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Abstract: An efficient and convenient strategy has been successfully developed for the prepara-
tion of novel hydroxylated alkaloid derivatives (also called fused multicyclic iminosugars) from
p-toluenesulfonylated sugars through a Pictet–Spengler-type mechanism. This method is highly
stereoselective, does not require metal catalysts, and capable of conducting gram level reactions (with
a 53% yield). Some of such iminosugars had an intermediate antiproliferative effect on HCT116
tumor cells.

Keywords: hydroxylated alkaloids; fused multicyclic iminosugars; Pictet–Spengler reaction;
antitumor activity

1. Introduction

Indole or pyrrole, as the key structural skeleton, has been widely used in various ther-
apeutic drugs, such as antitumor, antihypertensive, antiproliferative, antiviral, analgesic,
anti-inflammatory, and antibacterial drugs, due to its alkaloid character. Currently, there are
over a hundred indole or pyrrole drugs on the market [1,2]; the preparation [3,4] and modi-
fication of these [5–8] have been hot research topics in the field of organic synthesis. Fusing
an additional ring at the 3, 4-positions of indole is a common strategy in the structural
modification of indole, and well-known products of this process include dehydrobufote-
nine [9,10], lysergic acid [11,12], decursivine [13–15], and indolactam V [16–18] (Figure 1).
Indolactam V not only can selectively activate protein kinase C (PKC) but can also induce
the differentiation of human embryonic stem cells (ESCs) into pancreatic cells. Lixivaptan
is a typical pyrrole alkaloid in the development of innovative non-peptide oxytocin and
vasopressin small-molecule agonists and antagonists [19] (Figure 1). Additionally, fused
indole alkaloids, such as evodiamine, have excellent antiproliferative activities in tumor
cells, while the hydroxylated type, 10-hydroxyevodiamine [20], as a clinical chemotherapy
drug, shows better antitumor activity than that of evodiamine, which suggests that the
introduction of hydroxy groups into fused alkaloids can improve their biological activities,
with the exception of their bioavailability.

Due to the excellent biological activities of indole and pyrrole derivatives, many
research groups have developed different synthetic methods for such alkaloids [21–25].
O’Brien’s research group successfully constructed a pyrrole-like alkaloid by utilizing a
tandem hydrogenation–condensation–hydrogenation sequence [26] (Scheme 1a). Wang’s
research group achieved efficient synthesis of toad alkaloid dehydrobufotenine in eight
steps with an overall yield of 8% from 5-methoxyindole [27] (Scheme 1b). Jia’s research
group conducted a lot of outstanding work in the synthesis of alkaloids, including the
synthesis of 3,4-fused tricyclic indoles using intra-molecular Larock indole synthesis [28]
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(Scheme 1c). In addition, through C-H activation, Pd-catalyzed direct alkylation of the tryp-
tophan derivatives at the C-4 position was undertaken to prepare 4-substituted tryptophan,
which could be used for the synthesis of various sesquiterpenoid indole alkaloids [29,30]
(Scheme 1d).
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However, the fusion of carbohydrates into indole or pyrrole alkaloids to construct
new bioactive small molecules has rarely been reported. Considering the potent activity of
hydroxylated alkaloids, herein, we would like to report the synthesis of novel indole- or
pyrrole-type derivatives containing an iminosugar under metal-free catalytic conditions
through a Pictet–Spengler-type reaction [31,32].

2. Results and Discussion
2.1. Optimization of the Reaction Conditions

Recently, our group has been dedicated to the study of the synthesis of fused multicyclic
iminosugars [33,34]. An effective approach has been developed for synthesizing hydroxylated
alkaloid 2a (also called a fused multicyclic iminosugar) using 4-(aminomethyl)indole 1a and
p-toluenesulfonylated sugars as the raw materials. This reaction can successfully synthesize
various five membered, six membered, or seven membered iminosugar indole alkaloids by
heating in an oil bath at 120 ◦ C in an air atmosphere without a metal catalyst.

D-lyxose tosylate (1aa) and 1H-indol-4-ylmethanamine (1a) were selected as the model
substrates to optimize the conditions (Table 1). Firstly, compound 1a (1.5 equiv) was reacted
with D-lyxose tosylate (1aa) in the presence of the metal catalysts Yb(OTf)3, Sc(OTf)3, and
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AlCl3 for 5 h, respectively, all of which were able to generate target product 2a, albeit at
yields of 30–38% (entries 1–3). Subsequent attempts to conduct the reaction under metal-
free reaction conditions, by employing TFA or 1N HCl as the acid catalysts, did not yield
improvements (entries 4–5).

Table 1. Optimization of reaction conditions for compound 2a.
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Entry 1a (equiv) Catalyst (0.2 equiv) Solvent (2.0 mL) Temp (◦C) Yield b (%)
1 1.5 Yb(OTf)3 CH3CN 80 30
2 1.5 Sc(OTf)3 CH3CN 80 35
3 1.5 AlCl3 CH3CN 80 38
4 1.5 CF3COOH CH3CN 80 37
5 1.5 1N HCl CH3CN 80 24
6 1.5 - CH3CN 80 42
7 2.0 - CH3CN 80 46
8 1.2 - CH3CN 80 58
9 1.2 - CH3CN 100 60

10 1.2 - CH3CN 120 66
11 1.2 - Toluene 120 53
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14 c 1.2 - CH3CN 120 63
a Reaction conditions: D-lyxose tosylate (0.2 mmol, 1.0 equiv); reaction time: 5 h; oil bath heating; b isolated yield;
c N2 atmosphere.

Without any catalyst, the expected product 2a could also be generated smoothly, and
the yield slightly improved (entry 6). Varying the amount of 1a under 80 ◦C reaction
conditions, it was found that 2a was achieved at a moderate yield of 58% when 1.2 equiv
of 1a was used (entries 7–8). When the reaction was performed at increasing reaction
temperatures, the yield gradually increased and reached the highest amount of 66% at
120 ◦C (entries 9–10). No more attempts were made above 120 ◦C. Finally, when toluene,
DMSO, and THF were employed as different reaction solvents, the reactions produced
target compound 2a at low yields (entries 11–13). In addition, the reaction could also be
successfully carried out under the optimal conditions in a nitrogen atmosphere (entry 14).

2.2. Synthesis of the Iminosugar Alkaloids

Under the optimized reaction conditions, the substrate tolerance was studied, and a se-
ries of hydroxylated 3,4-position-fused indole alkaloids were prepared (Figure 2). By using
different N-substituents, such as methyl, ethyl, benzyl, and different Ts-glycosides, specific
products can be obtained. By reacting D-lyxose tosylate (1aa) or D-ribose tosylate (1ad)
or L-ribose tosylate (1ae) with 3-methylaminoindole, products 2a–5a and 14a–17a were
obtained at a moderate yield of 46–66%, respectively. The reaction of D-mannose tosylate
(1ab) and indoleamine generated seven-membered-iminosugar-fused indole derivatives
6a–9a. When L-rhamnose mesylate (1ac) was used as the substrate, the reactions resulted
in the formation of five-membered-iminosugar-fused indole alkaloids 10a–13a. Finally,
the reaction was carried out replacing the isopropyl group with the cyclohexyl group on
the sugar, which yielded products 18a–21a. NMR spectrum of 2a–21a is shown in the
Figures S1–S42 in the Supplementary Materials. To sum up, a series of five-, six-, and
seven-membered-iminosugar-fused indole alkaloids with high diastereomeric ratios (above
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10:1) was successfully one-pot-synthesized. The single-crystal data for compound 14a
(CCDC: 2391570, The single-crystal data Figure S90 in the Supplementary Materials) con-
firmed the structure.
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Figure 2. Synthesis of the iminosugar indole alkaloids. Reaction conditions: D/L-lyxose/ribose 
tosylate, D-mannose tosylate, or L-rhamnose sulfonate (0.2 mmol, 1.0 equiv), aminomethyl-indole 
(1.2 equiv), CH3CN (2.0 mL), air, 120 °C, 5 h, oil bath heating; b isolated yields; c determined using 
1H NMR; (dr): the dr was determined by 1H NMR of the mixture. 

After optimization of the reaction conditions, it was found that under the catalysis of 
trifluoroacetic acid, reactions of D-ribose tosylate or D-lyxose tosylate and 2-(1-
pyrrolyl)benzylamine at 60 °C generated six-membered iminosugar benzopiperazine 
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Figure 2. Synthesis of the iminosugar indole alkaloids. Reaction conditions: D/L-lyxose/ribose
tosylate, D-mannose tosylate, or L-rhamnose sulfonate (0.2 mmol, 1.0 equiv), aminomethyl-indole
(1.2 equiv), CH3CN (2.0 mL), air, 120 ◦C, 5 h, oil bath heating; b isolated yields; c determined using
1H NMR; (dr): the dr was determined by 1H NMR of the mixture.

After optimization of the reaction conditions, it was found that under the cataly-
sis of trifluoroacetic acid, reactions of D-ribose tosylate or D-lyxose tosylate and 2-(1-
pyrrolyl)benzylamine at 60 ◦C generated six-membered iminosugar benzopiperazine pyr-
role alkaloids 1b–9b. The single-crystal data for compound 1b confirmed the structure
(CCDC: 2391563, The single-crystal data Figure S91 in the Supplementary Materials).
The expected products were also successfully obtained when the sugar was protected
with a cyclohexyl group, 10b–12b (Figure 3). NMR spectrum of 1b–12b is shown in the
Figures S43–S68 in the Supplementary Materials.

When the reaction was scaled up to the gram level, product 1b could be obtained at
a 53% yield (Scheme 2a). Additionally, removing 2,3-O-isopropylidene in the presence of
hydrochloric acid to generate corresponding products 1c–9c), respectively (Scheme 2b).
NMR spectrum of 1c-9c is shown in the Figures S69–S86 in the Supplementary Materials.

According to the above experimental results, a reasonable reaction mechanism is
described (Scheme 3). Firstly, the reaction of D-lyxose tosylate and an amine yields a key
intermediate iminium ion A or B [33,34]. Then, an intramolecular Pictet–Spengler-type [35]
reaction will occur to form the final compound 2a or 2b, respectively, due to the high
nucleophilic reactivities of indole or pyrrole.
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3. Materials and Methods
3.1. General Information

The solvents were all analytical-grade, and the other reagents were purchased from
Energy Chemical (Shanghai, China) and Bide Pharmatech Ltd (Shanghai, China). The
1H NMR spectra were measured on 600 MHz and 400 MHz Bruker AVANCE spectrome-
ters (Fällanden, Switzerland). The 13C NMR spectra were recorded on Bruker 100 MHz
spectrometers (Fällanden, Switzerland) with complete proton decoupling. Melting points
were measured on glass slides on an SGW X-4 melting point apparatus (Shanghai Yidian
Physical & Optical Instrument Co., Shanghai, China). Optical rotations were determined
on an SGW-1 automatic polarimeter (Shanghai Yidian Physical & Optical Instrument Co.,
Shanghai, China). High-resolution mass spectrometry (HRMS) were conducted on an
FTICR-MS (Ionspec 7.0T) mass spectrometer with electric spray ionization (ESI) (Bruker
Daltonics, Billerica, MA, USA), manufactured by Ionspec Company in the United States.
Thin-layer chromatography (TLC) was performed on pre-coated plates (GF254) with detec-
tion using UV light, and silica gel (200–300-mesh) was used for column chromatography
(Qingdao Puke Spectrum Separation Material Co., Qingdao, China). X-ray diffraction data
were gathered using a Bruker D8 VENTURE (Bruker, Bremen, Germany).

3.2. Extraction and Isolation

General experimental procedure: Ts-D-lyxose (69 mg, 0.2 mmol) and aminomethyl-
indole (1.2 equiv) were added into a 20 mL flask, with 2.0 mL of CH3CN used as the
solvent. Then, the solution was stirred at a temperature of 120 ◦C under an air atmosphere
for 5 h. Upon completion, the mixture was cooled to room temperature, and the solvent
was evaporated in vacuo. The crude product was purified using column chromatography
(dichloromethane:methanol v/v = 30:1) to give 2a–5a as a pale white solid. Under simi-
lar conditions, different N-substituents 3-aminoindoles, Ts-D-mannose, Ms-L-rhamnose,
Ts-D-ribose, and Ts-L-ribose, were used as the raw materials for the reaction, and the
corresponding products were obtained, respectively (6a–17a).

Ts-D-ribose (69 mg, 0.2 mmol), 2-(1-pyrrolyl)benzylamine (1.2 equiv), and trifluo-
roacetic acid (0.2 equiv) were added into a 20 mL flask, with 2.0 mL of CH3CN used as the
solvent. Then, the solution was stirred at a temperature of 60 ◦C under an air atmosphere
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for 4 h. Upon completion, the mixture was cooled to room temperature, and the solvent
was evaporated in vacuo. The crude product was purified using column chromatography
(petroleum ether/ethyl acetate v/v = 1:1) to give 1b–10b as a pale white solid.

Product 5a (30 mg, 0.07 mmol) or 14a and 6N HCl (5.0 equiv) were added into a 20 mL
flask, with 2.0 mL of methanol used as the solvent. Then, the solution was stirred at a
temperature of 60 ◦C under an air atmosphere for 2 h. Upon completion, the mixture
was cooled to room temperature, and the solvent was evaporated in vacuo. The crude
product was purified using silica gel column chromatography (dichloromethane:methanol
v/v = 15:1) to give 1c or 2c as a pale white solid. Under similar conditions, compounds
1b–4b, 7b–9b were reacted with 1N HCl (5.0 equiv) to obtain compounds 3c–9c.

Ts-D-ribose (1 g, 2.9 mmol), 2-(1-pyrrylyl)benzylamine (1.2 equiv), and TFA (0.2 equiv)
were added into a 50 mL flask, using 5.0 mL of CH3CN as the solvent. Then, the solution
was stirred at a temperature of 60 ◦C under an air atmosphere for 4 h. Upon completion,
the mixture was cooled to room temperature, and the solvent was evaporated in vacuo. The
crude product was purified using silica gel column chromatography (petroleum ether/ethyl
acetate v/v = 1:1) to obtain a 501 mg light yellow solid 1b with a yield of 53%.

3.3. Antitumor Activity

Cell Counting Kit-8 (CCK-8, APExBlO Technology LLC, Houston, TX, USA) assays
were used to measure the cell viability. Cells were seeded into a 96-well plate at a density
of 3000–5000 cells/well with 100 µL of complete culture medium. The tested compounds
were added to the wells at different concentrations, and the plates were incubated at 37 ◦C
for 48 h. Then, 10 µL of CCK-8 reagent was added to each well of the plate, which was
kept in the dark for 2 h. The absorbance value at 450 nm was measured using a microplate
reader to evaluate the cell viability. Calculate the survival rate according to the public
notice (1) provided in the instruction manual

survival rate = (ODtreated − ODblank)/(ODcontrol − ODblank) × 100% (1)

4. Conclusions

In summary, we have developed a novel method for the one-pot synthesis of imi-
nosugar piperidone indole alkaloids and benzopiperazine pyrrole alkaloids, featuring
simple operation and a stable structure which offers an efficient pathway for the construc-
tion of valuable alkaloid derivatives. Meanwhile, the absolute structure of the required
product was confirmed using single-crystal X-ray diffraction.

Supplementary Materials: The Supporting Information is available free of charge at
https://www.mdpi.com/xxx/s1, including the experimental methodologies, spectral analysis re-
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