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Abstract: This research investigates the flexural performance of slabs reinforced with high-strength
steel-strand mesh (HSSM) and engineered cementitious composites (ECCs). By employing finite
element analysis (FEA) and theoretical modeling, this study aims to deepen the understanding
of how these materials behave under bending stresses. A finite element model was developed
to simulate the nonlinear behavior of ECCs during bending, considering critical elements such as
tensile and compressive damage, as well as bond–slip interactions between the steel strands and
the ECCs. Furthermore, a theoretical model was created to predict the load-bearing capacity of
HSSM-reinforced ECC slabs, incorporating variables like reinforcement ratios, slab dimensions, and
material characteristics. The findings reveal that increasing the reinforcement ratio substantially
enhances both flexural stiffness and load-bearing capacity while reducing deflection. Comparisons
between the FEA results, the theoretical forecasts, and the experimental observations show close
alignment, validating the proposed models. This work provides important insights for optimizing
the design of HSSM-reinforced ECC slabs, highlighting their potential improvements in structural
systems that demand high flexural performance.

Keywords: engineered cementitious composites (ECCs); high-strength steel-strand mesh (HSSM);
flexural performance; finite element analysis (FEA); bond–slip behavior

1. Introduction

Continuous advancements in civil engineering and material science have significantly
driven the development of high-performance construction materials to meet the growing
demands of modern infrastructure. Among these materials, reinforced concrete remains
widely used due to its availability and ease of application. However, it suffers from inherent
drawbacks such as brittleness and low tensile strength, which hinder its performance in
demanding environments requiring durability and resilience. The limited tensile strain
capacity of reinforced concrete predisposes it to large-scale cracking or catastrophic failure
when subjected to dynamic loads or harsh environmental conditions [1–4].

To address the limitations of conventional concrete, engineered cementitious compos-
ites (ECCs) have emerged as an innovative and high-performance alternative within the
domain of advanced cement-based materials. ECCs are designed to mitigate the brittleness
inherent in traditional concrete, achieving tensile strain capacities several orders of magni-
tude higher through a distinctive strain-hardening mechanism accompanied by distributed
micro-cracking [5–8]. The superior mechanical performance of ECCs is primarily attributed
to the integration of synthetic fibers, such as polyethylene (PE) or polyvinyl alcohol (PVA),
which enhance their strain-hardening behavior and crack-bridging capacity. By tailoring
the fiber type and content, ECCs can achieve optimized durability, mechanical strength,
and thermal stability for specific engineering applications [9–14].
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While ECCs offer notable advantages, their performance in aggressive environments
(such as those involving high alkalinity, freeze–thaw cycles, or elevated temperatures)
remains a challenge, potentially compromising their durability and limiting their long-term
reliability [15–18]. Moreover, ECCs’ inherent tensile strength and flexural rigidity may
fall short in high-stress applications, necessitating advanced reinforcement strategies. The
incorporation of high-strength steel-strand mesh (HSSM) has proven effective in address-
ing these limitations, significantly enhancing ECCs’ load-bearing capacity and reducing
deformation under extreme conditions, thereby extending their applicability to demand-
ing engineering scenarios [18–21]. The integration of high-strength steel strands with
ECCs enhances the materials’ tensile strength and flexural rigidity while maintaining their
strain-hardening and micro-cracking characteristics [21–25]. This combination improves
load-bearing capacity, crack resistance, and durability, making HSSM-ECCs particularly
suitable for high-stress and long-span applications where conventional reinforcements
fall short. Research on the behavior of HSSM-reinforced ECCs under varying loading
and environmental conditions remains limited [25–28]. Critical parameters such as rein-
forcement ratios, slab geometries, and fiber–steel interaction mechanisms need systematic
investigation to optimize structural performance [28–31]. The absence of robust theoretical
frameworks and advanced finite element models limits the ability to predict performance
with accuracy and hampers their application in large-scale engineering projects [31–35].

This study focuses on addressing the limitations of current research by systematically
investigating the flexural behavior of HSSM-reinforced ECC slabs. Utilizing finite element
analysis (FEA) and theoretical modeling, this study aims to elucidate the mechanisms
governing the composite material’s response to flexural stresses under varying design
conditions. Key parameters, including reinforcement ratios, slab geometries, and material
properties, will be analyzed to quantify their influence on structural performance. The
primary objective is to develop a predictive model for load-bearing capacity, providing
critical insights to optimize the design and practical application of HSSM-reinforced ECCs
in engineering scenarios.

2. Finite Element Analysis (FEA)
2.1. Material and Constitutive Model

The bending performance of the HSSM-reinforced ECC slab was evaluated using
ABAQUS (2020 version) finite element software. The Concrete Damaged Plasticity (CDP)
model, which incorporates elastic damage theory and plasticity principles under tension
and compression, was used to simulate the nonlinear behavior of ECCs, with model
parameters set as shown in Table 1. To ensure precise numerical analysis, the actual stress–
strain relationship of ECCs was employed in the model. The experimental data provided
nominal stress and strain values, which were converted into true stress and strain using
the following transformation: A quasi-static nonlinear analysis was performed, with a time
step selected based on stability and convergence requirements. A mesh size of 5 mm was
chosen after considering geometry and computational resources. Mesh sensitivity analyses
were conducted by comparing different mesh sizes (e.g., 5 mm, 10 mm, and 15 mm) to
balance computational efficiency and result accuracy.

σtrue =
P
A

=
Pl

l0 A0
= σnom(1 + εnom)

εtrue =
∫ l

l0

dl
l
= ln(1 + εnom)

(1)

where P represents the load applied to the material, A0 is the original cross-sectional area
of the material, l is the current length of the material, and l0 denotes the initial length of
the material.
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Table 1. Definition of plasticity parameters for ECCs.

Dilation Angle Eccentricity Ratio of Tensile to Compressive
Strength in Biaxial Stress

Plastic Potential
Eccentricity

Viscosity
Parameter

30 0.1 1.16 0.6667 0.0005

The tensile constitutive behavior of the ECCs is modeled using a bilinear model
approach, as described in Equation (2). The compressive constitutive behavior is based
on the model proposed in reference [33], with its corresponding equation outlined in
Equation (3).

σe,t =

{ σe,t
εe,tc

εe,t (εe,t ≤ εe,tc)

(0.31 εe,t
εe,tp

+ 0.69)σe,tp (εe,tc ≤ εe,t ≤ εe,tp)
(2)

σe,c =


(1.1 εe,c

εe,cl
+ 0.5( εe,c

εe,cl
)

2 − 0.6( εe,c
εe,cl

)
6
)σe,cp (0 ≤ εe,c

εe,cl
≤ 1)

(
0.15( εe,c

εe,cl
)

2

1−2 εe,c
εe,cl

+1.15( εe,c
εe,cl

)
2 )σe,cp (1 ≤ εe,c

εe,cl
)

(3)

where σe,t, σe,tc, and σe,tp denote the tensile stress, cracking stress, and ultimate tensile stress
of the ECCs, respectively; correspondingly, εe, εe,tc, and εe,tp represent the strain, cracking
strain, and the strain corresponding to the ultimate tensile stress of the ECCs. Additionally,
σe,cp refers to the ultimate compressive stress of the ECCs, while εe,cl indicates the strain
corresponding to the ultimate compressive stress of the ECCs, which is converted to true
stress based on the experimental data for accurate modeling.

2.2. Model Formulation and Design Parameters

The ECC slab was modeled using C3D8R solid elements, while the high-strength
steel strands were modeled using T3D2 truss elements. Cushion blocks were placed at
the supports and loading points, with a tied interface used to connect them to the ECC
slab. The bond–slip behavior between the ECC and the steel strands was modeled through
two-node spring elements. This bond–slip interaction was simplified into tangential and
normal stresses. Since bond–slip predominantly manifests as shear stress along the length
of the steel strands, the normal direction was treated as elastic, with a high stiffness applied
to prevent slippage. The F (load)–D (displacement of the nonlinear spring element) curve
describing the bond–slip behavior in the longitudinal tangential direction of the steel
strands is shown in Figure 1b, c. The dimensions and reinforcement details of the HSSM-
ECC slab bending specimens are shown in Figure 1a, and the design parameters of these
specimens are listed in Table 2.
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Figure 1. (a) The dimensions of the specimens; (b) the schematic diagram of the F-D definition for 
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strain, and no damage was detected in the tensile zone of the slab. When the load reached 
0.85 kN, tensile damage initially appeared in the pure bending zone at the bottom of the 
slab, indicating the onset of cracking. As the load continued to increase, while still remain-
ing below the ultimate load, the tensile damage in the pure bending zone began to prop-
agate vertically from the bottom of the tensile zone, with the damage values continuing to 
escalate. The damage became increasingly concentrated in the center of the slab, and di-
agonal damage emerged in the bending–shear zone, gradually extending outward. When 
the load reached 4.70 kN, the slab entered the ultimate load state, at which point the dam-
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Table 2. Design parameters of the specimens.

Specimen ID Specimen
Width b/mm

Steel Strand
Spacing/mm

Steel Strand
Diameter/mm

Number of Steel
Strands/n

Reinforcement Ratio of
Steel Strands/%

Compressive
Strength of ECC

WC12 130 50 2.4 3 0.0026 44.65
WC22 110 40 2.4 3 0.0031 44.65
WC32 90 30 2.4 3 0.0037 44.65
WC42 70 20 2.4 3 0.0048 44.65
WD12 130 50 2.4 3 0.0026 36.05
WD12 110 40 2.4 3 0.0031 36.05
WD12 90 30 2.4 3 0.0037 36.05
WD12 70 20 2.4 3 0.0048 36.05

2.3. Verification of the Model

To validate the accuracy of the finite element model developed, the results of the
numerical simulations were compared with the bending performance test results from
experiments on the ECC slab/steel strand specimens. The finite element simulation process
for specimen WC32 is illustrated in Figure 2. The simulation results indicate that, before
reaching the cracking load, the strain in the ECC remained below the cracking strain, and no
damage was detected in the tensile zone of the slab. When the load reached 0.85 kN, tensile
damage initially appeared in the pure bending zone at the bottom of the slab, indicating
the onset of cracking. As the load continued to increase, while still remaining below the
ultimate load, the tensile damage in the pure bending zone began to propagate vertically
from the bottom of the tensile zone, with the damage values continuing to escalate. The
damage became increasingly concentrated in the center of the slab, and diagonal damage
emerged in the bending–shear zone, gradually extending outward. When the load reached
4.70 kN, the slab entered the ultimate load state, at which point the damaged area ceased to
expand, and the damage values reached their maximum damage factor, signifying that the
damage had reached its limit.
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Figure 3. Comparison of the load–midspan displacement curves between the experimental and sim-
ulation results. 

Figure 2. Finite element simulation results of the WC32 specimen.

The comparison of the simulated results with the experimental load–midspan dis-
placement curves for each specimen is presented in Figure 3. Additionally, Table 3 includes
the numerical values of the ultimate loads along with their corresponding error values. The
simulated ultimate loads closely align with the experimental values, yielding an average
error of 4.60% and a maximum error of only 8.99%. Notably, the ascending branch of
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the finite element simulation curves closely corresponds to the ascending branch of the
experimental curves, further validating the accuracy of the established model.
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simulation results.

Table 3. Comparison of the relative ultimate load (ultimate load/slab width).

Specimen ID
Ultimate Load F/b (N/mm)

Standard Deviation
Experimental Simulation

WC12 45.99 45.12 1.89%
WC22 49.45 50.25 −1.61%
WC32 56.46 52.23 7.49%
WC42 58.62 54.01 7.86%
WD12 43.81 44.75 −2.15%
WD22 50.00 45.68 8.64%
WD32 49.79 46.95 5.70%
WD42 52.46 47.74 8.99%

Mean standard deviation 4.60%

2.4. Parametric Simulation Analysis of the Bending Performance of HSSM-ECC Slabs
2.4.1. Longitudinal Steel-Strand Reinforcement Ratio

Using the established model parameters, six sets of specimens were designed to
examine the impact of the longitudinal steel-strand reinforcement ratio on the flexural
performance of the slabs. The parameters for these specimens are detailed in Table 4.
All specimens were uniformly designed with a sectional height of 80 mm. Based on the
existing theoretical expression, the maximum reinforcement ratio for this height is 0.57%.
The compressive strength of the ECC cube is measured at 44.65 MPa.
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Table 4. Specimen parameters with varying steel-strand reinforcement ratios.

Specimen ID
Cross-Sectional Dimensions Steel Strand Diameter

(Number of Strands)
Reinforcement

RatioWidth b/mm Height h/mm

A1 45.99 45.12 4.5 mm (7) 0.42%
A2 49.45 50.25 4.5 mm (7) 0.47%
A3 56.46 52.23 4.5 mm (7) 0.52%
A4 58.62 54.01 4.5 mm (7) 0.54%
A5 43.81 44.75 4.5 mm (7) 0.56%
A6 52.46 47.74 4.5 mm (7) 0.57%

The results from the finite element simulations are illustrated in Figure 4. The load
comparison is represented as the load divided by the width (Psim/b). It is observed that,
as the longitudinal reinforcement ratio increases, the stiffness of the slab significantly
improves, and its load-bearing capacity increases. Meanwhile, the deflection corresponding
to the ultimate load progressively decreases. By increasing the longitudinal steel-strand
reinforcement ratio, the tensile force within the tension zone within the slab increases for
the same curvature. This change causes the resultant force point of the cross-section to
shift downward to maintain equilibrium, while the ultimate compressive strain of the ECC
remains constant, resulting in reduced deflection at the ultimate load. During the finite
element simulations, the ultimate compressive strength of the ECC can be determined
by identifying when the maximum damage factor in the compressed region of the ECC
reaches its limit, as illustrated in Figure 5. The maximum reinforcement ratio of the slab is
confirmed by assessing whether the stress state of the longitudinal steel strands attains the
nominal yield state. In the finite element simulation of Group A slabs, the stress of the steel
strands was recorded at the moment the ECC reached its ultimate compressive strength, as
depicted in Figure 5.

In specimens A1 through A6, as the reinforcement ratio of the slab increases, the stress
in the steel strands at the point when the ECC attains its ultimate compressive stress is mea-
sured at 1529 MPa, 1482 MPa, 1445 MPa, 1419 MPa, 1381 MPa, and 1366 MPa, respectively.
This indicates a continuous decrease in the stress of the steel strands. As the ECC reaches its
ultimate compressive stress, the tensile force increases with the reinforcement ratio, causing
the neutral axis to shift downward, and the strain and stress in the steel strands decrease.
The steel strands in specimen A6 can be considered to have approximately reached the
nominal yield stress of 1350 MPa.
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2.4.2. Cross-Sectional Geometric Parameters

Simulation analyses were performed on slabs with varying geometric dimensions
under three different scenarios: (1) maintaining a constant width while varying the height,
(2) keeping the height constant while adjusting the width, and (3) preserving a constant
cross-sectional area by simultaneously altering both the width and height. As detailed
in Table 5, steel strands with diameters of 3.2 mm and 4.5 mm were employed, with the
longitudinal reinforcement ratio being controlled between its minimum and maximum
limits. The compressive strength of the ECC was established at 44.65 MPa.

Table 5. Varying geometric parameters of the cross-section.

Specimen ID
Cross-Sectional Dimensions Steel Strand Diameter

(Number of Strands)
Reinforcement

RatioWidth b/mm Height h/mm

B1 200 60 4.5 mm (6) 0.48%
B2 200 80 4.5 mm (8) 0.48%
B3 200 100 4.5 mm (10) 0.48%
B4 200 120 4.5 mm (12) 0.48%
B5 80 60 3.2 mm (4) 0.41%
B6 100 60 3.2 mm (5) 0.41%
B7 120 60 3.2 mm (6) 0.41%
B8 150 80 4.5 mm (7) 0.56%
B9 200 60 4.5 mm (7) 0.56%
B10 240 50 4.5 mm (7) 0.56%

The results of the finite element simulations are presented in Figure 6. It is observed
that an increase in cross-sectional height significantly enhances the flexural stiffness and
load-bearing capacity of the specimen while effectively managing the deformation at the
ultimate load. Meanwhile, the results demonstrate that cross-sectional height is a key factor
influencing the ductility of the high-strength steel-strand mesh/ECC slab, whereas the
ductility of the slab does not appear to be affected by changes in its cross-sectional width.
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2.4.3. Parameters of ECCs

Assuming that the material properties of ECCs can vary independently without im-
pacting other performance parameters and ensuring that the specimens experience ap-
propriate reinforcement failure, several factors are considered: (1) the tensile stress ex-
ponent is fixed at 1.5, while increasing the ECCs’ cracking strength and ultimate tensile
strength; (2) the cracking strength remains constant, but the ultimate tensile strength is
varied by adjusting the tensile stress exponent (Equation (4)) within a range of 1.3 to 1.6;
(3) the compressive strength of the ECCs and other related parameters are modified. The cross-
sectional dimensions for the simulations are uniformly established at 120 mm × 100 mm. The
parameters for the simulated specimens are outlined in Table 6.

σe,tp/σe,tc ≥ 1.3 (4)

where σe,tp represents the ultimate tensile strength and σe,tc represents the material’s
cracking strength.

Table 6. Varying parameters of ECCs.

Specimen ID
ECC Parameters

Steel Strand Diameter
(Number of Strands)

Reinforcement
RatioCracking

Strength/MPa
Ultimate

Strength/MPa
Ultimate Tensile

Strain/%
Compressive

Strength

C1 2.0 3.0 0.0279 44.65 4.5 mm (5) 0.40%
C2 3.0 4.5 0.0279 44.65 4.5 mm (5) 0.40%
C3 4.0 6.0 0.0279 44.65 4.5 mm (5) 0.40%
C4 2.45 3.18 0.0279 44.65 4.5 mm (5) 0.40%
C5 2.45 3.43 0.0279 44.65 4.5 mm (5) 0.40%
C6 2.45 3.68 0.0279 44.65 4.5 mm (5) 0.40%
C7 2.45 3.92 0.0279 44.65 4.5 mm (5) 0.40%
C8 2.45 3.53 0.0279 35.00 4.5 mm (5) 0.40%
C9 2.45 3.53 0.0279 40.00 4.5 mm (5) 0.40%
C10 2.45 3.53 0.0279 45.00 4.5 mm (5) 0.40%

The simulation outcomes for specimens with varying ECC parameters are illustrated
in Figure 7. As seen in the figure, increasing the ECC’s cracking strength and ultimate
tensile strength significantly enhances the load-bearing capacity of the slab. However, this
increase is accompanied by a decrease in the midspan deflection at the ultimate load, along
with a reduction in ductility. When the ECC’s cracking strength remains unchanged and
the tensile stress exponent is varied between 1.3 and 1.6, modifications to the ultimate
tensile strength yield only minor changes in the load-bearing capacity of the slab, but
the variations are negligible, and the load–midspan displacement curves largely overlap.
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Increasing the ECC’s compressive strength notably improves the load-bearing capacity of
the slab while also contributing to improvements in stiffness and ductility.
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2.4.4. Sensitivity Analysis

The results indicated that the longitudinal reinforcement ratio had the most significant
impact on the slab’s stiffness and load-bearing capacity. A higher reinforcement ratio led to
improved load-bearing performance and reduced deflection at ultimate load. Additionally,
changes in the ECC’s tensile and compressive strengths also influenced the overall perfor-
mance, with increases in the ECC’s tensile strength improving load capacity, while higher
compressive strength contributed to enhanced stiffness and ductility.

3. Theoretical Analysis of Flexural Load-Bearing Capacity Calculation for HSSM-ECC Slabs
3.1. Calculating the Load-Bearing Capacity

The calculation model for the flexural load-bearing capacity of HSSM-ECC slabs is
based on three key assumptions: (1) Plane-section assumption: the distribution of strain
within high-strength steel-strand mesh/ECC slabs under bending adheres to the plane-
section assumption. (2) Deformation compatibility between the steel strands and the ECC:
throughout the bending process, no relative slip is considered between the ECC and the
high-strength steel strands, ensuring deformation compatibility. (3) An ECC in the tension
zone remains active after cracking: After an ECC in the tension zone cracks, it is assumed
to continue carrying tensile forces. This contribution of the ECC in the tension zone must
be considered throughout the entire load-bearing process.

The stress–strain relationship curve of high-strength steel strands adopts a tri-linear
model. This can be mathematically expressed as below:

σs =


Es1εs (0 ≤ εs ≤ εsy)
σsy + Es2(εs − εsy) (εsy ≤ εs ≤ εs2)
σs2 + Es3(εs − εs2) (εs2 ≤ εs ≤ εsu)

(5)

where Es1, Es2, and Es3 correspond to the deformation moduli of the high-strength steel
strands in each of the three stages, respectively. σsy is the stress at the end of the first
stage, approximately 85% of the ultimate tensile stress, which establishes the nominal yield
strength of the steel strands. The corresponding strain at the end of the first stage, εsy, is
approximately 40% of the ultimate tensile strain. σs2 is the stress at the end of the second
stage, approximately 95% of the ultimate tensile stress, with the corresponding strain εs2
being approximately 60% of the ultimate tensile strain. σsu is the ultimate tensile stress of
the high-strength steel strands, and εsu is the ultimate tensile strain.
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The actual stress distribution within the ECC in the compression zone of the HSSM-
ECC slab is simplified into an equivalent rectangular stress distribution, illustrated in
Figure 8 (where Cecc represents the resultant compressive force and yc is the distance from
the point of resultant force to the upper edge of the cross-section).

Figure 8. Equivalent rectangular stress distribution diagram for compression zone analysis.

Accordingly, Equations (6) and (7) can be derived as follows:

Cecc =
∫ x0

0
σe,c(x)bdx (6)

yc = x0 −
∫ x0

0 σe,c(x)bxdx∫ x0
0 σe,c(x)bdx

(7)

Based on the principle that the equivalent stress and the actual stress have the same
magnitude and point of action, the following can be derived:{ 1

2 βx0 = yc
Cecc = βx0ασe,cpb

(8)

Substituting Equations (6) and (7) into Equation (8) yields the equivalent stress param-
eter α and the equivalent height parameter β for the compression zone.

α =


11
20

εe,c
εe,cl

+ 1
12

(
εe,c
εe,cl

)5
− 3

35

(
εe,c
εe,cl

)6

β ( 0 ≤ εe,c < εe,cl)
1− 19

42
εe,c
εe,cl

β ( εe,cl ≤ εe,c ≤ εe,cp)

(9)

β =


154εe,cεe,cl

5+10εe,c
5εe,cl−9εe,c

6

231εe,cεe,cl
5+35εe,c5εe,cl−36εe,c6 0 ≤ εe,c < εe,cl

2 −
84−23

( εe,cl
εe,c

)
84−38

εe,cl
εe,c

2

εe,cl ≤ εe,c ≤ εe,cp

(10)

During the calculation of the flexural load-bearing capacity of HSSM-ECC slabs, it is
assumed that the ECC in the tension zone remains active. The stress–strain distribution
throughout the cross-section is illustrated in Figure 9. In this figure, b is the width of the
specimen; h is the height of the specimen; x0 is the height of the ECC compression zone;
as is the steel-strand cover thickness; and σe,tc, εe,tc, and εe,t are the ECC’s cracking stress,
cracking strain, and tensile strain, respectively. Meanwhile, σe,cp and εe,c represent the
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ultimate compressive stress and compressive strain of the ECC, respectively, while σs and
εs denote the stress and strain of the high-strength steel strands.

Materials 2024, 17, x FOR PEER REVIEW 11 of 17 
 

 

0

0

,0
0

,0

( ) d
=

( ) d

x

e c
c x

e c

x bx x
y x

x b x
− 


σ

σ  
(7)

Based on the principle that the equivalent stress and the actual stress have the same 
magnitude and point of action, the following can be derived: 

1 =
2

=  

0 c

ecc 0 e,cp

x y

C x b






β

β ασ
 

(8)

Substituting Equations (6) and (7) into Equation (8) yields the equivalent stress pa-
rameter α and the equivalent height parameter β for the compression zone. 

5 6
11 1 3+
20 12 35

      0
=

191
42

                                        

e,c e,c e,c

e,c1 e,c1 e,c1
e,c e,c1

e,c

e,c1
e,c1 e,c e,cp

    
 −   
     ≤ <

 −
 ≤ ≤


（ ）

（ ）

ε ε ε
ε ε ε

ε ε
βα

ε
ε

ε ε ε
β

 
(9) 

5 5 6

5 5 6

2

154 10 9
     0

231 35 36

84-23
2                          

84-38

e,c e,c1 e,c e,c1 e,c
e,c e,c1

e,c e,c1 e,c e,c1 e,c

e,c1

e,c
e,c1 e,c e,cp

e,c1

e,c

 + −
≤ < + −

  =   
  − ≤ ≤



ε ε ε ε ε
ε ε

ε ε ε ε ε

εβ
ε

ε ε εε
ε

 

(10)

During the calculation of the flexural load-bearing capacity of HSSM-ECC slabs, it is 
assumed that the ECC in the tension zone remains active. The stress–strain distribution 
throughout the cross-section is illustrated in Figure 9. In this figure, b is the width of the 
specimen; h is the height of the specimen; x0 is the height of the ECC compression zone; as 

is the steel-strand cover thickness; and σe,tc, εe,tc, and εe,t are the ECC’s cracking stress, crack-
ing strain, and tensile strain, respectively. Meanwhile, σe,cp and εe,c represent the ultimate 
compressive stress and compressive strain of the ECC, respectively, while σs and εs denote 
the stress and strain of the high-strength steel strands. 

 
Figure 9. Stress–strain distribution diagram of the cross-section at the moment of ECC crushing 
failure in the compression zone. 

x 0

h 0
as

εe,c

εs

εe,t

b

h

σe,tc

σe,t

ασe,cp

βx
0

σs

Cecc

εe,tc

Figure 9. Stress–strain distribution diagram of the cross-section at the moment of ECC crushing
failure in the compression zone.

By applying the principles of force and moment equilibrium, the ultimate load-bearing
capacity can be calculated using the following expression:

αβσe,cpbx0 = Es1
h−x0−as

x0
εe,cp As +

1
2 σe,tcb εe,tc

εe,cp
x0+

1
2

[
(0.31 h−x0

x0

εe,cp
εe,tp

+ 0.69)σe,tp + σtc

]
b(h − x0 − εe,tc

εe,cp
x0)

Mu = Es1εs As(h − as − 1
2 βx0) +

1
2 σe,tcb εe,tc

εe,cp
x0(x0 − 1

2 βx0 +
2
3

εe,tc
εe,cp

x0)

+σe,tcb(h − x0 − εe,tc
εe,cp

x0)
[

h − 1
2 (h − x0 − εe,tc

εe,cp
x0)− 1

2 βx0

]
+

1
2

[
(m εe,t

εe,tc
+ 1 − m)σe,tp − σe,tc

]
b(h − x0 − εe,tc

εe,cp
x0)

[
h − 1

3 (h − x0 − εe,tc
εe,cp

x0)− 1
2 βx0

]
(11)

3.2. Simplified Analysis of the Flexural Load-Bearing Capacity Calculation Formula

In the theoretical calculations, it is assumed that the constitutive models for the high-
strength steel strands and the compressive behavior of the ECC remain unchanged. The
original bilinear tensile model of ECC is replaced by a modified ideal rigid–plastic model.
The simplified stress distribution diagram, which illustrates the flexural load-bearing
capacity across the cross-section of the HSSM-ECC slab, is presented in Figure 10.
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Using force and moment equilibrium principles, the derivation results in Equation (12):{
αβσe,cpx0b = σs As + ψσe,tcb(h − x0)
M = σs As(h − as − 1

2 βx0) +
1
2 ψσe,tcb(h − x0) [h + (1 − β)x0]

(12)
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In the actual experiments, when the specimen failed, the high-strength steel strands
did not reach their nominal yield stress and remained in the elastic stage. The strain
experienced by the steel strands at the ultimate failure state is described by Equation (13).

εs =
h − x0 − as

x0
εe,cp (13)

Further, the stress expression for the steel strands can be derived as follows:

σs = Esl
h − x0 − as

x0
εe,cp (14)

By substituting Equation (14) into Equation (13), the formula for calculating the
ultimate load-bearing capacity of the flexural specimen at its ultimate state can be obtained
using the following expression:{

αβσe,cpx0b = Es1
h−x0−as

x0
εe,cp As + ψσe,tcb(h − x0)

M = Es1
h−x0−as

x0
εe,cp As(h − as − 1

2 βx0) +
1
2 ψσe,tcb(h − x0)[h + (1 − β)x0]

(15)

In this study, the value of ψ is set to 1.25. The parameters used are as follows: b
represents the width of the cross-section, and h denotes the height of the cross-section.
σe,cp is the compressive strength of the ECC, while σe,tc corresponds to the cracking stress
of the ECC. σs represents the stress in the high-strength steel strands, and for conditions
involving appropriate reinforcement failure, σs is taken as σsy, which is the nominal yield
strength. Additionally, as refers to the distance between the high-strength steel strands and
the bottom of the cross-section, and As stands for the area of the longitudinal high-strength
steel strands.

4. Verification of the Validity of the Load-Bearing Capacity Calculation Formula
4.1. Validation of Specimens Introduced in Section 2.4.1

Table 7 compares the results from the numerical simulations and theoretical calcula-
tions for specimens with varying reinforcement ratios. In this comparison, Psim represents
the numerical values derived from finite element simulations, P1 represents the results cal-
culated using the precise formula in Equation (11), and P2 represents the results calculated
using the simplified formula proposed in Equation (15) in this paper. The ratio of P1 to
Psim has an average value of 1.018, with a standard deviation of 0.018 and a coefficient of
variation of 0.018. Similarly, the ratio of P2 to Psim shows an average value of 1.020, with
a slightly higher standard deviation of 0.04 and a coefficient of variation of 0.039. This
indicates that while the simplified formula introduces marginally more error compared to
the precise formula, the error remains within an acceptable range.

Table 7. Comparison of simulation results and theoretical calculations for specimens in Section 2.4.1.

Specimen ID
Ultimate Load-Bearing Capacity

P1/Psim P2/PsimPsim P1 P2

A1 47.71 46.97 45.39 0.984 0.952
A2 44.27 44.47 43.84 1.005 0.980
A3 41.02 41.88 42.19 1.021 1.029
A4 40.18 41.21 41.77 1.026 1.039
A5 39.07 40.53 41.34 1.037 1.058
A6 38.76 40.12 41.07 1.035 1.059

Average value 1.018 1.020

Therefore, when the longitudinal steel-strand reinforcement ratio remains below the
maximum allowable reinforcement ratio, the calculation formula proposed in this study
provides highly accurate and applicable predictions of the load-bearing capacity.
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4.2. Validation of Specimens Introduced in Section 2.4.2

Table 8 presents a comparison between the finite element simulation results and the
theoretical calculations for the specimens discussed in Section 2.4.2. The ratio of P1 to
Psim has an average value of 0.982, with a standard deviation of 0.013 and a coefficient of
variation of 0.013. The ratio of P2 to Psim has an average value of 0.990, with a standard
deviation of 0.029 and a coefficient of variation of 0.029. These results indicate that both the
simplified and the precise expressions provide highly accurate predictions of the ultimate
load-bearing capacity for slabs reinforced with steel strands of varying diameters.

Table 8. Comparison of simulation results and theoretical calculations for specimens in Section 2.4.2.

Specimen ID
Ultimate Load-Bearing Capacity

P1/Psim P2/Psim
Psim P1 P2

B1 26.50 25.68 26.13 0.969 0.986
B2 51.16 50.10 50.00 0.979 0.977
B3 85.45 82.52 81.23 0.966 0.951
B4 125.69 123.00 120.10 0.979 0.956
B5 9.76 9.58 9.63 0.982 0.987
B6 12.32 11.99 11.84 0.973 0.961
B7 14.83 14.37 14.19 0.969 0.957
B8 40.25 40.54 41.60 1.007 1.034
B9 27.79 27.67 28.92 0.996 1.041
B10 21.39 21.31 22.58 0.996 1.056

Average value 0.982 0.990

4.3. Validation of Specimens Introduced in Section 2.4.3

As presented in Table 9, the comparison between the numerical simulation results
and theoretical calculations shows that the ratio of P1 to Psim has an average value of 1.023,
with a standard deviation of 0.015 and a coefficient of variation of 0.015. The ratio of P2 to
Psim has an average value of 0.982, with a standard deviation of 0.022 and a coefficient of
variation of 0.022.

Table 9. Comparison of simulation results and theoretical calculations for specimens in Section 2.4.3.

Specimen ID
Ultimate Load-Bearing Capacity

P1/Psim P2/Psim
Psim P1 P2

C1 43.23 44.54 41.48 1.030 0.960
C2 46.12 46.51 44.84 1.008 0.972
C3 48.51 48.47 48.03 0.999 0.990
C4 42.93 44.89 43.02 1.046 1.002
C5 44.14 45.16 43.02 1.023 0.975
C6 44.22 45.42 43.02 1.027 0.973
C7 45.08 45.69 43.02 1.014 0.954
C8 39.28 40.94 40.32 1.042 1.026
C9 42.45 43.26 42.36 1.019 0.998

C10 44.52 45.41 43.63 1.020 0.980

Average value 1.023 0.983

These results confirm that both the precise and simplified formulas provide highly
accurate predictions of the ultimate load-bearing capacity of HSSM slabs. The use of the
simplified formula does not affect its practical application for calculating the ultimate
load-bearing capacity of such slabs in engineering projects.

5. Conclusions

1. In this study, finite element analysis was employed to simulate the flexural perfor-
mance of HSSM-ECC slabs. The findings reveal that as the longitudinal reinforcement
ratio of the steel strands increases, the flexural stiffness of the slabs significantly im-
proves, leading to an increase in load-bearing capacity. Additionally, the deflection at
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the ultimate load decreases, and the post-ultimate load descent phase becomes longer,
indicating enhanced performance after reaching the ultimate load.

2. Increasing the ECC’s cracking strength and ultimate tensile strength significantly
enhances the load-bearing capacity and stiffness of HSSM-ECC slabs. However, these
gains come with reduced ductility and lower deflection at the ultimate load. When
the ECC’s compressive strength is increased, the load-bearing capacity also improves,
though to a lesser degree. At the same time, both the stiffness and ductility of the slab
see noticeable improvements.

3. The improved ideal rigid–plastic tensile model for ECCs was developed through a
comparison with existing experimental data to optimize parameter selection. Sub-
sequently, a simplified calculation formula for the flexural load-bearing capacity of
HSSM-ECC slabs was formulated. The comparison between the calculated outcomes
and the experimental data demonstrated strong alignment, verifying the rationality
and accuracy of the proposed calculation method.

The simplified interaction models between steel mesh and ECCs in this study could
be further refined. Future research should explore more detailed models and validate the
findings with large-scale experiments, including the long-term durability of HSSM-ECC
slabs under varying environmental conditions.
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