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Abstract: In rehabilitation, physicians plan lower-limb exercises via linear guidance. Ensuring efficacy
and safety, they design patient-specific paths, carefully plotting smooth trajectories to minimize
jerks. Replicating their precision in robotics is a major challenge. This study introduces a linear
rehabilitation motion planning method designed for physicians to use a multi-posture lower-limb
rehabilitation robot, encompassing both path and trajectory planning. By subdividing the lower
limb’s action space into four distinct training sections and classifying this space, we articulate
the correlation between linear trajectories and key joint rehabilitation metrics. Building upon this
foundation, a rehabilitative path generation system is developed, anchored in joint rehabilitation
indicators. Subsequently, high-order polynomial curves are employed to mimic the smooth continuity
of traditional rehabilitation trajectories and joint motions. Furthermore, trajectory planning is refined
through the resolution of a constrained quadratic optimization problem, aiming to minimize the
abrupt jerks in the trajectory. The optimized trajectories derived from our experiments are compared
with randomly generated trajectories, demonstrating the suitability of trajectory optimization for
real-time rehabilitation trajectory planning. Additionally, we compare trajectories generated based
on the two groups of joint rehabilitation indicators, indicating that the proposed path generation
system effectively assists clinicians in executing efficient and precise robot-assisted rehabilitation
path planning.

Keywords: rehabilitative motion planning; multi-posture lower-limb rehabilitation robot; joint
rehabilitation; high-order polynomial curves; minimized jerk

1. Introduction

It is important to restore balance and walking ability for lower-limb rehabilitation
in stroke. Li et al. [1–3] proposed that stroke leads to a decrease in knee joint flexion
on the paralyzed side, and the knee flexion should be considered in therapy. Rybar
et al. [4–6] emphasized the importance of hip flexors for standing and walking. The
enhancement of lower-limb joint flexion ability helps to improve walking ability and gait
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speed in hemiplegic patients [7,8]. In addition, Schindler-Ivens et al. [9] pointed out that
stroke patients have more passive joint extension, and additional joint extension exercise
is unlikely to improve their motor ability. Pollock et al. [10] pointed out that training
the affected lower limb in a rapid flexion mode may improve the walking and balance
ability. Gomez-Cuaresma et al. [11] suggested that prolonged passive stretching of the
entire motion range may help improve spasticity. In short, the ultimate joint flexion angle,
the ultimate joint flexion frequency, and the ultimate joint motion range are important
indicators of rehabilitation. Therefore, this paper explores the relationship between the
linear trajectories and the corresponding joint rehabilitation characteristics of the indicators.

The passive training of linear trajectory is mainly achieved by physicians dragging the
patient’s impaired limb or through the assistance of the rehabilitation robot. In traditional
therapy, physicians can plan the optimal trajectories by touch and experience. However,
when using the robot, physicians cannot learn the joints’ rehabilitation characteristics corre-
sponding to the preset trajectory, making it difficult to plan the optimal trajectory. Typical
multi-DOF lower-limb rehabilitation robots usually complete fixed trajectories through a
single driving mechanism. The Lambda [12], the symmetrical lower-limb rehabilitation
robot [13], and the CPM/CAM physiotherapy device [14] can complete circular trajectories.
Horizontal lower limbs rehabilitation robot [15] and Fisiotek [16] can complete the hori-
zontal linear trajectory. Due to their simple structure and low cost, these types of robots
usually use a relatively simple trajectory planning method. Sitting and lying exoskeleton
lower-limb rehabilitation robot is applicable to patients in multiple rehabilitation stages.
The Motion Maker [17,18] can automatically guide patients to perform passive flexion
training on the hip, knee, and ankle joints along a pre-selected trajectory. Other typical
sitting and lying rehabilitation robots include Physiotherabot [19], TEMLX2 typeD [20],
and NeXOS [21]. The sitting–lying lower-limb rehabilitation robot [22] provides a teaching
training function for physicians, allowing them to plan personalized trajectories through the
touch screen. Wearable exoskeleton robots and suspended rehabilitation robots are mainly
used for gait rehabilitation, which are mainly composed of two symmetrical mechanical
legs. Rewalk [23,24] can simulate the normal gait of the human body at an appropriate
speed based on a preset motion model. Other typical wearable exoskeleton robots include
HAL [25,26], Exo-H2 [27,28], and KineAssist [29]. Lokomat [30–32] is a suspended rehabili-
tation robot with a weight reduction suspension system. It guides motion based on preset
gait motion patterns. Other typical suspended rehabilitation robots include LOPES [33]
and ALEX [34]. The above gait rehabilitation robots either use predefined gait trajectories
or use the mapping of healthy limbs to plan the trajectory. In addition, Guo et al. [35,36]
designed a wearable teaching device for physicians to provide personalized gait trajectories
for patients.

The above lower-limb rehabilitation robots have provided various trajectory planning
methods for physicians. However, the preset gait trajectory is based on the trajectory of the
function limb, which is not suitable for the sitting and lying robot [37]. The mapping of the
function limb to the impaired limb requires auxiliary wearable equipment or structure with
both legs, unfitting for robots with a single leg. The teaching device worn on the physician’s
leg may result in a mismatch of joint mobility, leading to the trajectory exceeding a safe
range. Moreover, it requires physicians relatively more labor and time. The preset or
custom trajectory through the screen is common and easy to implement, but it is difficult
for physicians to select or draw the optimal trajectory based on the rehabilitation needs
of joints.

On the other hand, the previously reported works mostly focused on offline program-
ming tasks [38,39]. With the increasing demands for rehabilitation, an increasing number of
practical tasks require the rapid planning of movements for real-time execution. Therefore,
real-time trajectory planning for rehabilitation robots has consistently been an important
issue for generating safe and efficient trajectories. Real-time trajectory planning has been
well applied in the field of autonomous driving. However, in dynamic environments,
real-time trajectory planning based on optimization that is specifically tailored to the joint
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rehabilitation needs of rehabilitation robots is rarely found in the literature. The reported
real-time trajectory planning in the references is limited to path generation and does not
address the performance of the robot and the rehabilitation.

A multistage hemiplegic lower-limb rehabilitation robot (MHLRR) [40] was designed
by our team to conduct motor rehabilitation of lower limbs for patients with hemiplegia
in multiple recovery stages. It has several features, including multistage usability, bi-side
usability, lightweight design, mechanically adjustable limits, and easy mobility. Based on
the lower-limb rehabilitation robot, this paper will deal with the foregoing problem, which
is structured as follows:

• Step 1: Patient-specific lower-limb parameters are input into the system, leading to
the creation of a personalized lower-limb motion space. This space is subsequently
segmented into distinct training regions, categorized according to the classification
criteria established for the space. Building upon this classification, the initial and
final positions, as well as intermediate via points, are meticulously defined. These
points are strategically positioned within the valid training region of the action space,
aligning with the five joint rehabilitation indicator parameters that have been set by a
physician based on their clinical experience.

• Step 2: Utilizing the defined key points, a parametric path is constructed via a seventh-
degree polynomial curve. The coefficients of this polynomial are then fine-tuned
through optimization to accurately represent the intended rehabilitation trajectory.
The robot’s end effector is designed to minimize jerk, replicating a gentle and low-
impact rehabilitative trajectory. This mimics the approach traditionally employed by
physicians, who guide the affected limbs along such trajectories during therapy.

• Step 3: The kinematic curve of the rehabilitation trajectory is converted into joint
space through inverse kinematics. The joint movements are then transmitted to the
controller, which drives the lower-limb rehabilitation robot’s end effector to track the
generated trajectory.

The remainder of this paper is organized as follows. Section 2 introduces the multi-
posture lower-limb rehabilitation robot. Section 3 presents the rehabilitative path plan-
ning based on the joint rehabilitation indicators. In Section 4, the rehabilitative trajectory
planning-based jerk minimization is illustrated with the two experimental rehabilitative
trajectories to verify the effectiveness. Finally, the conclusions are drawn.

2. Multi-Posture Lower-Limb Rehabilitation Robot
2.1. Mechanism

As shown in Figure 1, the primary design considerations are the adaptability of
rehabilitation in multiple recovery stages and the adjustability on the bilateral training side.
For multistage rehabilitation based on Brunnstrom’s theory, the MHLRR’s training posture
must be versatile enough to support patients in lying, sitting, and standing positions,
aligning with their stages of recovery. Furthermore, the robot’s training apparatus should
be configurable to address the specific hemiplegic side, ensuring personalized therapy. To
this end, it is vital that the ranges of joint motion and the height of leg orthosis can be
adjusted according to the recovery stage and the affected side.

Based on the modular design concept, the MHLRR mainly consists of four parts,
including the balance mechanism, the hip joint mechanism, the knee joint mechanism, and
the ankle joint mechanism, as depicted in Figure 2. This design philosophy ensures that the
leg orthosis can be adjusted in height from 540 mm to 1040 mm, providing a versatile range
that spans from the hip joint axis to the ground level. This adaptability is achieved through
the manipulation of the lifting columns, catering to the diverse needs of patients across
various stages of recovery and enabling rehabilitation in lying, sitting, or standing positions.
This is achieved by actuating the hip joint motor, which symmetrically aligns the leg orthosis
with respect to the coronal plane, thus allowing for bilateral training adaptability.
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Figure 2. Overall structure of the MHLRR.

2.2. Description of the Action Space

According to the physiological structure of the human lower limb, the rehabilitation
robot is simplified to a link structure, as shown in Figure 3. The dimensions of the thigh
and calf are denoted as l1 and l2, respectively. The kinematic model is depicted in Figure 3.
The symbols O, A, and B correspond to the hip joint, knee joint, and ankle joint, respectively.
The rotation angles of the hip and knee joints are denoted by α and β, respectively. The hip
joint’s center, point O, is established as the coordinate system’s origin, with the ankle joint B
designated as the terminal point. Subsequently, the relationship between the coordinates of
point B and the joint angles can be derived using forward and inverse kinematics as follows:

xB = l1 · cos α + l2 · cos(α + β)
yB = l1 · sin α + l2 · sin(α + β)

α = arctan yB
xB

+ arccos l1
2−l22+xB

2+yB
2

2·l1·
√

xB2+yB2

β = arccos xB
2+yB

2−l1
2−l22

2·l1·l2

(1)
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The workspace of the proposed robot is adjustable according to the different action
spaces of patients. It is determined by four factors, including the affected side, the training
posture, the joint motion range, and the lower-limb length. Figure 4 shows the definition of
the action space of a common patient in a sitting position.
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Figure 4. Definition and nomenclature of the action space. This figure represents a sitting position,
with the patient’s joint ranges of motion set to αmax = 75◦, αmin = 10◦, βmax = −5◦, and βmin = −95◦.

Point O signifies the hip joint, while l1 and l2 denote the lengths of the thigh and
calf, respectively. The terms αmin and αmax correspond to the minimum and maximum
flexion angles of the hip joint, respectively, while βmin and βmax denote the minimum and
maximum extension angles of the knee joint. In our coordinate system, counterclockwise
rotation is designated as the positive direction. The hip angle is conventionally set to zero in
both sitting and lying positions when the thigh is aligned parallel to the horizontal axis. In
parallel, the knee angle is also defined as zero when the calf is in direct alignment with the
thigh, irrespective of the patient’s position. This standardized approach ensures consistency
and clarity in the measurement and analysis of joint angles throughout the rehabilitation
process. Curve C1 delineates the path of the end point as the knee joint moves from its
minimum to maximum angle with the hip joint fixed at its maximum angle. Similarly, the
three other curves, C2, C3, and C4, can be obtained. To enhance the clarity of these four
workspace curves, we introduce Equation (2) for a more comprehensive depiction, which
is expressed as

Ci = (xi, yi, ri, θi, φi)(i = 1, 2, 3, 4), (2)
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where θi, φi, (xi, yi), and ri represent the start angle, the end angle, the center coordinates,
and the radius of the curve Ci, respectively. Then, the expressions for each parameter can
be obtained as

r1 = l2; r2 =
√

l12 + l22 + 2 · l1 · l2 · cos βmax

r3 = l2; r4 =
√

l12 + l22 + 2 · l1 · l2 · cos βmin
(x1, y1) = (l1 · cos αmax, l1 · sin αmax); (x2, y2) = (0, 0)
(x3, y3) = (l1 · cos αmin, l1 · sin αmin); (x4, y4) = (0, 0)
θ1 = αmax + βmin; θ2 = αmin − arccos l1+l2·cos βmax√

l1
2+l22+2·l1·l2·cos βmax

θ3 = αmin + βmin; θ4 = αmin − arccos l1+l2·cos βmin√
l1

2+l22+2·l1·l2·cos βmin

φ1 = αmax + βmax; φ2 = αmax − arccos l1+l2·cos βmax√
l1

2+l22+2·l1·l2·cos βmax

φ3 = αmin + βmax; φ4 = αmax − arccos l1+l2·cos βmin√
l1

2+l22+2·l1·l2·cos βmin

. (3)

It serves as the theoretical foundation for calculating the coordinates of the starting and
ending points of the linear trajectory when it is at different positions within the action space.

The maximum joint ranges of motion of MHLRR under lying, sitting, and standing
postures are shown in Table 1.

Table 1. The maximum joint ranges of motion of MHLRR under different postures.

Joint/Posture Lying Sitting Standing

Hip 0◦~130◦ 0◦~80◦ −20◦~60◦

Knee −135◦~0◦ −135◦~0◦ −135◦~0◦

Ankle −45◦~30◦ −45◦~30◦ −45◦~30◦

3. Rehabilitative Path Planning Based on Joint Rehabilitation Indicators
3.1. The Division of Training Section and the Classification of the Action Space

The CPM (Continuous Passive Motion) linear trajectory training is a widely adopted
rehabilitation technique, typically implemented by clinicians who manually guide the
patient’s lower limb through a reciprocating linear motion. This method is particularly
beneficial during the early recovery stages for patients experiencing muscle paralysis or
diminished muscle strength, as it facilitates passive training that preserves the joint’s large
range of motion, thereby preventing joint contractures and deformities. As patients progress
into the middle and late stages of recovery, where they may have regained some muscle
strength but still lack the ability to achieve full joint flexion, a more targeted approach
becomes necessary. This involves focusing on maximum flexion training to further enhance
joint mobility.

Building on these principles, this study delves into the joint rehabilitation characteris-
tics of the CPM linear trajectory in both lying and sitting positions. The analysis aims to
tailor the rehabilitation process to patients with diverse action spaces and varying joint
rehabilitation requirements, ensuring a more personalized and effective treatment plan.

To effectively encapsulate the joint rehabilitation characteristics of the horizontal linear
trajectory ensemble within the dynamic action space, it is imperative to quantify the distinct
types of lower-limb action spaces. The variables Pij (i = 1, 3; j = 2, 4) are designated as the
intersection points between arcs Ci and Cj. Points M and N represent the initiation and
termination points, respectively, of the intersection between the horizontal linear trajectory
and the action space. Points Q1 and Q2 are identified as the upper tangent points of the
circle encompassing arcs C1 and C2, while Q3 and Q4 correspond to the lower tangent
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points of the circle for arcs C3 and C4. The coordinates of these eight pivotal points can be
ascertained through kinematic analysis as follows:

P12(l1 · cos αmax + l2 · cos(αmax + βmax), l1 · sin αmax + l2 · sin(αmax + βmax))
P14(l1 · cos αmax + l2 · cos(αmax + βmin), l1 · sin αmax + l2 · sin(αmax + βmin))
P23(l1 · cos αmin + l2 · cos(αmin + βmax), l1 · sin αmin + l2 · sin(αmin + βmax))
P34(l1 · cos αmin + l2 · cos(αmin + βmin), l1 · sin αmin + l2 · sin(αmin + βmin))

Q1(l1 · cos αmax, l1 · sin αmax + l2); Q2(0,
√

l12 + l22 + 2 · l1 · l2 · cos βmax)

Q3(l1 · cos αmin, l1 · sin αmin − l2); Q4(0,−
√

l12 + l22 + 2 · l1 · l2 · cos βmin)

. (4)

The action space is segmented into multiple training sections by horizontal lines
intersecting at these key points. The principles for section division are as follows: within
the same section, all starting points of linear trajectories are on the same arc Ci. Moreover,
all ending points are also on the same arc Cj. Across different sections, there exists at
least one pair of trajectories whose starting or ending points do not align on the same
arc. Additionally, sections composed of identical arcs CiCj (where i = j) are designated as
section 0, while those composed of distinct arcs CiCj (where i ̸= j) are sequentially labeled
as sections 1 to 3 from the bottom upward.

Each training section is demarcated by boundary lines intersecting at key points and a
pair of arcs, as illustrated in Figure 5. Points P12, Q1, and Q2 are situated above P14 and
P23, whereas points P34, Q3, and Q4 are positioned below P14 and P23, according to the
graphical method. Consequently, the action space is stratified into three distinct regions:
the bottom, the middle, and the top.
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The classification method of the action space is proposed by analyzing the distribution
of key points across the bottom, middle, and top regions. Firstly, we focus on the positioning
of points P34, Q3, and Q4 within the bottom region of the action space. The scenarios for
one situation in the lying position and two in the sitting position are depicted in Figure 5.
It is crucial to recognize that in stroke patients with lower-limb impairments, the hip joint’s
free extension is typically unimpaired, whereas achieving a significant flexion angle is more
challenging. Consequently, the minimum flexion angles for the hip joint in the lying and
sitting positions are established at αmin = 50◦ and αmin = 0◦, respectively.
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Utilizing Equation (4), it becomes evident that the positions of the three points P34, Q3,
and Q4 are interrelated with αmin, βmin, l1, and l2. In the lying position, there is a singular
scenario where xQ4 < xQ3 < xP34, given the conditions αmin = 50◦, −135◦ ≤ βmin < 0◦ and
Equation (5). This leads to the conclusion that in the lying position, there is a single
configuration at the bottom of the action space: when −135◦ ≤ βmin < 0◦, P34 is the lowest
point, and both Q3 and Q4 lie outside the action space, as shown in Figure 6a.
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Figure 6. The positioning of points P34, Q3, and Q4 within the bottom region of the action space:
(a) xQ4 < xQ3 < xP34 in lying position; (b) xQ4 < xP34 < xQ3 in sitting position; (c) xQ4 < xQ3 ≤ xP34 in
sitting position.

In the sitting position, the condition xQ4 < xP34 can be deduced from αmin = 0◦, −135◦

≤ βmin < 0◦, and l1 > l2. Subsequently, based on Equation (4), it can be obtained that −135◦

≤ βmin < −90◦ when xQ4 < xP34 < xQ3, and −90◦ ≤ βmin ≤ 0◦ when xQ4 < xQ3 ≤ xP34.
Therefore, it can be concluded that in the sitting position, there are two distinct scenarios
at the bottom of the action space. When −135◦ ≤ βmin < −90◦, P34 serves as the critical
boundary point, Q3 is the lowest and critical boundary point, and Q4 is outside the action
space, as shown in Figure 6b. Conversely, when −90◦ ≤ βmin ≤ 0◦, P34 is both the lowest
and critical boundary point, with Q3 and Q4 situated outside the action space, as shown in
Figure 6c.

Secondly, we analyze the positioning of points P14 and P23 within the middle region
of the action space, which encompasses six distinct scenarios: yP14 > yP23, yP14 < yP23,
and yP14 = yP23 in lying and sitting positions. According to Equation (4), the positional
relationship between these two points is influenced by all the parameters involved. By
solving for the conditions that satisfy each of these scenarios, we can determine their
relative positions, as illustrated in Figure 7.

Consequently, we can deduce the following conclusions: Point P14 is situated above
P23 when the inequality l1·sinαmax – l1·sinαmin + l2·sin(αmax + βmin) – l2·sin(αmin + βmax) > 0
holds true. Conversely, P14 is located below P23 when the inequality l1·sinαmax – l1·sinαmin
+ l2·sin(αmax + βmin) – l2·sin(αmin + βmax) < 0 is met. Lastly, points P14 and P23 are aligned at
the same height when the equation l1·sinαmax – l1·sinαmin + l2·sin(αmax + βmin) −l2·sin(αmin
+ βmax) = 0 is satisfied.

Thirdly, proceeding to the analysis of points P12, Q1, and Q2 in the top region of the
action space, we observe three distinct scenarios in the lying position and a single scenario
in the sitting position, as depicted in Figure 8. It is important to note that patients with
stroke-induced lower-limb disorders often have limited knee joint flexion, while the knee’s
free extension is typically preserved. Hence, the knee joint’s maximum angle range in both
lying and sitting positions is confined to −90◦ < βmax ≤ 0◦.
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Figure 7. The positioning of points P14 and P23 within the middle region of the action space:
(a) yP14 > yP23 in lying position; (b) yP14 < yP23 in lying position; (c) yP14 = yP23 in lying position;
(d) yP14 > yP23 in sitting position; (e) yP14 < yP23 in sitting position; (f) yP14 = yP23 in sitting position.
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Figure 8. The positioning of points P12, Q1, and Q2 within the top region of the action space:
(a) xQ1 ≤ xP12 and xQ2 ≤ xP12 in a lying position; (b) xQ1 ≤ xP12 < xQ2 in a lying position; (c) xP12 <
xQ1 < xQ2 in a lying position; (d) xQ2 < xQ1 < xP12 in sitting position.
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Equation (5) reveals that the positions of these three points are interdependent on αmax,
βmax, l1, and l2. In the lying position, we first examine the relationship between xQ1 and xQ2.
When xQ1 ≥ xQ2, there is a singular scenario where xQ2 ≤ xQ1 ≤ xP12, which corresponds
to the condition 50◦ < αmax ≤ 90◦. When xQ1 < xQ2, three possible situations arise: xQ1 <
xQ2 ≤ xP12, xQ1 ≤ xP12 < xQ2, and xP12 < xQ1 < xQ2, each with specific conditions that can
be solved. Thus, in the lying position, there are three possible configurations at the top
of the action space. For 50◦ < αmax ≤ 90◦, or when 90◦ < αmax ≤ 130◦ and βmax ≥ 180◦

− αmax − arccos(cosαmax·l1/l2), there exists xQ1 ≤ xP12 and xQ2 ≤ xP12. Here, P12 is the
highest and critical boundary point, with both Q1 and Q2 either outside or coinciding with
the action space. For 90◦ < αmax ≤ 130◦, βmax < 180◦ − αmax − arccos(cosαmax·l1/l2), and
−αmax + 90◦ ≤ βmax ≤ −αmax + 130◦, there exists xQ1 ≤ xP12 < xQ2. In this case, Q2 is the
highest and critical boundary point, P12 is a critical boundary point, and Q1 is outside the
action space. When 90◦ < αmax ≤ 130◦, βmax < 180◦ − αmax − arccos(cosαmax·l1/l2), and
−αmax + 90◦ ≤ βmax ≤ −αmax + 130◦, there exists xP12 < xQ1 < xQ2. Here, Q2 is the highest
and critical boundary point, Q1 is a critical boundary point, and P12 is merely a common
boundary point.

In the sitting position, given the conditions 0◦ < αmax ≤ 80◦ and −90◦ < βmax ≤ 0◦, it
is determined that xQ2 < xQ1 < xP12. Therefore, there is one singular scenario at the top of
the action space in the sitting position, where P12 is the highest and critical boundary point,
and both Q1 and Q2 are situated outside the action space.

Following the comprehensive analysis of the key boundary points across the bottom,
middle, and top regions, we can conclude that there are nine situations in a lying position
and six situations in a sitting position. Building on this foundation, a classification method
for the action space is devised, where the action spaces with the same section number and
one-to-one correspondence of key boundary points are considered of the same type.

There are three pairs of scenarios in the lying and sitting positions that are classified
as the same type. Specifically, the combinations of Figures 6a, 7a and 8a, Figures 6a, 7b
and 8a, and Figures 6a, 7c and 8a in the lying position correspond to the same type as
Figures 6c, 7d and 8d, Figures 6c, 7e and 8d, and Figures 6c, 7f and 8d in the sitting position,
respectively. Consequently, the action space is composed of 12 distinct types based on the
section division principle, as outlined in Table 2.

Table 2. The 12 types of action spaces based on the classification method.

Type Section
Numbers

Combination of
Figures 6–8

Demarcation Point and
Arc Pair

(from Bottom to Top)

Discriminant Condition
(yP14 − yP23 = l1·sinαmax − l1·sinαmin+ l2·sin(αmax + βmin) −

l2·sin(αmin + βmax))

1 3 Figures 6a, 7a and 8a
Figures 6c, 7d and 8d

P34-P23-P14-P12
C4C3-C4C2-C1C2

yP14 − yP23 > 0 (a). αmin = 50◦; 50◦ < αmax ≤ 90◦;
(b). αmin = 50◦; 90◦ < αmax ≤ 130◦;
βmax ≥ 180◦;
(c). αmin = 0◦; −90◦ ≤ βmin < 0◦;
Condition (a) and (b) are in lying position.
Condition (c) is in sitting position.

2 3 Figures 6a, 7b and 8a
Figures 6c, 7e and 8d

P34-P14-P23-P12
C4C3-C1C3-C1C2

yP14 − yP23 < 0

3 2 Figures 6a, 7c and 8a
Figures 6c, 7f and 8d

P34-P14(P23)-P12
C4C3-C1C2

yP14 − yP23 = 0

4 4 Figures 6a, 7a and 8b P34-P23-P14-P12-Q2
C4C3-C4C2-C1C2-C2C2

yP14 − yP23 > 0
(d). αmin = 50◦; 50◦ < αmax ≤ 90◦;
−αmax − 85◦ ≤ βmax ≤ −αmax + 90◦;
βmax ≥ 180◦ − αmax − arccos( l1

l2
· cos αmax);

Condition (d) is in lying position.

5 4 Figures 6a, 7b and 8b P34-P14-P23-P12-Q2
C4C3-C1C3-C1C2-C2C2

yP14 − yP23 < 0

6 3 Figures 6a, 7c and 8b P34-P14(P23)-P12-Q2
C4C3-C1C2-C2C2

yP14 − yP23 = 0

7 4 Figures 6a, 7a and 8c P34-P23-P14-Q1-Q2
C4C3-C4C2-C1C2-C2C2

yP14 − yP23 > 0
(e). αmin = 50◦; 90◦ < αmax ≤ 130◦;
−αmax − 85◦ ≤ βmax ≤ −αmax + 90◦;
βmax ≥ 180◦ − αmax − arccos( l1

l2
· cos αmax);

Condition (e) is in lying position.

8 4 Figures 6a, 7b and 8c P34-P14-P23-Q1-Q2
C4C3-C1C3-C1C2-C2C2

yP14 − yP23 < 0

9 3 Figures 6a, 7c and 8c P34-P14(P23)-Q1-Q2
C4C3-C1C2-C2C2

yP14 − yP23 = 0
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Table 2. Cont.

Type Section
Numbers

Combination of
Figures 6–8

Demarcation Point and
Arc Pair

(from Bottom to Top)

Discriminant Condition
(yP14 − yP23 = l1·sinαmax − l1·sinαmin+ l2·sin(αmax + βmin) −

l2·sin(αmin + βmax))

10 4 Figures 6b, 7d and 8d Q3-P34-P23-P14-P12
C3C3-C4C3-C4C2-C1C2

yP14 − yP23 > 0

(f). αmin = 0◦; −135◦ ≤ βmin < −90◦;
Condition (f) is in sitting position.

11 4 Figures 6b, 7e and 8d Q3-P34-P14-P23-P12
C3C3-C4C3-C1C3-C1C2

yP14 − yP23 < 0

12 3 Figures 6b, 7f and 8d Q3-P34-P14(P23)-P12
C3C3-C4C3-C1C2

yP14 − yP23 = 0

Figure 6, Figure 7, and Figure 8, respectively, represent the various distributions of key points in the lower, middle,
and upper regions. The table lists 12 types of action spaces, which are combinations included in Figures 6–8. The
third column enumerates the combination cases corresponding to each type.

It is important to highlight that Types 1~3 have three conditions (a, b, and c) and
are associated with two training postures (lying and sitting), whereas Types 4~12 are
characterized by a single condition and a single training posture. Most significantly,
within the action space of the same type, the group of linear trajectories exhibits identical
rehabilitation characteristics and patterns for both the hip and knee joints, ensuring a
consistent approach to rehabilitation across various patients in the same scenarios.

3.2. The Characteristics of Joint Rehabilitation Corresponding to the Rehabilitative Path

Points M and N are designated as the origin and terminus, respectively, of the linear
trajectory L. The angles αLmax and αLmin represent the maximum and minimum hip flexion
angles along trajectory L, while βLmax and βLmin denote the corresponding maximum and
minimum knee extension angles. Furthermore, αM and βM are the hip and knee joint
angles at the ankle’s position M, and αN and βN are the respective angles at position N. The
midpoint T of trajectory L is accompanied by angles αT and βT, which are the hip and knee
joint angles when the ankle reaches T.

In the scenario where points M and N are located on different arcs CiCj (with i ̸= j), as
depicted in Figure 9a, point M is aligned with the maximum flexion angles for both the hip
and knee joints, whereas point N corresponds to their minimum flexion angles. When M
and N are situated on the same arc C3C3, point T represents the hip joint at its maximum
flexion angle, with M and N indicating the minimum hip flexion angle. Concurrently, M
and N correspond to the minimum and maximum knee extension angles, respectively, as
shown in Figure 9b.
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Figure 9. The positioning of the origin point M and the terminus point N of the linear trajectory:
(a) M and N are on different arcs CiCj (with i ̸= j); (b) M and N are on the same arc C3C3; (c) M and N
are on the same arc C2C2.



Sensors 2024, 24, 7506 12 of 27

In another configuration where M and N are on the same arc C2C2, M and N are
associated with the maximum and minimum hip flexion angles, respectively. M and N
also correspond to the maximum knee extension angle, while point T is at the minimum
knee extension angle, as illustrated in Figure 9c. The limiting conditions for the joint angles
corresponding to the linear trajectory in these three cases can be articulated as follows:

αLmax = αM; αLmin = αN ; βLmax = βN ; βLmin = βM; (CiCj, i ̸= j)
αLmax = αT ; αLmin = αM = αN ; βLmax = βN ; βLmin = βM; (CiCj, i = j = 3)
αLmax = αM; αLmin = αN ; βLmax = βM = βN ; βLmin = βT ; (CiCj, i = j = 2)

(5)

For a detailed analysis of the joint rehabilitation features and patterns within various
action spaces for the linear trajectory groups, Type 10 has been discussed. This targeted
study aims to offer physicians a comprehensive guide and theoretical underpinning for the
effective utilization of rehabilitation robots in their practice.

Moreover, drawing from the analytical findings of the selected types, we have crafted a
comprehensive summary of the joint rehabilitation characteristics and principles applicable
to the remaining types. This compilation aims to serve as a reference for healthcare
professionals, enhancing their ability to tailor joint rehabilitation protocols to the specific
needs of individual patients.

Let us consider Type 10 as a case study. We have configured the hip joint’s motion
range to span from 0◦ to 70◦ and the knee joint’s motion range from −135◦ to −18◦.
Additionally, the lengths of the thigh and calf have been standardized at 400 mm and
360 mm, respectively. With these parameters, the action space is graphically represented
in Figure 10a, which is segmented into four distinct regions (green, yellow, pink, and
blue), setting nine exemplary linear trajectories, l1 through l9, arranged vertically from
bottom to top. An analysis of the joint rehabilitation characteristics corresponding to these
trajectories follows.
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Figure 10. The positions and the ultimate joint angles of the linear trajectories within the action space
of Type 10: (a) the nine linear trajectories (l1~l9) from bottom to top; (b) the ultimate angles of joints
corresponding to the position of the linear trajectories.

The interplay between the linear trajectory’s position (yl) and the maximum flexion–
extension angles of the hip and knee joints is depicted in Figure 10b. The hip joint’s position
is established as the coordinate origin, with the horizontal axis denoting the trajectory’s
height and the vertical axis representing the joint angles. As delineated in Equation (7),
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the linear trajectory will correspond to the hip joint’s maximum flexion motion when
αLmax = αmax. Similarly, the linear trajectory will correspond to the knee joint’s maximum
flexion motion when βLmin = βmin. An ultimate joint motion range is achieved when the
maximum motion range of the patient’s joints matches that of the linear trajectory.{

αmin ≤ αLmin ≤ αLmax ≤ αmax
βmin ≤ βLmin ≤ βLmax ≤ βmax

(6)

In the early stages of recovery, the emphasis of rehabilitation is placed on regaining
muscle strength, making it crucial to engage in exercises that involve a wide range of joint
motion. As patients progress into the middle or late stages of recovery, the focus shifts
toward ensuring the joints can extend freely. At this point, the ultimate flexion training
of the joints becomes particularly significant to enhance their functional capabilities and
restore full mobility. As shown in Figure 10b, we analyze the influence of the linear
trajectory’s section and position on the characteristics of joint rehabilitation.

As shown in Figure 10b, it is evident that the trajectory within section 0 (denoted by
the green area) lacks both the broad joint motion range and the capacity for ultimate joint
flexion. Consequently, section 0 is not an appropriate choice for planning linear trajectories
aimed at joint rehabilitation training.

Moving on to section 1 (the yellow area), as the trajectory ascends, there is a gradual
expansion in the joints’ range of motion. Notably, the knee joint maintains its ultimate
flexion (βLmin = βmin). Thus, the linear trajectories in section 1 are best suited for rehabil-
itation that emphasizes the knee joint as the primary focus, with the hip joint serving as
a supportive element. In summary, the trajectories in section 1 preserve the knee joint’s
ultimate flexion, and as the trajectory’s position rises, the intensity of joint training corre-
spondingly increases.

Moving on to section 2 (the pink area), the trajectory’s upward movement is accompa-
nied by the knee joint maintaining both ultimate flexion and maximum range of motion
(βLmax = βmax and βLmin = βmin). Additionally, the hip joint’s flexion angle and motion
range increase progressively. Therefore, the linear trajectories in section 2 continue to prior-
itize the knee joint for rehabilitation, with the hip joint in a supportive role. In conclusion,
the trajectories in section 2 sustain the knee joint’s ultimate flexion and maximum motion
range, and the higher the trajectory’s position, the more intense the joint training becomes.

Lastly, in section 3 (the blue area), the trajectory’s ascent is characterized by the hip
joint maintaining ultimate flexion (αLmax = αmax) and a diminishing motion range. The knee
joint’s motion range also decreases, and its ultimate flexion capability is lost. Moreover, the
length of the linear trajectory is reduced. Under equivalent training conditions of speed and
duration, the frequency of the hip joint’s ultimate flexion increases, enhancing the efficiency
of the training of the hip joint. Thus, the linear trajectories in section 3 are designed with
the hip joint as the primary focus and the knee joint as a supportive element. In conclusion,
the higher the trajectory’s position, the more effective the training efficiency for the hip
joint’s ultimate flexion.

We have identified five key metrics to evaluate the joint rehabilitation effectiveness
of the nine linear trajectories (l1~l9), as depicted in Figure 11a,b. These metrics include
the ultimate hip joint flexion angle, the ultimate knee joint flexion angle, the maximum
hip joint motion range, the maximum knee joint motion range, and the ultimate joint
flexion frequency.

Specifically, linear trajectories l1 and l2 do not encompass the joints’ maximum motion
range or ultimate flexion. Trajectories l3 and l4 are characterized by the inclusion of the
knee joint’s ultimate flexion only. Trajectories l5 and l6 extend to include both the knee
joint’s ultimate flexion and its maximum motion range. Trajectory l7 is distinguished
by encompassing the knee joint’s ultimate flexion and maximum motion range, as well
as the hip joint’s ultimate flexion. Furthermore, the training frequency for trajectories l1
through l7 is essentially uniform. Trajectories l8 and l9 exclusively feature the hip joint’s
ultimate flexion, with l9 exhibiting the highest training frequency among all trajectories,
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indicating that, under identical training conditions, l9 achieves the greatest number of hip
joint flexions.
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It can be concluded that trajectory l7 is the optimal choice for comprehensive joint
rehabilitation, as it includes the knee joint’s ultimate flexion, maximum motion range, and
the hip joint’s ultimate flexion. Trajectories l8 and l9 are designed for enhanced efficiency
in hip joint ultimate flexion. Trajectories l5 and l6, which include both the knee joint’s
ultimate flexion and maximum motion range, offer a more intensive training focus on the
hip joint. Trajectories l3 and l4, focusing solely on the knee joint’s ultimate flexion, provide
a lower intensity of training for the hip joint. Lastly, trajectories l1 and l2 have minimal
rehabilitative impact on the joints.

Following the analytical approach applied to Type 10, each of the remaining types can
also be categorized into three effective training sections (sections 1 to 3) and one ineffective
training section (section 0). Across all types (from Type 1 to Type 12), the starting point M
and the ending point N of the linear trajectory are located on distinct curves of CiCj (where
i ̸= j) when the trajectory falls within the effective sections. Conversely, when the trajectory
is in the ineffective section, both points M and N are situated on the same curve of CiCj.

Drawing from the 12 distinct types of action spaces, we have distilled a set of uni-
versal characteristics and patterns that define the linear trajectories for joint rehabilitation.
This comprehensive summary provides a foundational framework for understanding the
nuances of effective rehabilitation strategies across various patient scenarios and recov-
ery stages.

In the ineffective section 0, the linear trajectory fails to encompass the joint’s ulti-
mate flexion or its maximum motion range, rendering it ineffective for joint rehabilita-
tion purposes.

In the effective section 1, the linear trajectory exclusively includes the knee joint’s
ultimate flexion, which can manifest in two scenarios. If section 0 is positioned at the
bottom of the action space, as the linear trajectory ascends, there is an increase in the knee
joint’s motion range, the hip joint’s maximum flexion angle, and the hip joint’s motion
range, leading to enhanced training intensity. Conversely, when section 0 is at the top or
absent, the frequency of the knee joint’s ultimate flexion diminishes under constant speed
and time conditions. Thus, the linear trajectory in section 1 primarily targets knee joint
rehabilitation with supplementary hip joint involvement.



Sensors 2024, 24, 7506 15 of 27

In the effective section 2, the linear trajectory encompasses three distinct situations.
When yP14 > yP23, the trajectory includes both the knee joint’s ultimate flexion and its
maximum motion range. Additionally, as the trajectory’s position elevates, both the hip
joint’s ultimate flexion and maximum motion range increase. When yP14 < yP23, the
trajectory includes the hip joint’s ultimate flexion and maximum motion range, with a
concurrent increase in the knee joint’s maximum flexion angle and maximum motion range
as the trajectory rises. When yP14 = yP23, the effective section 2 can be considered a singular
line with P14 as the starting point and P23 as the end point, encompassing the ultimate
flexion and motion range of both joints.

Lastly, in the effective section 3, the trajectory solely includes the hip joint’s ultimate
flexion, presenting two scenarios. If section 0 is at the bottom or absent, the frequency of
the hip joint’s ultimate flexion decreases as the trajectory’s position increases under the
same speed and time. When section 0 is at the top, the hip joint’s motion range, the knee
joint’s maximum flexion angle, and the knee joint’s motion range all increase, leading to
more intensive training. Consequently, the linear trajectory in section 3 is primarily focused
on hip joint rehabilitation with supplementary knee joint involvement.

As shown in Table 3, the influence of the linear trajectory’s sectional division on joint
rehabilitation is universally applicable across all types, ensuring a tailored approach to
accommodate the varying needs of patients. This systematic categorization into effective
and ineffective training sections allows for precise calibration of the rehabilitation process,
optimizing the trajectory’s design to enhance joint recovery and function. By leveraging
this comprehensive framework, clinicians can effectively tailor rehabilitation programs to
achieve the best possible outcomes for patients at different stages of recovery.

Table 3. The relationship between joint rehabilitation requirements and the positions of linear
trajectories applicable to all types of action spaces.

Type 1~12
Primary Indicators of Joint Rehabilitation Auxiliary Indicators of Joint Rehabilitation

Relationship of P14
and P23

Change Rules as Position
Rises Position of Section 0 Change Rules as Position Rises

section 0 / / / /

section 1 All is permissible βLmin = βmin
At top or not exist Hip flexion frequency increases.

At bottom αLmax, αLmin and βLmax increase.

section 2

yP14 > yP23 βLmax = βmax; βLmin = βmin

All is permissible

αLmax and αLmin increase.

yP14 < yP23 αLmax = αmax; αLmin = αmin βLmax and βLmin increase.

yP14 = yP23
αLmax = αmax; αLmin = αmin;
βLmax = βmax; βLmin = βmin

Not exist

section 3 All is permissible αLmax = αmax

At top or not exist αLmin, βLmax and βLmin increase.

At bottom Knee flexion frequency
increases.

It is a summary of the relationship between the joint rehabilitation characteristics and the positions of linear
trajectories under all 12 types of action spaces. This allows physicians to quickly identify the specific section and
the position of the corresponding linear trajectory based on the set joint rehabilitative requirements.

3.3. Generation of Rehabilitation Path

It is challenging for physicians to directly plan rehabilitative trajectories based on
the joint rehabilitation needs they design because they cannot intuitively plan matching
trajectories within the action space. Therefore, this paper proposed a rehabilitation system
that enables physicians to plan trajectories based on joint training indicators according to
the types of patient’s action space, as illustrated in Figure 12. Moreover, the action space
and the coordinates of the linear trajectory on the display panel are obtained based on
Equation (3). Five joint rehabilitation indicators were considered and provided on the
control panel for physician adjustment. These include the range of motion of the hip joint,
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the range of motion of the knee joint, the degree of hip joint flexion, the degree of knee
joint flexion, and flexion frequency. Physicians customize five joint training parameters for
the patient’s rehabilitation by adjusting the five corresponding controls on the operation
panel. Subsequently, the system generates the corresponding trajectory based on the joint
rehabilitation requirements set by the physician.
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Once the physician enters the lower-limb parameters of the patient in the first column,
including leg length and joint mobility, the system generates a corresponding action space
on the board. Concurrently, the joint rehabilitation indicator adjustment controls are
designed to update in real time to match the patient’s current joint mobility. Recognizing
that it is challenging for physicians to plan corresponding rehabilitation paths on the user
interface based on the formulated joint rehabilitative requirements, the system incorporates
the relationship between joint rehabilitation indicators and trajectories. This is to generate
a matching rehabilitation path, as analyzed earlier. By setting five joint rehabilitation
indicators in the second column, the system automatically generates a matching trajectory,
assisting the physician in creating a straight-line trajectory that matches the setting joint
rehabilitation needs. Both the motion space and the straight trajectory are depicted in the
third column. Finally, the panel displays the maximum and minimum flexion angles of the
joints, the range of motion of the joint, and the interval where the straight-line trajectory lies.
This comprehensive integration of physiological inputs and system-generated trajectories
allows for a more effective and customized joint rehabilitation plan tailored to the patient’s
specific requirements and facilitates the rehabilitation process.

4. Rehabilitative Trajectory Planning-Based Jerk Minimization
4.1. Polynomial Trajectory Planning

Based on the initial and final position of the rehabilitation trajectory generated by
the joint rehabilitative indicators, different paths with different motion parameters by the
robot end effector can be generated [41]. It is common to split the trajectory into multiple
segments, as shown in Figure 13. There are N + 1 key points Pi(0 ≤ i ≤ N) on the
trajectory to connect the adjacent segments. The rehabilitation trajectory can be represented
by polynomials with k-segments. Every single segment can be expressed by a polynomial
of degree n, written as

f (t) = p0 + p1t + p2t2 + · · ·+ pntn. (7)
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Figure 13. The trajectory composed of multiple segments.

Through writing the nth-order coefficients in a vector form p = [p0 p1 · · · pn]
⊤,

and then differentiating them, the trajectory of a single segment, as well as the velocity,
acceleration, and the jerk can be represented as

p(t) = f (t) =
[

1 t t2 t3 t4 t5 · · · tn ]
p = Pp

v(t) = f ′(t) =
[

0 1 2t 3t2 4t3 5t4 · · · ntn−1 ]
p = Vp

a(t) = f ′′ (t) =
[

0 0 2 6t 12t2 20t3 · · · n!
(n−2)! t

n−2
]

p = Ap

j(t) = f ′′′ (t) =
[

0 0 0 6 24t 60t2 · · · n!
(n−3)! t

n−3
]

p = Jp

. (8)

The whole trajectory in Figure 13 is separated into multiple segments connected by
the key points, and it can be expressed as a multi-segment trajectory. The i-th segment is
written as

fi(t) =
[

1 t t2 · · · tn ]
pi, ti−1 ≤ t < ti, i = 1, 2, · · · , k (9)

where ti − ti−1 is the execution time, which is equal to the proportion of the length of the i-th
segment, k is the number of segments, and pi =

[
pi0 pi1 · · · pin

]⊤ is the parameters of
polynomials of the k-th segment.

4.2. Trajectory Optimization

In traditional rehabilitation therapies, physicians commonly drag the patient’s foot to
complete the end linear motion of flexion–extension of the lower limbs. During this process,
they provide small shock, smooth, and stable rehabilitation trajectories through manual
techniques and experience. To reduce the impact and vibration of lower-limb rehabilitation
robots and track smoother and more stable trajectories, the impact along the trajectory will
be minimized, and a target function represented in a quadratic form is constructed as

min j2i (t) = ( f ′′′ (t))2. (10)

By combining the objective function with Equation (9), we can obtain

∫ T
0 ( f ′′′ (t))2dt =

k
∑

i=1

∫ ti
ti−1

( f (3)(t))
2
dt

=
k
∑

i=1

∫ ti
ti−1

[
(Ji p)

⊤(Ji p)
]
dt

=
k
∑

i=1
pT ∫ ti

ti−1

(
Ji
⊤ Ji

)
dt · p =

k
∑

i=1
pTQi p

. (11)

In the equation, Qi is a block matrix, and it can be expressed as

Qi =
∫ ti

ti−1

JT Jdt =

[
03×3 03×(n−2)

0(n−2)×3
(r−1)(r−2)(r−3)(c−1)(c−2)(c−3)

(r+c−7) (tr+c−7
i − tr+c−7

i−1 )

]
, (12)

where r and c stand for the row and column indices of the matrix, respectively. It is
seen that the fourth block of Qi is a none-zero entry, which is expressed in the form of a
diagonal matrix:

Q = diag
[
Q1 Q2 · · · Qk

]
. (13)
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In traditional rehabilitation therapies, physicians tend to impose certain limitations
on the starting and ending points of the rehabilitation trajectory as well as ensure the
continuity of the trajectory. Thus, assuming that at the initial point in the first segment
of the trajectory, the initial position, velocity, and acceleration equal to p0, v0, and a0,
respectively, the corresponding constraints can be set to

p(t0) =
[

1 t0 t2
0 t3

0 t4
0 t5

0 · · · tn
0

]
p1 = P0 p1 = p0

v(t0) =
[

0 1 2t0 3t2
0 4t3

0 5t4
0 · · · ntn−1

0

]
p1 = V0 p1 = v0

a(t0) =
[

0 0 2 6t0 12t2
0 20t3

0 · · · n(n − 1)tn−2
0

]
p1 = A0 p1 = a0

. (14)

Similarly, for the ending point of the last segment of the trajectory, the position, velocity,
and acceleration constraints can also be specified. To ensure the continuity of the trajectory,
the position, velocity, and acceleration of the end point of the current segment are set to
be equal to those of the starting point of the next segment. This approach allows for a
seamless transition from one movement phase to the next, facilitating smooth and effective
rehabilitation processes. The constraint equations for the intersection of two adjacent
trajectories can be represented as

pj(ti) = Pi pj = Pi pj+1 = pj+1(ti)
vj(ti) = Vi pj = Vi pj+1 = vj+1(ti)
aj(ti) = Ai pj = Ai pj+1 = aj+1(ti)

. (15)

The kinematic constraint equations of all the key points mentioned above can be
transformed into a huge overarching matrix, which is represented as

1, t0, t2
0, · · · , tn

0 , 01×(k−1)(n+1)
0, 1, 2t0, · · · , ntn−1

0 , 01×(k−1)(n+1)
0, 0, 2, · · · , n(n − 1)tn−2

0 , 01×(k−1)(n+1)
...

01×(i−1)(n+1), 1, ti, t2
i , · · · tn

i , 01×(k−i)(n+1)
...

01×(k−1)(n+1), 1, tk, t2
k , · · · , tn

k
01×(k−1)(n+1), 0, 1, 2tk, · · · , ntn−1

k
01×(k−1)(n+1), 0, 0, 2, · · · , n(n − 1)tn−2

k
...

01×(i−1)(n+1), 1, ti, t2
i , · · · , tn

i ,−1,−ti,−t2
i , · · · ,−tn

i , 01×(k−i−1)(n+1)
01×(i−1)(n+1), 0, 1, 2ti, · · · , ntn−1

i , 0,−1,−2ti, · · · ,−ntn−1
i , 01×(k−i−1)(n+1)

01×(i−1)(n+1), 0, 0, 2, · · · , n(n − 1)tn−2
i , 0, 0,−2, · · · ,−n(n − 1)tn−2

i , 01×(k−i−1)(n+1)
...



· p =



p0
v0
a0
...
pi
...

pN
vN
aN
...
0
0
0
...



. (16)

Based on Equations (11) and (13), the problem of solving the jerk is simplified as a

quadratic programming problem:
k
∑

i=1
ji = pTQp. Among them, vector p represents the

sum of n-th degree polynomial coefficients of k trajectory segments, including k*(n + 1)
coefficients to be solved. Q represents the summary of the matrix Qi for each trajectory
segment, which is a symmetric matrix considered the Hessian matrix for the quadratic
programming problems. According to Equation (12), since r ≥ 4, c ≥ 4, and ti > ti−1, it can
be determined that Q is a semi-positive definite matrix. Therefore, the problem of solving
the minimum jerk can be regarded as a convex quadratic programming problem, and there
exists a global optimal solution.

On this basis, an optimization function quadprog(Q, p, [], [], Aeq, beq) was used in MAT-
LAB R2022a to solve quadratic programming problems, where Q is the Hessian matrix
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in quadratic programming, corresponding to Equation (13). p represents the summary
of n-th degree polynomial coefficients for k trajectory segments. The coefficient matrix
and the right-hand vector of the linear inequality constraint represented by items 3 and
4 do not exist and are therefore set to be empty. Aeq represents the coefficient matrix of
linear equality constraints, corresponding to the large matrix of the first term on the left
side of Equation (16). beq represents the right-hand vector of the linear equality constraint,
corresponding to the vector on the right-hand side of Equation (16). Finally, based on the
equality constraint conditions and the quadratic term matrix, the coefficient vector of the
first-order term in the quadratic programming that minimizes the total jerk can be obtained,
which is the n-th degree polynomial coefficient of each trajectory segment.

4.3. Generation of Rehabilitation Trajectory

As shown in Figure 14, the jerk minimization trajectory planning is applied to the reha-
bilitation robot system, which is controlled using the LabView software (NI LabVIEW 2018).
In the experiment, the motion information of the robot joints, such as joint displacement
and velocity, is read from the encoder of the motor, with its main technology parameters
shown in Figure 15. Furthermore, the acceleration and jerk can be obtained by performing
once and twice differentiations on the encoder’s angular velocity, respectively. Multiple
repeated experiments were conducted to calculate the average value, aiming to minimize
the deviations. The motion of the end effector is calculated through forward kinematics.
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Based on the rehabilitation needs for joints, the initial position is set at the end point of
the linear trajectory located far from the hip joint. Analogous to the traditional therapeutic
approach where physicians drag the affected limb, a complete cycle of linear rehabilitation
exercise involves a single flexion and extension of the lower limb, corresponding to the
robot’s end effector moving from point N to point M and then returning to point N.
The coordinates of key points of the two trajectories in Figure 12 are shown in Table 3.
Subsequently, the linear rehabilitation trajectory is composed of 14 segments, and a seventh-
order polynomial is used from the perspective of impact continuity and time consumption.
Then, the Cartesian coordinate representation of each segment is expressed as

{xi(ti), yi(ti)} = p0 + p1ti + p2t2
i + p3t3

i + p4t4
i + p5t5

i + p6t6
i + p7t7

i (17)

It is set that the distance between key points is equal. The estimated execution time
for the robot’s operation is set to TE_1 = 8.4 s and TE_2 = 16.8 s, respectively, based on
the proportional relationship between the lengths of the two trajectories. The trajectory
optimization problem is solved using the MATLAB quadprog optimization algorithm
(the quadratic programming solver). The random trajectories are also generated using a
seventh-order polynomial method, with constraints set on the initial and terminal points
of the trajectory, as well as the first and last points of adjacent trajectories. However, the
minimization of jerk is not the objective, which implies that it does not involve quadratic
programming problems. Table 4 represents the coordinates of the key points. All trajectories
pass through the same key points and can both achieve linear rehabilitative trajectories, but
there are differences in the outlines.

Table 4. The key points for the two trajectories of the rehabilitation robot.

No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(1)Pi

[
0.71
0.26

] [
0.67
0.26

] [
0.64
0.26

] [
0.61
0.26

] [
0.57
0.26

] [
0.54
0.26

] [
0.51
0.26

] [
0.48
0.26

] [
0.51
0.26

] [
0.54
0.26

] [
0.57
0.26

] [
0.61
0.26

] [
0.64
0.26

] [
0.67
0.26

] [
0.71
0.26

]
(2)Pi

[
0.75

0

] [
0.69

0

] [
0.62

0

] [
0.55

0

] [
0.49

0

] [
0.42

0

] [
0.36

0

] [
0.29

0

] [
0.36

0

] [
0.42

0

] [
0.49

0

] [
0.55

0

] [
0.62

0

] [
0.69

0

] [
0.75

0

]
The units of coordinates are all in meters.

The comparison of the computational time between the optimized and randomly gen-
erated trajectories is shown in Figure 16. Mostly, the computational time of the optimized
trajectory is about three times higher than the one without optimization. Despite all this, the
computation time of optimization is short enough to be accepted in real robot rehabilitation.
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Figure 17 shows the position, velocities, accelerations, and jerks of the robot’s end
effector in Cartesian space, which means that the optimized trajectories can ensure smaller
and more continuous jerks compared with the randomly generated ones. Besides differing
from the random trajectories, it conforms more closely to the trajectory characteristics
during traditional rehabilitation trajectories by the physicians dragging the affected limb.
The corresponding polynomial coefficients and execution times for the optimized trajecto-
ries in each segment on the x-axis are shown in Table 5. Evidently, the two rehabilitation
paths generated based on two joint rehabilitative indicators have distinct end effector
displacement. It is relatively challenging for physicians to accurately plan the matching
rehabilitation path solely based on the set of joint rehabilitative indicators.
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The discrete coordinates of several points on the robot’s end effector trajectory, which
have been optimized from the previous section, are subjected to the kinematic inverse
solution. This yields the angular displacements at the hip and knee joints corresponding to
these points. Subsequently, these angular displacements are input into the motor controller,
where they are processed through a PD control algorithm to achieve the rehabilitation
trajectory planned earlier. The angular displacements, angular velocities, angular accelera-
tions, and jerks for the hip and knee joints are shown in Figure 18. It can be observed that
the joint angular velocity and angular acceleration curves achieved through the seventh-
order polynomial planning are both smooth and continuous. The jerk curves show that



Sensors 2024, 24, 7506 22 of 27

the starting and the ending positions of the joint exhibit zero jerk, aligning well with the
lower-limb rehabilitation requirements of the patient.

Table 5. Polynomial coefficients and execution time in each segment of the two trajectories.

Segs Coefficients
[

p0, p1, p2, p3, p4, p5, p6, p7
]

ti (s)

1
(1_x)p1 :

[
0.7500 0 0 0 −1.9103 4.7426 −4.4070 1.4838

]
0.70

(2_x)p1 :
[

0.7500 0 0 0 −0.1632 0.2185 −0.1093 0.0198
]

1.35

2
(1_x)p2 :

[
0.6847 −0.1469 0.0389 0.1942 −0.7588 1.3593 −1.4602 0.6930

]
0.50

(2_x)p2 :
[

0.6847 −0.0778 0.0145 0.0325 −0.0578 0.0474 −0.0239 0.0054
]

1.15

3
(1_x)p3 :

[
0.6194 −0.1165 −0.0270 −0.0299 0.1111 0.0264 −0.1580 0.0765

]
0.60

(2_x)p3 :
[

0.6194 −0.0523 −0.0086 −0.0061 0.0091 4.7142e − 04 −0.0025 5.7441e − 04
]

1.10

4
(1_x)p4 :

[
0.5541 −0.1221 0.0316 0.0241 −0.1049 0.0718 −0.0174 0.0083

]
0.60

(2_x)p4 :
[

0.5541 −0.0586 0.0079 0.0022 −0.0086 0.0033 −3.5354e − 04 8.5121e − 05
]

1.20

5
(1_x)p5 :

[
0.4889 −0.1077 −0.0166 −0.0065 0.0605 −0.0093 −0.0872 0.0496

]
0.60

(2_x)p5 :
[

0.4889 −0.0582 −0.0072 0.0030 0.0073 −0.0015 −0.0019 5.5451e − 04
]

1.10

6
(1_x)p6 :

[
0.4236 −0.1126 −0.0035 −0.0411 −0.2716 0.9252 −1.4262 0.9456

]
0.50

(2_x)p6 :
[

0.4236 −0.0465 0.0100 −0.0088 −0.0257 0.0311 −0.0190 0.0055
]

1.15

7
(1_x)p7 :

[
0.3583 −0.1576 −0.0326 0.2317 −0.7151 2.8838 −4.1411 1.8915

]
0.70

(2_x)p7 :
[

0.3583 −0.0830 −0.0180 0.0417 −0.0662 0.1535 −0.1234 0.0313
]

1.35

8
(1_x)p8 :

[
0.2930 0 0 0 2.4213 −6.3825 6.3295 −2.2830

]
0.70

(2_x)p8 :
[

0.2930 0 0 0 0.1844 −0.2543 0.1309 −0.0244
]

1.35

9
(1_x)p9 :

[
0.3583 0.1624 −0.0356 −0.2598 0.8849 −1.7074 2.0076 −1.0076

]
0.50

(2_x)p9 :
[

0.3583 0.0793 −0.0170 −0.0362 0.0619 −0.0479 0.0230 −0.0050
]

1.15

10
(1_x)p10 :

[
0.4236 0.1071 −0.0113 0.0564 −0.0489 −0.0580 0.1083 −0.0455

]
0.60

(2_x)p10 :
[

0.4236 0.0501 0.0115 0.0066 −0.0107 −2.2438e − 04 0.0027 −6.2319e − 04
]

1.10

11
(1_x)p11 :

[
0.4889 0.1102 −0.0046 −0.0085 0.0375 −0.0364 0.0191 −0.0091

]
0.60

(2_x)p11 :
[

0.4889 0.0591 −0.0089 −0.0028 0.0100 −0.0038 3.5664e − 04 −8.4915e − 05
]

1.20

12
(1_x)p12 :

[
0.5541 0.1102 0.0046 −0.0085 −0.0178 −0.0121 0.0828 −0.0455

]
0.60

(2_x)p12 :
[

0.5541 0.0591 0.0089 −0.0028 −0.0084 0.0019 0.0021 −6.2319e − 04
]

1.10

13
(1_x)p13 :

[
0.6194 0.1071 0.0113 0.0564 0.2633 −0.9744 1.5189 −1.0076

]
0.50

(2_x)p13 :
[

0.6194 0.0501 −0.0115 0.0066 0.0251 −0.0290 0.0175 −0.0050
]

1.15

14
(1_x)p14 :

[
0.6847 0.1624 0.0356 −0.2598 0.8034 −3.2909 4.8573 −2.2830

]
0.70

(2_x)p14 :
[

0.6847 0.0793 0.0170 −0.0362 0.0569 −0.1290 0.1000 −0.0244
]

1.35

The coordinates of the linear trajectories remain constant in the y direction with minimal variation, so the
polynomial coefficients of each segment tend toward 0 and are not reflected in the table. (j_x)pi represents the
polynomial coefficient in the x-direction of the i-th segment of the j-th trajectory.

A comparison reveals that the optimized trajectories’ joint velocities, accelerations,
and jerks are generally of a lower magnitude than those of a randomly generated trajectory.
It is noted that all the maximum magnitudes of the joint velocity, acceleration, and jerk
profiles of the optimized trajectory are smaller than the random ones, which implies that the
optimized trajectory ensures a higher kinematic performance of the robot’s rehabilitation
training. This implies that the optimized one better conforms to the kinematic characteristics
of traditional rehabilitation therapies, where a physician manually drags the affected
limbs. The optimized trajectories ensure lighter impacts and a smoother path, thereby
guaranteeing the robot with higher motional performance in rehabilitation.

Additionally, as shown in Figure 18a,b, a comparison of the two rehabilitation trajecto-
ries reveals that trajectory 1 completes one training cycle within 16.8 s, with the knee joint
reaching its maximum flexion at the 8.4-th second, and all ranges of motion meet the set
joint rehabilitative criteria. Trajectory 2 completes two training cycles within 16.8 s, with the
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hip joint reaching its maximum flexion at the 4.2-th second and at the 12.6-th second, with
all movement ranges also meeting the set joint rehabilitative criteria. Moreover, the joint
velocity and acceleration curves are smooth and continuously differentiable, and the joint
jerk is restricted to zero at the start point, end point, and the point of the maximum flexion,
effectively replicating the rehabilitation patterns that occur during traditional rehabilitation
therapy, where a physician drags the affected limb. This approach maximizes the safety of
the patient’s rehabilitation training and simulates the reliable technique of the physician.

As shown in Figure 18g,h, the maximum hip joint jerk of the random trajectory 1 is
10.2 rad/s3, and the maximum knee joint impact is 24.9 rad/s3. The maximum jerk on the
hip joint of optimized trajectory 1 is 9.3 rad/s3, and the maximum jerk on the knee joint is
21.3 rad/s3. The maximum jerk on the hip joint of random trajectory 2 is 2.9 rad/s3, and the
maximum jerk on the knee joint is approximately 5.8 rad/s3. The maximum jerk on the hip
joint of trajectory 1 after optimization is 2.5 rad/s3, and the maximum jerk on the knee joint
is 5.5 rad/s3. Therefore, the maximum joint jerk of optimized trajectories 1 and 2 is smaller
than that of the random trajectories. It is vital in rehabilitation because the maximum
jerk is the most likely to cause secondary damage, and the optimized trajectory effectively
reduces the maximum jerk during training. In addition, the joint jerk at each moment of the
optimized trajectory is almost always smaller than that of the random trajectory, indicating
that patients can feel smaller impacts during the overall rehabilitative process, which helps
with the comfort of rehabilitation. In summary, the optimized trajectory can effectively
improve the safety and comfort of patients’ lower-limb joint rehabilitation compared to the
random trajectory.
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5. Conclusions

This paper introduces a novel linear rehabilitative motion planning approach and
successfully demonstrates its integration with a three-degrees-of-freedom (DOF) multi-
posture lower-limb rehabilitation robot. Addressing the challenge of incorporating the
nuanced treatment expertise of physicians into robotic rehabilitation, we have analyzed the
interplay between joint rehabilitation indicators and linear rehabilitation trajectories across
diverse action spaces. Subsequently, we designed a joint rehabilitation indicator-based path
generation system to enhance the efficiency of rehabilitation path planning for clinicians
using the lower-limb rehabilitation robot. To ensure the continuity and minimize the jerks
of rehabilitation trajectories, we employed high-order polynomial curves in the trajectory
planning process. This approach was further refined through the resolution of a constrained
quadratic optimization problem, effectively reducing the jerk of the end effector and the
joints of the robot.

Through comparative studies involving Cartesian trajectories determined at equivalent
key points, the results revealed that trajectory optimization is indeed feasible for real-time
trajectory planning, as evidenced by the low computation times (not exceeding 10 ms). The
optimization of trajectories using polynomial curves was found to significantly outperform
random trajectories in enhancing the robot’s rehabilitative training performance, thereby
validating the efficacy of our method within the rehabilitation technology. Furthermore, a
comparison of two sets of optimized rehabilitation trajectories, one before and one after the
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application of our method, confirmed that the robot’s performance was notably improved.
Specifically, trajectory 1 and trajectory 2 were tailored to meet the physician’s requirements
for hip joint extreme flexion and knee joint extreme flexion, respectively. Additionally,
both optimized trajectories adhered to other predefined joint rehabilitation indicators,
substantiating the effectiveness of our joint rehabilitation indicator-based path generation
system in assisting physicians in the operation of rehabilitation robots.
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