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Abstract: Citrus fruits contain several bioactive components. Among them, one of the major compo-
nents is 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF), which has previously shown protective effects
in the brain in some disease models; moreover, HMF has been shown to penetrate the brain. In
recent years, inflammation has been identified as a defense response in the body; however, a chronic
inflammatory response may trigger several diseases. Inflammation in the peripheral tissues spreads
to the brain and is suggested to be closely associated with diseases of the central nervous system.
HMF has shown anti-inflammatory effects in the hippocampus following global cerebral ischemia;
however, its effects on acute and chronic inflammation in the brain remain unclear. Therefore, in the
present study, we examined the effects of HMF in a mouse model of systemic inflammation induced
by lipopolysaccharide (LPS) administration. In this study, HMF suppressed LPS-induced microglial
activation in the brains of acute inflammation model mice two days after LPS administration. In
addition, 24 days after the administration of LPS in a chronic inflammation model, HMF promoted
BDNF production and neurogenesis in the brain, which also tended to suppress tau protein phospho-
rylation at Ser396. These results suggest that HMF has anti-inflammatory and neurotrophic effects in
the brains of model mice with lipopolysaccharide-induced systemic inflammation.

Keywords: 3,5,6,7,8,3’4’-heptamethoxyflavone; inflammation; central nervous system; microglia;
brain-derived neurotrophic factor; neurogenesis

1. Introduction

The age-related decrease in physiological reserves promotes inflammation in the
body [1], which triggers several illnesses [2]. Inflammation is an important response that
protects the body from physical stimuli and bacterial and viral invasion and maintains
homeostasis in the body. It has also been implicated in various pathological conditions, such
as lifestyle-related diseases, autoimmune diseases, cancer, neurodegenerative diseases, and
atherosclerosis [3]. However, if this response persists and becomes chronic, it may accelerate
the aging of the body and brain [1,4]. Additionally, the prevalence of neurodegenerative
diseases is steadily increasing with the aging population; therefore, it is important to
proactively adopt preventative and therapeutic approaches for these diseases. One of the
substances that induce inflammation is lipopolysaccharide (LPS), an endotoxin produced
by Gram-negative bacteria. Intraperitoneal LPS injection induces systemic inflammation
that spreads to the brain [5]. Furthermore, it was reported that even when systemic
inflammation resolved early, a prolonged inflammation-induced response was observed
in the mouse brain for several months, enhancing neuronal damage [6]. Inflammation
in the brain has been reported to activate microglia and astrocytes [7], decrease BDNF
production [8], inhibit neurogenesis [9,10], and promote the hyperphosphorylation of tau
protein [11].
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Citrus fruits contain various bioactive components, such as polymethoxyflavones,
and many studies have focused on their effects on peripheral tissues. Research on the
central nervous system (CNS) and citrus fruits has been increasing, and findings have
shown that citrus peel components, such as nobiletin and auraptene, improve cognitive
function [12,13]. The peel of Citrus kawachiensis, a citrus fruit produced in Ehime Prefecture
in Japan, contains higher amounts of 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF; Figure 1)
than other citrus fruits [14]. We previously investigated the effects of the subcutaneous
administration of HMF in a mouse model of global cerebral ischemia or direct LPS injection
into the hippocampus [15]. However, the effect of orally administered HMF on brain
inflammation caused by peripheral inflammation has not yet been revealed. Therefore, we
examined the effects of the peroral administration of HMF on the brain during acute and
chronic inflammation in an LPS-induced systemic inflammation mouse model (Figure 2).
In the acute inflammation model mice, we analyzed microglia; on the other hand, in the
chronic inflammation model mice, in addition to the analysis of microglia, astrocytes, BDNF,
neurogenesis, and hyperphosphorylated tau protein were analyzed to reveal the effects of
HMF on the nervous system.
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2. Results
2.1. Acute Inflammation Model
2.1.1. Effects of HMF Administration and LPS Injection on Body Weight

HMF administration did not significantly affect the body weight of the mice in the
four groups from days 1 to 5 (Figure 3a). After LPS administration, body weight was
significantly lower in the LPS group than in the CON group (Figure 3b; *** p < 0.001).
However, HMF administration did not significantly affect weight loss. In addition, LPS-
induced inflammation resulted in a significant reduction in locomotor activity in the
open-field test in the LPS group compared with that in the CON group, but no significant
improvement was observed with the oral administration of HMF (Figure 3c).
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Figure 3. Changes in body weight and measurement of spontaneous locomotive activity after HMF
administration and LPS treatment in acute inflammation model mice. Body weight was measured on
days 1, 5, and 7. (a) Changes in body weight after HMF administration from days 1 to 5. (b) Changes
in body weight two days after LPS administration. (c) Total distance traveled by mice in the open-field
test in 10 min. Data were analyzed by performing a one-way ANOVA followed by Dunnett’s multiple
comparison test. ** p < 0.01 or *** p < 0.001 indicates a significant difference between CON and LPS.
Values are presented as mean ± SEM (n = 6–8/group).

2.1.2. Inhibitory Effect of HMF on Microglial Activation

Microglia were analyzed in two regions of the hippocampus: between the stratum
lacunosum moleculare (SLM) and stratum radiatum (SR) and in the CA3 region. The
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SLM and SR are areas with many blood vessels in the hippocampus; therefore, microglia
were quantified in these areas during acute inflammation. Representative images of the
SLM/SR region in the hippocampus are shown in Figure 4b. The Iba1-positive signals were
significantly stronger in the LPS group than in the CON group (Figure 4c; *** p < 0.001), and
this increase was slightly lower in the HMF-M group (Figure 4c; * p < 0.05). Furthermore,
Iba1-positive signals were significantly weaker in the HMF-H group than in the LPS group
(Figure 4c; ** p < 0.01). These data demonstrated the dose-dependent effect of HMF. The
results of the analysis of microglia in the medial CA3 region were similar to those of the
SLM/SR analysis (Figure 4d).
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Figure 4. The quantification of activated microglia between the stratum lacunosum moleculare
(SLM) and stratum radiatum (SR) and in the CA3 region in the hippocampus of acute inflammation
model mice. (a) The locations of the captured images and quantification in the hippocampus are
shown with squares. (b) Representative images of microglia stained with an anti-Iba1 antibody in the
SLM and SR. Scale bar = 100 µm. (c) The quantification of Iba1-positive signals in the SLM and SR.
(d) The quantification of Iba1-positive signals in the CA3 region. Data were analyzed by performing
a one-way ANOVA followed by Dunnett’s multiple comparison test. ** p < 0.01 or *** p < 0.001
indicates a significant difference between CON and LPS; * p <0.05 indicates a significant difference
between LPS and HMF-M; ** p < 0.01 indicates a significant difference between LPS and HMF-H.
Values are presented as the mean ± SEM (n = 3–4 brain sections/mouse in each group).
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2.2. Chronic Inflammation Model
2.2.1. Microglial Activation Following LPS Administration

The HMF-H dose was administered in the chronic inflammation experiment because
it was shown to be effective in the acute-phase experiment. Representative images of
the SLM/SR in the hippocampus are shown in Figure 5b. The Iba1-positive signals were
significantly stronger in the LPS group than in the CON group (Figure 5c; *** p < 0.001);
however, Iba1-positive signals were not suppressed by HMF-H. The results of the analysis
of microglia in the medial CA3 region were similar to those of the SLM/SR analysis
(Figure 5d).
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Figure 5. The quantification of activated microglia between the stratum lacunosum moleculare (SLM)
and stratum radiatum (SR) and in the CA3 region in the hippocampus of chronic inflammation
model mice. (a) The locations of the captured images and quantification in the hippocampus are
shown with squares. (b) Representative microglia pictures stained with an anti-Iba1 antibody in the
SLM and SR. The scale bar represents 100 µm. (c) The quantification of Iba1-positive signals in the
SLM and SR. (d) The quantification of Iba1-positive signals in the CA3 region. Data were analyzed
by performing a one-way ANOVA followed by Dunnett’s multiple comparison test. *** p < 0.001
indicates a significant difference between CON and LPS. Values are presented as the means ± SEMs
(n = 3–4 brain sections/mouse in each group).
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2.2.2. HMF Promotes BDNF Production via Astrocyte Activation

Glial fibrillary acidic protein (GFAP) is a well-known marker of astrocytes, and its
expression increases with astrocyte activation. The GFAP and BDNF levels were quantified
in the hippocampal SLM/SR layers in a mouse model of chronic inflammation. Representa-
tive images with each stain from this analysis are shown in Figure 6b. GFAP-positive signals
were significantly higher in the LPS group than in the CON group (Figure 6c; *** p < 0.001),
whereas GFAP-positive signals were significantly higher in the HMF-H group than in the
LPS group (Figure 6c; ** p < 0.01). The BDNF-positive signals were slightly lower in the LPS
group than in the CON group (Figure 6d; p = 0.182), even with an increase in GFAP-positive
signals in the SLM and SR layers. In contrast, the BDNF-positive signals were higher in the
HMF-H group than in the LPS group (Figure 6d; p = 0.067). In addition, the quantification
of the medial CA3 region in the hippocampus showed a similar increase in GFAP-positive
and BDNF-positive signals in the SLM and SR regions in the HMF-H group (Figure 6e,f).
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model mice. (a) The locations of the captured images and quantification in the hippocampus are
shown with squares. (b) Representative images of astrocytes, BDNF, and merged, stained with either
an anti-GFAP or anti-BDNF antibody in the SLM and SR. Scale bar = 100 µm. (c) Quantification of
GFAP-positive signals in the SLM and SR. (d) The quantification of BDNF-positive signals in the SLM
and SR. (e) The quantification of GFAP-positive signals in the CA3 region. (f) The quantification of
BDNF-positive signals in the CA3 region. Data were analyzed by performing a one-way ANOVA
followed by Dunnett’s multiple comparison test. *** p < 0.001 indicates a significant difference
between CON and LPS; * p < 0.05, ** p < 0.01 or *** p < 0.001 indicates a significant difference
between LPS and HMF-H. Values are presented as the mean ± SEM (n = 3–4 brain sections/mouse in
each group).

2.2.3. HMF Stimulates Neurogenesis

Doublecortin (DCX), a marker of neurogenesis, is highly expressed in neural progen-
itor cells, and it induces the differentiation of cells into neurons. The DCX-positive cells
with nuclei in the subgranular zone of the dentate gyrus (SGZ) were manually counted and
quantified. Representative images from this analysis are shown in Figure 7b. The number
of DCX-positive cells was significantly lower in the LPS group than in the CON group
(Figure 7c; * p < 0.05), whereas it was significantly higher in the HMF-H group than in the
LPS group (Figure 7c; ** p < 0.01).
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Figure 7. The quantification of DCX in the subgranular zone (SGZ) of the hippocampus of chronic
inflammation model mice. (a) The location of the captured images and quantification in the hip-
pocampus is shown with a square. (b) Representative images of DCX stained with anti-DCX antibody.
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Scale bar = 100 µm. (c) The quantification of DCX-positive cells with nuclei in the SGZ of the
hippocampus. Data were analyzed by performing a one-way ANOVA followed by Dunnett’s
multiple comparison test. * p < 0.05 indicates a significant difference between CON and LPS; ** p < 0.01
indicates a significant difference between LPS and HMF-H. Values are represented as the mean ± SEM
(n = 2 brain sections/mouse in each group).

2.2.4. HMF Suppresses Tau Phosphorylation

We quantified tau phosphorylation at the serine 396 residue in the medial CA3 region.
Representative images of this region are shown in Figure 8b. Phosphorylated Ser396-
positive signals were more pronounced in the LPS group than in the CON group (Figure 8c;
p = 0.061), and this increase was suppressed in the HMF-H group (Figure 8c; p = 0.120).
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Figure 8. The quantification of phosphorylated tau protein at Ser396 in the CA3 region of the
hippocampus of chronic inflammation model mice. (a) The location of the captured images and
quantification in the hippocampus is shown with a square. (b) Representative images of pSer396
stained with anti-pSer396 antibody. Scale bar = 100 µm. (c) Immunopositive signals of pSer396 in
the medial hippocampal CA3 region were quantified. Data were analyzed by performing a one-way
ANOVA followed by Dunnett’s multiple comparison test. Values are presented as the mean ± SEM
(n = 3–4 brain sections/mouse in each group).
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3. Discussion

Inflammatory cytokines in the serum were previously shown to increase within a few
hours via the activation of white blood cells, such as neutrophils and monocytes, after the
induction of inflammation via intraperitoneal administration of LPS. These cells penetrate
the brain by passing through the blood–brain barrier and activate microglia [5,16,17]. Acti-
vated microglia release inflammatory cytokines in the brain, which spread inflammation
and ultimately lead to neuronal cell death [6]. Toll-like receptors (TLRs) are common
receptors mainly found in the cells, including macrophages and dendritic cells, of the
innate immune system, which recognize microbial components, as well as LPS, and play an
important role in the immune response [18]. The decreases in body weight and locomotive
behavior observed in this experiment after LPS administration suggested that LPS induced
inflammation; however, HMF did not produce any improvement with this dosage schedule
(Figure 3).

The activation of microglia, which are immune-responsive cells in the brain, is an
indicator of inflammation in the CNS. In addition, many blood vessels are located around
the SLM and SR in the hippocampus, where immunoreactivity is observed following LPS
treatment [19]. Microglia possess multiple branches with ramified processes in the normal
state. However, microglia are known to acquire an amoeboid shape in an activated state
when induced by inflammatory stimuli [20]. The quantification of activated microglia in the
mouse model of acute inflammation confirmed that inflammation spread to the brain as mi-
croglia were activated following LPS administration. In contrast, the peroral administration
of HMF suppressed the activated microglia (Figure 4), similar to the results previously re-
ported with the subcutaneous administration of HMF and intrahippocampal LPS injection,
suggesting that HMF can suppress inflammation in the brain [15]. Furthermore, we previ-
ously demonstrated that HMF can penetrate the brain, and the concentration-dependent
effects observed in the present study suggest a correlation between the concentration of
HMF, its transport to the brain, and its ability to inhibit microglial activation [21,22]. The
mechanisms underlying the anti-inflammatory effects of HMF remain unclear; however,
we previously reported that HMF inhibits PDE-4 [23], which can subsequently activate
the signaling pathways that suppress high mobility group box 1 (HMGB1) by increasing
cAMP levels [24–26]. TLR4, which is expressed in the microglia and astrocytes in the brain,
recognizes HMGB1 and is involved in the release of inflammatory mediators through the
activation of the NF-kB signaling pathway [18,24]. In future studies, we plan to examine
the characteristics and mechanisms of action of HMF in cultured microglia.

In the chronic inflammation mouse model, sustained microglial activation was ob-
served following LPS administration (Figure 5), which is similar to previously reported
findings [6,17]. This result may be due to the prolonged activation of the microglia in
the LPS group because chronic inflammation is long-term inflammation; in contrast, the
HMF-H group did not show any difference. Microglia are generally classified as exhibiting
inflammatory (M1) or neuroprotective (M2) activity [27], and the HMF-H group showed
neuroprotective results in this experiment, suggesting that the M2 type may have been
increased. Anti-Iba1 antibodies can stain microglia but cannot differentiate between the
M1 and M2 types. Future work to distinguish between the M1 and M2 types should
further clarify the effects of HMF on microglia. It has been reported that microglia acti-
vated by inflammation activate astrocytes and decrease BDNF production [7,8]. In this
study, although astrocytes were activated in the LPS group, and BDNF levels tended to
decrease, both astrocyte activation and BDNF expression increased in the HMF-H group
(Figure 6). These results could also be attributed to the phenotypic differences in astro-
cytes. Astrocytes are categorized into those with inflammatory (A1) and protective (A2)
properties [28]. A2 astrocytes play a neuroprotective role by enhancing the production
of BDNF [29]. Therefore, the glial cell activation in the HMF-H group may support the
protective inclination of glial cells in the brain with a similar mechanism to that in our
previous in vitro experiment [23]. DCX is a marker of neurogenesis, and the SGZ is one of
the regions where neurogenesis is known to occur [30]. Neurogenesis in the hippocampal
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SGZ plays an important role in learning memory and has been shown to be suppressed in
LPS-induced neuroinflammation model mice and depressive-like behavior model mice in
previous studies [9,10]. In the present study, a significant decrease in DCX expression was
observed in the SGZ of chronic inflammation model mice in the LPS group, whereas an
increase was observed in the HMF-H group (Figure 7). This result correlated with BDNF
expression; increased BDNF levels enhanced neurogenesis [31]. These findings suggest
that inflammation-stimulated astrocytes induce prolonged inflammation by increasing the
number of A1 astrocytes, but HMF protects the brain by increasing the proportion of A2
astrocytes [28,29]. The phenotypes and characteristics of glial cells should be carefully
investigated in future studies.

Recently, chronic inflammation has been identified as a risk factor for Alzheimer’s
disease [11,27,32,33]. One of the characteristic pathological findings of Alzheimer’s disease
is the presence of neurofibrillary tangles, which are induced by excessive tau protein
phosphorylation at several sites [33,34]. Again, inflammation is one of the factors that
promotes the phosphorylation of tau protein [35]. In the present study, in the HMF-H group,
the hyperphosphorylation of tau induced by chronic inflammation tended to be suppressed
(Figure 8), which may be a preventive strategy against Alzheimer’s disease [36]. However,
we could only demonstrate serine 396 phosphorylation; therefore, further experiments
are needed.

In mice with peripheral inflammation, the oral administration of HMF suppressed
microglial activation in the brain during the acute phase; moreover, HMF promoted BDNF
production and neurogenesis in the brain during chronic inflammation. These results
indicate that HMF has the potential to prevent various inflammation-related diseases in
the brain.

4. Materials and Methods
4.1. Animals

Nine-week-old C57BL/6N male mice were purchased from Japan SLC (Hamamatsu,
Japan). Mice were kept at 23 ± 1 ◦C under a 12 h light/dark cycle (light period 8:00–20:00,
dark period 20:00–8:00). Mice had free access to water and food during the experimen-
tal period. All animal experiments were performed according to the regulations of the
Matsuyama University Animal Experiment Committee (approval numbers: #21-013, #22-
011, #23-012).

4.2. Experimental Design

HMF (Figure 1) was obtained from Ushio ChemiX Corporation (Omaezaki, Japan),
and LPS was purchased from Sigma-Aldrich (Salmonella enterica serotype Typhimurium;
St. Louis, MO, USA). In the present study, two experimental groups were established:
the acute inflammation group, which was dissected two days after LPS administration
(Figure 2a and Table 1), and the chronic inflammation group, which was dissected 24 days
after LPS administration (Figure 2b and Table 1).

The acute inflammation model consisted of a control (CON) group, an LPS group, an
HMF low-dose (HMF-L) group that received 50 mg/kg of HMF and LPS, an HMF mid-dose
(HMF-M) group that received 100 mg/kg of HMF and LPS, and an HMF high-dose (HMF-
H) group that received 300 mg/kg of HMF and LPS. HMF was dissolved in a mixture of
10% dimethyl sulfoxide and 10% Tween 20 in water and administered orally once daily for
six days. Both the CON and LPS groups received vehicle solutions. LPS was dissolved in
saline at a concentration of 2 mg/kg and administered intraperitoneally as a single injection
on the fifth day of HMF administration.

A chronic inflammation model was established with CON, LPS, and HMF-H groups.
HMF was prepared as described above and orally administered once daily for 16 days. LPS
was dissolved in saline at a dose of 5 mg/kg and administered intraperitoneally as a single
injection one week prior to HMF administration.
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Table 1. Categorization of animal groups in this study and their treatments.

Group n Sample (p.o.) Treatment (i.p.)

Acute Inflammation Model

CON 8 Vehicle (10% DMSO + 10% Tween20) Saline

LPS 8 Vehicle LPS (2 mg/kg)

HMF-L 8 Vehicle + HMF (50 mg/kg) LPS

HMF-M 8 Vehicle + HMF (50 mg/kg) LPS

HMF-H 8 Vehicle + HMF (50 mg/kg) LPS

Chronic Inflammation Model

CON 8 Vehicle Saline

LPS 15 Vehicle LPS (5 mg/kg)

HMF-H 15 Vehicle + HMF (50 mg/kg) LPS

4.3. Open-Field Test

In the acute and chronic inflammation phase models, mice were placed in a
70 × 70 × 50 cm box-shaped open-field device and allowed to explore freely for 10 min.
The distance traveled and immobility time during the 10 min period were analyzed using
an ANY-maze Video Tracking System (Stoelting, Wood Dale, IL, USA) connected to a USB
digital camera to evaluate the spontaneous behavior of the mice. Measurements were
performed under indirect illumination in the dark. Feces and urine were removed after
each test, and the inside of the apparatus was kept clean by means of alcohol disinfection.

4.4. Immunohistochemistry for Optical Microscopy

In each experiment, the mice were sacrificed through brief exposure to isoflurane.
Blood was drawn from the heart, and the mice were perfused transcardially with 25 mL of
ice-cold phosphate-buffered saline (PBS). The brains were rapidly removed, immersed in
freshly depolymerized 4% paraformaldehyde for 48 h, and cryoprotected via successive 24 h
immersion in 15% and 30% sucrose in PBS immediately before sectioning. Fixed and frozen
brain sections were cut at a thickness of 30 µm (sagittal plane) using a cryostat (CM3050;
Leica Microsystems, Heidelberger, Germany). Sagittal brain sections 1.0 mm to 2.0 mm
lateral from the brain midline were stained using the following tissue-staining protocols.

Endogenous peroxidase was inactivated by immersing the sections in 3% hydrogen
peroxide for 20 min. The sections were blocked with 2% skim milk for 30 min, followed by
5% normal goat serum solution for 1 h, and then incubated with each primary antibody
at 4 ◦C overnight (Table 2). The following day, the sections were soaked in secondary
antibodies for 1 h, mounted on glass slides, and stained with 3,3’-diaminobenzidine (DAB).

Table 2. Primary antibodies used for immunohistochemical staining and immunofluorescence.

Antibody Epitope Protein/Amino Acid Host Dilution Resource

Iba1 Ionized calcium binding
adaptor molecule1 Rabbit 1:1000 Wako, Osaka, Japan

GFAP Glial fibrillary acid protein Mouse 1:500 Sigma-Aldrich, St. Louis,
MO, USA

BDNF Brain-derived neurotrophic
factor Rabbit 1:250 Abcam, Cambridge, UK

p-Ser396 Phosphorylated-tau at Serine
396 Rabbit 1:500 AnaSpec, Fremont, CA,

USA

DCX Doublecortin Rabbit 1:800 Cell signaling, Danvers,
MA, USA
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Glass slides were soaked in 95% ethanol, 100% ethanol, and xylene and then sealed
with a cover glass. Images of the stained brain sections were captured using an optical
microscope, and the immune-positive signals obtained using ImageJ 1.48v software (NIH,
Bethesda, MD, USA) were quantified and analyzed.

4.5. Immunofluorescence for Confocal Microscopy

Frozen sagittal brain sections were defrosted in PBS and immersed in HistoVT One
(NACALAI TESQUE, Kyoto, Japan) at 70 ◦C for 20 min for antigen retrieval. The sections
were incubated at room temperature, blocked with 2% skim milk for 30 min, followed
by incubation in 5% normal goat serum solution for 1 h, and then immersed in primary
antibodies at 4 ◦C overnight (Table 2). The following day, the sections were immersed in
suitable secondary antibodies and shaken for 1 h in the dark. Brain sections were placed on
glass slides and covered with a mounting medium containing DAPI (Vectashield; Vector
Laboratories, Burlingame, CA, USA). Images were captured using a confocal fluorescence
microscope (LSM800; Zeiss, Oberkochen, Germany) and quantified, and immunofluores-
cence signals were analyzed using ImageJ 1.48v software (NIH).

4.6. Statistical Analysis

Data for individual groups are shown as the mean ± SEM. Statistical analyses were
performed using a one-way ANOVA followed by Dunnett’s multiple comparison test
among groups of acute inflammation model mice or chronic inflammation model mice.
Statistical significance was set at p < 0.05.
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