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Abstract: The paper manufacturing process produces liquid and gaseous alternative fuels, as well
as solid wastes. These can be subsequently treated through chemical processing, oxidation, and
thermal activation, resulting in adsorbent materials with CO2 adsorption capacities. The valorisation
of black liquor waste resulting from paper manufacturing was achieved through a catalytic pyrolysis
process using two catalysts previously prepared in house (Cu-Zn-MCM-41 and Ni-SBA-16). The
HCl-treated adsorbent material, resulting from Ni-SBA-16-catalysed pyrolysis, was selected for use
in CO2 adsorption tests as it had the highest specific surface area (224.06 m2/g) and pore volume
(0.28 cm3/g). The adsorption experimental setup was linked to a gas chromatograph in order to
evaluate CO2 adsorption efficiency using a binary gas mixture consisting of 81% CO2 and 19% N2.
With a CO2 adsorption capacity of 1.61 mmol/g, a separation efficiency of 99.78%, and a CO2 recovery
yield of 90.02%, it can be concluded that the developed adsorbent material resulting from Ni-SBA16-
catalysed pyrolysis and HCl treatment represents a viable solution for black liquor pyrolytic solid
waste removal and reduction in greenhouse gases.

Keywords: adsorbent; black liquor; biochar; catalysis; pyrolysis

1. Introduction

One of the main causes of climate change is the increase in the concentration of
greenhouse gases, which is due to the irrational consumption of fossil fuels in rising
quantities. The main greenhouse gas is CO2. The emission of this gas causes major
concerns and is responsible for the increase in global warming by more than 50% [1].
The concentration of CO2 in the atmosphere has increased rapidly, growing by over 100%
compared to the base considered year—1850 [2]. Greenhouse gases are produced by various
sectors, including industry, transport, and agricultural sector. This has led to the current
CO2 concentration of approximately 400 ppm [3,4].

Global warming, the deterioration of the Earth’s climate, and the destruction of
habitats have had a series of consequences, such as an increase in the temperature at the
terrestrial level and an increase in the temperature at the level of the seas and oceans.
These effects have caused the melting of glaciers, floods, fires, and extreme meteorological
phenomena [5,6]. The global temperature may increase by 1.5 ◦C until 2030, and by 2 ◦C
until 2050, as was predicted by the Intergovernmental Panel on Climate Change (IPCC).
In 2015, the Paris Agreement, an international agreement signed by 196 countries making
a legal commitment to reduce greenhouse gases, was sealed [7]. The Paris Agreement
requires a significant reduction in CO2 concentrations in the atmosphere to prevent the
global temperature from increasing. It proposes various measures and initiatives for
the development of alternative, sustainable, and renewable fuels with increased energy
efficiency to enable the replacement of fossil fuels, but also the capture of CO2 [8,9].
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CO2 capture presents practical and economic advantages. CO2 capture can be achieved
through various techniques, and it is possible to capture it before and after the combustion
process. The process of CO2 capture and its conversion into value-added products has been
promoted in recent years and is achieved through the development of functional materials
such as adsorbents and catalysts [10–13].

Adsorbent materials developed from activated carbon were proved to be efficient for
CO2 capture. This is due to their properties such as high specific surface area, increased
adsorption capacity, and low costs. Carbon materials can be used in various fields of
technology due to their properties such as resistance to wear and tear [14]. Over time,
activated carbon was obtained from coal, wood and oil, but currently other raw materials
are being investigated, such as industrial waste from sewage sludge, [15], bone meal [16]
and black liquor, which is a waste from paper manufacturing. The preparation of adsorbent
materials requires chemical, physical, and thermal activation to increase their adsorption
capacity and the development of cavernous pores [17,18].

Black liquor (BL) is a waste resulting from the paper manufacturing processes. It is a
complex viscous solution containing organic and inorganic materials. These are represented
by lignin and residual alkaline salts [19,20]. In this study, black liquor waste was subjected to
a pyrolysis process carried out at two temperatures, 300 ◦C and 450 ◦C, in an inert nitrogen
atmosphere and in the absence of oxygen. This process was performed in the presence
of bimetallic MCM-41 (Mobil Composition of Matter No. 41) and monometallic-SBA-16
catalysts (Santa Barbara Amorphous), resulting in three types of pyrolysis products: liquid
products (bio-oil—BLPYOIL), gaseous products (syngas—BLPYGAS), and solid products
(biochar—BLPYCHAR) [20].

The literature mentions that different catalysts have been explored in pyrolysis to
enhance the quality of the resulting bio-oil [21]. Various studies have only focused on
the incorporation of catalysts such as NiO, MoO2, and Co3O4 in a nitrogen atmosphere
to reduce biochar formation and improve the properties of bio-oil [22]. When hydrogen
was present, these three catalysts could enhance lignin degradation and boost bio-oil yield.
Notably, Co3O4 significantly improved lignin catalytic pyrolysis in a H2/N2 atmosphere,
resulting in a 26.38% increase in bio-oil yield [22]. Also, the pyrolysis of lignin from black
liquor was improved with the addition of large-pore mesoporous materials (SBA-15) as
catalysts and unilamellar mesoporous MFI nanosheets. Py-GC/MS was employed for
analysis. It was observed that the quality of bio-oil was enhanced, with an increase in
the quantities of aromatics and lighter phenolics, due to processes such as dehydration,
decarbonylation, decarboxylation, and cracking, which occurred on the catalyst’s acid
sites [23]. Taking all these factors into consideration, the present study focused on enhancing
the quality of the resulting biochar in order to further valorise it as adsorbent material.

The introduction of the MCM-41-type mesoporous molecular sieve in 1992 repre-
sented a significant advancement in using these materials as supports for different catalytic
species [24]. This material possessed high specific surface areas (around 1000 m2/g) and
well-defined pore dimensions (2–30 nm), a relatively narrow pore size distribution, and
a hexagonal arrangement of parallel mesopores. By controlling synthesis parameters
(template selection, reaction temperature and time, or pH), high-quality MCM-41 can be
achieved, improving characteristics like high specific surface area, pore volume, uniform
pore size distribution, and thermal and chemical stability [21]. The addition of different
metals, such as Al, Co, Cu, Fe, and Ni, has been demonstrated to enhance the catalytic
properties of this nanomaterial [21,25]. MCM-41 can act as an effective support for dispers-
ing Ni active sites due to its high specific surface area. However, it is unable to prevent
the agglomeration of metallic nickel nanoparticles at elevated temperatures, as its pore
diameters are smaller than those of the metal particles [26]. To overcome this issue, a cubic
three-dimensional SBA-16-type silica can be effective at dispersing Ni nanoparticles [26].
SBA-16-type silica possesses robust pore walls, a high surface area, and excellent thermal
and hydrothermal stability [27]. Additionally, as an all-silica material, MCM-41 has Si–OH
groups on its surface that offer only a limited number of weak acid sites, restricting deoxi-
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dation and cracking capabilities during the pyrolysis process [28]. Consequently, several
researchers have explored metal modification approaches, which can enhance both the
structure and acidity of zeolite catalysts and improve catalytic performance and stability.
Furthermore, this approach is becoming a promising method for upgrading bio-oil in
biomass thermochemical processing. Also, when working with MCM-41, different metal
was chosen to obtain the catalyst due to the fact that the Ni-MCM-41 did not have efficient
catalytic effect on pyrolysis [28]. Furthermore, Cu-modified catalysts such as Cu/MCM-41
were reported to be efficient for upgrading bio-oil [29]. It was found that Cu incorporation
effectively adjusted the acidity and textural properties of MCM-41, enhancing its deoxy-
genation capacity [29]. In this respect, a more efficient system (bimetallic Cu-Zn/MCM-41)
was developed in this study, in which Zn was used as a promoter, in order to improve and
overcome the above-mentioned limitations of MCM-41 catalysts.

The aim of this investigation was the removal of biochar resulting from the BL pyrolysis
process. The necessity of removing biochar results from its high metal content and negative
impact on the environment. BLPYCHAR elimination, performed by valorisation, involves its
transformation into an adsorbent material through chemical and thermal processes [30–32].
The final objective was CO2 removal and the identification of the adsorption capacity of
the adsorbent materials prepared from the solid waste.

2. Materials and Methods
2.1. Adsorbents Preparation

The BL was procured from a pulp and paper factory (Drobeta-Turnu Severin, Romania),
a kind of manufacturing that processes hard woods.

The pyrolysis process was carried out in a fixed-bed reactor. The temperature was
controlled from 300 ◦C to 450 ◦C, with a temperature gradient of 5 ◦C/min, in an inert
atmosphere (N2/5.0). The flow rate of the inert gas, N2, was 100 mL/min. Three products
resulted from the pyrolysis process: a gaseous product—BLPYGAS; a liquid product—BLPYOIL;
and a solid product—BLPYCHAR. These can be considered alternative fuels. The first two
products were the subject of the initial study [25].

The BLPYCHAR was ground to a particle size <200 µm. After grinding, the chemical
activation stage began. This was initiated by BLPYCHAR treatment with 5 M HCl and KOH
(Sigma Aldrich, Darmstadt, Germany) in a 1:1 ratio.

The catalysts used in the BL pyrolysis were two catalysts that were previously prepared
in house (Cu-Zn-MCM-41 and Ni-SBA-16) [25]. These produced two types of biochar, denoted
as 1a—BLPYCHAR_Cu-Zn-MCM-41 and 1b—BLPYCHAR_Ni-SBA-16. These two biochar materials
constituted the raw materials for the development of the adsorbents. For the adsorbent’s devel-
opment, HCl and KOH (Sigma Aldrich, Darmstadt, Germany) were used in the chemical acti-
vation process. Five adsorbents (Table 1) were developed from BLPYCHAR: two were produced
after HCl treatment (2a—BLPYCHARCu-Zn-MCM-41_HCl and 2b—BLPYCHAR_Ni-SBA-16_HCl); two
were produced after HCl and KOH treatment (3a BLPYCHARCu-Zn-MCM-41_HCl+KOH (1:1)
and 3b—BLPYCHAR_Ni-SBA-16_HCl+KOH (1:1)); the fifth adsorbent was obtained after HCl
and KOH treatment, followed by calcination (4a—BLPYCHAR_Ni-SBA-16_HCl+KOHc). The
calcination was carried out at a temperature of 750 ◦C, with a gradient of 10 ◦C/min, for 1 h
in a N2 atmosphere at a flow rate of 100 mL/min.

Table 1. The nomenclature of the adsorbents obtained as a function of treatment.

Treatment Adsorbent Material

HCl 2a—BLPYCHARCu-Zn-MCM-41_HCl
2b—BLPYCHAR_Ni-SBA-16_HCl

HCL and KOH 3a—BLPYCHARCu-Zn-MCM-41_HCl+KOH (1:1)
3b—BLPYCHAR_Ni-SBA-16_HCl+KOH (1:1)

HCl, KOH, calcination 4a—BLPYCHAR_Ni-SBA-16_HCl+KOHc
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After the thermal activation process, the materials obtained were subjected to a filtering
process using filter paper type 389 (84 g/m2; particle retention 8–12 µm; thickness 0.19 mm)
(Sartorious Stedim, Gottingen, Germany). The materials were washed with distilled water
until pH 6, and then dried in an oven (Nahita 631, Auxilab, Navarra, Spain) without
ventilation. The drying was carried out in two steps to avoid shocks on the pores of the
formed materials: it was performed at 70 ◦C for 12 h and at 105 ◦, for 6 h. After the
drying process, the obtained material was pelletized using a pelletizer (IKA, Staufen im
Breisgau, Germany). The pellets had a mass of approximately 1 g (Figure 1). Then, they
were subjected to a drying process at a temperature of 105 ◦C for 4 h.
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Figure 1. Black liquor char pellets.

2.2. Characterization of Biochar and Adsorbent Materials

The adsorbent materials were subjected to structural investigations such as elemental
analysis, the determination of the heavy metal content, the determination of the specific
surface area, morphological determinations, and FTIR analysis. The elemental analysis
was performed using the Elemental Analyzer Flash 2000 (Thermo Scientific, Waltham, MA,
USA), using the combustion method and the gas chromatographic method [26]. Heavy
metal content was determined with NOVA A 300 Atomic Absorption Spectrophotometer
(AAS) (Analytik Jena GmbH, Jena, Germany). The adsorbent materials were investigated
via scanning electron microscopy with emission at a variable pressure. We used Field
Emission Scanning Electron Microscope Variable Pressure—FESEM VP (CARL ZEISS,
Oberkochen, Germany)—at a resolution of 0.8 nm at 30 kV and 2.5 nm at 30 kV in VP mode.
We used the Brunauer–Emmett–Teller (BET) method for the measurement of the specific
surfaces, and the analysis was performed using the Quantachrome Autosorb-IQ porosity
equipment (Quantachrome Instruments, Boynton Beach, FL, USA.

The Fourier Transform Infrared Spectrometer Cary 630 ATR-FTIR (Agilent Technolo-
gies, Inc., Santa Clara, CA, USA) was used to determine the functional groups. The samples
were first dried at 80 ◦C under vacuum conditions. The spectra were acquired with a
attenuated total reflectance (ATR) module in the range 4000–400 cm◦ (32 scans, 8 cm−1

resolution, and 0.002 threshold).

2.3. CO2 Adsorption Experiments

The adsorbent materials were tested in an experimental setup, shown in Figure 2, with
the aim of assessing CO2 removal and adsorption capacity.
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PV01—vacuum pump.

To test the effectiveness of the adsorbent materials, a binary gas with the composition
of 81% CO2 and 19% N2 was prepared and used. A cartridge was used. The adsorbent
materials were inserted in the form of pellets at an approximate weight of 1 g/pellet with a
total mass of 200 g. In order to observe in real time when the adsorbents reached saturation,
the test installation was connected to a gas chromatograph with a TCD detector (GC Varian
CP 3800, Varian Inc., Palo Alto, CA, USA). The conditions of the adsorbent materials were
as follows: ambient temperature, 5 psi pressure, and 100 mL/min gas flow rate. The
adsorption capacity of CO2, the yield, and the degree of recovery of adsorbent materials
were calculated using the following equations [33]:

a =
Q × p(Ci − Cf)× t

m
(1)

where a = adsorption capacity, cm3/g; Q = the flow rate of the test gas passed over the
adsorbent materials, cm3/s; p = adsorption pressure, bar; Ci = the initial CO2 concentration,
%vol; Cf = the final CO2 concentration, %vol; t = time, s; m = adsorbent materials quantity
from the reactor, g.

RCO2 =
Ce(CO2) − Ci(CO2)

Ci(CO2)
× 100 (2)
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where RCO2 = CO2 recovery, %vol; Ce(CO2) = average CO2 concentrations up to the rupture
period at the exit from adsorbent materials, %vol; Ci(CO2) = initial CO2 concentration, %vol.

η =
Ca

Ci
× 100 (3)

where η = separation efficiency, %; Ca = the concentration of adsorbed CO2, %; Ci = the
concentration of initial CO2, %.

3. Results and Discussion

Table 2 shows the elemental composition of the adsorbent materials developed from
the residue obtained after the BL pyrolysis. The elemental analysis showed that the C level
contributed the most to the biochar composition, followed by S, H, and N. This was due to
the BL content in terms of cellulose, hemicellulose, and lignin [34]. After the treatment with
5 M HCl, a notable increase in the concentrations of C and S was observed in the BLPYCHAR
solid residues. Regarding the residue obtained following Cu-Zn-MCM-41 catalysis (group
a), C and S concentrations reached 73.45% and 6.50%, respectively. Similarly, regarding the
residue obtained from Ni-SBA-16 catalysis (group b), the C concentration rose to 77.04%
and the S concentration rose to 6.21%. We also observed a decrease in the concentration of
H after treatment with HCl, standing at 2.12% for 2a compared to the concentration seen
for the BLPYCHAR (6.51%). The data were in correlation with other biochars after being
subjected to deashing methods from the literature [35].

Table 2. Elemental composition of BLPYCHAR and resulted adsorbents.

Adsorbent Materials H % N % S % C %

BLPYCHAR 6.51 0.34 1.78 18.11
1a 0.93 0.22 2.10 34.96
1b 0.94 0.27 2.61 35.51
2a 2.12 0.47 6.50 73.45
2b 2.13 0.49 6.21 77.04
3a 1.87 0.29 1.04 36.62
3b 1.93 0.27 0.70 36.25
4a 1.17 0.30 0.96 37.06

After HCl treatment, the solid residues of both group a and group b suffered a decrease
in metal content (Table 3), with levels between 18% (Cu) and 93% (Fe). A similar proportion
was found for metals and elements in the second step of BLPYCHAR transformation. The
exception was seen for the initial Cu concentrations, which was 1139.21 mg/kg in the case
of sample 1a and around 67.26 mg/kg in the case of 1b. It was previously demonstrated
that, after deashing with a HCl solution, the amounts of transitional metal, as well as the
levels of P, significantly decreased. This was probably the explanation behind the increase
in the concentration of C and S [35].

Table 3. Heavy metals extracted from adsorbent materials derived from BLPYCHAR.

Adsorbent
Materials Pb mg/kg Cu mg/kg Fe mg/kg Ni mg/kg Mn mg/kg Zn mg/kg Ca mg/kg Mg mg/kg

1a <6.00 1139.21 2145.26 16.55 36.21 374.89 424.57 383.39
1b <6.01 67.26 2089.27 49.56 32.13 81.52 159.73 258.83
2a <6.02 929.40 138.98 <3.00 <4.00 27.96 66.57 27.38
2b <6.03 69.46 75.37 15.91 <4.01 7.22 55.73 8.57
3a <6.04 741.33 788.78 <3.00 <4.02 51.39 68.66 51.32
3b <6.05 41.67 647.03 16.29 <4.03 18.08 68.99 50.24
4a <6.06 1101.89 985.00 <3.00 4.09 82.72 62.86 67.19
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The SEM investigations (Figures 3 and 4) indicated that all the developed adsor-
bents had porous structures. It should also be noted that they had an aggregated mor-
phology [36]. The differences observed between the samples were a consequence of the
preparation method. These observations suggested that BLPYCHAR-based adsorbents have
different types of functional groups that can play the binding role for CO2 in different
environments [37].
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Figure 3. SEM images of the adsorbents resulted from BLPYCHAR (Cu-Zn-MCM-41-catalysed pyrolysis)
(group a).

As for the calcined sample—4a, the grooves on the surface were destroyed, presenting
a rougher surface (Figure 3(4a)). This was due to the decomposition of organic substances
within the structure, and this was consistent with the literature [38].

After KOH treatment, clearer three-dimensional surface features were observed, re-
sults that were consistent with the literature (Figure 4) [39]. This may introduce the idea
that these biochars should be more efficient in pollutant sequestration than HCl-based
ones [36,37].

The surface chemistry and pore structure of the adsorbents essentially contribute to
increasing the efficiency of the adsorption process.

N2 adsorption–desorption isotherms are shown in Figure 5. The isotherms were classi-
fied as type II according to IUPAC as they were associated with a mesoporous structure,
confirming the results obtained by the surface analysis. A mesoporous structure is highly
beneficial for transporting CO2 from a gaseous mixture to the adsorbent surface, which
increases the adsorption capacity [40]. Therefore, many functional groups from this type
of material can provide effective active centres at the solid–gas surface interface, granting
higher adsorption capacities in terms of CO2.
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Specific surface area and microporosity are interconnected; the creation of numerous
small micropores leads to an increased specific surface area. This larger surface area offers
more active sites for CO2 adsorption via physical adsorption [41].

Analysing the samples obtained after HCl treatment, the highest specific surface area
was reported for the sample 1a, 75.37 m2/g, although lignocellulosic biochars generally
have low surface areas due to the nature of cellulose and hemicellulose (Table 4) [42]. BET
investigations indicate that the sample 2b had a higher specific surface than the initial
biochar, standing at 224.06 m2/g versus 54.29 m2/g, which was superior by comparison to
the adsorbent 2a (Table 4).

Table 4. Textural properties of adsorbent materials derived from BLPYCHAR.

Adsorbent Materials SBET
m2/g V cm3/g

DV(r)
Å

1a 75.37 0.04 19.68
2a 54.47 0.28 20.86
3a 6.36 0.09 303.78
4a 41.34 0.03 19.66
1b 54.29 0.01 19.65
2b 224.06 0.28 77.41
3b 4.33 0.01 76.98

For all the obtained adsorbents, the pore volume was low. This is an attribute of
the initial structure of cellulose, lignocellulose, and lignin, which are characterized by
small amounts of pores or even blocked pores [43]. In addition, the materials showed
small pore diameters, between 1.96 nm and 7.7 nm, indicating that these materials are
mesoporous and may be suitable for use as adsorbents in the gas phase as they facilitate
the diffusion of adsorbates into adsorbent structures. An interesting case was the sample
3a, which exhibited a higher pore diameter, around 30.3 nm, at the upper limit of the
mesoporous interval at the same time as a drastic decrease in specific surface area. This
was also in accordance with the morphology revealed via SEM (agglomerated particles and
smother surface).

The adsorbent 2b stood out among all materials. It had an irregular morphology,
as SEM investigation revealed (Figure 4(2b)), pore diameters of around 7.7 nm, and the
highest surface area (224 m2/g), which represents an advantage in CO2 adsorption. As the
isotherms showed, sample 2b showed a higher level of adsorption, with the pore volume
reaching 0.28 cm3/g.

These findings were mainly correlated with the inorganic minerals blocking the pores
of BL-based adsorbents being washed away, resulting in more exposed pores and improving
the characteristics of the porous structure [35]. Moreover, inorganic minerals may obstruct
direct contact between potassium hydroxide and the carbon skeleton to some extent, thus,
potassium hydroxide can interact directly with the carbon structure, resulting in more
efficient etching. The impact of potassium hydroxide activation becomes particularly
noticeable after deashing with HCl. As a result, the specific surface area and micropore
area of sample 2b were higher [35].

Earlier research indicated that adsorbents with a large surface area can exhibit a high
capacity for CO2 capture. For example, when coffee grounds were used to produce biochar,
the successful capture of CO2 was achieved at temperatures between 30 and 90 ◦C under a
constant CO2 concentration, with a maximum adsorption capacity of 2.8 mmol/g at a BET
surface area of 539 m2/g for the biochar [44].

Figure 6 and Table 5 present the FTIR spectra and peak assignment. For reasons
of comparison, the black liquor (BL) spectrum was also introduced. Peaks with values
below 1000 cm−1 characterized the deformation vibrations of the CH bonds associated with
aromatic rings, while the absorption band around the value of 3340 cm−1 corresponded
to the OH stretching vibration, indicating the presence of phenols, alcohols, or carboxylic
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acids in BL [45]. Also, the presence of a significant peak at 2329 cm−1 (representing the
stretching vibration of the C-H bond in the methyl and methylene groups) was found.
The peak at 1643 cm−1 indicated the vibrations of the aromatic backbone plus the C=O
stretching vibration [45–49].
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Table 5. Peaks and bands identified in the BL spectrum.

Wavenumber (cm−1) Assignment

935 C-H out of plan
1036–1118 C-O deformation from primary alcohols

1185 C-O vibration plus C=O and C-C from guaianyl and syringyl cores
1408 in-plane deformation of OH
1554 C-H vibration
1643 The vibration of the aromatic nucleus plus the C=O stretch
2329 C-H stretching from methyl and methylene groups
3340 O-H stretching from phenols, alcohols, and water

Compared to the FTIR spectrum of BL, the absorption peaks for BLCHAR resulting from
pyrolysis were much simpler. The band at 3340 cm−1, characterizing the -OH stretching
vibration, disappeared after pyrolysis. This indicated the removal of alcohol groups from
branched chains by pyrolysis (not phenols and carboxylic acids, as they mostly existed
as phenolates and carboxylates in BL) [30]. The evolution of the peaks at about 1554 and
1643 cm−1 clearly indicated that the carbonyl and/or carboxyl groups were removed by
pyrolysis. The removal was complete at temperatures above 450 ◦C. The peaks at 1420 cm−1

and 856 cm−1 were characteristic of absorptions due to potassium carbonate, revealing that
its content increased upon treatment with potassium hydroxide [50]. The peaks of about
1162 cm−1 were assigned to the remaining C-O-C stretching of ester groups in cellulose
and hemicellulose [51]. The three-peak group at 618–767 cm−1 in the FTIR spectra was
attributed to residual aromatic C-H bands [51].

The peaks of KOH-activated adsorbent materials were stronger, indicating that the
abundance of surface functional group species was higher. For example, the peak at 1766 cm−1

in the sample 1a, attributed to the C=O vibration, underwent a shift and transformation into
a broad band in the activated materials at about 1733–1800 cm−1, indicating the intense
presence of these groups on the surface. Also, the peaks at 1356–1400 cm−1 were assigned,
as in the case of the starting material, to the C-H stretching vibrations of the CH2 and CH3
groups. The intensity of these peaks for the activated materials highlighted the increased rate
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of distribution of OH and CH2 structures. The biochar spectra of sample 3b showed alkyl
bands around 2960 and 3198 cm−1, which were correlated with the hydrophobicity index of
the remaining BL organic matter [51].

Table 6 represents the results obtained after testing the adsorbent material 2b, displaying
the number of injections, the duration of the adsorption process, the evolution of CO2, the
adsorption capacity of CO2, the yield, and the degree of recovery of these adsorbent materi-
als. From all adsorbent materials, the sample 2b (2b—BLPYCHAR_Ni-SBA-16_HCl) was chosen
because of its high specific surface area (224.06 m2/g) and pore volume (0.28 cm3/g) and its
medium diameter (7.7 nm). For comparison, the sample 3b (BLPYCHAR_Ni-SBA-16_HCl+KOH
(1:1)), with the lowest specific surface area (4.33 m2/g) and pore volume (0.01 cm3/g),
was tested.

Table 6. CO2 adsorption evolution and efficiency.

Gas Mixture Injection
CO2 Evolution

vol%
Adsorption

Capacity cm3/g
Separation Efficiency

%
Recovery

%

3b 2b 3b 2b 3b 2b 3b 2b

81 vol% CO2
balance N2

1 69.22 69.32

17.59 18.57 94.52 99.78 40.45 62.98

2 69.01 58.13
3 67.33 49.77
4 62.47 40.12
5 60.66 31.03
6 59.05 22.75
7 42.44 15.47
8 29.91 9.33
9 17.81 3.78

10 4.44 0.18

As can be seen in Table 6, the adsorption capacity of the adsorbent materials was tested
on a mixture of gases. The saturation of the adsorbent materials could be assessed after
10 injections. The injection duration was 80 s, and the recovery of the CO2 concentration
from the adsorbent materials was carried out using a vacuum pump at a pressure of 10−2

bar. The final adsorption capacity for sample 2b reached 18.57 cm3/g. The efficiency of
the CO2 separation process from the gas mixture was 99.78% and the yield of the CO2
recovery process from the adsorbent materials was 62.98%. It was observed that, for the
sample with the lowest specific surface area, which was 3b, the final adsorption capacity
reached 17.59 cm3/g. In this process, the efficiency of the CO2 separation process from
the gas mixture was 94.52% and the yield of the CO2 recovery process from the adsorbent
materials was 40.45%. Although the difference between the adsorption capacity of the two
samples was not very high, an increased recovery percentage was observed in the case of
the sample with the highest surface area.

It can be stated that the CO2 adsorption process depended on parameters such as
pressure and the adsorbent’s specific surface area. The tested adsorbent material, 2b, had
a high specific surface area, showing a higher adsorption capacity (18.57 cm3/g) than a
commercial adsorbent (activated carbon). It had a higher specific surface area (1470 m2/g),
but a lower adsorption capacity, which started from 0.2 mmol/g (about 4.48 cm3/g) [52].

Various authors studied the impact of temperatures [53]. Temperature significantly affects
the CO2 adsorption capacity, which is crucial for its capture following combustion. It was
stated that the chosen temperature influenced the type of adsorption that took place, whether
it was physisorption or chemisorption [53]. For example, at 30 ◦C, the adsorption capacity of
commercial activated carbons reached 0.68 mmol CO2/g (about 15.23 cm3/g) adsorbent. The
observed overall trend was that CO2 adsorption declined as temperature increased, falling to
0.17 mmol CO2/g (about 3.80 cm3/g) adsorbent at 70 ◦C [53]. These finding, together with
the experimental results highlighted within the present study, align with the literature, which
indicates that gas adsorption diminishes with increasing temperature [53]. As temperature
increases at a constant flow rate, the kinetic energy of the gases also rises, resulting in reduced
surface coverage of CO2. This pattern can be attributed to the exothermic nature of the
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adsorption process. Another parameter that can influence the adsorption capacity is the flow
rate. The literature mentions that, in the case of using commercial activated carbons, the
highest CO2 adsorption was observed at a flow rate of 30 mL/min and 30 ◦C [53]. Adsorption
at flow rates up to 70 mL/min (30 ◦C—0.40 mmol CO2/g adsorbent and 70 ◦C—0.17 mmol
CO2/g adsorbent) was lower than that achieved at 30 mL/min (30 ◦C—0.68 mmol CO2/g
adsorbent and 70 ◦C—0.06 mmol CO2/g adsorbent) [53]. Reducing the gas inlet flow rate
has been shown to increase contact time and enhance mass transfer between CO2 and the
adsorbents. The motivation was that lower flow rates improved the retention time of CO2
molecules on the selected adsorbents within the packed bed adsorption column, leading to a
higher amount of CO2 being adsorbed. At lower flow rates, the adsorbate (CO2) has more
time to interact with the adsorbent, resulting in higher CO2 adsorption capacity [54].

It was demonstrated that activated carbon with a higher surface area had ab im-
proved performance in terms of CO2 adsorption. However, some studies revealed that
sugar cane-derived activated carbon exhibited improved adsorption sites compared to
kaolinite or activated carbon–kaolinite composites at a temperature of 30 ◦C [53]. The
kaolinite–activated carbon composite revealed an adsorption capacity of 0.42 mmol CO2/g
(9.40 cm3/g), while kaolinite had the lowest capacity at 0.29 mmol CO2/g (6.49 cm3/g) [53].
The enhanced CO2 adsorption capacity of the activated carbon materials at low flow rates
suggests an improved affinity for CO2 due to the presence of activated carbon.

As was previously demonstrated, the amount of adsorbed CO2 showed a nearly linear
increase with rising surface area, suggesting that this is a key factor affecting adsorption
performance [55]. Also, no clear correlation was found between the volume of other pores
and CO2 adsorption. In contrast, a relatively strong positive correlation was observed
between micropore volume and CO2 adsorption [55]. These results indicated that the CO2
adsorption efficiency of a biochar may be primarily influenced by micropore size. The
correlation between total pore volume and CO2 adsorption can be linked to the relationship
between micropore volume and CO2 uptake [55].

Thus, it can be concluded that the development of micropores significantly impacts
CO2 adsorption capacity. Consequently, it can be stated that surface area and microp-
ore volume can serve as guidelines for obtaining materials with high CO2 adsorption
characteristics.

4. Conclusions

Following the pyrolysis process of black liquor, under different experimental con-
ditions, a solid BLPYCHAR residue was obtained, which was further transformed into
CO2-adsorbent materials. Seven types of adsorbent materials were developed, exhibiting
relatively high specific surfaces and different pore diameters. The most efficient adsorbent
material was 2b—BLPYCHAR_Ni-SBA-16_HCl, which had the highest specific surface area of
224.06 m2/g, the highest pore volume of 0.28 cm3/g, and the highest pore diameter of
around 7.7 nm compared to the other adsorbent materials treated with KOH, which had
lower values. To test the efficiency of the 2b—BLPYCHAR_Ni-SBA-16_HCl, a CO2 adsorption
testing setup was used. The BLPYCHAR_Ni-SBA-16_HCl adsorbent was tested on a gas mixture
with a concentration of 81% CO2 and 19% N2, with saturation occurring after 10 injections.
The adsorption capacity of the adsorbent material with the highest specific surface area was
18.57 cm3/g. It also had a separation efficiency of 99.78% and a recovery degree of 62.98%.
The sample with the lowest specific surface area registered a final adsorption capacity of
17.59 cm3/g, with an efficiency of 94.52 % and a recovery of 40.45%. Although the difference
between the adsorption capacity of the two samples was not so high, an increased recovery
percent was observed in the case of the sample with the highest surface area. Therefore,
the obtained material could be used as a potential candidate for CO2 capture and storage
even at high concentrations. As a general conclusion, it can be stated that biochar resulting
from waste valorisation is a promising candidate for CO2 capture materials, reducing an-
thropogenic CO2 emission and mitigating global warming. Although advancements were
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made in biochar obtention, more research is needed to produce adsorbents with increased
adsorption capacity and long-term stability for scaling CO2 capture.
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