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Abstract: Chip-scale optical waveguide-assisted surface-enhanced Raman spectroscopy (SERS) that
used nanoparticles (NPs) was demonstrated. The Raman signals from Raman reporter (RR) molecules
on NPs can be efficiently excited by the waveguide evanescent field when the molecules are in proxim-
ity to the waveguide surface. The Raman signal was enhanced by plasmon resonance due to the NPs
close to the waveguide surface. The optical waveguide mode and the NP-induced field enhancement
were calculated using a finite difference method (FDM). The sensing performance of the waveguide-
assisted SERS device was experimentally characterized by measuring the Raman scattering from
various RRs, including 4-mercaptobenzoic acid (4-MBA), 5,5′-dithio-bis-(2-nitrobenzoic acid) (DTNB),
and malachite green isothiocyanate (MGITC). The observed Raman spectral features were identified
and assigned to the complex vibrational modes associated with different reporters. A low detection
limit of 1 nM was achieved. In addition, the device sensing method was applied to the detection of
the biomarker cardiac troponin I (cTnI) using an aptamer sandwich assay immobilized on the device
surface. Overall, the optical waveguides integrated with SERS show a miniaturized sensing platform
for the detection of small molecules and large proteins, potentially enabling multiplexed detection
for clinically relevant applications.

Keywords: surface-enhanced Raman spectroscopy (SERS); optical waveguides; aptamer; nanoparticles
(NPs); biosensors

1. Introduction

Raman spectroscopy is a precise analytical method that excites the vibrational modes of
molecules when they interact with an excitation laser and create inelastic scattering. Raman
techniques are non-destructive and generate a characteristic vibrational spectrum, thus
providing insight into and information about molecular structures, chemical bonding, and
environmental conditions [1]. However, the technique is limited by the weak spontaneous
Raman scattering signals, thus lacking capability in low-concentration molecule detection,
often requiring bulky and expensive optical components, and is thus a challenge for
miniaturization from a bench-top system to a wafer-scale device [1,2].

Surface-enhanced Raman spectroscopy (SERS) provides a highly enhanced signal (104

to 108) compared to spontaneous Raman spectroscopy, where in SERS the target molecule
is on or near a metal nanoparticle surface [3]. Because of the significant Raman enhance-
ment, SERS provides high sensitivity suitable for tracing low concentration molecules [4].
In addition, the vibrational modes displayed in SERS spectra are fundamentally sharp
and yield narrow spectral features. These characteristics allow SERS to be a platform for
multi-analyte detection [5–7]. Because of its higher sensitivity, SERS has been researched
for a wide range of applications, including healthcare [8–10], food safety [11–14], envi-
ronmental monitoring [15,16], and hazardous material detection [17,18]. Compared to
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other SERS platforms, the introduction of on-chip optical waveguides for SERS detec-
tion has the potential to further improve sensitivity and reproducibility while reducing
the size of the device. The dominant mechanism contributing to SERS is the increase in
electromagnetic (EM) field near the plasmonic structures by excitation of the localized
surface plasmon resonances, and an on-chip optical waveguide can create an evanescent
field propagating along the waveguide surface [19]. By placing plasmonic NPs within the
waveguide evanescent field, significant field enhancement can be obtained. Simulations
by Gu et al. suggested an improvement of over 1000 times [20]. Moreover, on-chip optical
waveguides have the potential to provide additional improvement in the collection and
guiding of Raman scattered light [21,22]. On-chip optical waveguides use robust, low-loss
materials and reliable lithographic fabrication in combination with selective wet chemical
or dry plasma etching techniques to provide the opportunity for low-cost, mass-producible,
microscope-less portable lab-on-chip sensing [23]. Developing a waveguide-assisted SERS
(WERS) platform contributes toward fully integrated on-chip sensors with compact instru-
mentation, which is important to fill the gap for point-of-use applications, especially for
low-concentration molecule detection requiring high sensitivity. Experiments thus far have
demonstrated the concept of WERS for the detection of small molecules, such as monolayer
reporter 4-nitrothiophenol (4-NTP) [21,22,24] and nanoparticle-adsorbed 4-MBA dye [20].
Limited studies used the concept for detecting large molecules like proteins; one study
used a dye-labeled antibody for the detection of IgG [25]. The development of WERS for
more clinically relevant large molecules is essential but is currently under-investigated in
the field.

The protein cardiac troponin I (cTnI) has been well established as a blood cardiac
biomarker, indicated by the American Heart Association and American College of Cardiol-
ogy guidelines as the preferred marker for diagnosis of myocardial infarction (MI) [26,27].
The clinical cut-off concentration of cTnI for MI diagnosis ranges from 0.1 to 1.5 ng/mL [28,29].
Optical biosensors utilizing microfluidic chips and paper-based assays have been demon-
strated for the detection of cTnI for point-of-care (PoC) applications [30–33]. Though
paper-based systems offer the advantages of low cost, abundant materials, and simple
disposal, they are limited in terms of long-term stability [34,35]. In addition, the use of
paper-based assays is less integrated than an on-chip waveguide-assisted platform, which
has the potential to incorporate both protein recognition and optical signal transduction.
Notably, the recognition elements in most of these biosensors are antibodies specific to
cTnI. Instead of using an antibody as the recognition element, the use of aptamer-based
recognition elements improves the stability compared to antibody capture and detection
reagents [36]. Nucleic acid aptamers have emerged as a promising alternative, provid-
ing similar selectivity and binding affinity [37,38] with the additional benefits of simpler
synthesis, longer shelf life, lower cost, and tolerance to a wider pH and temperature
range [39,40].

In this work, we present the development of a SERS platform that integrated a low-
refractive-index on-chip optical waveguide with colloidal NPs and demonstrated an ap-
tamer sandwich assay for the detection of cTnI. To the best of our knowledge, this is the
first research that integrates a waveguide-assisted on-chip SERS system utilizing aptamer
sandwich binding for large molecule detection. Figure 1 illustrates the three experimental
verification phases, V1, V2, and V3. In phase V1, the NP solutions with various small
Raman reporter molecules were applied onto the surface of the waveguide device. The
waveguide’s evanescent field excited the plasmon resonance of the metallic NPs that came
near the waveguide surface, thus resulting in an enhanced localized electric field and creat-
ing strong Raman scattering. Here, the noble metallic NPs were prepared and mixed with
a variety of Raman reporter (RR) molecules—including 4-mercaptobenzoic acid (4-MBA),
5,5′-dithiobis(2-nitrobenzoic acid) (DTNB), and malachite green isothiocyanate (MGITC).
The capability of the waveguide-assisted SERS system to resolve peaks in the spectra for
each of the reporter molecules was characterized. A concentration curve for MGITC in
the NPs was established by correlating the waveguide-measured SERS intensity with the
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characteristic peaks of the assigned vibrational modes. A quantitative evaluation of the
detection limit of the reporter molecules on the waveguide-assisted SERS system was car-
ried out. Subsequently, in V2 and V3, aptamers were introduced to recognize and bind to
the target protein cTnI. In V2, the RR-labeled NPs conjugated with the secondary aptamer
were first tested to assess the generated SERS signal. In V3, aptamer sandwich binding was
tested on the waveguide. The primary aptamer was immobilized on the waveguide surface
using 3-aminopropyltrimethoxysilane (APTMS) and glutaraldehyde (GA). The sandwich
binding between the aptamer-conjugated RR-NP, the target cTnI protein, and the primary
aptamer immobilized on the waveguide enabled the signal change according to the protein.
The result illustrated the potential for a miniaturized sensing device to detect clinically
relevant biomolecules.
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Figure 1. Summary of the validation steps performed using waveguide-assisted SERS detection.
V1 used the waveguide device and the colloidal NPs to detect the SERS signal from the Raman
reporters in solution. V2 used the waveguide device to detect the signal from the free-floating
aptamer-conjugated RR-NP in solution. V3 utilized the immobilized primary aptamer to trap the
aptamer-conjugated RR-NP on the waveguide surface for cTnI detection. NP: nanoparticle. RR:
Raman reporter.

2. Materials and Methods
2.1. Materials and Reagents

Hydroxylamine hydrochloride, sodium hydroxide, silver nitrate, DTNB, and 4-MBA
were purchased from Sigma Aldrich (MO, USA). MGITC was purchased from Thermo
Fisher Scientific (Waltham, MA, USA). Milli-Q ultrapure water (18.2 MΩ cm−1) was used
in all the procedures. The aptamers were synthesized by Integrated DNA Technologies
(Coralville, IA, USA). cTnI was purchased from GenScript (Piscataway, NJ, USA). APTMS
and GA (50 wt% solution in water) were purchased from Sigma Aldrich (St. Louis, MO,
USA). All other reagents and solvents were laboratory grade or better and used as received
unless otherwise stated.

2.2. Waveguide Sensing Device Fabrication

Optical waveguides were fabricated using a lift-off process with lithography and
deposition steps. Negative tone photoresist NR9-600PY was patterned onto a 3 µm thermal
silicon dioxide (SiO2) substrate to define the structure of the waveguides. Next, direct
current (DC) reactive sputtering (PVD 75, Kurt J. Lesker) was used to deposit an aluminum
nitride (AlN) thin film. The target used for sputtering material was a 4-inch diameter Al
(99.999%) from Kurt J. Lesker. In a pre-sputtering process, pure argon was introduced into
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the chamber for 15 min to remove oxidation and clean the target surface. For the physical
deposition process, argon and nitrogen were injected into the chamber in a ratio of 78% Ar
and 22% N2, maintaining a working pressure of 3 mTorr. A deposition rate of 0.6 nm/min
was achieved using 500 W of applied power. Deposition of the AlN thin film was followed
by the lift-off process, leaving 600 nm tall strip waveguides with smooth surfaces and edges
on the SiO2 undercladding. A comparable resin material was used with a rapid fabrication
process to create additional optical waveguides for verification. With similar refractive
indices of approximately nWG ≈ 2.0, both the dielectric and polymer waveguide material
can efficiently guide the excitation light and create strong interaction with metallic NPs
present in the waveguide’s upper-cladding region.

2.3. Nanoparticle Synthesis and NP-on-Waveguide Characterization

In step V1, the waveguide device and the colloidal NPs were used to detect the SERS
signal from the Raman reporters in solution. Spherical silver nanoparticles (AgNPs) were
used in V1 as the plasmonic material because of their ease of fabrication, as well as their
strong interaction with light that created a large scattering cross-section [41,42]. Raman
active compounds 4-MBA and DTNB are highly polarizable molecules that yield distinct
and easily identifiable Raman spectra and thus are commonly used as Raman reporter
molecules. A synthetic non-fluorescent dye compound, MGITC, provides absorption in the
visible range used for Raman spectroscopy while avoiding the overwhelming fluorescence
found with other conventional dye molecules. The absorption maximums of 4-MBA, DTNB,
and MGITC were found at λ = 271 nm, 402 nm, and 620 nm [43], respectively, which rank
from farthest to closest to the 635 nm Raman excitation laser line.

The AgNPs were synthesized using a “cold” method. Initially, 1 mL of 150 mM
hydroxylamine hydrochloride (150 mM) was mixed with 89 mL of 3 mM sodium hydroxide
solution. Secondly, 10 mL of 10 mM silver nitrate solution was added to the mixture under
vigorous stirring. Finally, the mixture was left stirring for 15 min at room temperature to
finish the synthesis of the AgNPs.

Following synthesis, the colloidal AgNPs were used on the waveguide device to detect
the signal from the Raman reporters in solution. The following mixtures were prepared
for this test. The AgNPs were mixed with one of three Raman reporter molecules: DTNB,
4-MBA, or MGITC. To create a final concentration of 0.5 µM MGITC, 100 µL of 5 µM MGITC
solution was added to 1 mL AgNPs. A volume of 100 µL of 10 mM DTNB stock solution
was added to 1 mL AgNPs to yield a final concentration of 1 mM DTNB. A solution of
1 mM 4-MBA in 1 mL AgNPs was prepared in a similar manner. Additionally, varying
concentrations of MGITC in AgNPs (1 nM, 2 nM, 2.5 nM, 5 nM, 10 nM, 25 nM, 50 nM) were
made by adding different volumes of 10 µM MGITC (0.1 µL, 0.2 µL, 0.25 µL, 0.5 µL, 1 µL,
2.5 µL, 5 µL) to 1 mL AgNPs, respectively.

2.4. Waveguide-Assisted cTnI Assay

A waveguide-assisted SERS assay was developed for the detection of cTnI, as illus-
trated in V3. The design of the assay was an aptamer-based sandwich assay, previously
demonstrated on a paper-based sensing system [44,45]. These aptamer sequences have
shown sensitive and selective binding of cTnI [46,47]. Figure 2 shows the steps and ma-
terials used in the assay preparation. In step 1, AuNPs were conjugated with the MGITC
reporter molecule and a covalently bound thiol-containing secondary aptamer (5′-thiol-
spacer 18-TTTTT CGCAT GCCAA ACGTT GCCTC ATAGT TCCCT CCCCG TGTCC-3′) on
the surface. To begin with, 10 µM reduced secondary aptamer was heated in an 85 ◦C water
bath for 5 min and then cooled to room temperature to fold to its tertiary structure. AuNPs
were used as the metallic NPs in the aptamer sandwich cTnI assay because they have
better stability in the process of conjugating aptamers [48]. Using the method described in
previous work [49], 36 nm AuNPs were synthesized and characterized. Specifically, 5.6 µL
of 20 µM MGITC was added to 1 mL of the AuNPs (MGITC to NP ratio of 250:1) in a glass
vial and shaken for 15 min. Then, 100 µL of 10 µM aptamer was added to the mixture and
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shaken for 30 min. The mixture was then left still overnight, followed by adding 50 µL
of 1 M NaCl. The mixture was shaken for 3 h, followed by adding 50 µL of 1 M NaCl.
The mixture was then left still overnight. The aptamer-conjugated MGITC-AuNP was
then centrifuged, washed, and resuspended in 1 mL PBS. In step 2, the waveguide surface
was functionalized by the silane APTMS and the linker molecule GA, which enabled the
covalent immobilization of the amine functionalized primary aptamer (5′-amine-spacer
18-spacer 18-CGTGC AGTAC GCCAA CCTTT CTCAT GCGCT GCCCC TCTTA-3′) in
step 3. To achieve this, clean and dry waveguide substrates were covered by a solution
of 0.1% APTMS in ethanol at room temperature for 1 h. Then, the substrates were rinsed
in ethanol to remove excess silane and cured for 1 h on a 120 ◦C hot plate. After cooling,
the samples were coated with a solution of 2.5% GA in water for 1 h at room temperature
and then rinsed in water and dried in air. The resulting waveguide surface has aldehyde
functionality to covalently bind the primary aptamer with the amine group (10 µM). In
step 4, 25 µL of 1 ng/mL cTnI solution was mixed with the 50 µL of reporter NPs from
step 1 and allowed to incubate for 30 min, such that the aptamer binds with the cTnI in the
solution. In step 5, the solution was dropped onto the waveguide surface and incubated
for 1 h. With the mixed solution on the waveguide surface, the cTnI-reporter NPs were
captured by the primary aptamer immobilized on the waveguide surface. The waveguide
was then rinsed with buffer solution, leaving only the cTnI-reporter NPs captured.
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Figure 2. Illustration showing the preparation steps and the components of the aptamer sandwich
assay that detected the biomarker cTnI using a waveguide (WG)-assisted SERS device.

2.5. Optical Testing System Set-Up

A test station, pictured in Figure 3, was built to characterize the waveguide perfor-
mance and was used for all experimental verification steps in V1, V2, and V3. The light
from a laser (LSR635CP-2W, Civil Laser Industries) centered at λ = 635 nm with a 5 nm
linewidth and 2 W maximum power was coupled into a 3.5 µm core single mode silica fiber
through a reflective lens. The excitation light was then butt-coupled into the cleaved front
facet of the waveguide, with alignment between the fiber and waveguide monitored via an
overhead microscope. Raman emission excited by the waveguides was collected and mea-
sured by a compact handheld Raman spectrometer (IDRaman mini, Ocean Optics currently
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Herisau, Switzerland Metrohm, Herisau, Switzerland) placed above the waveguide device.
Spectra were acquired using the point-and-shoot adapter collection optics with NA = 0.50
and working distance of 8 mm, covering the 400 to 2300 cm−1 spectral range with a spectral
resolution of 15 to 20 cm−1. The Peak software (version 1.3.68, Snowy Range Instruments)
was used for data acquisition. To perform sensing measurements, 1 µL of the analyte
solution was pipetted directly onto the surface of the waveguide device, which was cleaved
to a length of 1 cm, such that the entire surface was wetted. Deionized water was used to
rinse in between measurements, where the removal of previous substances from the device
surface was verified using the handheld Raman spectrometer. This measurement set-up
has been demonstrated previously in another work [50]. The measurement conditions
for all experiments consisted of 3 sequential acquisitions with an acquisition time of 5 s.
All analyses of the Raman signals were performed with Origin software, version 2022,
including baseline correction and smoothing via the Savitzky–Golay filtering method to
remove the background and noise.
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Figure 3. Experimental set-up of the Raman measurements using the optical waveguide device. Light
from a λ = 635 nm laser was coupled into a single mode fiber using a reflective lens and then into the
waveguide through the butt-coupling method. Raman signals excited by the WG was collected by a
handheld Raman spectrometer with a lens adapter attachment.

3. Results and Discussion
3.1. Nanoparticle Characterization

Transmission electron microscopy (TEM) images were acquired on a JEOL JEM-2010
(JEOL, Tokyo, Japan) of both the AgNPs and AuNPs showing the diameter of the AgNPs
to be 28 nm and the diameter of the AuNPs to be 36 nm (Figures 4a and 5a). Absorbance
spectra of the AgNP colloid were measured on a Tecan Infinite 200 Pro (Tecan, Switzerland)
microplate reader for the AgNPs prior to labeling with the Raman reporter dyes and before
and after aptamer conjugation of the AuNPs. The absorbance maximum corresponding
to the localized surface plasmon resonance (LSPR) was located at a wavelength around
λ = 403 nm for AgNPs (Figure 4b) and at 528 nm and 532 nm for the AuNPs and AuNPs
conjugated with MGITC and aptamer, respectively (Figure 5b). A ~4 nm peak shift was
due to the aptamer and MGITC conjugation that changed the refractive index around the
particle. The concentration of the particles was measured with a Nanosight Nanoparticle
Tracking Analysis (NTA) system (Malvern, UK) and found to be 2.3 nM. The zeta potential
of the particles was measured with a Zetasizer Nano ZS90 (Malvern, UK) and found to be
−32.3 mV.
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3.2. Waveguide Device Characterization and Modeling

The structure of the on-chip waveguide device was examined with optical and scan-
ning electron microscopy (SEM) (MIRA3, TESCAN, Tempe, AZ). Figure 6 presents the
top view of an array of AlN strip waveguides with the SiO2 undercladding layer. The
inset SEM image highlights a single waveguide structure. The width of the waveguide
is measured to be 25 µm, and visual inspection from high-magnification SEM shows the
structure is defined clearly with a smooth top surface without bending or distortions at the
edges. Composition and uniformity of the AlN film has been reported previously [50,51].
The optical waveguide modes of the device were calculated at the λ = 635 nm using the two-
dimensional FDM. The waveguide layer used for the simulation had a height of 600 nm,
and the refractive indices for the waveguide material and SiO2 substrate were nWG = 2.0
and nSiO2 = 1.5, respectively. Evaluation of the mode profile is crucial in the development of
on-chip waveguide-assisted SERS sensors, as the device sensitivity depends on the strength
of the evanescent field above the surface, enabling efficient excitation of Raman scattering
from the analyte.
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Figure 7a depicts an elliptical fundamental mode in the y-z plane for a waveguide
without NPs and its field distribution along the z-axis. Clearly, the majority of the field is
confined within the waveguide layer at 0 µm < Z < 0.6 µm. A weak evanescent field was
extended into the air at Z > 0.6 µm and inside the SiO2 undercladding at Z < 0 µm. On the
other hand, when the metallic NPs were placed on the waveguide surface, the evanescent
field was localized. The y-z and the x-y cross-sectional images of Figure 7b,c show the
fields strongly concentrated at the NPs’ positions. To better visualize the field profiles,
one-dimensional intensity distributions along the y and z directions are also displayed in
Figure 7. The evanescent field was redistributed and amplified by the NPs due to the LSPR.
The enhanced field effectively excited Raman signals from the Raman reporter attached
to the NPs. Therefore, our NP-on-waveguide device enabled a higher Raman efficiency
compared to the devices applying NPs or waveguides alone due to multiple mechanisms
taking place simultaneously, including LSPR, wave-guiding, and NP immobilization and
trapping on the waveguide surface.
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Figure 7. The 2D cross-sectional (y-z plane) profile of the optical field distributions for (a) a waveguide
alone and (b) a waveguide with plasmonic NPs on the surface. (c) The top view (x-y plane) of the
NPs on a waveguide. Below are plots of the 1D intensity distributions taken from (a,b) at y = 0 µm
and (c) at x = 1 µm, as indicated by the dashed line.

3.3. NP-on-Waveguide Characterization

Applying the V1 configuration. Figure 8 presents the collected SERS spectra of (a)
4-MBA, (b) DTNB, and (c) MGITC using the AgNP-on-waveguide platform and the built-in
laser of the handheld spectrometer (HH). The characteristic Raman peaks resolved by the
WG device were identified and the results were consistent with the HH configuration and
a bench-top Raman spectrometer.

The spectrum of 4-MBA has two strong Raman bands at 1079 cm−1 (×) and 1588 cm−1

(+), both corresponding to the vibrations of the aromatic ring present in the molecule.
Additionally, peaks were observed at 520 cm−1 (♥) and 851 cm−1, corresponding to the
C-S vibration (♦) and COO- bending, respectively. These peaks were not found in the
4-MBA without NPs due to the relaxation in Raman selection rules known to occur with
proximity to a metallic surface [52–54]. Characteristic peaks of DTNB can be observed
at 1333 cm−1 (‡) and 1553 cm−1 (†), assigned to symmetric stretching of the nitro group
(-NO2) and C-C stretching of the aromatic ring, respectively [55–57]. The MGITC spectrum
can be identified by prominent features at 1618 cm−1 (❋) and 1365 cm−1 (•), which are both
assigned to stretching of the phenyl-nitrogen (Ph-N) bond and C-C bonds of the aromatic
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ring. Other identifiable modes include the strong band at 1174 cm−1 (■), attributed to an
in-plane benzene vibration, and a band at 800 cm−1 (▲), corresponding to out-of-plane
bending motions of hydrogens on the aromatic ring [58,59]. These results show the ability
of our chip-scale waveguide-assisted SERS system to resolve peaks from multiple Raman
reporter molecules.
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To test the performance of the device in quantitative analysis, AgNP solutions with
different concentrations of MGITC (1 nM, 2 nM, 2.5 nM, 5 nM, 10 nM, 25 nM, 50 nM) were
prepared according to the previously described methods. The testing set-up and experi-
mental parameters, including excitation power and integration time, were kept the same
from the initial sensing characterization and maintained throughout the concentration mea-
surements. The SERS spectra of various MGITC concentrations obtained by the waveguide
device is shown in Figure 9a. The most intense characteristic peaks, located at 800 cm−1

(▲), 1174 cm−1 (■), 1365 cm−1 (•), and 1618 cm−1 (❋) were selected for more detailed
evaluation. Figure 9b displays the plot of SERS intensity versus reporter concentration
at those Raman peaks. There is a linear dependence between the MGITC concentration
and the SERS intensity within the concentration range between 1 nM and 25 nM. The low
detection limit was found to be 1 nM.
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After the validation in phase V1 that the waveguide-assisted SERS had good capability
of resolving Raman peaks of multiple reporter molecules and generating quantitative
signals, the demonstration was extended to the detection of a protein biomarker (i.e., cTnI).
Following the procedures described in the phase V2 and V3, MGITC-labeled NPs and the
waveguide surface were each immobilized with one of an aptamer pair to capture the cTnI
analyte in a sandwich assay design. The same optical test set-up with the waveguide device
was used to collect and verify the Raman signal from the aptamer-conjugated MGITC-NP
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alone in V2 and then for the detection of the captured cTnI as part of the sandwich assay
in V3. The SERS spectra from V2 and V3 are shown in Figure 10a,b, respectively, with
characteristic peaks indicated. The most intense characteristic peaks were the same as
those identified in the initial MGITC experiments in V1 and can be seen in both spectra of
the labeled reporter in V2, as well as from the captured assay components in V3, located
around 800 cm−1 (▲), 1174 cm−1 (■), 1365 cm−1 (•), and 1618 cm−1 (❋). These results
confirm that the aptamer-conjugated MGITC-NP could generate a strong SERS signal and
the addition of the aptamer to the MGITC-NP in V2 did not alter the Raman signatures
of the reporter label. Moreover, these spectral features were also identified in the Raman
assay taken after surface washing in V3, indicating the successful capture of the cTnI onto
the waveguide surface by the aptamer sandwich design.
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Figure 10. SERS spectra of (a) the aptamer-conjugated MGITC-NPs in solution (V2) and then (b) the
captured MGITC-NPs on the waveguide surface applying the aptamer sandwich assay (V3). The
spectra were collected from the waveguide device with Raman peaks marked.

In the case of the sandwich assay in V3, only a thin layer of the aptamer-conjugated
MGITC-NP was trapped. However, the Raman intensity is still comparable to the larger
volume solution sample when characterizing a droplet of the aptamer-conjugated MGITC-
NP solution in V2. The well-observed SERS signals from our waveguide-assisted SERS
is attributed to the primary aptamer that successfully immobilized on the waveguide
surface and its formation of the sandwich binding after capturing the target cTnI protein
and the aptamer-conjugated MGITC-NPs. In addition, our Raman spectrum collection
configuration has the spectrometer placed above the waveguide surface and perpendicular
to the waveguide device, or a ‘top’ collection method. This configuration has the advantage
to minimize the background from the excitation laser as compared to other geometries that
apply a back collection method [24].

4. Conclusions

A waveguide-assisted SERS device using colloidal NPs was developed. Optical on-
chip waveguide-assisted SERS was integrated with an aptamer sandwich assay for the
detection of the protein biomarker cTnI. Raman intensity was improved through the opti-
mization of waveguide structure and its refractive index. The waveguide evanescent field
to excite the Raman signal was further enhanced by the NPs captured on the waveguide
surface. The signal enhancement from NPs on a waveguide was shown by modeling
and experimental data. Representative SERS spectra from different Raman active com-
pounds, including 4-MBA and DTNB, and chromophore MGITC, were acquired using the
waveguide-assisted SERS device. Characteristic Raman peaks associated with different
compounds and their vibration modes were identified. A linear dependence between
the MGITC concentration and its SERS intensity was observed at 800 cm−1, 1174 cm−1,
1365 cm−1, and 1618 cm−1, where a detection concentration of 1 nM was achieved. Effective
trapping of the protein and the aptamer–NP complex onto the waveguide surface enabled
the detection of the cardiac biomarker cTnI. These results demonstrate that our on-chip
optical waveguide assisted SERS miniaturized sensing platform has the potential to detect
various analytes from small molecules to large proteins. The top collection method used
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in this study reduces background from the excitation laser and minimizes the need for
additional filters or optical components. However, the Raman scattering collected, and
thus the overall signal, is limited by the collection spot size of the Raman spectrometer—
only 2.5 mm compared to the active waveguide length in centimeters. Considering this,
modification of the Raman collection geometry using a different spectrometer and a back
collection method would be expected to increase the effective interaction length and signal
intensity by an order of magnitude. In this configuration, resolution would be highly
dependent on the waveguide dimension and structure. The concept demonstrated in this
work could be extended to a multiplexing analysis, using multiple dyes such as the 4-MBA,
DTNB, and MGITC shown to spectrally separate Raman signals from multiple assays in
a simultaneous detection method. Similarly, the use of multiple waveguides and other
photonic circuit structures could be applied in the design to create different active areas
that are spatially separated for multicomponent analysis.
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