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Abstract: This study introduces a resilient and adaptive multi-robot coverage path planning approach
based on the Boustrophedon Cell Decomposition algorithm, designed to dynamically redistribute
coverage tasks in the event of robot failures. The proposed method ensures minimal disruption and
maintains a balanced workload across operational robots through a propagation-based redistribution
strategy. By iteratively reallocating the failed robot’s coverage path to neighboring robots, the method
prevents any single robot from becoming overburdened, ensuring efficient task distribution and
continuous environmental monitoring. Simulations conducted in five distinct environments, ranging
from simple open areas to complex, obstacle-rich terrains, demonstrate the method’s robustness
and adaptability. A key strength of the proposed approach is its fast and efficient task reallocation
process, achieved with minimal propagation cycles, making it suitable for real-time applications
even in complex scenarios. The approach reduces task variance and maintains balanced coverage
throughout the mission.

Keywords: boustrophedon decomposition; multi-robot coverage path planning; propagation; multi-robot
systems

1. Introduction

The deployment of multi-robot systems has experienced significant growth across a
wide range of applications, including large-scale surveillance [1], agricultural
automation [2], search and rescue operations [3], geophysical surveys, and environmental
monitoring [4–7]. This growing trend is largely due to the inherent scalability, efficiency,
and ability of multi-robot systems to cover extensive and complex environments more
effectively than single-robot systems. As these systems advance in sophistication, the need
for more refined and adaptive coverage path planning (CPP) methods becomes increasingly
critical, particularly for missions requiring extended, uninterrupted monitoring, such as
environmental conservation and infrastructure inspection [5,8]. The primary challenge
faced by multi-robot systems is maintaining mission continuity in the face of unforeseen
circumstances such as hardware malfunctions, robot failures, or power depletion [1,9]. The
incapacitation of a robot can create significant gaps in coverage, which may jeopardize
mission success. Recent studies have emphasized the importance of addressing these
issues through dynamic path replanning and task redistribution among the remaining
functional robots.

In this paper, we propose a novel approach to multi-robot coverage path planning de-
signed to address these challenges. Our method, based on the Boustrophedon Cell Decom-
position (BCD) algorithm [10], introduces dynamic task reassignment and energy-aware
path adjustments. These enhancements allow the robots to autonomously redistribute their
responsibilities in the event of a failure or low battery, minimizing the impact on overall
mission performance. The key contributions of this paper are twofold:
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• We introduce a task redistribution framework, applying the concept of propagation to
BCD-based multi-robot coverage technology, ensuring balanced coverage even in the
event of robot failure, and propose a new algorithm.

• We validate the performance of our approach through simulations in various en-
vironments, ranging from obstacle-rich to open spaces, and demonstrate that the
propagation process leads to equalized task distribution over time.

2. Related Work

CPP plays a critical role in multi-robot systems, particularly in domains such as envi-
ronmental monitoring, search and rescue, and agricultural automation, where complete
area coverage is essential. One of the seminal methods in CPP is the BCD algorithm,
introduced by Choset et al. [10]. The BCD algorithm is a grid-based path planning method
that divides the workspace into discrete cells, allowing robots to cover each cell in a sys-
tematic, back-and-forth motion. This boustrophedon motion effectively manages complex
environments by minimizing unnecessary turns, making it particularly advantageous for
structured coverage tasks. In addition, this method guarantees full coverage in structured
environments and has been widely adopted due to its computational efficiency. However,
classical CPP methods [11–13], including BCD [14], often struggle in dynamic environments,
where unexpected robot failures or environmental changes may occur.

Gabriely et al. [15] utilized a spanning tree to systematically guide a single robot’s
movements, ensuring full coverage of the target area. However, the method is primarily
designed for a single robot, which limits its scalability and adaptability in dynamic multi-
robot systems. Tang et al. [16] designed the MSTC* algorithm for multi-robot coverage path
planning to operate under physical constraints such as limited robot maneuverability and
environmental obstacles. Additionally, Tang et al. [17] introduced a large-scale multi-robot
coverage path planning method using a local search algorithm to optimize task allocation
and path efficiency. Their approach addresses scalability by focusing on localized improve-
ments in robot paths, enhancing overall coverage performance. In structured environments,
Lu et al. [18] proposed the TMSTC* algorithm, which minimizes unnecessary turns, re-
duces energy consumption, and increases efficiency. While these methods perform well
under certain conditions, in scenarios where all points within an area must be sufficiently
visited, such as in cleaning tasks, BCD-based methods remain widely used due to their
efficiency. Kapoutsis et al. [19] introduced the DARP algorithm, which optimally divides
the target environment into regions to ensure balanced and efficient coverage. Similarly,
Karapetyan et al. [20] developed an efficient multi-robot coverage strategy for known
environments, focusing on minimizing redundant coverage and improving coordination.
Sun et al. [11] applied genetic algorithms for multi-robot path planning to ensure complete
coverage and optimal task distribution through iterative refinement. For specific applica-
tions like geophysical surveys, Azpúrua et al. [21] proposed a method based on hexagonal
segmentation, which ensures uniform coverage and minimizes overlap. Huang et al. [22]
addressed the unique challenges of environments with multiple land cover types by design-
ing a CPP algorithm that adapts to terrain characteristics. The comprehensive survey in [4]
categorized CPP methods and highlighted the growing need for robustness in multi-robot
systems, particularly regarding task allocation and energy efficiency, which are critical
for large-scale missions. In surveillance systems, Gong et al. [23] proposed hierarchical
area-based and path-based heuristic approaches that enhance scalability and adaptability,
optimizing coverage in both simple and complex environments. While these studies focus
on optimizing coverage efficiency, for long-term missions, it is also essential to incorpo-
rate fault-tolerant mechanisms, as in our study, ensuring balanced task assignment and
resilience to robot failures.

As multi-robot systems became more sophisticated, researchers began focusing on
dynamic and fault-tolerant solutions. Zhou et al. [24] proposed a reactive task allocation
and path planning framework for heterogeneous multi-robot teams, including quadrupedal
and wheeled robots. When robots encounter disturbances, the framework employs lo-
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cal and global reallocation strategies, allowing tasks to be completed without entirely
replanning. Fazli et al. [25] introduced a method for multi-robot repeated area coverage,
emphasizing task partitioning and workload balance in dynamic environments. Their
method ensures that coverage tasks are consistently distributed among robots, even in the
event of a robot failure. Building upon this, our work introduces a fault-tolerant mecha-
nism that redistributes tasks dynamically, maintaining balanced coverage even as robots
experience failures. Song et al. [9] presented the CARE framework, enhancing resilience
in multi-robot systems by redistributing tasks adaptively during failures in unknown
environments. While CARE focuses on unknown environments, our approach employs
BCD for structured path planning and dynamic task redistribution, ensuring adaptability
and balanced coverage across diverse terrains. Although CARE’s approach differs slightly
from ours, its redistribution methodology represents a recent and relevant study, making
it a suitable benchmark for comparison [1]. CARE is a representative CPP study that
responds when a robot problem occurs and was chosen as a comparison group to validate
the efficient and balanced coverage performance of the proposed study. Lee [1] made a
significant contribution by developing a real-time coverage area reassignment strategy for
multi-robot surveillance systems, dynamically redistributing the failed robot’s coverage
area to minimize mission disruption. Our research extends the real-time reassignment strat-
egy [1] by integrating it into a BCD-based framework, enabling both structured coverage
and real-time failure handling. Rekleitis et al. [14] also focused on BCD for multi-robot
coverage, primarily addressing coordination to avoid redundant coverage. However, their
approach did not account for dynamic failures, which our method addresses by incorporat-
ing task redistribution to ensure no coverage gaps occur due to robot failures. Scalability
remains a challenge in large-scale missions, and Collins et al. [26] tackled this by dividing
complex environments into smaller regions for each robot, enabling efficient coverage
in non-convex areas. Our approach builds on this by adding real-time fault tolerance,
dynamically reassigning tasks when robots fail. Other specialized CPP methods such as the
method described in [2] for agricultural automation and Cai et al.’s [8] method for maritime
search and rescue, further highlight the need for adaptability in specific domains. We build
on these methods by integrating a fault-tolerant mechanism to ensure robust and efficient
coverage across various environmental conditions. In terms of 3D environments, Almad-
houn et al. [27] introduced a hybrid CPP approach for volumetric coverage, particularly
useful in geophysical surveys or 3D mapping. The integration of fault-tolerant features in
multi-robot systems continues to be a major research focus. For example, Bähnemann [28]
revisited BCD, incorporating the Generalized Traveling Salesman Problem (GTSP) to opti-
mize path length and coverage efficiency. However, their method did not address robot
failures directly, which is a critical focus of our work.

3. Problem Description

In multi-robot coverage tasks, ensuring efficient and balanced coverage of large-scale
environments becomes a critical challenge, particularly when unexpected robot failures
occur during mission execution. This study addresses the problem of redistributing the
coverage responsibility of a failed robot among the remaining operational robots, ensuring
that the mission objectives are maintained without significant disruptions or inefficiencies.

Consider a multi-robot system consisting of N autonomous robots R = {R1, R2, ..., RN}
operating in a given environment M. Each robot is initially assigned a coverage path gener-
ated using a decomposition-based algorithm, such as the BCD method, ensuring efficient
and complete coverage of the environment. Each robot’s path consists of multiple feature
nodes that the robot must visit to cover its assigned area. When a robot Rk becomes non-
operational due to factors such as hardware malfunctions or battery depletion, a coverage
gap arises in its previously assigned path. The primary problem then is to redistribute
the coverage tasks of the failed robot among the remaining N − 1 robots in a way that
minimizes imbalance and ensures efficient completion of the mission. This redistribution
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must be handled in a manner that avoids overburdening any single robot and maintains
overall system efficiency.

3.1. Key Assumptions and Requirements

In addressing the problem of balanced MCPP, several key assumptions and require-
ments underpin the proposed method, ensuring its applicability and effectiveness in
real-world scenarios. These assumptions and requirements are summarized as follows:

• It is assumed that the BCD algorithm generates collision-free and non-overlapping
paths for each robot. The paths are divided based on the sensing range RS of the
robots, ensuring that each robot can efficiently cover its assigned area.

• Robots may experience unexpected failures during the mission, and these failures
result in unmonitored areas. The failed robot Rk has neighboring robots RL1

N capable
of absorbing the additional coverage tasks.

• These neighboring robots are determined based on their spatial proximity to Rk,
and they form an adjacency structure that facilitates the redistribution process.

• Redistribution aims to minimize the variance in the workload across the remaining
robots. This involves ensuring that the additional coverage responsibilities are allo-
cated in proportion to each robot’s current task load and their proximity to the failed
robot’s path.

• It is assumed that each robot can dynamically adjust its path to absorb new coverage
tasks without significantly deviating from its original path plan.

• The proposed solution leverages a propagation-based approach [1], where redistri-
bution starts with the nearest neighboring robots and progressively extends to more
distant robots if necessary. This ensures that the additional workload is not concen-
trated on a single robot, maintaining a balanced task distribution.

• It is assumed that the robots have a reliable communication mechanism to share
coverage information, allowing them to coordinate effectively during the redistribu-
tion process. This communication is crucial for ensuring that the coverage paths are
adjusted in a synchronized manner across the entire team.

3.2. Objective

The primary objective of this study is to develop a robust and adaptive method
for redistributing coverage tasks when a robot fails, ensuring that the remaining robots
can continue the mission without significant interruptions. The proposed method must
maintain a balanced task distribution, minimize the overall coverage time, and adapt to
dynamic changes in robot availability. By considering these assumptions and focusing
on an iterative, propagation-based redistribution strategy, this study aims to develop
a comprehensive solution that allows multi-robot systems to handle failures efficiently,
ensuring that mission objectives are achieved even in dynamic and uncertain operational
environments. This sets the foundation for the detailed methodology discussed in the
following section, where the proposed propagation-based region allocation and path
replanning strategy are implemented to address the problem effectively.

4. Proposed Method

The proposed multi-robot path redistribution method is grounded in the BCD algo-
rithm, where the coverage path of a failed robot is adaptively redistributed to the remaining
robots using an iterative reassignment strategy. Figure 1 illustrates the flowchart of the
proposed method, which comprises five main stages. Initially, the environment map and
the number of robots are provided, with the map being either derived from an SLAM
(simultaneous localization and mapping) process or simplified and approximated as a
polygonal representation. The BCD algorithm is then applied to generate multi-robot
coverage paths that effectively divide the overall environment among all robots. In the
event of a robot failure, a coverage gap emerges, as shown in the second stage of the
flowchart. The proposed method then enters the third stage, where an initial task reassign-
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ment takes place to redistribute the failed robot’s coverage path segments to the nearest
robots. The fourth stage involves iterative reassignment, where the remaining robots adjust
their paths through propagation to ensure a balanced coverage of the environment. This
process continues until the propagation is complete. As a result, the proposed method
ensures that the overall mission objectives are maintained efficiently, despite the dynamic
changes in robot availability.

Figure 1. Flowchart of the proposed method.

4.1. MCPP Based on BCD

The first step of the proposed method involves conducting MCPP using the BCD
algorithm. This approach enables efficient coverage by dividing the given environment
into multiple polygonal cells, represented by the set P = {P1, P2, . . . , Pk}, where k denotes
the total number of cells generated by the BCD algorithm. Within each of these cells,
boustrophedon paths are established while ensuring that each path remains connected and
collision-free, even in the presence of multiple obstacles. By examining potential collision
points, the spacing between paths within each cell is adjusted according to the robot’s
sensing range RS, ensuring efficient coverage without redundant overlaps.

For MCPP involving N robots, the entire path set P is evenly divided among the robots
to form N distinct coverage paths. The resulting paths allow each robot to effectively cover
a specific portion of the environment. The overall coverage path CPi for the i-th robot is
derived using the following equation:

CP1:N = BCD(M, N, RS), (1)

where M denotes the map representing the environment. N is the total number of robots
and RS is the sensing distance used to adjust the path spacing within each cell. The coverage
path CPi allocated to the i-th robot consists of an ordered set of feature nodes that the robot
must visit during the coverage task:

CPi = {cpi,1, cpi,2, . . . , cpi,mi}, (2)

where mi represents the total number of feature nodes assigned to the i-th robot. These
feature nodes vary for each robot, depending on the complexity of the cell structure and the
number of turning points along their respective paths. The length of each robot’s coverage
path LPi is a critical parameter, computed as the sum of Euclidean distances between
consecutive feature nodes along the path:

LPi =
mi−1

∑
j=1
∥cpi,j − cpi,j+1∥2, (3)

where ∥ · ∥2 is the Euclidean norm between two consecutive nodes cpi,j and cpi,j+1. This
ensures that the length of the coverage path accurately reflects the distance traveled by
the robot. To further enhance coordination among robots, it is essential to consider the
inter-robot distances. The distance between two robots Ri and Rj, denoted as dist(Ri, Rj), is
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defined as the minimum Euclidean distance between all pairs of nodes from their respective
coverage paths CPi and CPj. This inter-robot distance is calculated as follows:

dist(Ri, Rj) = min
cpi,a∈CPi
cpj,b∈CPj

∥∥∥cpi,a − cpj,b

∥∥∥
2
, (4)

where cpi,a and cpj,b represent individual nodes from the coverage paths CPi and CPj,
respectively. The distance function dist(Ri, Rj) is vital for determining the proximity
between robots, which plays a crucial role when dynamically redistributing the coverage
path of a failed robot to its neighboring robots. This ensures efficient path reallocation
while maintaining balanced coverage throughout the multi-robot system. By integrating
the BCD algorithm’s coverage path planning with these distance calculations, the proposed
method ensures that each robot covers its designated area optimally while being capable
of adapting to dynamic changes, such as robot failures, ensuring a comprehensive and
balanced multi-robot coverage strategy.

4.2. Tree Construction for the Excluded Robot

When a robot Rk becomes incapacitated due to factors such as battery depletion
or hardware malfunction, a coverage gap appears in its previously assigned path CPk.
To effectively resolve this and redistribute the uncovered area to other operational robots,
an adjacency tree, T, is constructed with Rk as the root node. As shown in Figure 2,
the robots nearest to the excluded robot Rk, denoted as RL1

N , form the first level L2 of the
adjacency tree. Subsequently, robots closest to those in level L2 that have not yet been
incorporated into the tree structure form the next level, L3. This hierarchical process
continues, with each successive level consisting of the nearest robots not already included,
until all relevant neighboring robots are accounted for. The total number of levels in
the tree depends on the configuration and distribution of the coverage paths within the
given environment.

Figure 2. Illustration of the adjacency tree used for path redistribution among neighboring robots
when a robot, Rk, failure occurs.

4.3. Propagation-Based Coverage Redistribution and Path Replanning

The core idea of the proposed method is to redistribute the coverage path CPk of
the excluded robot Rk to its neighboring robots RL1

N using a propagation-based approach,
particularly in BCD-based CPP. A straightforward method might involve dividing CPk

equally among the robots in RL1
N based on their number, |RL1

N |. However, this simple
division often results in an imbalanced task distribution, as certain robots, especially those
closest to the excluded robot, may inherit a disproportionate workload. In this study, task
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allocation is based on the length of the coverage path, and the balance of the workload is
measured using the variance σbalancing, which is computed as follows:

σbalancing =
∑N

j=1,j ̸=k
(

LPj − LP
)2

N − 1
, (5)

LP =
∑N

j=1,j ̸=k LPj

N − 1
, (6)

where LP represents the mean coverage path length across all operational robots, excluding Rk.
To minimize σbalancing, a propagation-based strategy is required, which is particularly

well suited for handling boustrophedon-like coverage paths. Consider the i-th robot among
the set RL1

N . Suppose this robot has a subtree size Ni∈L1 relative to the total N− 1 operational
robots. The allocation ratio αi,assign for this robot is then determined by

αi,assign =
Ni∈L1 + 1

N − 1
, (7)

where the numerator N
i∈R

L1
N
+ 1 represents the number of child robots included in the

subtree of the robot, along with the robot itself, compared to the total number N − 1.
Using this allocation ratio αi,assign, each robot in RL1

N inherits a portion of the coverage
path from CPk proportional to αi,assign. For example, if N = 11 and the i-th robot has a
subtree size of 5, then αi,assign = 6

10 = 0.6. Applying this ratio, the total coverage path
length Li of the i-th robot is updated as follows:

Li = Li + αi,assign · Lk, (8)

where Lk represents the length of the excluded robot’s coverage path. Due to the char-
acteristics of the BCD method, the size of RL1

N , denoted as |RL1
N |, is typically less than 2.

Additionally, the extra path segments can be conveniently assigned to the nearest robots
by extending the endpoints of their existing coverage paths. This adjustment primarily
involves modifying the endpoints cpi,1 or cpi,mi , which are closest to CPk, to accommodate
the reassigned coverage.

After this initial reassignment, the robots within RL1
N experience an unbalanced increase

in their coverage paths. To address this imbalance, a propagation strategy is employed
iteratively, wherein child robots of those in RL1

N adjust their coverage path lengths according
to the following equation:

Lchild = Lchild + αchild,assign · Lk, (9)

αchild,assign =
Nchild + 1

N − 1
, (10)

where Lchild represents the coverage path lengths of the child in the adjacency tree. The term
αchild,assign represents the allocation ratio with Nchild being the cardinality (size) of the
subtree rooted at the child node. The product αchild,assign · Lk determines how much of the
parent’s coverage path the child robot should inherit. Consequently, the parent’s coverage
path length should be reduced as follows:

Lparent = Lparent − αchild,assign · Lk. (11)

As the propagation progresses through the levels of the adjacency tree, Lchild and
Lparent are iteratively updated until all robots corresponding to the leaf nodes have received
their adjusted coverage paths. For example, the j-th node, which is a child node, has
its path CPj extended towards its parent’s coverage path according to αj,assign. However,
in subsequent iterations, this node becomes a parent node, and its path will be reduced as
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its own child node’s coverage path increases. The final updated coverage path for the j-th
node is denoted as CP′j . Algorithm 1 outlines the process of redistributing the coverage
path of a failed robot Rk to its neighboring robots using a propagation-based approach
within the context of BCD-based CPP. The algorithm begins by taking as input the set of
coverage paths CP, the total number of operational robots N, and the failed robot Rk. It
constructs an adjacency tree T, where Rk serves as the root node, and the neighboring
robots RL1

N form the first level of the tree. Next, for each robot i ∈ RL1
N , the algorithm

calculates an allocation ratio αi,assign based on the size of the robot’s subtree. This ratio
determines the portion of the failed robot’s coverage path that will be inherited by robot i.
The robot’s coverage path is then updated accordingly. Following the initial redistribution
to the robots in RL1

N , the algorithm iteratively propagates the remaining coverage path
further down the hierarchy. For each robot in subsequent levels of the adjacency tree,
similar calculations are performed to allocate and update the coverage paths of child robots
and their corresponding parent robots. The propagation process continues until all robots
in the tree have received their adjusted coverage paths, ensuring a balanced distribution
of the failed robot’s workload. The final result is the updated set of coverage paths CP′,
which the Algorithm 1 returns.

Algorithm 1 Propagation-Based Coverage Redistribution

1: Input: Coverage paths CP, N, Failed robot Rk
2: Output: Updated coverage paths CP′

3: Parent← ∅
4: Construct the adjacency tree T based on Rk

5: for each child robot i ∈ RL1
N do

6: Calculate αi,assign from (7)
7: Calculate Li from (8)
8: CP′i ← UpdatePaths(CPi, Li, αi,assign)
9: Parent← Parent∪ {i}

10: end for
11: while Parent ̸= ∅ do
12: j← Extract(Parent)
13: Child← ExtractChild(T, j)
14: Calculate αChild,assign from (10)
15: Calculate LChild from (9)
16: Calculate Lj from (11)
17: CP′Child ← UpdatePaths(CPChild, LChild, αChild,assign)

18: CP′j ← UpdatePaths(CP′j , Lj, αChild,assign)

19: Parent← Parent∪ {Child}
20: Parent← Parent \ {j}
21: end while
22: return Updated paths CP′

5. Simulation
5.1. Simulation Environments

In this study, five different environments were used to evaluate the proposed MCPP
and redistribution method, as shown in Figure 3. These environments vary in complexity
and coverage challenges, providing a comprehensive test of the algorithm’s performance.
Figure 3a represents a simple environment without obstacles, assessing basic coverage effi-
ciency. Figure 3b,c introduce two and three obstacles, respectively, allowing us to evaluate
how the algorithm handles obstacle avoidance and path redistribution. Figure 3d,e contain
multiple lanes, testing the algorithm’s ability to balance coverage across segmented regions,
relevant in scenarios like agriculture or warehouse management. These five simulation
environments provide a diverse set of challenges to thoroughly assess the adaptability,
efficiency, and robustness of the multi-robot coverage path replanning methods. All robots
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in the simulation operate at the same travel speed and feature 360-degree omnidirectional
navigation. Additionally, with holonomic motion capabilities, the robots are not limited by
a turning radius, allowing for greater maneuverability. By evaluating the algorithm across
these varied conditions, we demonstrate its capability to handle real-world complexities
and ensure reliable performance in different types of environments.

(a) (b) (c) (d) (e)
Figure 3. Simulation environments. (a) Map 1 represents a simple open area. (b) Map 2 and (c) Map
3 show areas with multiple obstacles. In addition, (d) Map 4 and (e) Map 5 represent areas with
multiple lanes.

5.2. Simulation Results: Multi-Robot Coverage Path Planning

The simulation results provide a comprehensive evaluation of the proposed MCPP
and redistribution method across five distinct environments. First, the BCD-based MCPP
was performed to assign coverage tasks to all robots. Figures 4 and 5 show the coverage
path planning results for 10 robots and 20 robots, respectively. Figure 4a shows the coverage
paths for 10 robots in an open environment with no obstacles. The BCD algorithm efficiently
divides the area among the robots, ensuring minimal overlap. In Figure 4b, two obstacles are
introduced, and the algorithm maintains balanced coverage across the area, demonstrating
its ability to allocate tasks even in more complex environments. Figure 4c further adds
multiple obstacles, highlighting the algorithm’s ability to adjust coverage distribution
in increasingly complex settings. Figure 4d,e depict lane-based environments, where
the BCD algorithm ensures balanced and efficient coverage across the segmented lanes,
applicable in structured environments such as warehouses or agricultural fields. Similarly,
Figure 5 presents the results for 20 robots. In Figure 5a, the open environment is covered
efficiently, even with the increased number of robots. Figure 5b,c introduce obstacles,
and the algorithm maintains efficient and balanced coverage. Figure 5d,e show the lane-
based environments, where the algorithm continues to manage segmented areas effectively,
ensuring minimal overlap and maintaining balanced coverage tasks across the lanes.

(a) Map 1 (b) Map 2 (c) Map 3 (d) Map 4 (e) Map 5

Figure 4. BCD-based MCPP results for 10 robots. (a–e) represent the results of the MCPP for each map.

(a) Map 1 (b) Map 2 (c) Map 3 (d) Map 4 (e) Map 5

Figure 5. BCD-based MCPP results for 20 robots. MCPP results for 10 robots. (a–e) represent the
results of the MCPP for each map.
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5.3. Simulation Results: Balanced Path Redistribution

The simulation results offer a comprehensive evaluation of the proposed MCPP and
redistribution method across five distinct environments. These results highlight how
the proposed method effectively adapts to various challenges, maintaining efficient and
balanced coverage even in the event of robot failures. The performance of the proposed
method is also compared to a method that applies only initial propagation, as well as a
similar approach to [9], which considers only adjacent neighbors.

5.3.1. Simple Open Environment (Map 1)

Figure 6 illustrates the sequence of propagation stages following the failure of a robot
in a simple open environment. In Figure 6a, the failed robot is excluded (represented as a
blank space), resulting in a coverage gap. Figure 6b–h depict the progressive adjustment of
neighboring robots as they modify their paths to compensate for the lost coverage. This
iterative propagation process redistributes the additional workload among the remaining
robots, ultimately achieving a balanced state. The final stage demonstrates the completion
of the redistribution process, with all robots evenly sharing the coverage tasks. These
results highlight the robustness of the proposed method in managing unexpected robot
failures while maintaining efficient and balanced coverage.

Figure 6. Task exclusion and propagation progress. In (a), the failure of a robot is shown.
(b–h) depict the sequence of the propagation process.

In Figure 7, the proposed method is compared to an adjacent-neighbors-based ap-
proach for redistributing the coverage tasks after a robot failure. The exclusion of the robot
(see Figure 7a) causes an imbalance in the coverage distribution. The adjacent-neighbors-
based approach (see Figure 7b) reallocates the tasks but fails to achieve a balanced workload,
as evident from the uneven coverage paths. However, the initial propagation stage (see
Figure 7c) of the proposed method shows neighboring robots extending their paths to cover
the gap. By the final propagation stage (see Figure 7d), the coverage paths are balanced,
ensuring that all robots share the tasks equally, highlighting the efficiency of the proposed
method over the adjacent-neighbors-based approach. Similar to the analysis of Figure 7,
Figure 8 presents a comparison for a larger team of 19 robots. The exclusion of a robot
(see Figure 8a) creates a coverage gap, and the adjacent-neighbors-based approach (see
Figure 8b) results in a suboptimal distribution of tasks. The initial propagation stage (see
Figure 8c) shows that the proposed method begins to distribute the additional workload
more effectively than the adjacent-neighbors-based approach. The final propagation stage
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(see Figure 8d) demonstrates that the proposed method achieves a balanced distribution,
reducing the workload variance and maintaining coverage efficiency across the robot team.

(a) Exclusion of a robot (b) Adjacent-neighbors-based approach

(c) Initial propagation (d) Proposed (final propagation)

Figure 7. Comparative redistribution results with nine robots after the exclusion of one robot.
(a) Exclusion of a robot, resulting in a coverage gap. (b) Redistribution using the adjacent-neighbors-
based approach. (c) Initial propagation stage of the proposed method. (d) Final propagation stage of
the proposed method.

Table 1 summarizes the workload balancing results after applying the proposed
propagation-based path redistribution method, along with a comparison to the adjacent-
neighbors-based approach. The standard deviation of workload imbalance, σbalancing,
quantifies the differences in coverage distribution among the robots. After the first prop-
agation, σbalancing remains relatively high (166,113.58 for N = 10, 29,490.88 for N = 20),
reflecting an initial imbalance due to the abrupt reallocation of tasks following a robot
failure. However, after the final propagation stage, this imbalance is significantly reduced,
dropping to 0 for N = 10 robots and 0.97 for N = 20, demonstrating the effectiveness
of the proposed method. In contrast, the adjacent-neighbors-based approach results in
higher imbalance values (169,400.0 for N = 10 and 23,072.55 for N = 20), highlighting the
superior performance of the propagation-based approach in achieving a more balanced
coverage distribution.
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(a) Exclusion of a robot (b) Adjacent-neighbors-based approach

(c) Initial propagation (d) Proposed (final propagation)

Figure 8. Comparative redistribution results with 19 robots after the exclusion of one robot.
(a) Exclusion of a robot, leaving a coverage gap. (b) Redistribution using the adjacent-neighbors-based
approach. (c) Initial propagation stage of the proposed method. (d) Final propagation stage of the
proposed method.

Table 1. Workload balancing analysis for different approaches in Map 1.

Approach σbalancing

Adjacent-neighbors-based approach (N = 10) 169,400.0
Initial propagation (N = 10) 166,113.58

Proposed (final propagation) (N = 10) 0

Adjacent-neighbors-based approach (N = 20) 23,072.55
Initial propagation (N = 20) 29,490.88

Proposed (final propagation) (N = 20) 0.97

5.3.2. Environments with Two Obstacles (Map 2)

In the environment with two obstacles, the proposed method is compared to the
adjacent-neighbors-based approach for redistributing the coverage tasks after a robot
failure, as shown in Figure 9. The exclusion of the robot causes an imbalance in the coverage
distribution, as shown in Figure 9a. The adjacent-neighbors-based approach, as shown
in Figure 9b, reallocates the tasks but fails to achieve a balanced workload, as evident
from the uneven coverage paths. However, the initial propagation stage, as shown in
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Figure 9c, of the proposed method shows a significant improvement, with neighboring
robots extending their paths to cover the gap. By the final propagation stage, as shown
in Figure 9d, the coverage paths are balanced, ensuring that all robots share the tasks
equally, highlighting the efficiency of the proposed method over the adjacent-neighbors-
based approach.

A similar analysis is applied to a larger team of 19 robots, as presented in Figure 10.
The exclusion of a robot, as shown in Figure 10a, creates a coverage gap, and the adjacent-
neighbors-based approach, as shown in Figure 10b, results in a suboptimal distribution of
tasks. The initial propagation stage, as shown in Figure 10c, demonstrates that the proposed
method begins to distribute the additional workload more effectively than the adjacent-
neighbors-based approach. The final propagation stage, as shown in Figure 10d, illustrates
that the proposed method achieves a balanced distribution, reducing the workload variance
and maintaining coverage efficiency across the robot team.

(a) Exclusion of a robot (b) Adjacent-neighbors-based approach

(c) Initial propagation (d) Proposed (final propagation)

Figure 9. Comparative redistribution results for 9 robots in a map with two obstacles. (a) Exclusion of
a robot, leading to a coverage gap. (b) Redistribution using the adjacent-neighbors-based approach,
resulting in an uneven coverage distribution. (c) Initial propagation stage of the proposed method,
where the workload starts to balance. (d) Final propagation stage of the proposed method, achieving
balanced coverage across all robots.

Table 2 compares the balancing results of the proposed propagation-based path re-
distribution method. The adjacent-neighbors-based approach results in high workload
imbalances (128,640.44 for N = 10, 17,524.39 for N = 20), while the initial propagation
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still shows significant imbalance. However, by the final propagation stage, the proposed
method reduces the imbalance drastically (0.17 for N = 10, 0.23 for N = 20), demonstrating
its effectiveness in achieving equitable workload distribution and maintaining coverage
efficiency, even in environments with obstacles and robot failure.

Table 2. Workload balancing analysis for different approaches in Map 2.

Approach σbalancing

Adjacent-neighbors-based approach (N = 10) 128,640.44
Initial propagation (N = 10) 130,683.70

Proposed (final propagation) (N = 10) 0.17

Adjacent-neighbors-based approach (N = 20) 17,524.39
Initial propagation (N = 20) 21,943.51

Proposed (final propagation) (N = 20) 0.23

(a) Exclusion of a robot (b) Adjacent-neighbors-based approach

(c) Initial propagation (d) Proposed (final propagation)

Figure 10. Comparative redistribution results for 19 robots after the exclusion of 1 robot.
(a) Exclusion of a robot, creating a coverage gap. (b) Redistribution using the adjacent-neighbors-
based approach, resulting in imbalanced workload distribution. (c) Initial propagation stage of the
proposed method, where redistribution begins. (d) Final propagation stage of the proposed method,
achieving balanced workload distribution across all remaining robots.
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5.3.3. Environments with Multiple Obstacles (Map 3)

The environment with multiple obstacles poses significant challenges for multi-robot
coverage. Initially, robots are assigned efficient coverage paths by the BCD algorithm
(Figures 4c and 5c). When a robot fails, a coverage gap appears, particularly in constrained
areas (Figure 11b). The adjacent-neighbors-based approach attempts redistribution but
struggles with uneven task distribution and inefficiencies (Figure 11b). In contrast, the pro-
posed method shows adaptability from the initial propagation stage, with neighboring
robots adjusting dynamically to maintain continuous coverage (Figure 11c). By the final
propagation stage, the method successfully balances the workload (Figure 11d), handling
both open areas and complex environments.

A similar analysis with 19 robots (Figure 12) shows that after a robot failure, the adjacent-
neighbors-based approach results in suboptimal distribution (Figure 12b). The proposed
method quickly addresses imbalances during propagation, leading to an evenly distributed
workload by the final stage, as shown in Figure 12c,d. This demonstrates the method’s
robustness in complex environments with larger teams.

(a) Exclusion of a robot (b) Adjacent-neighbors-based approach

(c) Initial propagation (d) Proposed (final propagation)

Figure 11. Comparative redistribution results for nine robots after the exclusion of one robot. (a) Ex-
clusion of a robot, leading to a coverage gap. (b) Redistribution using the adjacent-neighbors-based
approach, resulting in uneven workload distribution. (c) Initial propagation stage of the proposed
method, where redistribution begins. (d) Final propagation stage of the proposed method, achieving
balanced workload distribution.

Table 3 summarizes the workload balancing results after applying the proposed
propagation-based path redistribution method in environments with multiple obstacles.
The standard deviation of workload imbalance, σbalancing, highlights the effectiveness of task
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distribution. In the adjacent-neighbors-based approach, σbalancing remains high (443,814.0
for N = 10 and 60,459.49 for N = 20), indicating significant imbalance. Although the initial
propagation stage of the proposed method still shows considerable imbalance, further
adjustments are necessary as σbalancing remains high. However, after the final propagation
stage, the imbalance is almost eliminated (σbalancing of 0.69 for N = 10 and 0.64 for N = 20).
These results demonstrate the proposed method’s robustness in balancing tasks efficiently,
even in challenging scenarios where conventional methods fail to perform adequately.

(a) Exclusion of a robot (b) Adjacent-neighbors-based approach

(c) Initial propagation (d) Proposed (final propagation)

Figure 12. Comparative redistribution results for 19 robots after the exclusion of 1 robot. (a) Exclusion
of a robot, leading to a coverage gap. (b) Redistribution using the adjacent-neighbors-based approach,
resulting in uneven workload distribution. (c) Initial propagation stage of the proposed method,
where imbalances start to be addressed. (d) Final propagation stage of the proposed method,
achieving an evenly distributed workload.

Table 3. Workload balancing analysis for different approaches in Map 3.

Approach σbalancing

Adjacent-neighbors-based approach (N = 10) 443,814.0
Initial propagation (N = 10) 450,863.68

Proposed (final propagation) (N = 10) 0.69

Adjacent-neighbors-based approach (N = 20) 60,459.49
Initial propagation (N = 20) 75,733.03

Proposed (final propagation) (N = 20) 0.64
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5.3.4. Environments with Multiple Lanes (Map 4 and Map 5)

The performance of the proposed propagation-based path redistribution method is
rigorously evaluated in environments with multiple lanes and compared to the adjacent-
neighbors-based approach. Figure 13 illustrates the impact of a robot failure in such a
scenario. In Figure 13a, the failure of a robot creates a noticeable gap in the coverage,
interrupting the smooth execution of tasks. The adjacent-neighbors-based approach, shown
in Figure 13b, attempts to mitigate this issue by redistributing tasks, but fails to effectively
balance the workload. This approach overlooks the disparity in path lengths, resulting in
uneven coverage path allocation and suboptimal coverage.

(a) Exclusion of a robot (b) Adjacent-neighbors-based approach

(c) Initial propagation (d) Proposed (final propagation)

Figure 13. Comparative redistribution results for nine robots after the exclusion of one robot.
(a) Exclusion of a robot, leading to a coverage gap. (b) Redistribution using the adjacent-neighbors-
based approach, showing an uneven task distribution. (c) Initial propagation of the proposed method,
with some improvement but imbalance persisting. (d) Final propagation stage of the proposed
method, achieving a balanced workload.

Conversely, the initial propagation of the proposed method, as shown in Figure 13c,
shows some improvement as neighboring robots begin adjusting to cover the unoccupied
coverage area, though imbalance still remains. By the final propagation stage (Figure 13d),
the workload becomes well-balanced, with all robots contributing equally. This emphasizes
the proposed method’s ability to achieve efficient coverage, even in lane-constrained
environments where conventional approaches struggle to perform effectively.
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Similarly, in the case of 19 robots (Figure 14), the adjacent-neighbors-based approach
fails to balance the tasks effectively, while the proposed method successfully redistributes
the paths more efficiently.

(a) Exclusion of a robot (b) Adjacent-neighbors-based approach

(c) Initial propagation (d) Proposed (final propagation)

Figure 14. Comparative redistribution results for 19 robots after the exclusion of 1 robot.
(a) Exclusion of a robot, leading to a coverage gap. (b) Redistribution using the adjacent-neighbors-
based approach, resulting in uneven task distribution. (c) Initial propagation of the proposed method,
showing partial improvement but imbalance remaining. (d) Final propagation stage of the proposed
method, achieving balanced task distribution.

In Figure 15, another experiment is conducted in a multiple lane environment. For the
case of nine robots, the failure of one robot creates an immediate gap in the coverage,
as shown in Figure 15a. The adjacent-neighbors-based approach, illustrated in Figure 15b,
attempts to reassign the tasks but fails to balance the workload, as evidenced by the uneven
path distribution. The initial propagation phase, depicted in Figure 15c, shows slight
improvement, with neighboring robots taking on the coverage of the failed robot. However,
it is in the final propagation phase, shown in Figure 15d, where the full effectiveness
of the proposed method becomes clear. The coverage paths extend evenly across the
environment, ensuring that the remaining robots share the workload equally, maintaining
optimal coverage and efficiency.
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(a) Exclusion of a robot (b) Adjacent-neighbors-based approach

(c) Initial propagation (d) Proposed (final propagation)

Figure 15. Comparative redistribution results for 9 robots in an environment with multiple segmented
areas. (a) Exclusion of a robot, resulting in a coverage gap. (b) Redistribution using the adjacent-
neighbors-based approach, showing uneven task distribution. (c) Initial propagation of the proposed
method, showing some improvement but still imbalanced. (d) Final propagation stage of the proposed
method, achieving a well-balanced workload.

In the case of 19 robots, as shown in Figure 16, the impact of a single robot failure
is similarly observed, as depicted in Figure 16a. The adjacent-neighbors-based approach,
represented in Figure 16b, again fails to adequately redistribute the tasks, leaving some
robots overburdened while others remain underutilized. The initial propagation phase,
shown in Figure 16c, begins to smooth out the imbalance, but it is not until the final
propagation phase, in Figure 16d, that the proposed method achieves a well-balanced
redistribution. The result is a more evenly distributed workload. Both figures highlight
the significant advantages of the proposed propagation-based redistribution method over
the adjacent-neighbors-based approach. By allowing for dynamic task redistribution,
the proposed method not only restores coverage in the affected areas but also ensures
that the workload remains balanced across all operational robots, even in the multiply
segmented environments.
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(a) Exclusion of a robot (b) Adjacent-neighbors-based approach

(c) Initial propagation (d) Proposed (final propagation)

Figure 16. Comparative redistribution results for 19 robots in an environment with multiple seg-
mented areas. (a) Exclusion of a robot, creating a coverage gap. (b) Redistribution using the
adjacent-neighbors-based approach, leaving some robots overburdened. (c) Initial propagation of
the proposed method, beginning to smooth out the imbalance. (d) Final propagation stage of the
proposed method, resulting in an evenly distributed workload.

The balancing analysis in Table 4 demonstrates the superiority of the proposed
propagation-based method in reducing workload imbalance compared to the adjacent-
neighbors-based approach. For both Map 4 and Map 5, the adjacent-neighbors-based
approach results in high imbalances, with σbalancing values of 84,242.89 and 146,288.44
for 10 robots, and 11,479.92 and 19,883.43 for 20 robots, respectively. While the initial
propagation phase still shows significant imbalances, the final propagation phase drasti-
cally improves balance, achieving near-optimal σbalancing values of 0.44 for Map 4 and 0.57
for Map 5 with 10 robots, and 0.62 for Map 4 and 0.85 for Map 5 with 20 robots. These
results clearly highlight the effectiveness of the proposed method in achieving a balanced
distribution of tasks across different environments and robot team sizes.
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Table 4. Workload balancing analysis for different approaches in Map 4 and Map 5.

Approach σbalancing for Map 4 σbalancing for Map 5

Adjacent-neighbors-based
approach (N = 10) 84,242.89 146,288.44

Initial propagation (N = 10) 85,583.36 148,587.81
Proposed (final propagation)

(N = 10) 0.44 0.57

Adjacent-neighbors-based
approach (N = 20) 11,479.92 19,883.43

Initial propagation (N = 20) 14,321.88 24,875.30
Proposed (final propagation)

(N = 20) 0.62 0.85

6. Discussion

The simulation results clearly demonstrate the effectiveness and adaptability of the
proposed MCPP and redistribution method, especially in handling robot failures across
various environments. As shown in Tables 1–4, the significant reduction in the value of
σbalancing, by an average of 1.74× 10−5, demonstrates the ability of the proposed method to
maintain balanced coverage in the presence of failures. The variance change in coverage
path lengths, depicted in Figure 17, further emphasizes this point. Each propagation
step results in a steep reduction in variance, indicating that the coverage imbalance is
quickly minimized. Initially, the variance is high due to the sudden failure of a robot
and the resulting workload imbalance. However, as the proposed propagation-based
method progresses, the variance steadily decreases, reaching very low levels by the final
propagation stage.

Figure 17. Variance in coverage path lengths according to the number of propagation executions for
overall simulations.

This dynamic redistribution strategy proves robust across diverse environments, rang-
ing from simple open spaces to complex, obstacle-laden scenarios. The proposed method
ensures that operational robots adapt their paths to cover the gaps left by failed robots,
thus maintaining the mission objectives without significant efficiency loss. Additionally,
the propagation-based approach redistributes tasks proportionally among the remaining
robots, preventing any single unit from being overburdened. This enhances the system’s
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scalability and applicability to real-world use cases, such as agricultural fields, warehouse
aisles, or long-term surveillance operations.

Moreover, the proposed method demonstrates its ability to execute in a short time,
making it feasible for real-time applications. The simulation was performed on a PC
with the following specifications: Intel i7 10700K CPU, 16 GB DDR4 RAM (3200 MHz),
and Nvidia RTX 3060 GPU. The algorithms were developed using Python 3.8.10, with the
GUI implemented through TKinter. Two key metrics were measured during the simu-
lations. TMCPP is the execution time required for the MCPP, which generates the initial
coverage paths for all robots. It represents the time taken to compute optimal paths in a
given environment before any robot failures occur. TPropagation is the execution time for one
propagation cycle, which is the core of the proposed method. After a robot failure, the prop-
agation mechanism redistributes the failed robot’s coverage tasks to the neighboring robots.
TPropagation measures how quickly this redistribution occurs. The method’s success de-
pends heavily on minimizing TPropagation to ensure minimal disruption to the coverage task.
As shown in Table 5, the average execution time for MCPP (TMCPP) across various maps was
approximately 2.94 s for 10 robots and 2.96 s for 20 robots. The propagation phase, which
handles task reallocation after a robot failure, required only 0.0148 to 0.0158 s per iteration
(TPropagation). This indicates that the proposed method can quickly redistribute tasks even
in complex environments, making it well suited for dynamic, real-world operations.

Table 5. MCPP and propagation execution times for different maps (unit: sec).

N Metric Map 1 Map 2 Map 3 Map 4 Map 5 Avg_Time

10 TMCPP 2.91 3.00 2.95 2.96 2.90 2.94
TPropagation 0.012 0.014 0.015 0.016 0.017 0.0148

20 TMCPP 2.94 3.01 2.96 2.99 2.93 2.96
TPropagation 0.015 0.015 0.016 0.016 0.017 0.0158

7. Conclusions

This study has demonstrated the robustness and adaptability of the proposed BCD-
based Multi-Robot Coverage Path Planning (MCPP) method with dynamic task redistribu-
tion, particularly in scenarios where robot failures occur. The proposed propagation-based
strategy effectively redistributes the coverage tasks of failed robots to neighboring units,
ensuring minimal disruption and maintaining balanced workload distribution across the
remaining operational robots. The simulation results across five distinct environments,
ranging from simple open areas to complex, obstacle-rich spaces, validate the method’s
ability to handle diverse and dynamic environments. The key advantage of this method lies
in its dynamic propagation approach, which progressively adjusts the coverage areas of the
remaining robots to maintain balance and efficiency. This approach significantly reduces
the variance in workload distribution, ensuring that no single robot is overburdened, even
as others fail. Our simulations show that the proposed method outperforms conventional
methods, such as the nearest neighbors-based approach, in terms of workload variance
(σbalancing) achieving values below 1, which indicates effective balanced partitioning. In ad-
dition, the method’s fast execution time and minimal propagation cycles make it suitable for
real-time applications, providing a promising solution for missions that require continuous
and reliable monitoring. In our tests, each propagation execution requires less than 0.0158 s
per iteration (TPropagation).

Future research should aim to enhance the scalability of the method for larger robot
teams, improve energy-efficient path planning, and strengthen inter-robot communication
for better coordination in complex missions, while real-world testing in environments with
communication delays and energy constraints will provide insights into its practicality and
resilience for broader field applications.
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