficiency of the chemical synthesis of daphenylline, Lu’s group
adopted a “hide-and-seek” strategy. Specifically, they searched for readily available
building blocks that contained hidden structural information relevant to their synthetic
target [171]. The Arene building blocks aligned perfectly with this approach [172,173].
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Taking inspiration from important studies on β-naphthol dearomatization [173–176], re-
searchers employed intramolecular oxidative dearomatization using ester-tethered β-
naphthol 480 to synthesize daphenylline [174,175].

As shown in Scheme 35, the synthesis began by obtaining dearomatization precursor
480. The decagram of indanone 476, which encompasses the tetrasubstituted arene pattern
found in daphenylline, was readily synthesized via a succinct sequence. By condensing it with
allylMgBr and subjecting it to cross-metathesis with ethyl crotonate, the researchers efficiently
generated a substantial amount of the desired diene 478. Target product 479 was achieved
with exceptional enantioselectivity by employing a chiral Rh catalyst and (S)-(−)-2,2′-p-tolyl-
phosphino)-1,1′-binaphthyl ((S)-Tol-BINAP) as a ligand in trifluoroethanol (TFE). Subsequent
elimination of the methyl group afforded dearomatization precursor 480.
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Inspired by pioneering studies on β-naphthol dearomatization [176,177], researchers
explored the deprotonation-induced oxidative dearomatization of 480 using various potent
bases and oxidizing agents. I2 [178]—a relatively small oxidant, which was employed by Ma
et al. for intramolecular oxidative coupling of indoles [179]—proved the most effective choice.
The treatment of 480 with lithiumcyclohexyl isopropyl amide in the presence of I2 afforded
a highly congested benzo-fused cyclohexenone derivative (481) in moderate yield (35%). A
diastereomer, epi-481, was also formed as a minor product in 12% yield. Fortunately, under
thermodynamic conditions, epi-481 could be efficiently epimerized to afford 481 in good yield
(80%). Consequently, the overall yield of 481 reached approximately 45%.

The researchers then hydrolyzed the ester of 481 to obtain the corresponding acid
(482). Crude adduct 484 was synthesized via the tris(pentafluorophenyl)borane-catalyzed
reaction of 482 and 482b. Crude adduct 484 was then directly utilized for dehydration
to achieve diester 485. The reaction was hypothesized to occur via active boron enolate
ate complex 483 [180], whose silylium group [181] acts as a bridge to bring the reactive
centers together, facilitating bonding and thus adduct formation. A brief two-step process
involving transthioesterification and Fukuyama reduction of thiolester 486 was utilized to
produce 487. Subsequently, the desired outcome, 488, was obtained in good overall yield
(70%) over two steps. To synthesize (−)-daphenylline, a methyl group was introduced
at the C18 position of 488, followed by simple reduction. It is expected that an identical
series of steps could be utilized to acquire the synthetic isomer (−)-daphenylline from the
enantiomeric form of 479.
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4.8. Total Syntheses of (−)-10-Deoxydaphnipaxianine A, (+)-Daphlongamine E and
(+)-Calyciphylline R by J. Xu’s Group

J. Xu’s group synthesized three calyciphylline A-type alkaloids, namely, (−)-10-
deoxydaphnipaxianine A, (+)-daphlongamine E, and (+)-calyciphylline R, through late-
stage divinyl carbinol rearrangement [182]. As shown in Scheme 36, the synthesis began
with chiral nitrile 491, where the enol methyl ether motif was hydrolyzed and then oxidized
by Saegusa–Ito oxidation to form dienone 492. By utilizing a donor-acceptor Pt catalyst
developed by Grubbs et al. [183], the nitrile motif of 492 was efficiently converted into
a primary amide through hydration. Subsequent aza-Michael addition involving DBU
produced γ-lactam 493. Further transformations, including Hutchins–Kabalka reductive
rearrangement [184], led to the formation of alkene 494. N-Alkylation and intramolecular
Heck reaction were employed to construct the critical 2-azabicyclo[3.3.1]nonane moiety
within the tetracyclic structure of 496. Finally, intermediate 497 was obtained at a high dr of
5:1 through diastereoselective hydrogenation of the 1,1-disubstituted alkene of 496 under
A. Li’s conditions [144,145,164].
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Next, the allylic oxidation of 497 was conducted using SeO2 in dioxane at approxi-
mately 80 ◦C, followed by one-step oxidation using PIDA and AZADOL to obtain ketone
498. Although 498 could be synthesized using previously documented methods, to enhance
the strategy and tactical repertoire, conjugate boron addition was employed to achieve the
α,β-unsaturated enone motif in 498. Sequential oxidation resulted in 499, which exhibited
a 1,3-diketone functionality, in 64% yield over two steps.

Tsuji–Trost allylation led to the formation of C-alkylated product 500 instead of 501. To
address this issue, an alternative approach involving Claisen rearrangement was utilized
to convert enol allyl ether 500 into diketone 501, which possessed a crucial C8 quaternary
center adjacent to the C5 quaternary center. A two-step functionalization involving Rh-
catalyzed hydroboration and PCC oxidation afforded aldehyde 502 in 61% yield over two
steps. Subsequently, the essential cyclopentane structure was created by SmI2-mediated
pinacol coupling, which selectively distinguished between the C1 and C9 ketones. The
resulting diol, 503, was then oxidized to form α-hydroxylketone 504. Elimination of the
α-hydroxyl group of 504 under SOCl2/pyridine conditions afforded α,β-unsaturated enone
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505. Furthermore, Grignard addition to the enone component of 505 produced significant
intermediate 506 (dr ≈ 2:1).

The researchers initially planned to construct the enone moiety of 510 by subjecting
506 to Dauben–Michno rearrangement [185], thereby granting access to (+)-daphlongamine
E and (+)-calyciphylline R. However, the use of Iwabuchi’s conditions (TEMPO+BF4

− in
MeCN) [186] resulted in unprecedented Nazarov cyclization of the tertiary divinyl carbinol
506 to form 507. The allyl cation was captured and transformed into intermediate D,
which was subsequently oxidized to generate enone 507. Therefore, the researchers instead
focused on converting 507 into (−)-10-deoxydaphnipaxianine A by selectively reducing the
amide group. Surprisingly, despite several analogous examples [187], attempts with Vaska’s
conditions [188] resulted in an insignificant yield of the desired product. Following these
unsuccessful efforts, the researchers protected the C16 ketone in 507 and then combined it
with methoxyamine to yield O-methyloxime [189], which served as a crucial intermediate
for the synthesis of (−)-10-deoxydaphnipaxianine A [190]. Finally, oxime 508 was reacted
with Lawesson’s reagent in chlorobenzene, followed by treatment with Raney Ni to afford
(−)-10-deoxydaphnipaxianine A.

Subsequently, the researchers investigated the syntheses of (+)-daphlongamine E and
(+)-calyciphylline R via Dauben–Michno rearrangement [185] or allylicalcohol rearrange-
ment of 506 [191]. However, the presence of two adjacent rings presented unexpected
challenges. Surprisingly, when the researchers varied Iwabuchi’s conditions [186] and
used TEMPO+BF4

− in 1,4-dioxane as the reagent, divinyl carbinol 506 was transformed
into secondary alcohol 509. Further oxidation using AZADOL and PIDA converted the
C10 hydroxyl group in 509 into enone 510. Interestingly, 510 exhibited significantly dif-
ferent behavior compared to its analog 507 when applying selective amide reduction
conditions with Vaska’s complex (trans-chlorocarbonylbis(triphenylphosphine)iridium(I);
IrCl(CO)(PPh3)2),. This was ascribed to its less sterically hindered amide moiety. Indeed,
this process resulted in (+)-daphlongamine E in 66% yield. Furthermore, m-CPBA treatment
of (+)-daphlongamine E resulted in its N-oxide derivative, (+)-calyciphylline R.

4.9. Total Syntheses of (−)-Daphlongamine H and (−)-Isodaphlongamine H by Sarpong’s Group

Ellman and colleagues’ groundbreaking research in 2010 demonstrated that the intro-
duction of ester enolates to N-tert-butanesulfinyl imines yielded favorable diastereoselectiv-
ity at the β-amino stereocenter [192]. However, accurately predicting selectivity outcomes
at the α-center remains a challenging task, particularly when utilizing fully substituted un-
symmetrical enolates. Therefore, for their complete synthesis of (−)-daphlongamine H and
(−)-isodaphlongamine H, Sarpong’s group initially examined various imines and enolates
for suitable precursor compounds [193]. They ultimately selected allylated valerolactone
511 and sulfinyl imine 512. As shown in Scheme 37, treating 512 with a lithium enolate
derived from 511 resulted in an interesting transformation in the β-amino lactones SS- and
SR-513 through Mannich–retro-Mannich equilibrium. After chromatographic separation,
the undesired β-amino lactone SS-513 was recycled to regenerate 511 and 512 [193].

Next, SR-513 was treated with HCl in MeOH, which cleaved the sulfinyl group and
methanolized the lactone group. The intermediate ammonium salt was then alkylated to
afford vinyl bromide 514, which yielded amide 515 after silylation of the hydroxy group and
acetylation of the secondary amine. LiHMDS was used to induce Dieckmann condensation
on the resulting intermediate, thus forming bromo bicyclic compound 516. To synthesize
the tricyclic structure, an intramolecular Heck coupling reaction was conducted to obtain
diene 517. A two-step procedure involving Crabtree’s catalyst under an H2 atmosphere
(50 atm) and subsequent heterogeneous hydrogenation yielded 518 (dr = 4:1).

Further, synthetic efforts focused on constructing the E and F rings of (−)-daphlongamine
H and (−)-isodaphlongamine H. The alkylation of 518 resulted in alkene 519. The researchers
then reduced the δ-lactam carbonyl group of 519 to obtain enaminone 520 through elimina-
tion. By activating enaminone 520 using trimethylsilyl triflate (TMSOTf) [194] and adding
ethynylmagnesium bromide (HCCMgBr), researchers generated a silyl enol ether. Subsequent
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hydrolysis during the workup process resulted in C6-epimeric enynes 521 and 522 in 79%
overall yield. Enyne 522 underwent a Pauson–Khand reaction, resulting in the formation of
enone 524 after the silylation of its primary hydroxy group. Treating 521 with excess MeLi
also triggered a Pauson–Khand reaction, resulting in the formation of pentacyclic enone 523
with the desired orientation at the 10-Hα position. The enone moiety in 523 was efficiently
deoxygenated using excess NaCNBH3 and a Lewis acid as a facilitator to produce the corre-
sponding cyclopentene through a one-step reaction. Finally, the cis-lactone formation was
achieved through Jones oxidation, completing the synthesis of isodaphlongamine H.
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Scheme 37. Total Syntheses of (−)-Daphlongamine H and (−)-Isodaphlongamine H by Sarpong’s group.

The researchers hypothesized that subjecting 526 to acidic conditions might trigger a
series of reactions involving elimination–hydroacyloxylation for the biosynthesis of other
calyciphylline B-type alkaloids [195]. Specifically, they expected it to form a mixture of de-
oxycalyciphylline B, deoxyisocalyciphylline B, daphlongamine H, and isodaphlongamine
H. However, upon treating 526 with excess trifluoroacetic acid (TfOH) in nitromethane,
the only productive conversion product was enone 528. Therefore, the researchers sug-
gested that formal dehydration occurred owing to the Prins-type cyclization of an acylium
intermediate (527).

Ultimately, the synthesis of daphlongamine H encompassed the formal inversion of
the stereochemistry of the tertiary alcohol in pentacyclic enone 523. To achieve this, 523 was
treated with TFAA and then SOCl2 to protect the primary hydroxy group and eliminate
the tertiary hydroxy group. Epoxide 524 was obtained by reacting the exocyclic alkene
with trifluoroperacetic acid (TFPAA; CF3CO3H) [196]. The subsequent epoxide opening at
the terminal position was achieved by utilizing LiAlH4, followed by deoxygenation under
established conditions. After performing Jones oxidation on the resulting amino diol, the
researchers obtained trans-seco acid daphlongamine H. However, unlike 526, which pos-
sessed a cis-lactone ring, this highly polar compound did not readily undergo lactonization.
In the end, the researchers identified cyanuric chloride as a suitable compound [197] for
bond creation. This afforded 528, which possessed a trans-lactone ring, characterized by
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significant strain and sensitivity. Interestingly, the initial NMR spectrum of 528 did not
match that reported for daphlongamine H [198]; instead, it exhibited remarkable similarity
to that reported for deoxyisocalyciphylline B. This total synthesis of daphlongamine H from
deoxyisocalyciphylline B calls for additional exploration into the suggested biosynthetic
pathway for all calyciphylline B-type alkaloids.

4.10. Total Synthesis of (−)-Caldaphnidine O by Xu’s Group

In 2019, Xu’s group achieved the total synthesis of (−)-caldaphnidine O [199]. As out-
lined in Scheme 38, the synthesis was initiated using the well-established chiral synthon 530
(94% ee), which was obtained from a seven-step transformation of 1,3-cyclohexanedione
529 in 16% overall yield [200]. The treatment of sulfonylamide diketone 530 with KHMDS
and PhNTf2, followed by additional KHMDS and Davis’s oxaziridine, facilitated both
the desired intramolecular aza-Michael addition reaction and α-hydroxylation in a sin-
gle step, thus forming tricyclic compound 531 as the sole diastereomer. Pd(0)-mediated
reduction [201] converted the enol triflate motif in 531 into alkene derivative 532. The
treatment of α-hydroxyl ketone 532 with a homoallyl cerium reagent [202], obtained in situ
by mixing homo-allylMgBr with CeCl3, resulted in the quantitative formation of diol 533.
The diol moiety in 533 was subjected to oxidative cleavage, followed by selective reduction
of the aldehyde group. This reaction effectively produced primary alcohol 534.
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Taking inspiration from Shvartsbart and Smith’s impressive synthesis of (−)-calyciphylline
N [166], primary alcohol 534 was transformed into its corresponding alkyl iodide and then treated
with LDA. As a result, 535a and 535b were obtained as C10 diastereomers (535a:535b = 2:1) with
the desired seven-membered ring moiety. Both 535a and 535b were efficiently transformed
into the radical cyclization precursor 537 through a concise three-step process. Compound 535a
was generated in two steps by the reaction of 9-BBN/NaOMe/I2 under Molander’s conditions
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(SmI2 and tris(dibenzoylmethanato)iron(III) (Fe(dbm)3)) to produce cyclopentanol 536a. An
attempt was made to replicate Knochel’s protocol [203]. Compound 535b underwent a two-step
conversion under Molander’s optimized reaction conditions to form cyclopentanol 536b in 75%
yield. Subjecting 536a to SOCl2/pyridine significantly improved the alkene yield, whereas 536b
showed poor results under the same conditions. By contrast, exposing 536a to Burgess reagent
resulted in minimal production of cyclopentene 537, whereas it effectively converted 536b to 537
in 57–60% yield.

Next, sodium naphthalenide was used to remove both the N-tosyl and O-benzyl
groups of 537, followed by in situ N-propargylation to convert sulfonylamide 537 into di-
enyne 538. Notably, 538 is a crucial precursor for radical cyclization. Diene 538 was exposed
to Bu3SnH and AIBN and then acid-hydrolyzed to generate 539. Subsequently, Swern
oxidation was employed to convert the primary alcohol group in 539 into its corresponding
aldehyde. Expanding on their previous discoveries in the synthesis of dapholdhamine B,
the researchers utilized an HWE reaction with n-BuLi and phosphonate 539a [204], followed
by sequential acidic and basic treatments, resulting in the formation of carboxylic acid
methyl ester 540. Finally, through selective hydrogenation [205] of the C18–C20 alkene
group in 540 from its convex side as a confined substrate, the researchers accomplished the
first-ever synthesis of bukittinggine-type alkaloid (−)-caldaphnidine O.

4.11. Total Synthesis of (−)-Daphnezomines A and B by Li’s Group

The complete synthesis of (−)-daphnezomines A and B has also been achieved [206]. As
illustrated in Scheme 39, the synthesis initially aimed to generate the azabicyclo[3.3.1]nonane
ring system (544). Starting from (S)-(+)-carvone (541), the unsaturated bond was globally
hydrogenated, and the resulting ketone was reacted with triisopropylsilyl triflate (TIPSOTf)
and Et3N [206]. Subsequently, the desired amination product, 542, was produced using
freshly prepared Sharpless amination reagents [207]. Compound 542 was subjected to NaH
treatment and the subsequent addition of allyl bromide, thus forming 543. Taking inspiration
from Magnus’s elegant investigation [207], the researchers achieved the synthesis of 544 via
the Pd(OAc)2 catalysis (20 mol%) of 543 in an O2 atmosphere [206]. By treating 544 with
2-methoxy-5,5-dimethyl-1,3-dioxane(545) under p-TsOH catalysis at 50 ◦C, the researchers
efficiently formed bulky ketal 546 in 80% yield. The desired product, 547, was synthesized by
treating 546 with 9-BBN, followed by standard Suzuki–Miyaura coupling [208].
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After extensive experiments to optimize the reaction conditions, it was discovered that
the treatment of 547 with TFA produced 548 via the formation of a relatively stable C11 tri-
fluoroacetate intermediate and the subsequent removal of 1,3-dioxane. The trifluoroacetate
intermediate could be easily hydrolyzed through a basic workup process. This approach
yielded good results; however, it produced C11 diastereomers of 548 in a 1:1 ratio. The
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researchers then implemented a two-step process that commenced with the initial addition
of a nucleophile to the ketone, followed by subsequent dehydration. Ketone 548 was then
combined with Grignard reagent 548a at C8 to produce 549.

The focus then shifted toward constructing the azaadamantane ring system. The tosyl
(Ts) group was eliminated, and a tert-butyloxycarbonyl (Boc) group was introduced to
protect the resulting amine with available functionality. Subsequently, the C11 alcohol
underwent Dess–Martin oxidation to generate enone 550. Notably, the two diastereomers
eventually combined into a single compound via dehydration facilitated by the Burgess
reagent, affording the desired product 551 in impressive yield (90%). Surprisingly, the oxi-
dation of 551 with Bobbitt’s salt (552) resulted in the direct formation of the carboxylic acid
with good chemoselectivity [209]. Compound 553 was obtained through the esterification
of this acid with TMSCHN2 and the subsequent deprotection of the Boc group using TFA.
On the gram scale, the overall yield of 553 from 551 was 61%.

The focus then shifted toward the challenging task of 6-endo-trig cyclization. The
researchers explored three different approaches for obtaining either 554a, 554, or daph-
nezomine B: (i) utilizing a Lewis acid to promote ene cyclization [210]; (ii) employing
base-mediated anionic cyclization; and (iii) initiating hydrogen atom transfer-induced
radical conjugate addition [211]. Unfortunately, initial attempts with the first two reaction
types did not yield satisfactory results, possibly because of steric crowding at C8. However,
the desired cyclization was accomplished by Baran’s hydrogen atom transfer-initiated
radical conjugate addition, which led to the exclusive formation of a transfused adduct,
as observed in 554. The application of TFA to keto amine 554 resulted in the conversion
of its C10 epimer, thus forming daphnezomines A and B. These compounds feature a
TFA-locked azaadamantane core. Although the NMR data of daphnezomine A·TFA varied
slightly compared to that of the natural zwitterion form of daphnezomine A, the treatment
of daphnezomine A·TFA with TMSCHN2 yielded daphnezomine B·TFA in impressive
yield (95%).

4.12. Total Synthesis of Dapholdhamine B and Dapholdhamine B Lactone by Xu’s Group

In 2019, J. Xu’s group reported the complete synthesis of dapholdhamine B and its
lactone derivative, dapholdhamine B lactone [200]. As shown in Scheme 40, the synthesis
was initiated by the L-prolinamide-catalyzed asymmetric Robinson annulation of 555,
affording diketone 556 (85% yield, 94% ee). A reactive methyl enol ether was selectively
formed, followed by a vinylogous Mannich reaction [212], resulting in the production of
tertiary amine 557. Subsequently, 557 underwent deallylation and tosylation to afford
sulfonylamide 558. Luche’s conditions [213] facilitated conjugate addition, thus forming
the crucial quaternary center. This resulted in the exclusive production of diketone 559 as
a single diastereomer. Treating 559 with LiHMDS selectively formed the corresponding
lithium enolate, which was then reacted with sulfinimidoyl chloride 559a for Mukaiyama
dehydrogenation [214]. As a result, the desired enone 560 was obtained in 75% yield.

An optimized method for α-bromination was developed based on a previously re-
ported example. The researchers employed epoxide 561, which was obtained from enone
560 through epoxidation, and LiBr as a bromide source. Other bromide sources proved
ineffective, either showing no reaction, leading to decomposition, or producing only trace
amounts of 562. Notably, microwave irradiation improved the yield from 30% to 46–52%,
thereby providing a sufficient quantity of vinyl bromide 562 for further investigation. Diene
563 was synthesized in high yield (90%) by Suzuki coupling between 562 and boronate
562a with XPhos Pd G2 as the catalyst. The p-methoxybenzyl (PMB) group of 563 was
then oxidatively removed to obtain sulfonylamide 564 in 76% yield. Enol triflate 565 was
synthesized by reacting the silylenol ether obtained from the intramolecular aza-Michael
addition reaction with excess KHMDS and PhNTf2. Ketone 566 was then produced via
homogeneous hydrogenation of 565 using Crabtree’s catalyst [215], followed by in situ
treatment with TBAF/HOAc. Compound 567 was formed by reducing and eliminating the
carbonyl group in 566. Finally, crucial amide intermediate 568 was synthesized via Suzuki
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coupling between enol triflate 567 and the borane derived from treating amide 567a with
9-BBN. Next, tetracyclic compound 569 was obtained from 568 with an efficiency of 82%
via Huang’s amide-activation–annulation in Tf2O/2-fluoropyridine. The resulting imine
intermediate then underwent acid hydrolysis.
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employed to selectively oxidize the primary alcohol at C14, resulting in the formation of 
lactone 571 through an anticipated SN2′-type reaction. Subsequent hydroboration of the 
C10=C11 double bond followed by oxidation led to the synthesis of 572. By utilizing sodium 
naphthalenide for N-tosyl group removal and an SN2-type reaction, the researchers ob-
tained 573 with a distinctive azaadamantane core structure. After a thorough investiga-
tion, the researchers achieved standardization of lactol 573 and employed an HWE reac-
tion involving NaH and phosphonate 539a to generate intermediate 574. Subsequently, 
574 underwent acid hydrolysis in a one-pot process to form thioester 575. Notably, 574 
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Building upon this significant finding, it was postulated that 569 could be transformed
into tetracyclic diol 570 through a single-step process involving high-pressure hydrogena-
tion/hydrogenolysis of its C3=C4 double bond, C11 ketone, and C14 O-benzyl group.
Subsequently, a sequential process using TEMPO/PIDA and Pinnick oxidation was em-
ployed to selectively oxidize the primary alcohol at C14, resulting in the formation of
lactone 571 through an anticipated SN2′-type reaction. Subsequent hydroboration of the
C10=C11 double bond followed by oxidation led to the synthesis of 572. By utilizing sodium
naphthalenide for N-tosyl group removal and an SN2-type reaction, the researchers ob-
tained 573 with a distinctive azaadamantane core structure. After a thorough investigation,
the researchers achieved standardization of lactol 573 and employed an HWE reaction
involving NaH and phosphonate 539a to generate intermediate 574. Subsequently, 574
underwent acid hydrolysis in a one-pot process to form thioester 575. Notably, 574 and
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575 were not isolated separately, as their subsequent basic hydrolysis led directly to the
efficient synthesis of dapholdhamine B.

The synthetic product could not be compared directly with authentic dapholdhamine
B via NMR owing to pH sensitivity issues. Therefore, a small quantity of synthetic daphold-
hamine B was treated with HCl, resulting in the quantitative formation of dapholdhamine
B lactone (The basic hydrolysis of dapholdhamine B lactone also yielded dapholdhamine B
quantitatively). Through comprehensive NMR analysis of dapholdhamine B lactone, along
with the unequivocal structural assignment of intermediate 573, the researchers confirmed
that the synthetic product was dapholdhamine B.

4.13. Total Syntheses of Daphnezomine L-Type and Secodaphniphyllinetype Daphniphyllum
Alkaloids by J. Xu’s Group

The total synthesis of daphnezomine L- and secodaphniphylline-type alkaloids uti-
lizing late-stage C–N bond activation was reported by J. Xu’s group in 2022 [216]. As
shown in Scheme 41, the approach commenced with widely used intermediate 576, which
was transformed into the desired tetracyclic diol 577 through a seven-step synthesis [200].
Specifically, 577 was exposed to sodium naphthalenide followed by propargylation, re-
sulting in propargyl tertiary amine 578. Compound 578 underwent enyne cyclization to
afford pentacyclic amine 579. An effective olefination method was employed to convert
the diol structure in 579 to a trisubstituted alkene in 580 in 80% total yield. The expected
ring-opening product, 581, was obtained via the von Braun reaction of 580, albeit with
only a 55% yield. In addition, there were potential reproducibility issues observed during
multiple attempts using sodium naphthalenide.

Molecules 2024, 29, x FOR PEER REVIEW 45 of 67 
 

 

Ts
N

OBn
O

OH 7 steps

H

NTs

OBn

65%
H

N

OBn

PhMe, 90℃ N

OBn

p-TsOH
56%

Br

N

OBn

NC
quant.

N

OBn

NC
97%

OH

HN

H

OH

HN

H

67%

Ts
N

OBn
O

OH 7 steps

 then MeOH, 
propargyl bromide, 81%

OH

H

NTs

OBn

HO

H H

N

OBn

HO

H

OH

then DCM;
  2 M HCl;

69% H

N

OBn

OH

H

OH

H

N

OBn

H
PhMe,
  55%H

N

OBn

H
NCBr79%

H

N

OBn

H
NC88%

H

NH

OH

H

H

NH

OH

H

O

H

N
H

81% for 3 steps

MeOOC

H

N
H

H

N
H

COOMe

H

83%

72% for 3 steps

576

576

Daphnezomine L
methyl ester

Calyciphylline K

N
O

AZADO

N N

S

S
P
O

OEt
OEt

bpy

Caldaphnidine D

539a

577
578

579

AlBN, nBu3SnH,
         90℃ 

580
581582583

584
585

K2CO3,BrCN, 
 

H2, Pd(OH)2/C
Et3N, EtOH

Na-Naph.,
     DME,

Pd/C, H2
MeOH, 83%

AZADO, CuCl,
DMAP, bpy, O2
CH3CN, 83%

586 587
588

589590591

AlBN
nBu3SnH,

BrCN,
DCM reflux

H2, Pd(OH)2/C
Et3N, EtOH

Na-Naph.
DME, r.t.

H2, Pd/C
MeOH, r.t.

Na-Naph., DME, 13%-60%

- 78℃, Na-Naph.;

  (2)Ac2O,
150℃

80% for 2 steps
(1)p-TSA·H2O,
 CH(OMe)3

(1) - 78℃, n-BuLi, 593a;
(2) 2 M HCl
(3) NaOMe, MeOH

(1) - 78℃, n-BuLi, 593a;
(2) NaBH4;
(3) 2 M HCl NaOMe, MeOH

 Na-Naph., - 78℃
   then MeOH, 
propargyl bromide

 
Scheme 41. Total Syntheses of Daphnezomine L-type and Secodaphniphyllinetype Daphniphyllum 
Alkaloids by J. Xu’s group. 

4.14. Total Synthesis of Hybridaphniphylline B by Li’s Group 
The first total synthesis of hybridaphniphylline B, a DA with 11 rings and 19 stereo-

centers, was reported by A. Li’s group in 2018 [164]. The synthesis involved a late-stage 
intermolecular Diels–Alder reaction to combine a highly developed cyclopentadiene and 
asperuloside tetraacetate (607). As shown in Scheme 42, 592 was subjected to Krapcho de-
methoxycarbonylation to form 593. Subsequent α-selenation and oxidative elimination 
led to the generation of α,β-unsaturated enone 594. Treatment with KHMDS and allyl 
bromide resulted in the formation of dienol ether 595. The Claisen rearrangement of 595 
occurred smoothly using a MeOH/H2O solvent at 80 °C, thus producing 596. However, no 
Cope rearrangement occurred under these conditions. The terminal C=C double bond in 
596 was selectively hydroborated using diethylborane (Cy2BH), followed by oxidation to 
yield a primary alcohol. Subsequent Swern oxidation and Seyferth–Gilbert homologation 
with 596a led to the formation of alkyne 597. Then, the treatment of 597 with Lawesson’s 
reagent afforded 598. A study on Pauson–Khand reaction conditions revealed that MeCN 
effectively promoted the transformation from the alkyne dicobalt complex formed from 
598 and Co2(CO)8 to obtain 599a and 599b in a 2.4:1 ratio with a yield of approximately 
73%. Further treatment with K2CO3/TFE led to the migration of the C=C bonds, affording 
enone 600 with higher substitution, in 63% overall yield from 598. Subsequently, the re-
duction of thioamide 600 using Raney Ni produced daphnilongeranin B. Both racemic and 
enantioenriched forms of daphnilongeranin B were synthesized via the described route. 

Scheme 41. Total Syntheses of Daphnezomine L-type and Secodaphniphyllinetype Daphniphyllum
Alkaloids by J. Xu’s group.



Molecules 2024, 29, 5498 43 of 65

Nevertheless, a robust two-step procedure was employed to synthesize 583 from 581 in
70% overall yield. This involved hydrogenolysis of the C–Br bond using H2 and Pd(OH)2/C
in the presence of Et3N and MeOH to form 582, followed by global removal of the N–CN
and O–benzyl (OBn) groups utilizing a sodium naphthalenide solution. Subsequently,
amino alcohol 584 was obtained through hydrogenation of the alkene moiety with two
substituents in 583 using Pd/C, H2, and MeOH in 83% yield. Further oxidation afforded
imine-aldehyde 585. The aldehyde group in 585 was subsequently subjected to a HWE
reaction, followed by hydrolysis of the corresponding ketene dithioacetal group. This
resulted in the formation of a methyl ester carboxylic acid group, which was utilized for
synthesizing daphnezomine L methyl ester. Calyciphylline K was synthesized using a
similar approach with an additional imine reduction step, with a 72% yield over three steps.

The synthesis of caldaphnidine D commenced from intermediate 586, which is readily
obtainable from intermediate 576 in seven synthetic steps. The N-tosyl group in 586 was
substituted with a propargyl group to yield enyne 587. Enyne derivative 587 was further
transformed into hexacyclic compound 588 through a radical cyclization cascade employing
AIBN and Bu3SnH. Reorganizing the experimental steps, 588 was smoothly transformed
into pentacyclic compound 589 using von Braun’s conditions. Finally, 589 underwent a
series of consecutive transformations, including C–Br bond reduction, N–CN and O–Bn
group removal using sodium naphthalenide, and finally, 1,1-disubstituted alkene motif
hydrogenation. These modifications resulted in caldaphnidine D with an overall efficiency
of 65% across three steps.

4.14. Total Synthesis of Hybridaphniphylline B by Li’s Group

The first total synthesis of hybridaphniphylline B, a DA with 11 rings and 19 stereo-
centers, was reported by A. Li’s group in 2018 [164]. The synthesis involved a late-stage
intermolecular Diels–Alder reaction to combine a highly developed cyclopentadiene and
asperuloside tetraacetate (607). As shown in Scheme 42, 592 was subjected to Krapcho
demethoxycarbonylation to form 593. Subsequent α-selenation and oxidative elimination
led to the generation of α,β-unsaturated enone 594. Treatment with KHMDS and allyl
bromide resulted in the formation of dienol ether 595. The Claisen rearrangement of 595
occurred smoothly using a MeOH/H2O solvent at 80 ◦C, thus producing 596. However, no
Cope rearrangement occurred under these conditions. The terminal C=C double bond in
596 was selectively hydroborated using diethylborane (Cy2BH), followed by oxidation to
yield a primary alcohol. Subsequent Swern oxidation and Seyferth–Gilbert homologation
with 596a led to the formation of alkyne 597. Then, the treatment of 597 with Lawesson’s
reagent afforded 598. A study on Pauson–Khand reaction conditions revealed that MeCN
effectively promoted the transformation from the alkyne dicobalt complex formed from
598 and Co2(CO)8 to obtain 599a and 599b in a 2.4:1 ratio with a yield of approximately
73%. Further treatment with K2CO3/TFE led to the migration of the C=C bonds, affording
enone 600 with higher substitution, in 63% overall yield from 598. Subsequently, the re-
duction of thioamide 600 using Raney Ni produced daphnilongeranin B. Both racemic and
enantioenriched forms of daphnilongeranin B were synthesized via the described route.

The treatment of daphnilongeranin B with t-BuOK and O2 in the presence of triethyl
phosphite (P(OEt)3) yielded diastereomerically pure daphniyunnine E in 61% yield. Dehy-
dration was achieved by treating the TFA salt of daphniyunnine E with p-TsOH, affording
dehydrodaphnilongeranin B in a high yield (79%). Interestingly, enone 600, the immediate
precursor of daphnilongeranin B, underwent Luche reduction to yield allylic alcohol 601.
Subsequently, asperuloside tetraacetate (607) was synthesized as a dienophile. Compound
603, obtained from (+)-genipin (602), underwent a series of chemical modifications, in-
cluding acetylation, silylation, and selective deprotection of the less-hindered silyl ether.
This resulted in the formation of lactol 604 as a mixture of two anomers in roughly equal
proportions. The glycosylation between 604 and trichloroacetimidate 605, followed by
desilylation, led to the production of 606 with only one stereoisomer. Despite undergoing
partial deacetylation upon exposure to trimethyltin hydroxide (Me3SnOH), reacetylation
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yielded 607. To generate the dienes required for further reactions from precursor 601,
the researchers developed a convenient procedure using MgSO4 as a mild yet efficient
dehydrating agent under elevated temperature conditions. By employing MgSO4 and
butylated hydroxytoluene (BHT) at 160 ◦C, cyclopentadiene was generated from 601 and
subsequently reacted with 607 to produce cycloadducts 608–611. Finally, the reduction of
608 using Raney Ni followed by global deacetylation resulted in hybridaphniphylline B.
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4.15. Total Synthesis of Longeracinphyllin A by A. Li’s Group

A. Li’s group achieved the complete synthesis of longeracinphyllin A in 2017 [145].
As shown in Scheme 43, alcohol 612 was subjected to a widely recognized two-step pro-
cess to form alkynyl silyl enol ether 613. In the presence of silver triflimide (AgNTf2)
and CyJohnPhos, the cyclization of 613 led to the formation of 614 in good yield (84%),
accompanied by a minor product (5% yield) via a less favorable 7-endo-dig cyclization
pathway. The nosyl group was removed from 614 using TTBP, a 4 Å molecular sieve, and
CyJohnPhos, followed by condensation with 614a, treatment with DBU at 95 ◦C, and finally
a one-pot reaction with paraformaldehyde to afford 615. Compound 616 was efficiently
synthesized from 615 through sequential desilylation and iodination. Based on their prior
knowledge of the asymmetric hydrogenation of unfunctionalized olefins, the researchers
employed a Rh-based catalytic system to achieve remarkable facial selectivity. As a result,
the crucial intermediate (617) was obtained in 98% yield as the sole detectable diastereomer.
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The ketone underwent α-selenation, followed by oxidative elimination, resulting in the
synthesis of α,β-unsaturated enone 618 with remarkable overall effectiveness.
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The subsequent treatment of 618 with 1,4-diazabicyclo[2.2.2]octane (DABCO) in the air
led to the impressive formation of enedione 619. The utilization of DPPF as a catalyst highly
favored the [3+2] pathway, resulting in 620 in 45% yield at the gram scale. The treatment
of 620 with excess LiCH2PO(OMe)2 resulted in the formation of β-ketophosphonate 621.
Subsequent hydrogenation and intramolecular HWE olefination afforded hexacycle 622.
Krapcho demethoxycarbonylation with MeCN resulted in 623 in 95% yield. Thiolation of
both the enone and lactam carbonyls with Lawesson’s reagent, followed by oxygenation
of the more labile thioenone in air, led to the efficient formation of thioamide 624. Finally,
reduction using Raney Ni produced longeracinphyllin A.

4.16. Synthesis of (+)-Caldaphnidine J Using an Asymmetric Approach by Xu’s Group

The asymmetric total synthesis of the yuzurimine-type alkaloid (+)-caldaphnidine J
was accomplished by Xu’s group in 2020 [217]. In this synthesis (Scheme 44), ketone 576
was treated with allylMgBr in the presence of CeCl3 to form a diol intermediate, which
was then subjected to Pb(IV)-mediated oxidative cleavage. Subsequent reduction using
NaBH4 resulted in the production of β,γ-unsaturated ketone 625, which exhibited some
degree of instability. To address this issue, alkyl iodide 626 was promptly generated
through the iodination of ketone 625. Subsequently, the treatment of 626 with LDA induced
intramolecular alkylation, thus forming α-vinyl functionalized ketones 628 and 627 in 25%
and 50% yield, respectively.

Regioselective hydroformylation of the terminal alkene moiety in 627 using Shi’s
protocol afforded aldehyde 629 in 75% yield. Subsequently, diol 630 was synthesized
through an intramolecular pinacol coupling reaction mediated by SmI2. The secondary
hydroxyl group was selectively acylated and then subjected to 2,3-dichloro-5,6-dicyano-
1,4-benzoquinone (DDQ)-mediated debenzylation to afford primary alcohol 631. Further
oxidation using DMP converted alcohol 631 into aldehyde 632. Phosphonate 539a was
utilized in HWE homologation, followed by a one-step reduction using DIBAL-H. This
synthetic route yielded ketene dithioacetal 634 in an impressive 94% yield.

The cyclization of diol 634 was accomplished by TFAA/DMSO-mediated Swern
oxidation, resulting in the formation of a ketone functional group. Subsequently, 635 was
synthesized by introducing Me2S to the sulfonium intermediate and removing the methyl
groups. The conversion from the 2-(methylthio)-1,3-dithiane moiety to methyl ester 636
proceeded smoothly through treatment with methanolic iodine. cis-Diol 636 reacted with
SOCl2 to afford dialkyl sulfite 637, which underwent E2cB elimination upon treatment
with DBU, resulting in the desired allylic alcohol 638. After removing the tosyl group from
638, a one-pot alkylation process was conducted, leading to the synthesis of vinyl bromide
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639. The key tetrahydropyrrole ring in 640 was assembled through radical cyclization
mediated by AIBN/Bu3SnH. Upon acidic workup, the C9 hydroxyl group was eliminated,
thus forming a conjugated diene. A highly selective hydrogenation process (H2/Ar = 1:1)
utilizing Crabtree’s catalyst resulted in (+)-caldaphnidine J in 81% yield with remarkable
regio- and diastereoselectivity (dr = 8:1).
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4.17. Total Synthesis of Daphgraciline by Li’s Group

C.-C. Li and colleagues reported the total synthesis of the yuzurine-type alkaloid
daphgraciline in 2022 [218]. As shown in Scheme 45, 641 was reduced using DIBAL-H
and protected with TBSCl, resulting in 642 in 93% overall yield. Reactive exchanges of
dibromofuran 642 with n-BuLi, followed by introductions of benzyl chloromethyl ether
(BOMCl) and gaseous formaldehyde (HCHO), were performed sequentially to afford 643.
Compound 643 was then transformed into 644 via a Mitsunobu reaction with 643a and
subsequent deprotection. The utilization of m-CPBA in DCM facilitated the Achmatowicz
rearrangement of 644, which was subsequently acetylated in a one-pot reaction. This
process resulted in the synthesis of 645 in 83% yield. Next, dihydroquinidine (DHQD) [219]
was employed as a base catalyst at 55 ◦C for the desired type II [5+2] cycloaddition
of 645, thus forming 646. By selectively adding 646a to 646, the researchers obtained
647 on a significant scale (15 g). Further progression involved the intramolecular Diels–
Alder reaction of 647, resulting in a mixture of 648 and its C15-diastereomer counterpart
(dr = 2.3:1) in exceptional yield (85%). The dihydroxylation of a mixture of 648 and 648a
with potassium osmate(VI) anhydrous (K2OsO4), followed by oxidation with IBX, yielded
diketone 649.
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Subsequently, the researchers attempted Wolff rearrangement [220] of 649 but dis-
covered significant challenges. Therefore, the desired tetracyclic core 650 was obtained
by ring-contraction and benzilic acid-type rearrangement [221] of 649. Compound 650,
possessing two hydroxyl groups that were not bound to any other atoms, underwent
double Chugaev elimination with remarkable efficiency, resulting in the formation of 651.
The researchers then achieved the chemo- and diastereoselective conjugated reduction of
the C13=C14 olefin moiety in 651 using SmI2. This was succeeded by the reduction of the
ester group using DIBAL-H and simultaneous protection with triisopropyl silane (TIPS) in
a single-step reaction, thus forming 652 in 64% overall yield. Confirmation of the structure
of 652 was achieved by X-ray crystallography of its precursor, 652a.

Compound 652 was treated with Li in ethylamine (EtNH2), followed by the addition
of MeI, resulting in the synthesis of the desired diol. Subsequently, subjecting the diol to
KHMDS and tosyl-imidazole (Ts-Im) in THF led to the formation of epoxide 653. The re-
ductive epoxide cyclization between 653 and acrylonitrile exclusively yielded spirolactone
654 as a single diastereomer in 81% yield. Sequential treatment of 654 with ethylmag-
nesium bromide (EtMgBr) in Et2O, followed by p-TsOH in MeOH, led to the formation
of a ketal alcohol. Subsequent oxidations using DMP and I2/KOH/MeOH converted
the ketal alcohol to ester 655. Expanding on their prior research [222], the researchers
achieved the synthesis of alcohol 656 through a Schenck ene reaction utilizing TPP as
the photosensitizer. This approach effectively addresses the synthetic challenge posed by
the C9=C10 tetrasubstituted double bond. Taking inspiration from the groundbreaking
research conducted by A. Li’s group [164], the researchers heated 656 to 140 ◦C in MgSO4,
thus forming dehydrodaphgraciline (657) [223] bearing a C14=C15 tetrasubstituted double
bond. Finally, the treatment of 657 with p-TsOH in THF/H2O afforded daphgraciline an
80% overall yield.

4.18. Total Synthesis of C14-epi-Deoxycalyciphylline H by Xu’s Group

Hu and Xu achieved the complete synthesis of C14-epi-deoxycalyciphylline H, which is
widely considered to be a yuzurimine-type alkaloid, in 2024 [224]. As shown in Scheme 46,
the investigation began with tricyclic compound 576, which underwent a seven-step pro-
cess involving ring expansion and cyclopentane formation to produce vicinal diol 658.
Subsequently, by utilizing Ando’s olefination conditions (p-TsOH and trimethyl orthofor-
mate (CH(OMe)3) followed by Ac2O at 150 ◦C) [225], alkene 659 was efficiently derived
from diol 658 in 93% yield. The benzyl group of 659 was eliminated using sodium naph-
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thalenide; however, owing to partial N-detosylation, it was necessary to retosylate 659 to
obtain a desirable yield of 660.
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To enhance the efficiency of the synthesis process, the primary hydroxyl group in
660 was oxidized by a straightforward Dess–Martin reaction, resulting in aldehyde for-
mation (661). Subsequently, 661 was subjected to acidic conditions (TfOH at −0 ◦C) to
trigger a Prins reaction involving the aldehyde and alkene motifs, resulting in the fab-
rication of alcohol motifs 662 and 663 (56% and 38% yield, respectively). The mixture
of 662 and 663 was subjected to Dess–Martin oxidation, resulting in the corresponding
ketone, which was homologated by an HWE reaction (539a and n-BuLi) to produce 664.
Compound 665 was then formed via hydrolysis of the ketene dithioacetal moiety in 664.
By replacing the N-tosyl group with a propargyl group, enyne 666 was obtained in high
yield (92%). Finally, Pd-catalyzed enyne cycloisomerization [226] facilitated the formation
of both the essential tetrahydropyrrole motif and the C3–C4 alkene motif in the correspond-
ing diene, and selective hydrogenation employing H2 and Crabtree’s catalyst generated
C14-epi-deoxycalyciphylline H.

4.19. Total Synthesis of (−)-Himalensine A by Dixon’s Group

In 2023, Dixon’s team achieved the convergent enantioselective total synthesis of
himalensine A in just 18 steps [227]. This was made possible through the use of a carefully
selected method for constructing the morphan core. Specifically, the researchers employed
a co-catalyzed desymmetrization technique involving Pd and hydroxyproline, as well as
cyclohexanones and vinyl-bromide tethers. As shown in Scheme 47, 668 was synthesized
by the reductive amination of 667 using 2-bromoprop-2-en-1-amine, followed by ketal
hydrolysis and amine tosylation by standard procedures. The key vinylation reaction
was easily scaled up, resulting in cyclized product 669 in 92% yield with 94% ee. The
compound 669 was hydrogenated to 670 and 670a. Next, enone 670 was reacted with
Me2CuLi·LiI (formed in situ from MeLi and CuI) and TMSCl. The resultant silyl enol ether
underwent bromination employing NBS to form 671, followed by dehydrobromination
utilizing Li2CO3 and LiBr to yield 672. Subsequently, the tosyl group of 672 was selectively
removed via treatment with sodium naphthalenide after protecting its extended sodium
enolate form in situ. This involved the coupling of secondary amine 673 with malonate
673a using EDCI·HCl [228]. The desired tricyclic compound (674) was obtained by treating
the resulting malonamate with K2CO3 in MeCN.
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Compound 674 was exposed to KHMDS at −78 ◦C, treated with allyl tosylate in the
presence of 18-crown-6, and subsequently heated to 170 ◦C in mesitylene, thus forming a
Claisen rearrangement product. Treating this product with Hoveyda–Grubbs II catalyst
produced tetracyclic 675 through ring-closing metathesis in 86% overall yield over three
steps. The application of KHMDS and a protic workup on 675 resulted in epimerization at
C8. Finally, hydrogenation of the C8 epimerization product afforded 676. Notably, 676 is a
versatile intermediate for DA synthesis.

In another pathway, tricyclic ketone 674 was treated with KHMDS at low temperatures
for deprotonation. The resulting enolate was then treated with a complex allyl tosylate
(677), thus producing enol ether 678 with high efficiency. When heated to approximately
200 ◦C, 678 underwent Claisen rearrangement through a possible chair-like transition state
(679), thereby creating two neighboring tertiary stereocenters. To determine the relative
stereochemical configuration of 680, an analogous compound (680a) was synthesized using
the same methodology and analyzed by single-crystal X-ray diffraction.

By treating diene 680 with Hoveyda–Grubbs II catalyst, the D ring of himalensine A
was effectively formed along with C8 epimerization. This led to a relatively thermodynam-
ically stable bowl-shaped epimer, 681, in satisfactory yield. The methyl ester group in 681
was eliminated through Krapcho decarboxylation, while acidic conditions were employed
to cleave the TBS group to form 682. To address the challenge of oxidizing sterically hin-
dered alcohol 682, the researchers utilized a combination of PIDA and 2-azaadamantane
N-oxyl (AZADO) catalysis. Following purification on silica, the resulting oxidized product
(683) exhibited alkene migration, which ultimately resulted in the formation of oxyhi-
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malensine A. As a result, the formal synthesis of this natural product was successfully
completed.

An alternative approach involved subjecting the crude oxidation product 683 to reduc-
tion conditions, as previously described for himalensine A. According to this procedure,
the lactam in 683 was initially transformed into its corresponding silylated hemiaminal by
utilizing Vaska’s complex in the presence of tetramethyldisiloxane (TMDS). Subsequently,
through treatment with formic acid, it underwent further reduction to produce the desired
pyrrolidine ring. Simultaneously, migration of the double bond resulted in conjugation
with the carbonyl group on the cyclopentanone E ring. Thus, a complete synthesis of
himalensine A [150] was accomplished in 20 steps with a 10% overall yield (18 steps and
9% yield after telescoping).

4.20. Distinct Total Syntheses of (−)-Daphnezomines A and B and (+)-Dapholdhamine B by Zhai’s Group

In 2023, Zhai’s team reported the distinct complete syntheses of (−)-daphnezomines
A and B, as well as (+)-dapholdhamine B [229]. As shown in Scheme 48, the Mitsunobu
reaction of known chiral alcohol 684 with known sulfonamide 684a, which can be obtained
from o-iodoanisole through Sonogashira coupling, afforded epoxide 685. Product 686 was
obtained by introducing epoxide 685 dropwise to a Ti(III) reagent (formed in situ from
bis(cyclopentadienyl)titanium(IV) dichloride (Cp2TiCl2) and activated Zn powder) under
dilute conditions. The oxidation of alcohol 686 using DMP, followed by reduction of the
carbonyl group with NaBH4 in a one-pot reaction, led to the synthesis of 687 in 72% yield
(or 84% yield with recycling of the starting material). Subsequent treatment of homoallylic
alcohol 687 with Li/NH3(liq) in the presence of EtOH resulted in ketone 688 through a
reaction with DMP.
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The synthesis of 689 (Z/E = 1.1:1) was accomplished in approximately 73% overall
yield through a series of reactions, including Wittig olefination between ketone 688 and
EtPPh3Br, demethylation of the methyl ether utilizing p-Me-C6H4SH, and triflation employ-
ing Tf2O. Compound 690 underwent a two-step conversion to yield 691. Two distinct free
amines were produced, which were then protected using excess di-tert-butyldicarbonate
(Boc2O), thus forming a mixture of carbamic–carbonic anhydrides 692a (a monoene) and
692b (a diene). Through Pd/C-catalyzed chemoselective hydrogenation, 692a was se-
lectively obtained as the sole product. Regioselective allylic oxidation of alkene 692a
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at the least hindered position with CrO3 and 3,5-dimethylpyrazole afforded enone 693.
Treating enone 693 with Li/NH3(liq) in the presence of t-BuOH led to hemiketal 694 in
approximately 46% overall yield over two steps. Finally, hemiketal 694 was subjected
to Jones oxidation (CrO3/H2SO4) to form (−)-daphnezomine A in approximately 64%
yield. Alternatively, by adding excess MeOH to the reaction mixture, (−)-daphnezomine B
was obtained in 52% yield. (−)-Daphnezomines A and B were both converted into their
respective trifluoroacetates using flash column chromatography with DCM/MeOH/TFA
as the eluent.

To synthesize (−)-dapholdhamine B, 691 underwent Birch reduction of the benzene
ring, while the tosyl (Ts) protecting group on the N atom was simultaneously removed
through treatment with Li/NH3(liq). The resulting mixture, which contained two free
amines, was then reacted directly with p-TsCl/Et3N to produce alkene 695a and diene
695b in 62% and 26% yield, respectively. Diene 695b was subsequently converted into
alkene 695a via catalytic hydrogenation in 86% overall yield. Selective epoxidation from
the convex face occurred during the m-CPBA-mediated epoxidation of alkene 695a, leading
to excellent stereoselectivity in the formation of epoxide 696. Exposing 696 to TMSOTf
in the presence of 2,6-lutidine led to the selective opening of the epoxide ring at the least
hindered position. This resulted in allylic TMS ether 697 in moderate yield (63%) [230].
By global removal of the silyl groups and oxidization using PIDA/TEMPO, lactone 698
was obtained through oxidative cyclization. To ensure stability under acidic conditions,
solid NaHCO3 was introduced prior to PIDA/TEMPO oxidation. Following reductive
desulfurization, the resulting amine was treated with N-iodosuccinimide (NIS) to generate
tertiary iodide 699 through a necessary 6-endo-trig haloamination. This transformation
afforded the hexacyclic structure observed in (+)-dapholdhamine B. Ultimately, the de-
halogenation of iodolactone 699 [231] was achieved using a radical reaction with AIBN
and Bu3SnH, followed by saponification of the lactone moiety under basic conditions (15%
NaOH(aq)/MeOH, 1:1 v/v). The overall synthetic strategy resulted in an impressive 72%
yield for (+)-dapholdhamine B.

4.21. Total Synthesis of (±)- and (−)-Daphnillonin B by Li’s Group

In 2023, Li’s group achieved the total synthesis of daphnicyclidin-type alkaloids
(±)- and (−)-daphnillonin B. These compounds contain a unique 7/6/5/7/5/5 ABCDEF
hexacyclic core structure [232]. As shown in Scheme 49, the oxidative dearomatization of
o-cresol (700) using 2,2-dimethylpropane-1,3-diol and phenyliodine(III) bis(trifluoroacetate)
(PIFA) was conducted to form 701 in 62% yield. The regioselective hydrogenation of 701
using Wilkinson’s catalyst resulted in 702 in 94% yield. Compound 702 was then subjected
to carbonyl group reduction using LiAlH4, thus forming 703 in 95% yield. A one-pot
transformation involving a Mitsunobu reaction between 703 and reagent 703a, followed by
deprotection, afforded 704 in 70% yield (50 g scale). The Achmatowicz rearrangement of
704 utilizing NBS and subsequent workup with concentrated HCl (2 N) yielded 705 in 77%
yield. Compound 705 underwent a series of reactions involving Boc2O and DMAP in DCM.
This was followed by the addition of Et3N in DCM in the same reaction vessel. The result
was the exclusive production of 706 as a single diastereomer in an impressive 77% yield.

Next, the diastereoselective addition of Grignard reagent 706a to 706, on a smaller
scale, led to further transformations, including nitrobenzenesulfonyl (Ns) group deprotec-
tion and subsequent trichloroacetylation. Ultimately, this sequence yielded 707 with an
overall efficiency of approximately 53%. To obtain enol acetate derivative 708, ketone 707
underwent additional processing using isopropenylacetate under optimized conditions.
Notably, when conducted on larger scales (e.g., 20 g), the desired enol acetate product
exhibited excellent conversion rates and high yields (85%). Radical cyclization with Grubbs
II catalyst proceeded smoothly on trichloroacetamide derivative 708, followed by one-pot
dechlorination to afford 709 in 55% yield. The C6–O bond in 709 was selectively broken by
reduction using SmI2 (5 g scale). Subsequently, the resulting C9–OH group was eliminated
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with p-TsOH and then hydroxylated at C10 using O2 and Et3N. This led to the formation of
710 in satisfactory yield over three steps.
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After extensive investigations, 710 underwent an intramolecular Pauson–Khand reac-
tion when treated with Co2(CO)8 in refluxing MeCN. The subsequent iodination process
utilizing ICl produced 711 as a single diastereomer. Compound 711 shows great potential
as an advanced intermediate for synthesizing calyciphylline A-type alkaloids. To further
modify 711, it was treated with SOCl2 and pyridine in DCM, followed by a one-pot reaction
of the resulting alcohol with TMSOTf and Et3N. These reactions collectively yielded 712 in a
satisfactory 78% overall yield. The vinyl iodide in 712 was subjected to carbonylation using
a Pd(PPh3)4 catalyst under a CO atmosphere at elevated pressure in a mixture of MeOH
and THF. This was followed by diastereoselective reduction at positions 1 and 4, as well as
positions 1 and 2, utilizing LiBH4, thus forming 713. Subsequently, treatment of 713 with
NaH/CS2/MeI led to diastereoselective methylation at C18, yielding 714 in 90% overall



Molecules 2024, 29, 5498 53 of 65

yield. Notably, heating 714 to 180 ◦C in o-dichlorobenzene (o-DCB) achieved the desired
product (716) with high efficiency (88% yield). Compound 716 then underwent Chugaev
elimination to produce 717 in approximately 77% overall yield. Finally, chemoselective
hydrogenation, which targeted the C11–C12 olefin within 717, and subsequent diastere-
oselective epoxidation focusing on the C9–C10 olefin moiety resulted in the formation of
718. The treatment of 718 with SmI2 afforded 719 as a single diastereomer in 75% yield.
Carboxylic ester 719 was then subjected to a series of reactions involving LiOH, m-CPBA,
and DCC in DCM. As a result, 720 was obtained in 68% yield.

Finally, selective reduction of the C19 lactam moiety in 720 using chlorobis(cyclooctene)iridium(I)
dimer ([Ir(coe)2Cl]2) and diethylsilane (Et2SiH2), followed by workup with TBAF and K2CO3 and
subsequent oxidation with DMP, furnished (±)-daphnillonin B in 46% overall yield. Notably, standard
Corey–Bakshi–Shibata reaction conditions transformed 702 into (−)-703 as the only product with an
impressive 95% yield (50 g scale) and exceptional enantioselectivity (96% ee). Through an analogous
synthetic route, the asymmetric synthesis of optically pure (−)-706 (>99% ee) was also achieved
starting from (−)-703. X-ray crystallography was employed to definitively determine the absolute
configuration of the synthesized (−)-706. Subsequently, utilizing a similar pathway, the complete
asymmetric synthesis of daphnillonin B was achieved starting from optically pure (−)-706.

4.22. Total Synthesis of Four Subfamilies of DAs by Li’s Group

In 2023, Li’s team announced the groundbreaking synthesis of four subfamilies of
DAs: calyciphylline A-type, macrodaphniphyllamine-type, daphnilongeranin A-type, and
daphnicyclidin D-type [233]. This achievement was made possible through an innovative
biomimetic approach that incorporated substrate manipulation, reaction diversification,
and pathway modification techniques.

In their prior studies on DAs synthesis [145,164], A. Li’s group utilized tetracyclic
compound 594, which can be acquired from easily obtainable α,β-unsaturated enone 612,
as a crucial intermediate. As shown in Scheme 50A, by deprotonating 594 using KHMDS
followed by O-allylation between the resulting enolate and mesylate 722, the researchers
achieved dienol ether 723 in excellent yield (93%). By adapting a procedure from their
earlier work on the synthesis of hybridaphniphylline B [164], the researchers synthesized
ketone 724 using Na2CO3(aq) in MeOH at 100 ◦C. Notably, exclusive formation of the C8
diastereomer was achieved. Upon treating the modified functionalized 1,6- synthesized
enyne with Co2(CO)8 in MeCN at 85 ◦C via an intramolecular Pauson–Khand reaction,
a significant majority (81%) of conjugated dienone 725 formed as a stereoisomer. The
in situ generation of TFPAA epoxidized the exocyclic C=C bond of 725, followed by a
base-promoted cascade involving double bond migration and δ-alkoxy elimination to form
hydroxy dienone 726. By screening various catalysts, the researchers identified the optimal
combination as [Rh(nbd)2]BF4(nbd = norbornadiene) and (±)-2,2′-bis(diphenylphosphino)-
1,1′-binaphthyl ((±)-BINAP), which yielded 727. To obtain the corresponding carboxylic
acid (727a), the researchers oxidized the primary alcohol using 9-azabicyclo[3.3.1]nonane
N-oxyl (ABNO) and PIDA, followed by methylation with TMSCHN2 in MeOH to produce
ester 728 in a 74% overall yield. Under Nagashima conditions, the lactam in 728 was
converted to the corresponding enamine, while the cyclopentenone experienced selective
reduction from its convex face. By employing NaBH(OAc)3 in the presence of HOAc,
the researchers obtained 17β-hydroxydaphniyunnine A through smooth reduction of the
enamine. Subsequent deoxygenation of the resulting allylic alcohol [234] using Et3SiH and
BF3·Et2O afforded daphniyunnine A an 84% yield. Further oxidation of daphniyunnine A
using m-CPBA resulted in the formation of calyciphylline A in a 98% yield.

With a total of six compounds in their possession, the researchers devised a reverse
synthetic pathway for macrodaphniphyllamine from calyciphylline A (Scheme 50B), align-
ing with the postulated biogenetic route. The primary obstacle during this procedure
was the specific breaking of the C4–N bond in calyciphylline A. By utilizing Polonovski
conditions (Ac2O and DTBMP), a mixture comprising hemiaminals 729 and 731 (~1.5:1)
was obtained in 63% yield; it is presumed that 731 formed from 729 via diketone inter-
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mediate 730. The SmI2/H2O reagent system was found to be the most effective for the
production of macrodaphniphyllamine, resulting in an 86% yield. This alkaloid then served
as a shared intermediate for synthesizing other members within the same subfamily. By
selectively acetylating its C4 hydroxyl group using Ac2O, Et3N, and DMAP, yuzurimine
A was obtained in high yield (96%). Additionally, yunnandaphnine B was produced in
97% yield by reducing the hemiaminal within macrodaphniphyllamine using NaBH3CN
and HOAc. Additionally, the researchers utilized a dehydrogenation with mechanistic
similarities to the Polonovski reaction for the one-pot synthesis of yunnandaphnine E and
calyciphylline E from macrodaphniphyllamine. The reaction of macrodaphniphyllamine
with I2 and K2CO3 produced a presumed quaternary ammonium intermediate, 732. This
intermediate then underwent different sequences involving HI elimination and hydroxyl
attack, resulting in a 72% yield for yunnandaphnine E and a 19% yield for calyciphylline E.
These products were formed via iminium ion species 733 and 734, respectively.

As shown in Scheme 50C, the synthesis of enedione 619 was achieved by γ-oxidation of
the readily accessible enone 618. The Trost conditions were modified using
tris(dibenzylideneacetone)dipalladium(0) (Pd2(dba)3), (i-PrO)3P (i-Pr = isopropyl), and
triethyl borate (B(OEt)3) to transform the trimethylenemethane (TMM) precursor, 735, into
a mixture of C9 and C15 stereoisomers (736; approximately 13.6:5.5:2.5:1) in a total yield of
71%. Mixture 736 underwent a series of reactions, including Krapcho demethoxycarbonyla-
tion using LiCl, H2O, and DMSO at 160 ◦C; ozonolysis; and desilylative cyclization using
methanesulfonic acid (MsOH). This led to the formation of α,β-unsaturated enone 738 with
high overall efficiency. This outcome is likely caused by an in situ dehydration–double
bond migration process involving an intermediate enol ether (737). The Luche reduction
of 738 afforded allylic alcohol 739 as the sole diastereomer in an impressive 96% yield.
Treating 739 with MsOH resulted in a blend of diene 740 and a δ-hydroxyketone, which
was generated through hydrolytic processes. However, employing PPTS and a molecular
sieve (4 Å) exclusively furnished 740 in 90% overall yield. By employing Vilsmeier–Haack
reaction conditions, which included DMF, (COCl)2, and 741, the electron-rich diene was
transformed into aldehyde 742 in an impressive yield of 80%. Afterward, 742 was subjected
to Corey oxidative esterification using NaCN, HOAc, MnO2, and MeOH, resulting in
the successful synthesis of 743. The lactam derivative was then subjected to Nagashima
amide reduction using Vaska’s complex and TMDS, followed by enamine reduction with
NaBH(OAc)3 and HOAc, resulting in the synthesis of daphnilongeranin A in 68% overall
yield. Finally, oxidation of this tertiary amine using H2O2(aq) provided paxiphylline E
with excellent yield (86%).

Exploiting the synthetic versatility of 744, the researchers then established an expedited
pathway to synthesize daphnicyclidin D (Scheme 50D). Drawing from their expertise in
tandem reactions during the synthesis of daphenylline [144], the researchers discovered
that TBD was an efficient reagent for initiating the cascade sequence. This is likely because
it facilitates the intramolecular aldol reaction in 744. The desired 5,7-fused bicyclic ring
system was obtained as 747 as a sole C8 diastereomer in an impressive 85% yield. This
outcome may have been achieved through intermediates 745 and 746. Exposure to NBS at
55 ◦C predominantly resulted in bromide formation, as observed in intermediate 748. Upon
subsequent treatment with DBU and excess NBS under suitable conditions, intermediate
748 underwent sequential C10 bromination followed by nucleophilic substitution with
the succinimide anion, thereby forming intermediate 749. As anticipated, Na2S2O3(aq)
workup resulted in the formation of enol 750, which was subsequently triflated to afford
751 in 64% overall yield from starting material 747. Modified Shair conditions (Pd(OAc)2,
trimethyl phosphite ((MeO)3P), 90 bar CO, Et3N, and MeOH/DMSO) were employed
for the methoxycarbonylation of 751. Additionally, in a weakly basic environment, the
increased acidity of the cyclopentadiene moiety led to the spontaneous elimination of the
succinimide. As a result, methyl ester 752 was directly obtained in satisfactory yield (75%).
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From 752, daphnicyclidin D achieved an impressive yield (93%) through one-pot
lactam reduction, as mentioned above. In addition, taking inspiration from the polarized
nature of its fulvene domain, which incorporates two electron-withdrawing groups, the
researchers devised a sequential approach involving KOH-mediated conjugate addition–
lactol ring opening–lactonization. This strategy enabled the synthesis of daphnicyclidin A
in high yield (89%). In another pathway, 752 was converted to 753. Reacting 753 with a small
quantity of dibutyltin oxide (Bu2SnO) at 80 ◦C led to the synthesis of 754 in exceptional
yield (96%). The lactam reduction of 754 yielded proto-daphnicyclidin K (755), which is
potentially an as-yet-undiscovered naturally occurring DA. Treatment of this tertiary amine
with I2 and K2CO3 afforded daphnicyclidin K in 70% yield. Finally, the lactam reduction of
753 achieved the efficient synthesis of daphnicyclidin F.

5. Conclusions

To date, over 350 DAs have been isolated and reported. However, the number of new
isolations has decreased significantly in recent years, largely because of previous intensive
efforts. Despite this decline in new discoveries, the diverse structural and bioactive proper-
ties of DAs continue to capture the attention of organic and synthetic chemists [235–238].
In particular, over the past five years, several studies have been conducted on the total
synthesis of DAs. A range of innovative approaches have been devised to facilitate the
efficient and streamlined production of DAs. These efforts have not only advanced the
synthesis of DAs but have also contributed to the broader development of organic synthesis
methodologies. As the strategy for synthesizing DAs is becoming more and more concise,
it helps to accumulate a large number of molecular samples of the alkaloids, which can be
applied to biological activity tests and then discover more interesting activities and even
applied to clinical trials.

Future research on DA synthesis should focus on the construction of polycyclic skele-
ton systems and asymmetric synthesis techniques, particularly those catalyzed by metal
complexes or small organic molecules. As novel synthesis methodologies and experimental
technologies continue to advance, we can expect an increasing number of DA syntheses to
be reported in the future.
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