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Abstract: The in situ monitoring of dynamic covalent macromolecular boronate esters represents
a difficult task. In this report, we present an in situ method using fluoride coordination and 11B
NMR spectroscopy to determine the amount of boronate esters in a mixture of boronic acids and
cis-diols. With fluoride coordination, the boronic acid and boronate esters afforded trifluoroborate
and fluoroboronate esters, giving identical resonances at 3 and 9 ppm in the 11B NMR spectra. The
same titration did not alter the resonance of amine-coordinated boronate esters, which gave reso-
nances of 14 ppm in the 11B NMR spectra. Therefore, boronic acids, boronate esters, and amine-
coordinated boronate esters gave three identical resonances, and the ratio of each component was
obtained by deconvolution for a further equilibrium analysis. This method monitored the conver-
sion among three species in various conditions, including separation. Accordingly, boronate esters
were more stable after precipitation than chromatography, in which 29% and 20% of boronate esters
were lost after purification. This method was applied to study the reaction between the boronic acid-
decorated defect lysine dendron (16) and dopamine. No boronic acid signal was observed after adding
1 equivalent of dopamine; no boronic acid signal was observed in the NMR spectrum. According to the
spectrum, the product contains 65% boronate ester and 35% N–B-coordinated derivatives. This method
helps identify the presence of the three intermediates and provides more insights into this reaction.

Keywords: dynamic covalent chemistry; 11B NMR; boronate ester; amine-coordinated boronate ester

1. Introduction

The reversible binding of boronic acids and cis-diols [1,2] to boronate esters offers
an unprecedented toolbox for polymer science [3–7]. Boronate esters provide a reversible
and adaptive polymer framework, which has been developed into smart materials such as
shape memory polymers [8], self-healing materials [9,10], hydrogels [11,12], and responsive
materials [13,14]. The formation of boronate esters depends on the in situ ratio and con-
centrations of boronic acids and diols. Therefore, the ratio of boronate esters in a mixture
of boronic acids and cis-diols is difficult to determine. Recently, boronate ester polymers
were developed as delivery vesicles to carry proteins [15], carbohydrates [10], and drugs
as therapeutic agents [16,17]. For clinical applications, it is essential to determine the ratio
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of boronate esters in the mixture of boronic acids and cis-diols for predicting efficacy and
estimating toxicity, as the number of therapeutic agents is significant.

A molecule functionalized with boronic acid and a fluorescence moiety emits dif-
ferent wavelengths after forming a boronate ester [18]. However, this strategy requires
a sophisticated structural design and tedious synthesis, which limits its application. In
addition, boronate esters and boronic acids give different signals in Fourier-transform
infrared (FTIR) spectra [19]. However, the signals of boronic acids (900–1000 cm−1) are in
the fingerprint region, which overlaps with typical signals of organic functional groups.
This drawback limits the scope of the FTIR method in the determination of boronate esters.
It was reported that surface-enhanced Raman spectroscopy (SERS) can be used to monitor
boronate ester formation [20]. However, SERS requires a functional group for metal surface
attachment and an extra moiety for each analyte. These requirements make the preparation
of materials and the interpretation of results more challenging. The above spectroscopic
methods need considerations of either arranging molecular structures or implanting spe-
cific dyes for spectroscopy. All of these requirements raise barriers to monitoring boronate
formation. Additionally, research on macromolecules is more challenging because of their
large number and proximity of boronic acids and boronate esters [21]. Therefore, because
of these limitations, a new convenient method is necessary for developing in situ boronic
acid-containing macromolecules.

Boronic acid consists of sp2 hybridization with one empty p-orbital on the boron center,
which allows for nucleophile coordination [22–24] and results in a tetracoordinated boron
center with sp3 hybridization [22]. Remarkably, the tetrahedral boronate anion exhibits a
preference for forming boronate esters rather than the trigonal boronic acid form [23,24]
(Figure 1). Therefore, the hybridization of the boron atoms of boronic acids and boronate
esters can generate different resonances in 11B nuclear magnetic resonance (11B NMR)
spectra. Meanwhile, fluorides coordinate boronic acids and boronate esters to mono- and
tri-fluorinated boronates, respectively [25–29]. Alongside strong electronegativity, two more
fluorides on boronate acids create different environments from corresponding fluoride-
coordinated boronate esters. This leads to different resonances of these two derivatives in
11B NMR spectra. Accordingly, an 11B NMR analysis is a potential method for the in situ
measuring of the ratios of each molecule in a mixture and monitoring the interconversion
between boronic acids and boronate esters.
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2. Materials and Methods
2.1. Materials and Chemicals

A G2 poly(amidoamine) (PAMAM) dendrimer was purchased from Dendritech. 4-
carboxyphenylboronic acid (CPBA, 98%, AK sci., Union City, CA, USA); dopamine hydrochlo-
ride (99%, Sigma Aldrich, St. Louis, MO, USA); benzotriazol-1-yloxytripyrrolidinophosphonium
hexafluorophosphate (PyBOP, ≥99.0%, Sigma Aldrich, St. Louis, MO, USA); N-hydroxy
succinimide (≥99.0%, Sigma Aldrich, St. Louis, MO, USA); 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride (EDC·HCl, 98%, Sigma Aldrich, St. Louis, MO, USA); N,N,N′,N′-
tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate (HBTU, ≥98.0%, Sigma
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Aldrich, St. Louis, MO, USA); 1-hydroxybenzotriazole (HOBt, ≥97.0%, Sigma Aldrich, St. Louis,
MO, USA); tetra-n-butylammonium fluoride (TBAF, 0.903 g/mL, 1 M soln. in THF, Sigma
Aldrich, St. Louis, MO, USA); β-alanine (99%, Boc-Lys(Boc)-OH ≥98%, Sigma Aldrich, St.
Louis, MO, USA); phenylalanine (≥97.0%, Sigma Aldrich, St. Louis, MO, USA); Nα,Nε-di-
Fmoc-L-lysine (Fmoc-Lys(Fmoc)-OH, ≥98%, Sigma Aldrich, St. Louis, MO, USA); Nα-t-Boc-Nε-
Fmoc-L-lysine (Boc-Lys(Fmoc)-OH, ≥98%, Sigma Aldrich, St. Louis, MO, USA); rink amide
resin (loading ratio 0.3 mmol/g, 100–200 mesh, Sigma Aldrich, St. Louis, MO, USA); di-tert-
butyl dicarbonate (0.95 g/mL, ≥98.0%, Sigma Aldrich, St. Louis, MO, USA); hydrochloric acid
(HCl, 37%, Sigma Aldrich, St. Louis, MO, USA); thionyl chloride (SOCl2, 1.631 g/mL, ≥97.0%,
Sigma Aldrich, St. Louis, MO, USA); sodium hydroxide (NaOH, ≥97.0%, Sigma Aldrich, St.
Louis, MO, USA); triethylamine (Et3N, ≥99.5%, Sigma Aldrich, St. Louis, MO, USA); n-methyl
morpholine (NMM, 0.92 g/mL, ≥99.5%, Sigma Aldrich, St. Louis, MO, USA); and piperidine
(0.862 g/mL, ≥99%, Sigma Aldrich, St. Louis, MO, USA) were used in this study. The chemicals
were used without further purification. Analytical thin-layer chromatography (TLC, Merck,
Rahway, NJ, USA) was performed using silica gel 60 F254 plates that were 0.2 mm thick with a
UV light (254 and 364 nm) as a revelator. Chromatography was prepared on silica gel (200–300
mesh, Merck, Rahway, NJ, USA). Size exclusion chromatography was prepared on Sephadex®
LH-20 (25–100 µM, Sigma Aldrich, St. Louis, MO, USA). D-solvents were purchased from Merck
Co. (Rahway, NJ, USA). NMR spectra were obtained from a JEOL 400 MHz spectrometer (Tokyo,
Japan). Deconvolution was processed by the software Delta (version 5.0.5) with the Lorentzian
deconvolution method. ESI mass spectra were recorded using the FT–ESI–MS system (Bruker
Solarix, Billerica, MA, USA). MALDI mass spectra were recorded using the MALDI–TOF–MS
system (BRUKER ultraflextreme, Billerica, MA, USA).

2.2. Synthesis of 4-Carboxypheny Boronate Ester Dopamine (2) (Scheme 1)

A solution of 4-carboxypheny boronic acid (50.0 mg, 0.30 mmol) in toluene (2.0 mL)
and EtOH (1.0 mL) was added dropwise to a solution of dopamine hydrochloride
(57.1 mg, 0.30 mmol) in toluene (3.0 mL) at an ambient temperature. The reaction mix-
ture was then heated to reflux for 10 d with a Dean–Stark apparatus. The mixture was
filtered and washed by toluene (1.0 mL) to derive the desired compound as a white
solid (82.7 mg, yield: 97%). 1H NMR (DMSO-d6, 400 MHz): δ 7.87–7.80 (m, 4H); 6.64
(d, 1H, J = 8.1 Hz); 6.58 (d, 1H, J = 2.1 Hz); 6.45 (dd, 1H, J = 8.0, 2.1 Hz); 2.87 (t, 2H,
J = 8.0 Hz); 2.64 (t, 2H, J = 8.0 Hz). 13C NMR (DMSO-d6, 100 MHz): δ 167.99, 145.83,
144.59, 139.86, 134.63, 132.46, 131.91, 128.61, 128.45, 119.75, 116.58, 116.29, 32.90. 11B NMR
(DMSO-d6, 128 MHz): δ 27.32.
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Scheme 1. Synthetic scheme of 4-Carboxypheny boronate ester dopamine (2).

2.3. Synthesis of (G:2)-Dendri-PAMAM-(CPBA)15 (6)

Benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) (511.4 mg,
0.98 mmol) and Et3N (93.7 mg, 0.13 mL, 0.93 mmol) were added to a solution of 4-carboxy
phenylboronic acid (163.1 mg, 0.98 mmol) in anhydrous DMF (10.0 mL) and stirred at an
ambient temperature for 40 min. The resulting mixture was slowly added to a solution of a G2
PAMAM dendrimer (100.0 mg, 30.7 mmol) in anhydrous DMF (10.0 mL) and EtOH (1.0 mL) at
an ambient temperature. After 4 d of stirring at 45 ◦C, the mixture was filtered and washed by
DMF (2.0 mL). The crude product was purified by chromatography Sephadex® LH-20 (Sigma
Aldrich, St. Louis, MO, USA) to derive the desired compound as a colorless solid (85.7 mg,
yield: 51%). 1H NMR (CDCl3, 400 MHz): δ 7.73 (s, 54H); 3.56–3.20 (m, 85H); 3.16–2.67 (m, 87H);
2.63–2.33 (m, 56H). 13C NMR (CDCl3, 100 MHz): δ 172.8, 172.6, 172.3, 169.1, 168.8, 160.8, 137.5,
135.2, 133.6, 129.1, 126.0, 125.0, 115.0, 52.1, 49.8, 47.7, 39.4, 38.9, 36.1, 31.5.
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2.4. Synthesis of Boc-Lys(Boc) Dopamine (7) (Scheme 2)

A solution of Boc-Lys(Boc)-OH (0.20 g, 0.58 mmol) in CH2Cl2 (10.0 mL) was added
dropwise to a solution of N-hydroxysuccinimide (79.7 mg, 0.69 mmol) and 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide hydrochloride (EDC·HCl) (265.6 mg, 1.39 mmol) in
CH2Cl2 (50.0 mL) in an ice bath. After stirring at 0 ◦C for 30 min, the ice bath was removed,
and the reaction mixture was stirred at an ambient temperature for 6 h. A solution of
dopamine hydrochloride (219.0 mg, 1.15 mmol) and Et3N (0.30 mL, 2.15 mmol) was added
to the resulting mixture in a mixture of CH2Cl2 (10.0 mL) and MeOH (2.0 mL) at an ambient
temperature and stirred for 1.5 d. After removing the solvent in vacuo, the residue was
partitioned into CH2Cl2 (80.0 mL) and H2O (50.0 mL). The organic layer was washed with
H2O (50.0 mL) twice, dried over MgSO4, and concentrated in vacuo to give a mixture.
The mixture was purified by column chromatography (silica gel ϕ 2 cm × 12 cm, eluted
by CH2Cl2:MeOH = 20:1 (200 mL), 15:1 (100 mL), 10:1 (200 mL)) to derive the desired
compound as a white solid (187.0 mg, 67%, Rf = 0.25 (CH2Cl2:MeOH = 50:1)). 1H NMR
(CDCl3, 400 MHz): δ 6.79 (d, 1H, J = 8.0 Hz); 6.66 (d, 1H, J = 2.0 Hz); 6.53 (d, 1H, J = 8.1 Hz);
6.33 (s, 1H); 5.33 (s, 1H); 4.80 (s, 1H); 3.97 (s, 1H); 3.59–3.47 (m, 1H); 3.40–3.28 (m, 1H); 3.00
(dd, 2H, J1 = 6.7, J2 = 13.3 Hz); 2.69–2.59 (m, 2H); 2.24–2.23 (m, 1H); 1.68–1.58 (m, 1H);
1.50–1.33 (m, 23H); 1.21–1.09 (m, 2H). 13C NMR (CDCl3, 100 MHz): δ 172.8, 156.8, 156.0,
144.44, 143.2, 130.8, 120.6, 116.0, 115.7, 80.3, 79.8, 54.6, 40.8, 40.1, 34.7, 32.3, 29.7, 28.5, 28.4,
22.5; MS (ESI) m/z calculated for C24H39N3NaO7 [M + Na]+: 504.2686; found: 504.2680.
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2.5. Synthesis of NH2-βAla-OMe (9) (Scheme 3)

SOCl2 (2.67 g, 1.64 mL, 22.45 mmol) was added dropwise to a solution of β-alanine
(2.00 g, 22.45 mmol) in CH2Cl2 (60.0 mL) by an addition funnel at 0 ◦C. The resulting
mixture was stirred at 0 ◦C for 10 min. The ice bath was removed, and the resulting
mixture was stirred at an ambient temperature overnight. The solvent was removed in
vacuo. The resulting mixture was dissolved in a mixture of MeOH (10.0 mL) and CH2Cl2
(100.0 mL). Ethyl ether was added to the resulting solution until precipitation appeared.
The resulting mixture was kept at 4 ◦C overnight. After filtration, the residue was washed
with ether to derive the desired compound as a white solid (2.13 g, 92%). 1H NMR (CD3OD,
400 MHz): δ 3.73 (S, 3H); 3.23 (t, 2H, J = 6.64 Hz); 2.80 (t, 2H, J = 6.64 Hz). 13C NMR
(CD3OD, 100 MHz): δ 171.4, 51.6, 35.4, 31.0. HRMS (ESI) m/z calculated for C4H9NO2 [M +
H]+: 104.0708; found: 104.0708.

2.6. Synthesis of Boc-Phe-βAla-OMe (11) (Scheme 3)

Sodium hydroxide (970.0 mg, 24.22 mmol) was added to a solution of phenylalanine
(2.00 g, 12.11 mmol) in a mixture of H2O and THF (1:1, 100.0 mL) The solution was stirred at rt
for 20 min, and di-tert-butyl dicarbonate (5.28 g, 5.38 mL, 24.22 mmol) was slowly added to
the mixture and stirred at an ambient temperature overnight. After removing the solvent in
vacuo, the residues were dissolved in CH2Cl2 (80.0 mL) and extracted with H2O (20.0 mL × 3).
The pH value of the aqueous layer was adjusted to 4–5 by 1N HCl(aq). The mixture was stirred
for 30 min and then extracted with CH2Cl2 (30.0 mL × 3). The organic layer was dried over
MgSO4 and concentrated in vacuo to derive compound 10 as a colorless oil. EDC·HCl (2.22 g,
11.64 mmol) and HOBt (1.90 g, 11.64 mmol) were added to a solution of compound 10 (3.09 g,
11.64 mmol) in DMF (60.0 mL) at an ambient temperature and stirred for 20 min. Compound
9 (1.62 g, 11.64 mmol) and Et3N (1.18 g, 1.62 mL, 11.64 mmol) were added to the reaction
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mixture at an ambient temperature and stirred for 5 h. After removing the solvent in vacuo,
the residue was partitioned into CH2Cl2 (100.0 mL) and H2O (20.0 mL). The organic layer was
washed with H2O (20.0 mL) twice, dried over MgSO4, and concentrated in vacuo to give a
mixture. The mixture was purified by column chromatography (silica gel, ϕ 2.5 cm × 14 cm,
CH2Cl2:MeOH = 50:1 (500 mL), 30:1 (300 mL)) to derive the desired compound as a white solid
(3.67 g, 90%, Rf = 0.25 (CH2Cl2:MeOH = 50:1)). 1H NMR (CDCl3, 400 MHz): δ 7.24–7.12 (m,
5H); 6.57 (t, 1H, J = 5.84 Hz); 5.30 (d,1H, J = 8.16 Hz); 4.28 (bs, 1H); 3.58 (s, 3H); 3.47–3.42 (m, 1H);
3.35–3.29 (m, 1H); 2.98 (d, 2H, J = 6.40 Hz); 2.42–2.32 (m, 2H); 1.35 (s, 9H). 13C NMR (CDCl3,
100 MHz): δ 172.7, 171.6, 155.5, 137.0, 129.5, 128.7, 127.0, 80.1, 56.1, 51.9, 39.1, 34.9, 33.8, 28.5.
HRMS (ESI) m/z calculated for C18H26N2O5Na [M + Na]+: 373.1739; found: 373.1736.

2.7. Synthesis of Boc-Lys(Boc)-Phe-βAla-OMe (12) (Scheme 3)

Compound 11 (1.00 g, 2.85 mmol) was dissolved in 12N HCl and MeOH (1:2, 25.0 mL),
and the reaction mixture was stirred for 1 h. The solvent was then removed in vacuo. The
residue was dissolved in MeOH (25.0 mL) and neutralized by adding Et3N (381.4 mg,
0.4 mL, 3.77 mmol), and the solvent was subsequently evaporated to give deprotected 11.

EDC·HCl (545.1 mg, 2.85 mmol) and HOBt (446.2 mg, 2.85 mmol) were added to a solu-
tion of Boc-Lys(Boc)-OH (989.0 mg, 2.85 mmol) in DMF (60.0 mL) at an ambient temperature
and stirred for 20 min. Deprotected 11 and Et3N (865.5 mg, 1.20 mL, 8.55 mmol) were added
in the reaction mixture at an ambient temperature and stirred overnight. After removing the
solvent in vacuo, the residue was partitioned into CH2Cl2 (80.0 mL) and H2O (20.0 mL). The
organic layer was washed with H2O (20.0 mL) twice, dried over MgSO4, and concentrated in
vacuo to give a mixture. The mixture was purified by column chromatography (silica gel ϕ
2 cm × 12 cm, CH2Cl2:MeOH = 30:1 (400 mL), 20:1 (200 mL)) to derive the desired compound
as a white solid (1.14 g, 69%, Rf = 0.30 (CH2Cl2:MeOH = 20:1)). 1H NMR (CDCl3, 400 MHz):
δ 7.26–7.12 (m, 5H); 6.83 (s, 1H); 6.76 (s, 1H); 5.55 (s, 1H); 4.83 (s, 1H); 4.64 (q, 1H, J1 = 6.9,
J2 = 10.8 Hz); 3.97 (s, 1H); 3.60 (s, 3H); 3.51–3.49 (m, 1H); 3.32–3.26 (m, 1H); 3.09–2.96 (m, 4H);
2.40–2.33 (m, 2H); 1.75–1.66 (m, 1H); 1.63–1.55 (m, 1H); 1.41 (s, 9H); 1.41–1.35 (m, 2H); 1.35 (s,
9H); 1.25–1.16 (m, 2H). 13C NMR (CDCl3, 100 MHz): δ 172.5, 172.2, 170.9, 156.7, 156.5, 136.7,
129.5, 128.8, 127.1, 80.4, 79.3, 55.3, 54.1, 51.9, 39.5, 38.3, 35.2, 33.8, 31.3, 29.9, 28.8, 28.5, 22.1.
HRMS (ESI) m/z calculated for C29H46N4O8Na [M + Na]+: 601.3213; found: 601.3208.

2.8. Synthesis of Boc-Lys(Boc)-Phe-βAla Dopamine (13) (Scheme 3)

1N NaOH(aq) (20.0 mL) was added to a solution of compound 12 (416.7 mg, 0.72 mmol)
in EtOH (60.0 mL) and stirred at an ambient temperature for 25 min. Then, the pH value
of the mixture was adjusted to 4–5 by 1N HCl(aq). The mixture was stirred for 1 h, and
the solvent was removed in vacuo. EDC·HCl (138.7 mg, 0.72 mmol) and HOBt (118.4 mg,
0.72 mmol) were added to a solution of the resulting residue in the DMF (60.0 mL) at an ambient
temperature, and the mixture was stirred for 25 min. Dopamine hydrochloride (137.7 mg,
0.72 mmol) and Et3N (140.0 mg, 0.20 mL, 1.38 mmol) were added to the resulting solution and
stirred for 2 d. After removing the solvent in vacuo, the residue was partitioned into CH2Cl2
(70.0 mL) and H2O (15.0 mL). The organic layer was washed with H2O (15.0 mL) twice, dried
over MgSO4, and concentrated in vacuo to give a mixture which was purified by column
chromatography (silica gel ϕ 2 cm × 14 cm, CH2Cl2:MeOH = 40:1 (300 mL), 30:1 (200 mL), 20:1
(100 mL), 10:1 (200 mL)) to derive the desired compound as a white solid (100.0 mg, yield: 60%,
Rf = 0.20 (CH2Cl2:MeOH = 20:1)). 1H NMR (CDCl3, 400 MHz): δ 7.27–7.12 (m, 5H); 6.79 (d, 1H,
J = 8.0 Hz); 6.72 (d, 1H, J = 2.0 Hz); 6.52 (q, 1H, J1 = 2.0, J2 = 8.0 Hz); 6.20 (s, 1H); 5.56 (s, 1H);
4.82 (s, 1H); 4.56–4.50 (m, 1H); 3.95 (s, 1H); 3.45–3.29 (m, 4H); 3.03 (d, 4H, J = 6.2 Hz); 2.66 (t,
2H, J1 = 6.5, J2 = 13 Hz); 2.24–2.23 (m, 1H); 2.18–2.17 (m, 1H); 2.05 (s, 1H); 1.72–1.65 (m, 1H);
1.62–1.53 (m, 1H); 1.45 (s, 9H); 1.38 (s, 9H); 1.24–1.17 (m, 2H). 13C NMR (CDCl3, 100 MHz): δ
173.0, 171.6, 171.2, 157.0, 156.6, 144.5, 143.4, 136.5, 131.4, 129.5, 128.9, 127.3, 120.7, 116.1, 115.7,
81.0, 79.7, 55.5, 54.6, 41.1, 39.4, 38.0, 36.5, 36.2, 34.7, 31.0, 30.0, 28.7, 28.5, 22.1. HRMS (ESI) m/z
calculated for C36H53N5O9Na [M + Na]+: 722.3741; found: 722.3737.
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2.9. Synthesis of (NH2-Lys((CPBA)2-Lys))2-Lys-CONH2 (16)

Rink amide resin (169 mg, loading ratio 0.3 mmol/g, 0.05 mmol) was subjected to
swelling in DMF (1.5 mL) for 3 h. After the removal of DMF by filtration, the swelled
resin was treated with 20% piperidine in DMF (1.5 mL) and agitated for 10 min twice to
remove the Fmoc group. After filtration, the activated resin was washed with DMF (3.0 mL)
and CH2Cl2 (3.0 mL) three times each. The solution of Fmoc-Lys(Fmoc)-OH (105 mg,
0.175 mmol) and HBTU (68 mg, 0.175 mmol) was dissolved in 5% NMM in DMF (1.5 mL)
and pre-mixed for 15 min. The mixture was then added to the activated resin and agitated
for 1 h for the coupling of the first residue. After the removal of the solvent by filtration,
the loaded resin was washed with DMF (3.0 mL) and CH2Cl2 (3.0 mL) three times each.
Piperidine (20%) was added to the loaded resin in DMF (1.5 mL) and agitated for 10 min
twice to remove the Fmoc group. The resin was washed with DMF (3.0 mL) and CH2Cl2
(3.0 mL) three times each for the following synthesis.

For the incorporation of the second residue, a solution of Boc-Lys(Fmoc)-OH (165 mg,
0.35 mmol) and HBTU (135 mg, 0.35 mmol) was dissolved in 5% NMM in DMF (1.5 mL)
and was subjected to the same procedure as the coupling of the first residue, with a 1.5 h
coupling time. For the incorporation of the third residue, Fmoc-Lys(Fmoc)-OH (208 mg,
0.35 mmol) and HBTU (132 mg, 0.35 mmol) in 5% NMM in DMF (1.5 mL) was subjected to
the same procedure of the coupling of the first residue, with a 2 h coupling time. A solution
of 4-carboxyphenylboronic acid (117 mg, 0.7 mmol) and PyBOP (365 mg, 0.7 mmol) in
5% NMM in DMF (1.5 mL) was added to the resulting resin, and the resulting mixture
was shaken for an additional 14 h. After removing the solution by filtration, the resulting
mixture was washed with DMF (3.0 mL) and CH2Cl2 (3.0 mL) three times each. The crude
product was cleaved from the resin with 1 mL of TFA/H2O (95:5) for 2 h.

After filtration, the resulting filtrate was precipitated with diethyl ether and kept at 0 ◦C
for 30 min. After centrifugation twice (6000 rpm, 15 min), the supernatant was decanted to
collect the product. This procedure was repeated to collect the final product (64.3 mg, 87%).

1H NMR (D2O, 400 MHz): δ 7.59 (d, J = 8.0 Hz, 8H); 7.54 (d, J = 8.0 Hz, 4H); 7.47 (d,
J = 8.0 Hz, 4H); 4.37 (t, J = 8.0 Hz, 2H); 4.18 (t, J = 8.0 Hz, 1H); 3.95 (t, J = 8.0 Hz, 1H); 3.82 (t,
J = 8.0 Hz, 1H); 3.36–3.26 (m, 4H); 3.21–3.05 (m, 6H); 1.89–1.21 (m, 30H). 13C NMR (CD3OD,
100 MHz): δ 176.18, 174.80, 170.49, 170.18, 163.17, 162.88, 138.43, 136.94, 136.26, 134.93,
129.97, 127.51, 127.18, 55.94, 54.50, 54.23, 40.42, 39.62, 32.77, 32.52, 32.10, 30.14, 29.81, 29.54,
24.47, 24.14, 23.03, 22.64. Mass (MALDI–TOF, DHB/16/NaI = 10/1/1) m/z calculated for
C86H91B4N11O25Na1 [M+Na]+: 1744.6; found: 1744.7.
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2.10. General Procedure of Boronate Ester Formation Assay [30]

A solution of boronic acid derivatives (50.0 mg) in toluene (2.0 mL) and EtOH (1.0 mL)
was added dropwise to a solution of catechol derivatives in toluene (3.0 mL) at an ambient
temperature. The reaction mixture was then heated to reflux for 5 d with a Dean–Stark
apparatus. The mixture was filtered and washed by toluene (1.0 mL), and the solid part
was collected for further analysis of TBAF coordination.

2.11. General Procedure of N→B Coordination Boronate Ester Assay

Compound 7 (66.0 mg, 0.060 mmol) was dissolved in toluene (3.0 mL) at an ambient
temperature. Compound 6 (50.0 mg, 0.004 mmol) was dissolved in toluene (2.0 mL)
and EtOH (1.0 mL). The solution of compound 6 was added dropwise to the solution
of compound 7 at an ambient temperature. Piperidine (2 equivalents) was added to the
reaction mixture and refluxed for 5 d with a Dean–Stark apparatus. The solvent was
removed in vacuo, and the product was collected for TBAF coordination analysis.

Dopamine hydrochloride (18.2 mg, 0.096 mmol) was dissolved in toluene (3.0 mL) at
an ambient temperature. Compound 16 (30.0 mg, 0.024 mmol) was dissolved in toluene
(2.0 mL) and EtOH (1.0 mL). The solution of compound 16 was added dropwise to the
solution of dopamine hydrochloride at an ambient temperature and refluxed for 5 d with a
Dean–Stark apparatus. The solvent was removed in vacuo, and the product was collected
for TBAF coordination analysis.

2.12. TBAF Coordination Experiment

The samples were dissolved in DMSO-d6. TBAF was added, and immediately, NMR
spectra were acquired. All the experiments were performed in quartz NMR tubes.

3. Results and Discussion

This study was the first to attempt to collect the 11B NMR spectra of both 4-carboxyphenyl
boronic acid (CPBA, 1a) and corresponding boronate esters (2), which was synthesized and
characterized according to the literature [30]. The 11B NMR spectra of 1a and 2 generated
similar signals between 25 and 30 ppm. To enhance the difference in electron densities of
the boron centers, tetrabutylammonium fluoride (TBAF) was gradually added to a solution
of 1a, and their 11B NMR spectra were collected. The results clearly show that the amount
of TBAF has a positive correlation with the intensity of the signal at 3 ppm and a negative
correlation with the intensity of the signal at 25 ppm (Figure 2a). Fluoride interacts with boron,
resulting in a splitting signal in 11B NMR spectra. However, no splitting signal was observed,
possibly due to the broad signals of 1a and 2 in the 11B NMR spectra. Two trifluoroborates were
referenced: tetra-n-butylammonium phenyl trifluoroborate (3a) (Figure 2a), which showed a
signal at 3.3 ppm, and potassium (4-carboxyphenyl)trifluoroborate (3b) (Figure S9e), which
presented a signal at 2.2 ppm. Both signals were observed without splitting. Therefore, we
assumed the newly formed signal at 3.5 ppm represented (4-carboxyphenyl)trifluoroborate
(3). On the contrary, while boronate ester 2 was treated with TBAF, the resulting fluorinated
derivatives afforded an 11B NMR signal at 9.4 ppm (Figure 2b). We believe that monofluorinated
boronate was generated. This observation aligns with that of literature reports [26,31]. These
results suggest that adding fluoride (3 equivalents) to boronic acids and boronate esters gave the
corresponding trifluoroborates and fluoroboronate esters, which generated two signals around
3 ppm and 9 ppm, respectively. These two signals represented boronic acids and boronate esters.

The ratio of boronic acids to boronate esters was determined from the integral of the
1H NMR spectrum before the addition of fluoride ions. The equilibrium in the presence of
fluoride ions was assessed using the 11B NMR spectrum. Two sets of results were compared
to evaluate the influence of fluoride ions on the equilibrium. The synthesized boronate
ester was created by mixing equal amounts of phenylboronic acid (PBA, 1b) and catechol
(4) (Figure 3a). In the absence of TBAF in the analyte, a signal between 7 and 8 ppm,
which corresponds to the aromatic signal of PBA in the 1H NMR spectrum, indicated
that the ratio of boronic acid to boronate ester is 28% to 72% (Figure 3b). This result was
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calculated by the integral of the aromatic ring on PBA, shifting before and after boronate
ester formation [32]. In Figure 3b, signal a (Figure 3b, in blue region) gives the integral of
1b, which is in the boronic acid form of the analyte; signal b (Figure 3b, in green region)
gives the integral of PBA, which is in the boronate ester form of the analyte. The amount
of boronate ester formation was calculated by the two ratios of the blue and green region
(Figure 3b). After adding TBAF, the resulting 11B NMR spectra indicated that the ratio of
boronic acid and boronate ester was 31% to 69%. (Figure 3d) This observation suggests that
the TBAF titration did not significantly alter the ratio of boronic acid and boronate ester.
Therefore, the 11B NMR spectra of the TBAF titration could determine the ratio of boronic
acid and boronate ester.
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Alternatively, titrating with alizarin red S (ARS) is a common method to assess the
binding affinity between boronic acids and diols [33]. This method is based on the formation
of an ARS–boronate ester, which leads to fluorescence emission. Compared with the 11B
NMR method, a high concentration of boronic acid is required due to the low sensitivity
of 11B NMR. In the TBAF titration experiment, 64 mM of phenylboronic acid (PBA) was
mixed with 64 mM of acid red dye (ARS) to produce a signal at 10.0 ppm, indicating the
presence of a boronate ester. However, the linear range of ARS concentration extends up to
0.6 mM for fluorescence emission at 564 nm with 64 mM of PBA. This observation suggests
a possible self-quench for the solution of 64 mM of PBA, while the concentration of ARS
is more than 1 mM (Figure 4b,c). For this experiment, 1 mM of PBA was used instead.
Unfortunately, in the presence of ARS (64 mM), no clear boronate ester was observed in
the 11B NMR spectrum after the TBAF titration experiments. Therefore, the ARS binding
experiment could not provide the amount of boronate ester at a concentration that would
yield a significant 11B NMR signal.
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Figure 3. (a) Reaction scheme of boronate ester bond formation between catechol and PBA. (b) 1H
NMR spectra of catechol (1 equivalent) reacted with PBA (1 equivalent ) with the irradiation of a
microwave (150 W) for 30 min; the inserted figure is the region from 6.8 to 8.2 ppm, wherein signal
a represents the proton on the aromatic ring of 1b, and signal b represents the proton on the PBA
aromatic ring of boronate ester. (c) 11B NMR spectra of catechol (1 equivalent) reacted with PBA
(1 equivalent) for 30 min, with the irradiation of a microwave (150 W) with 3 and 5 equivalents of
TBAF. (d) Deconvolution spectra of the spectrum in (c). All spectra were acquired in DMSO-d6.

Since the addition of fluoride ions did not alter the equilibrium between the boronic
acid and boronate ester, this study shifted its focus to the identification of macromolecular
boronate esters, whereby (G:2)-dendri-PAMAM-(CPBA)15 (6) was prepared, character-
ized [34], and subjected to a TBAF–11B NMR experiment (Figure 3a). With the presence
of TBAF (3 equivalents), a resonance at 3.8 ppm was recorded, and the signal at 25.6 ppm
was diminished (Figure 5b). Thereafter, the boronate ester was prepared between 6 and
dopamine-Lys(Boc)-Boc (7). A mixture of 7 and 6 (3:1) was added to TBAF (1 equivalent),
and two resonances at 9.1 and 25.6 ppm were recorded in a 11B NMR spectrum. With two
more equivalents of TBAF, the resonance at 25.6 ppm was completely diminished, and a sig-
nal at 9.1 ppm remained alongside a new signal at 3.4 ppm (Figure 5c). Accordingly, these
two resonances represented boronic acid and boronate ester. Because of the overlapping of
the two signals at 3.4 and 9.1 ppm, it was difficult to clearly distinguish the integrals and
give the ratio of the two boron derivatives. The deconvolution method was employed to
isolate the signals of the two molecules and obtain their respective integrals for the ratio of
boronic acids and boronate esters. The deconvolution results indicate that the ratio of the
integrals of the resonances at 3.4 and 9.1 is 29% to 71% (Figure 5d). The number of boronate
esters on 8a was 11. Therefore, 8a was (G:2)-dendri-PAMAM-[(NH2)(CPBA)4(Boc-Lys(Boc)-
dopa boronate ester)11]. This result clearly shows that this method can distinguish boronic
acids and boronate esters and determine their ratios in macromolecules.
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Figure 4. (a) Reaction scheme of boronate ester bond formation between ARS and PBA. (b) Fluorescent
spectra. (c) Fluorescent intensity at 564 nm of 0.0625–64 mM of ARS mixed with 64 mM of PBA for
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After successfully monitoring in situ, the investigation shifted to exploring the impact
of separation, which is a potential method for collecting pure boronate ester. However,
separating boronate esters from the product mixture can lead to a shift in equilibrium
and a loss of boronate esters, potentially damaging them [35]. Because of the complicated
equilibrium between boronic acids and boronate esters, it is difficult to evaluate the damage
caused by separation procedures. To study this issue, boronic acid-decorated dendrimers
with multiple peripheral boronic acids are a potential tool. In this research, we investigated
the influence of precipitation and size-exclusion chromatography (SEC) on boronate esters
and evaluated their impairment of boronates using a fluorinated method. We mixed
dendrimer 6 with peptide 7 and heated it with a Dean–Stark apparatus to obtain the
crude boronate-modified dendrimer 8. Upon adding 3 equivalents of TBAF, the resulting
dendrimer showed a sole signal of around 9 ppm, indicating no free boronic acid on the
dendrimers (entry 1, Table 1). We then subjected dendrimer 8 to either Sephadex® LH-20
SEC or precipitation in EtOH/ether. The dendrimers were collected and treated with
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TBAF. The resulting mixture was monitored using 11B NMR spectra, and 59% and 72% of
boronate ester in the dendrimers remained after SEC chromatography and precipitation,
respectively (entries 2 and 3, Table 1, Figures S12 and S13). It is worth mentioning that
the chromatography took only 2 h, while precipitation required 1 day, twice. Despite
the less time needed for chromatography, more boronate esters were lost than during
precipitation. Presumably, the ratio of the two components kept changing during the
column chromatography, and the Sephadex® LH-20 shifted the equilibrium to 6. Based on
this result, precipitation damages fewer boronate esters. The TBAF coordination method
identified the stability of boronate esters in macromolecules during separation.

Polymers 2024, 16, 3258 11 of 18 
 

 

Figure 4. (a) Reaction scheme of boronate ester bond formation between ARS and PBA. (b) Fluores-
cent spectra. (c) Fluorescent intensity at 564 nm of 0.0625−64 mM of ARS mixed with 64 mM of PBA 
for a 5 min incubation time; the inserted figure shows the range from 0.0625 to 1 mM of ARS mixed 
with 64 mM of PBA. (d) 11B NMR spectra of 1 mM of ARS mixed with 64 mM of PBA for a 5 min 
incubation time with 1, 3, 5 equivalents of TBAF. All spectra were acquired in DMSO−d6. 

 
(a) 

  

 

 
(b) (c) 

 
(d) 

Figure 5. (a) Synthetic scheme of boronic acid 6 and boronate ester 8. 11B NMR spectra of (b) boronic 
acid 6 and (c) boronate ester 8a (n = 11) with different equivalents of TBAF. (d) Deconvolution spec-
tra of the spectrum in Figure 5 (c-iv). All spectra were acquired in DMSO-d6. 

After successfully monitoring in situ, the investigation shifted to exploring the im-
pact of separation, which is a potential method for collecting pure boronate ester. 

Figure 5. (a) Synthetic scheme of boronic acid 6 and boronate ester 8. 11B NMR spectra of (b) boronic
acid 6 and (c) boronate ester 8a (n = 11) with different equivalents of TBAF. (d) Deconvolution spectra
of the spectrum in (c-iv). All spectra were acquired in DMSO-d6.
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Entry Status Solvent Manipulation
Time

Normalized
Boronate Ester (%) b

1 Before purification - - 100

2 After SEC
purification MeOH 2 h 59

3 After precipitation EtOH/ether 1 day (twice) 72
a: the mixture was treated with TBAF (3 equivalents), and the spectra were recorded in a solution of DMSO-d6. b. The
ratio was calculated by each integral, which was estimated by a deconvolution of the 11B NMR spectra of the mixtures.
The 11B NMR spectra of the original and the results afwter deconvolution are shown in Figures S12 and S13.

Instead of using a Dean–Stark apparatus within a week of the reaction time, various
amounts of 7 was added for the formation of boronate esters in hours. To monitor the
progression of the preparation, this TBAF–11B NMR method was applied to in situ track
the formation of boronate esters. When 1 equivalent of 7 was used, 57% of the boronate
was obtained in 5 days (Table 2, entry 1). However, when 2 equivalents of 7 were used, over
99% of the boronate was obtained (Table 2, entries 1–2). Remarkably, the reaction time was
reduced to one day, and only 45% of the boronate ester was observed, with 2 equivalents of
7 (Table 2, entry 3).

Table 2. The ratio of boronate ester 8 with various amounts of 7 a.

Entry 7 (Equivalents) Reaction
Time (d)

Integral Ratio at
3 ppm:9 ppm

Boronate
Ester (%) b n

1 1 5 0.74:1 57 9

2 2 5 1 >99 15

3 2 1 1.2:1 45 7
a: the mixture was treated with TBAF (3 equivalents), and the spectra were recorded in a solution of DMSO-d6. b.
The ratio was calculated by each integral, which was estimated by a deconvolution of the 11B NMR spectra of the
mixtures.

This TBAF–11B NMR method was applied to monitor the reversible formation of
boronate esters. Boronate esters were known to be sensitive to pH environments, and low
pH values lead to the dissociation of boronate esters. This pH value-dependent boronate
formation has been widely applied to pH-responsive materials [36]. However, tracking
their formation and degradation is rarely reported. To monitor the recovery of boronic acid
by the TBAF–11B NMR method, 6 was mixed with Boc-Lys(Boc)-Phe-βAla dopamine (13)
(5 equivalents) in one day to convert all the boronic acids to corresponding (G:2)-dendri-
PAMAM-[(NH2) (Boc-Lys(Boc)-Phe-βAla-dopa boronate ester)15] (14). The boronate 14
was added to TBAF, and its 11B NMR spectrum was acquired (Figure 6(bi)). Thereafter, the
mixture was dialyzed under pH = 6 for 1 day, twice, to hydrolyze the boronate ester to the
boronic acid as the solo boron analog (Figure 6(bii)). The recovering 6 was subjected to the
same reaction condition as the first boronate ester formation, which gave the same fully
functionalized boronate ester 14 (Figure 6(biii)). The 11B NMR spectrum of the mixture
at each stage showed a clear signal shift between the boronic acids and boronate esters.
This result demonstrates that this method is useful for following the equilibrium between
boronic acids and corresponding boronate esters.
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Figure 6. (a) Interconversion between boronic acid 6 and corresponding boronate ester 14. (b) 11B
NMR spectra of recycle cycles for boronic acid containing dendrimer with TBAF (3 equivalents),
(i) boronic acid containing dendrimer 6, (ii,iv) boronate ester formation of 14, and (iii) recycling of
boronic acid containing dendrimer 6. Conditions of boronate ester formation: 1:5 equivalents of 6 to
13; dialysis in pH = 6. All spectra were acquired in DMSO-d6.

With similar encouraging results, this method has been applied to detect N–B-coordinated
boronate esters, which was reported as stable boronate ester derivatives. The presence of
amine can increase the ratio of boronate esters [37]. Among various Lewis bases, amines
are general and efficient chemicals for generating a dative nitrogen–boron coordination
to stabilize boronate esters [38–40]. However, the in situ monitoring of nitrogen–boron
coordinations remains a challenge for monitoring the formation of N–B-coordinated boronate
esters. Piperidine (1 equivalent) was added to the mixture of 7 and 6 (1:1), and the 11B–NMR
spectrum of the resulting mixture with TBAF (3 equivalents) gave two signals at 13.8 ppm
and 7.6 ppm (Figure 7). The signal at 13.8 ppm represented the amine-coordinated boronate
ester, which matches the reported literature [40]. Remarkably, the signal at 13.8 ppm remains
with an intake of up to three equivalents of TBAF (Figure 7c). Therefore, 11B NMR offers clear
evidence for the presence of N–B-coordinated boronate esters from boronic acids and boronate
esters when adding TBAF. When the piperidine was increased to two equivalents, no signal
representing boronic acid was observed (Figure 7c). With more piperidine (2 equivalents), one
equivalent of catechol derivatives was enough for the completed formation of boronate esters.
On the contrary, 3 equivalents of catechol (7) are necessary for the formation of boronate esters
at 71%. This result proves the critical role of N–B coordination for the formation of boronate
esters. Alongside our aforementioned results, the 11B NMR spectra provided clear evidence
for distinguishing boronic acids, boronate esters, and amine-coordinated boronate esters by
the TBAF–11B NMR method (Figure 7).
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different equivalents of piperidine added; (a) without piperidine, (b) piperidine (1 equivalent), (c) 
piperidine (2 equiv); percentage of N–B-coordinated boronate ester 15 formation was calculated by 
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Figure 7. 11B NMR spectra of N–B-coordinated boronate ester 15 with TBAF (3 equivalents), with
different equivalents of piperidine added; (a) without piperidine, (b) piperidine (1 equivalent),
(c) piperidine (2 equiv); percentage of N–B-coordinated boronate ester 15 formation was calculated
by deconvolution. All spectra were acquired in DMSO-d6.

This TBAF–11B NMR method was used to identify the boronate ester formation of
boronic acid-decorated lysine dendrimer (16) with dopamine. Dendrimer 16 was prepared
and identified based on the literature [41]. After treating with dopamine (1 equivalent), the
resulting complex 17 was added to the TBAF (1 equivalent), and its 11B NMR spectrum
only showed two signals at 7.4 and 13.4 ppm, but no signal was identified at around
3 ppm. This observation suggests no boronic acids remained when adding 1 equivalent of
dopamine (Figure 8(bi)). On the contrary, 2 equivalents of catechols were necessary for the
complete formation of boronates in the previous example (Table 2). For this observation,
the intramolecular N–B coordination was believed to stabilize the boronate esters from
boronic acids. For calculating the ratio of amine-coordinated boronate esters, 17 was treated
with 1, 3, or 5 equivalents of TBAF, and their resulting complexes showed similar spectra
(Figure 8b). The ratio of integrals indicated that the ratio of boronate esters and amine-
coordinated derivatives is 1: 0.5, which suggests that 35% of N–B coordination was present
in this product’s mixture. This example clearly demonstrates the potential of this TBAF–11B
NMR method to identify and to calculate the ratio of boronic acids, boronate esters, and
amine-coordinated boronate esters.
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4. Conclusions

In summary, the 11B NMR spectra with the fluoride-coordinated method were devel-
oped to in situ monitor the formation of boronate esters in macromolecules. Boronic acids
and boronate esters react with TBAF to yield trifluoroborates and fluoroboronate esters.
Remarkably, adding fluoride ions did not alter the equilibrium between the boronic acid
and boronate ester. Amine-coordinated boronate esters remain unaffected under similar
conditions. As a result, three different boronic acid derivatives exhibit distinct signals at 3,
9, and 14 ppm in the 11B NMR spectra after being treated with TBAF. For the first time, the
equilibrium among boronic acids, boronate esters, and amine-coordinated boronate esters
was measured in situ. Despite the additional TBAF required for measurements, this method
could monitor the progression of the formation of boronate esters and amine-coordinated
derivatives in a mixture of boronic acids and the compound with cis-diols.

The results of this investigation suggest that precipitation is a better purification
method than chromatography. Although both methods hydrolyzed the boronate esters,
72% of the boronate esters remained after precipitation. This method was also used to
identify the ratio of intermolecular amine-coordinated boronate esters. Based on the result
of the TBAF–11B NMR analysis, 1 equivalent of dopamine was enough to convert all boronic
acids to boronate esters in dendrimer 16. A further spectrum analysis suggested that 35% of
the N–B coordination was found in the products. This study sheds light on the mechanistic
investigation and application of dynamic covalent boronate esters in macromolecules.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16233258/s1, Scheme S1: Synthetic scheme of boronate
ester conjugated G2 PAMAM dendrimer. Figure S1: 1H NMR (A), 13C NMR (B) and 11B NMR (C)
spectra of compound 2 recorded in DMSO-d6 at 300 K. Figure S2: 1H NMR (A) and 13C NMR (B)
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spectra of compound 6 recorded in CD3OD at 300 K. Figure S3: 1H NMR (A) and 13C NMR (B)
spectra of compound 7 recorded in CDCl3 at 300 K. Figure S4: 1H NMR (A) and 13C NMR (B) spectra
of compound 9 recorded in CD3OD at 300 K. Figure S5: 1H NMR (A) and 13C NMR (B) spectra
of compound 11 recorded in CDCl3 at 300 K. Figure S6: 1H NMR (A) and 13C NMR (B) spectra
of compound 12 recorded in CDCl3 at 300 K. Figure S7: 1H NMR (A) and 13C NMR (B) spectra
of compound 13 recorded in CDCl3 at 300 K. Figure S8: 1H NMR (A) and 13C NMR (B) spectra
of compound 16 recorded in D2O at 300 K. Figure S9: 11B NMR spectra of (a) boronic acid 1a, (b)
1a titrated with TBAF (1 equiv), (c) 1a with TBAF (3 equiv), (d) tetra-n-butylammonium phenyl
trifluoroborate (3a), (e) potassium (4-carboxyphenyl)trifluoroborate (3b). All spectra were acquired
in DMSO-d6. Figure S10. 11B NMR spectra of 1 mM of ARS mixed with (a) 16 mM (b) 4 mM of PBA
in 5 min incubation time with 3, 5, 10 equiv of TBAF. All spectra were acquired in DMSO-d6. Figure
S11. 11B NMR spectra of 1 mM of ARS reacted with 4 mM of PBA in 30 min, 150 W by microwave
with 3, 5, 10 equiv of TBAF. All spectra were acquired in DMSO-d6. Figure S12: 11B-NMR spectra of
boronate ester 8a with TBAF (3 equiv), (a) before puri-fication, (b) after Sephadex® LH-20 column
purification, (c) after precipitation by EtOH/ether. All spectra were acquired in DMSO-d6. Figure
S13: Deconvolution result for Figure S12; 11B-NMR spectra of boronate ester 8a with TBAF (3 equiv),
(a) before purification, (b) after Sephadex® LH-20 column purification, (c) after precipitation by
EtOH/ether. All spectra were acquired in DMSO-d6. Figure S14: 11B-NMR spectra of boronate ester
8 at various conditions of equiv of catechol 7 and reaction time. All the sample were added TBAF
(3 equiv), (a) 7 to 6 (2:1), reaction time: 1 d (Table 2, entry 1), (b) equiv of 7 to 6 (1:1) (Table 2, entry
2), reaction time: 5 d, (c) equiv of 7 to 6 (2:1) (Table 2, entry 3), reaction time: 5 d. All spectra were
acquired in DMSO-d6. Figure S15: Deconvolution result for Figure S14; 11B-NMR spectra of boronate
ester 8 with TBAF (3 equiv), (a) 7 to 6 (2:1), reaction time: 1 day (Table 2, entry 1), (b) equiv of 7 to 6
(1:1) (Table 2, entry 2), reaction time: 5 d, (c) equiv of 7 to 6 (2:1) (Table 2, entry 3), reaction time: 5 d.
All spectra were acquired in DMSO-d6.
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