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Abstract: Improving the photogenerated carrier separation efficiency of individual semiconductor
materials has always been a key challenge in photocatalysis. In this study, we synthesized a novel
photocatalytic material, N-CQDs/UBWO, in situ by combining nitrogen-doped carbon quantum dots
(N-CQDs) derived from discarded corn stover with ultrathin Bi2WO6 nanosheets (UBWO). Detailed
characterization indicates that the random distribution of N-CQDs on the UBWO surface increases the
specific surface area of UBWO, which is beneficial for the adsorption and degradation of oxytetracy-
cline (OTC). More importantly, N-CQDs act as electron acceptors, promoting the effective separation
of photogenerated charges, prolonging the lifetime of charge carriers in UBWO, and thereby en-
hancing the degradation efficiency of OTC. As a result, the optimized 3wt%N-CQDs/UBWO could
degrade 85% of OTC within 40 min under visible light, with a removal rate four times that of pure
Bi2WO6. The performance of photocatalytic degradation over OTC by 3wt%N-CQDs/UBWO exceeds
that of most reported Bi2WO6-based photocatalysts. The EPR analysis confirmed that ·O2

− and
·OH are the main active species in the photocatalytic degradation of OTC on 3wt%N-CQDs/UBWO.
This study provides insight into designing green, low-cost, and efficient photocatalysts using CQDs
derived from waste biomass and the degradation of emerging pollutants like antibiotics.

Keywords: visible-light photocatalysis; antibiotic contamination; carbon quantum dots; waste
biomass; degradation mechanism

1. Introduction

Antibiotics, as the commonly used drugs for treating human diseases, inevitably
generate a large amount of threatful wastewater during their production and practical
uses [1,2]. In recent years, the overuse of antibiotics has exacerbated this phenomenon and
related concerns. Antibiotics, as one of the four predominant pollutants, are discharged
into the environment without effective purification, posing serious menaces to the ecolog-
ical environment and human life and health [3,4]. Therefore, there is an urgent need to
develop economically efficient technologies aimed at treating antibiotic wastewater. Visible
light-driven photocatalytic technology is regarded as a promising solution for pollutant
elimination, attracting widespread attention in recent years due to its advantages, including
low energy consumption, mild reaction conditions, and environmentally friendly clean-
ing [5,6]. However, the low reaction efficiency of most photocatalytic materials greatly
limits the application of photocatalytic technology in antibiotic pollution remediation [7].
Therefore, researchers are more committed to developing low-cost, durable, and highly
efficient photocatalytic constructions.
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Among various photocatalysts, Bi2WO6, as a representative bismuth-based semicon-
ductor with a unique layered structure, shows high stability, low conduction band position,
and suitable bandgap (2.6–2.8 eV), leading to great potential in the field of photocatalytic
environmental purification [8,9]. However, due to the improper visible light harvesting
performance (λ ≤ 450 nm) and high electron–hole recombination rate, the intrinsic Bi2WO6
photocatalytic material shows limited applications in removing antibiotics [10,11]. To date,
researchers have made many efforts, including constructing heterojunctions, introducing
defects, controlling morphology, and loading co-catalysts to improve the photocatalytic
performance of Bi2WO6 [12,13]. Although these strategies can effectively improve the
photocatalytic performance of Bi2WO6, they still face problems such as poor material
tolerance and high preparation cost, which hinder the development of Bi2WO6-based
heterojunction photocatalysts [14,15]. The main challenge of Bi2WO6-based photocatalytic
composites is how to improve the separation of photogenerated charge carriers, reduce the
preparation/utilization costs, improve tolerance, and achieve its large-scale application in
environmental purification.

CQDs, as a new type of carbon nanomaterials, are composed of sp2/sp3 hybridized
carbon cores and surface functional groups [16,17]. Due to their low toxicity, low cost,
and good conductivity, they have been widely used in designing efficient photocatalytic
constructions, such as CQDs/Bi2WO6, CQDs/TiO2, CQDs/Bi2MoO6, CQDs/BiOIO3,
CQDs/ZnIn2S4, and CQDs/g-C3N4 [6,18–20]. CQDs are used as co-catalysts in these
systems to expand the pho-to-responsive range and facilitate photogenerated charge migra-
tion [21,22]. Therefore, the use of CQDs instead of metal oxide semiconductors or precious
metals to improve the photocatalytic performance of semiconductor materials has attracted
huge attention in recent years [23]. China generates approximately 900 million tons of
waste biomass annually. Suppose these biomasses can be converted into CQDs for the
design of novel efficient photocatalysts. In that case, it can not only minimize the use of
toxic and/or expensive chemicals but also promote the green and low-cost preparation of
photocatalytic materials.

In this work, N-CQDs, derived from discarded corn stalks, were added to the Bi2WO6
hydrothermal synthesis system for the in situ formation of the novel ultrathin CQDs/Bi2WO6
composite material. The microstructure of the photocatalysts was systematically explored
using a multi-technique approach. The results showed that N-CQDs were tightly and
randomly dispersed on the surface of UBWO nanosheets, leading to the significant im-
provement of charge separation efficiency in UBWO. The optimized 3wt%N-CQDs/UBWO
composite system can effectively degrade 85% of OTC within 40 min under visible light,
with a first-order rate constant 4.0 times higher than that of Bi2WO6. This work provides
a meaningful reference for the design of green and low-cost Bi2WO6-based composite
photocatalysts with eminent purification capability of antibiotic wastewater.

2. Results and Discussion
2.1. Structural Characterization of the Photocatalysts

The XRD analysis was performed at room temperature to identify the crystalline
phases of the structures. As shown in Figure 1a, all diffraction peaks belong to Bi2WO6, well
in agreement with the standard JCPDS: 79-2381 [24], indicating that the insertion of N-CQDs
does not affect the crystal structure of UBWO. The intensity of the 3wt%N-CQD/UBWO
diffraction peak is significantly lower than that of UBWO at the same 2θ position, which
may be ascribed to the relatively low crystallinity of N-CQDs [25]. The efficiency of
photocatalysts is closely related to their corresponding specific surface area. Therefore,
the porosity of UBWO and 3wt%N-CQDs/UBWO were specifically explored by BET-BJH
analysis techniques. Figure 1b shows that the N2 adsorption–desorption isotherm exhibits
a typical IV hysteresis loop, implying the micro-porosity and meso-porosity of the designed
photocatalyst [26]. The specific surface areas of UBWO and 3wt%N-CQDs/UBWO are
35.32 and 53.41 m2/g, respectively, indicating that the introduction of N-CQDs endows
UBWO with a larger specific surface area, which is beneficial for exposing a larger number
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of photocatalytic active sites in the reaction. The corresponding pore size distribution map
is shown in Figure 1c, which indicates that the pore size of the two catalysts is almost
less than 50 nm, predominantly consisting of microporous and mesoporous channels. The
3wt%N-CQDs/UBWO exhibits a larger pore volume (0.164 cm3/g), providing sufficient
active sites for pollutant adsorption and degradation reactions.
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The SEM image of UBWO is shown in Figure 2a, demonstrating its irregular porous
structure composed of nanosheets. The microstructure of 3wt%N-CQDs/UBWO composite
material was also investigated by SEM. As shown in Figure 2b, the SEM images reveal
that the photocatalytic composite possesses an irregular structure randomly composed of
ultrathin nanosheets, similar to blooming petals, with abundant porous regions between
the nanosheets. The above results indicate that N-CQDs regulate the morphology of
UBWO during hydrothermal processes, resulting in a larger specific surface area and more
surface-active sites. Due to the small size of N-CQDs, they were not observed in the SEM
images. To demonstrate the successful construction of a composite system from N-CQDs
and UBWO, TEM images of the optimized 3wt%N-CQDs/UBWO were also provided. As
shown in Figure 2c, the TEM image shows a large number of N-CQDs small particles on
the surface of 3wt%N-CQDs/UBWO. From the HR-TEM image of the optimized composite
photocatalyst (Figure 2d), the 3wt%N-CQDs/UBWO surface exhibits two different lattice
fringes. The first one has a fringe spacing of 0.21 nm, corresponding to the lattice spacing
of the N-CQDs (100) crystal plane, and the other region has a stripe spacing of 0.275 nm,
attributing to the lattice spacing of the Bi2WO6 (200) crystal plane [27]. This result indicates
that N-CQDs have been successfully loaded onto the surface of Bi2WO6 nanosheets. TEM
and size distribution of N-CQDs derived from discarded corn stover were investigated to
describe the morphology. As displayed in Figure 2e, the TEM image shows that the shape
of N-CQDs is spherical, with completely dispersed particles without any aggregation. The
HR-TEM image of N-CQDs in the inset of Figure 2e exhibits the distinct lattice fringes with
a lattice spacing of 0.212 nm, corresponding to the lattice spacing of the graphite carbon
(100) plane [28]. The particle distribution histogram of N-CQDs is shown in Figure 2f, which
shows that the particle size of N-CQDs ranges from 1.8 to 4.9 nm, with an average size of
3.4 nm. The above results indicate that the 3wt%N-CQDs/UBWO composite photocatalytic
system was successfully constructed using N-CQDs derived from discarded corn stover.

AFM analysis was conducted to measure the surface topology of the ultrathin Bi2WO6
(UBWO) nanosheet structures. As shown in Figure 3a,b, UBWO has an irregular two-
dimensional nanosheet structure, and the thickness measurements were performed at a
randomly selected location on its surface. Figure 3c shows that the average thickness of
UBWO nanosheets is approximately 1.6 nm, fully demonstrating the synthesis of UBWO un-
der CTAB-mediated hydrothermal conditions. Compared with bulk or particulate Bi2WO6,
ultrathin UBWO can shorten the distance of charge transfer during the photocatalytic pro-
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cess, reduce the recombination rate of electrons and holes, and improve its photocatalytic
performance [29].
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XPS technology was used to interpret the chemical state and surface elemental com-
position of 3wt%N-CQDs/UBWO. Figure 4a shows the XPS full spectrum of 3wt%N-
CQDs/UBWO, which is composed of Bi, W, C, O, and N elements. In Figure 4b, the two
peaks at 159.2 eV (Bi4f 7/2) and 164.5 eV (Bi4f 5/2) in the Bi4f spectrum were attributed to
typical Bi3+ in Bi2WO6. In Figure 4c, the XPS spectrum of W4f can be deconvoluted into two
peaks at 37.5 and 35.3 eV for W4f 5/2 and W4f 7/2, respectively. The XPS spectrum of C1s in
Figure 4d shows four peaks at 284.8, 285.6, 286.7, and 288.0 eV, respectively, corresponding
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to the C-C/C=C, C-O, C-N, and C=O bonds in N-CQDs [30]. The XPS spectrum of O1s
exhibits three peaks at 530.4, 531.4, and 532.7 eV, respectively, corresponding to lattice
oxygen (Figure 4e), adsorbed oxygen or C=O, and C-O bond [31]. As shown in Figure 4f,
the XPS spectrum of N1s in 3wt%N-CQDs/UBWO exhibits two peaks at 399.8 and 400.6 eV,
respectively, attributed to the C-N and N-H bonds in N-CQDs. The above results indicate
that N-CQDs and UBWO have been successfully coupled through chemical interactions,
which is beneficial for achieving the separation and migration of photogenerated carriers.
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2.2. Degradation of Oxytetracycline

The photocatalytic efficiency of the synthesized catalyst was assessed for the tetracy-
cline antibiotics OTC degradation as a typical pollutant under visible light. As shown in
Figure 5a, in the absence of a photocatalyst, the concentration of OTC solution remains
almost unchanged after long-term irradiation, which means that the self-decomposition
ability of OTC can be ignored. The degradation rate of OTC by PBWO was 40% within
40 min, while the degradation rate of OTC by UBWO reached 70% within the same reaction
time. Indeed, the ultrathin structure of UBWO can shorten the distance of charge migration
in the photocatalytic process and reduce the probability of electron–hole recombination [32].

After introducing the optimal amount of N-CQDs on the surface of UBWO, the OTC
degradation rate was 85% after 40 min. It can be seen that the degradation efficiency over
the composite photocatalysts increases first and then decreases with the increase in CQD
loading. Introducing an appropriate amount of CQDs may be beneficial for improving the
light-harvesting properties and separation efficiency of photogenerated charges in UBWO.
However, the excessive CQDs can block the active sites of UBWO and hinder its light
absorption, thereby reducing the photocatalytic activity towards OTC removal [33].

According to the quasi-first-order kinetic model, −ln(Ct/C0) = kt, the first-order
rate constant (k) for OTC degradation was determined (Figure 5b,c). The rate constant
k = 0.0409 min−1 for the optimal catalyst, 3wt%N-CQDs/UBWO, is 4.0 times that of PBWO
(k = 0.01628 min−1). The enhanced photocatalytic performance of 3wt%N-CQD/UBWO
could be attributed to the presence of N-CQD as an efficient electron acceptor in the struc-
ture, which promotes the rapid separation of photogenerated carriers in UBWO. Figure 5d
shows the UV-Vis absorption spectra of treated OTC solution by 3wt%N-CQDs/UBWO
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under visible light. It can be detected that with the extension of illumination time, the
UV-Vis absorption peak of OTC solution at 357 nm gradually decreases, indicating that
3wt% N-CQDs/UBWO can effectively degrade the OTC molecules under visible light.
Furthermore, Table 1 demonstrates a comparison of the performance of the prepared
3wt%N-CQDs/UBWO photocatalyst in degrading antibiotics with the current literature
reports. Obviously, 3wt%N-CQDs/UBWO exhibits a better degradation performance
for tetracycline antibiotics under visible light, manifesting that the developed 3wt%N-
CQDs/UBWO photocatalyst has great practical application prospects.
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Table 1. Comparison of tetracycline antibiotics degradation performance over 3wt%N-CQDs/UBWO
and previously reported photocatalysts in literature.

Catalysts Light Source Photocatalytic
Activity

Pollutant
Concentration (mg/L) Catalyst Dosage (g/L) Ref.

BC-QDs@Bi2WO6 (λ > 420 nm) 80.0% (120 min) 20 0.5 [6]
B-TiO2 (λ > 400 nm) 66.2% (240 min) 10 0.2 [34]
CTOC/BaTiO3/CuS (λ > 420 nm) 69.6% (60 min) 10 0.4 [35]
Bi2O3 QDs/g-C3N4 (λ > 400 nm) 82.5% (120 min) 10 0.5 [36]
2D/3D CN/CC-3 (λ > 420 nm) 69.6% (180 min) 10 0.5 [37]
UOCN-2 (λ > 410 nm) 87.2% (120 min) 30 0.4 [38]
2%CSs-Bi2WO6 (λ > 420 nm) 84.6% (60 min) 50 0.5 [39]
BiOBr/CQDs/g-C3N4 (λ > 420 nm) 82.7% (120 min) 20 0.2 [40]
ZnIn2S4/Bi4Ti3O12 (λ > 420 nm) 82.1% (60 min) 20 0.2 [41]
TF-Cu2O (λ > 420 nm) 82.5% (60 min) 40 0.4 [42]
3wt%CQDs/Bi2WO6 (λ > 420 nm) 89.0% (40 min) 20 0.6 [43]
3wt%N-CQDs/UBWO (λ > 420 nm) 85.0% (40 min) 20 0.2 This work
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2.3. Degradation Mechanism of Oxytetracycline

The kinetics of photogenerated carrier transfer and separation in UBWO and 3wt%N-
CQDs/UBWO were studied by time-resolved PL spectroscopy, steady-state PL, and pho-
tocurrent response. After fitting the attenuation curve of Figure 6a with the parameters in
Table 2, the fluorescence lifetimes of UBWO and 3wt%N-CQDs/UBWO were measured to
be 1.162 and 1.461 ns, respectively, manifesting that the composite system shows a good
carrier separation behavior and prolongs the lifetime of photogenerated charges [44]. The
PL spectrum (Figure 6b) shows that 3wt%N-CQDs/UBWO possesses a lower PL intensity
than UBWO, implying its higher electron–hole separation efficiency compared to the latter
case [45]. The photocurrent response curve (Figure 6c) shows that the transient photocur-
rent of 3wt%N-CQDs/UBWO is significantly higher than that of UBWO, indicating that the
composite system has excellent photoelectric conversion characteristics that arise from the
higher separation efficiency of photogenerated charges in the photocatalytic composite [46].
The above results reveal that a favorable heterostructure is formed between N-CQDs and
UBWO, which promotes the separation and migration of photogenerated carriers.
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Table 2. Lifetime decay kinetic parameters of UBWO and 3wt%N-CQDs/UBWO.

Samples Compounds Lifetime (ns) Relative
Percentages (%) Average Life (ns) χ2

UBWO
τ1 0.15 64.98

1.162 1.137
τ2 3.03 35.02

3wt%N-
CQDs/UBWO

τ1 0.2 67.76
1.461 1.096

τ2 4.12 32.24
τ: Decay lifetimes.

The active species in the photocatalytic degradation of OTC by 3wt%N-CQDs/UBWO
were identified using EPR, and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was employed
as the spin-trapping agent, where ·O2

− and ·OH were collected in methanol and H2O,
respectively. As shown in Figure 7a,b, no significant free radical signal was detected in
3wt%N-CQDs/UBWO under dark conditions. However, four strong peaks of DMPO- ·OH
with an intensity ratio of 1:2:2:1 and six signal peaks of DMPO- ·O2

− were detected in
3wt%N-CQDs/UBWO under visible light, proving that it can simultaneously generate
·O2

− and ·OH radicals under visible light. The production of these reactive oxygen species
is beneficial for the rapid photodegradation of OTC. Moreover, the possible charge transfer
mechanism between N-CQDs and UBWO was analyzed thermodynamically based on the
conditions under which active species are generated. As shown in Figure 7c, the excited
electron (e−) transfers from the valence band (VB) of UBWO to its conduction band (CB)
under visible light irradiation. Due to the π-conjugated structure of the carbon nucleus
inside N-CQDs, they could be excellent electron acceptors [47]. Therefore, when N-CQDs
are in close contact with UBWO, the e− on the CB of UBWO can easily transfer to N-
CQDs, thereby achieving effective separation of photogenerated charges in UBWO. The
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band structure of UBWO was determined based on the results of the analogous reference
literature [48]. Due to the more negative CB position of UBWO compared to O2/·O2

−

(−0.33 V vs. NHE), the photogenerated e− on N-CQDs can reduce the surface adsorbed
O2 to ·O2

− [49]. In addition, the hole (h+) on VB of UBWO can oxidize the hydroxyl ions
to ·OH. The h+ can also directly react with the OTC molecules [50]. Finally, the 3wt%N-
CQDs/UBWO heterojunction produced abundant ·O2

−, ·OH, and h+ active species under
visible light, which together reacted with the OTC molecules to decompose them into the
organic small molecules, CO2 and H2O.
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3. Materials and Methods
3.1. Materials and Chemicals

Urea, oxytetracycline, and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were purchased
from Aladdin Industrial Corp. (Shanghai, China). Sodium tungstate dihydrate, bismuth
nitrate pentahydrate, and hexadecyl trimethyl ammonium bromide (CTAB) were supplied
by Macklin Reagent Co., Ltd., (Shanghai, China). The chemical and reagents were all of
analytical grade and did not require any additional purification.

3.2. Preparation of Samples

Synthesis of N-CQDs derived from discarded corn stover: Waste corn stover collected
in farmland was washed twice with ultrapure water and dried at 80 ◦C for 6 h. The dried
corn stover was ground into powder. A total of 0.3 g of straw powder and 0.1 g of urea
were mixed in 60 mL of ultrapure water. After stirring for 1 h, the mixture was loaded into a
100 mL hydrothermal reactor and treated at 200 ◦C for 10 h. After completion of the reaction,
the liquid was filtered three times through a 50 nm filter membrane to obtain a transparent
yellow-brown solution. It was dried at 80 ◦C for 12 h to obtain N-CQDs powder.
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Preparation of N-CQDs/BiW2O6 photocatalytic composite: A total amount of 0.33 g
of Na2WO4·2H2O, 0.97 g of Bi(NO3)3·5H2O, and 50 mg of CTAB were added to 75 mL of
ultrapure water. After 1 h of magnetic stirring, 7, 14, 21, and 28 mg of the as-synthesized
N-CQDs were added to the medium. The reaction mixture was further stirred for another
hour, transferred into a 100 mL high-pressure vessel lined with polytetrafluoroethylene,
and heated at 120 ◦C for 24 h. After the reaction was completed, the product was washed
5 times with ultrapure water and anhydrous ethanol and dried at 80 ◦C for 10 h to obtain the
final sample. The synthesis process is schematically shown in Scheme 1, where the samples
obtained by adding 7, 14, 21, and 28 mg of N-CQDs are named 1wt%N-CQDs/UBWO,
2wt%N-CQDs/UBWO, 3wt%N-CQDs/UBWO, and 4wt%N-CQDs/UBWO, respectively.
The preparation of the bulk Bi2WO6 (PBWO) sample is similar to the above steps, except
that CTAB was not added.
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3.3. Characterization and Instruments

High-resolution transmission electron microscopy (HR-TEM) was implemented on
an FEI Talos F200i field emission electron microscope at 200 kV. Scanning electron mi-
croscopy (SEM) was performed on a scanning electron microscopy (Hitachi S-4800, Tokyo,
Japan). The atomic force microscope (AFM) measurement was performed on a Multi-
Mode 8 Bruker’s microscope with the Nanoscope V controller. The specific surface area
was analyzed using Brunauer–Emmett–Teller (BET, ASAP 2460) with N2 as an adsorbate
gas. Powder X-ray diffraction (XRD) patterns were performed on a D/Max-2400 X-ray
diffractometer with Cu Kα radiation (Japan Rigaku, Tokyo, Japan). The photoluminescence
(PL) spectra were carried out using an Edinburgh Instruments FS5 spectrofluorometer
(Edinburgh, UK); lifetime was obtained on the same FS5 Edinburgh Instruments equipped
with an EPLED-340 pulsed source. The electron paramagnetic resonance (EPR) spectra
were obtained from a Bruker A300 instrument (BRUKER, Mannheim, Germany).

The transient photocurrent responses were measured on an electrochemical system
(CHI 660E, Shanghai Chenhua Instrument Co., Ltd., Shanghai, China). A typical three-
electrode was immersed in a 0.5 mol/L Na2SO4 electrolyte solution, and a 300 W Xenon
lamp was used as the light source. Fluorine-doped tin oxide (FTO) conductive glass
(1 × 1 cm) was employed as the working electrode, and platinum sheet/calomel electrodes
were used as the counter and reference electrodes, respectively.

3.4. Photodegradation Evaluation

An amount of 50 mL of OTC solution (20 mg/L) was mixed with 10 mg of cata-
lysts under continuous stirring and allowed to reach adsorption equilibrium at dark after
40 min. For OTC degradation under light irradiation, the light source was a 300 W Xe
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lamp equipped with a Cut 420 nm filter to provide visible light. When the adsorption
equilibrium was completed, the light source was turned on for OTC photodegradation.
An amount of 3 mL of the reaction mixture was taken at different regular intervals and
filtered using a 0.22 µm syringe to obtain the supernatant for determining the residual
antibiotics concentrations. The measurements were performed on a UV-2600 UV–visible
spectrophotometer (Shimadzu, Kyoto, Japan), with a maximum absorption wavelength of
357 nm.

The concentration of OTC was determined using the following formula:

η(%) = (1 -
C
C0

) × 100% = (1 -
A
A0

) × 100%

where C0 represents the initial concentration, and C denotes the concentration at any time
(t); A0 and A refer to the initial absorbance and absorbance at any time (t), respectively.

4. Conclusions

In summary, a novel N-CQDs/UBWO photocatalytic composite was constructed by
the in situ combination of N-CQDs, derived from discarded corn stover, and UBWO via
hydrothermal method. The optimized 3wt%N-CQDs/UBWO structure degraded 85% of
OTC within 40 min under visible light, with a degradation rate four times that of pure
Bi2WO6. Mechanism analysis and characterization showed that N-CQDs, as electron ac-
ceptors, promoted the effective separation of photoproduced charges in UBWO, thereby
boosting the degradation efficiency of OTC by UBWO. In addition, the favorable dispersibil-
ity of N-CQDs hinders the aggregation of UBWO nanosheets, increases the specific surface
area, and promotes the adsorption and degradation of OTC. The ultrathin structure of
Bi2WO6 shortens the charge transfer distance and reduces the recombination probability of
photoproduced carriers. Therefore, the synergistic effect of ultrathin structure and N-CQDs
ameliorates the degradation performance of Bi2WO6 towards the OTC pollutant under
visible light. This work provides a valuable reference for the rational design of green
and low-cost photocatalysts alongside their excellent degradation capability of emerging
pollutants such as antibiotics.
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